WorldWideScience

Sample records for system life cycle

  1. LIFE CYCLE OF INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Y. S. Sennik

    2015-01-01

    Full Text Available This work is a generalization of the theoretical propositions related to the life cycle of information systems. There was given the definition of the life cycle, specify which items you should include every step of the cycle. Describes the methodology division of the life cycle on the main stage, including methodology Rational Unified Process. The description of the fundamental standards in this area. Special attention was paid to the work of the basic life cycle models. It was carried out their comparative characteristics. On the basis of the theoretical propositions, it was concluded that the preferred model of the life cycle for the corporate network is a spiral model and the use of international standards in the life cycle saves a lot of effort, time and material resources.

  2. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  3. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  4. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  5. Survey on the life cycle system of a product with shared information; Joho kyoyugata product life cycle system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report provides and proposes new concept and optimization technology on the life cycle system of product for emission minimum. For the proposed life cycle system of product with shared information, the global emission minimum is realized by considering the final emission, the information is given to the product and shared in all the life cycle system, the information sending function is considered from the product, and the information necessary for material processing are actively used. For this life cycle system of product, development of the information model for the system, development of the technology of data saving, renewing, searching and sending, development of sensing and re-using technologies of the product for life cycle, development of the technology attaching information in the product for emission minimum, design of the guidelines of material composition, and research and development of materials for emission minimum are extracted and provided as tasks. 26 refs., 69 figs., 8 tabs.

  6. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  7. Management system and organizational life cycle: A qualitative study

    OpenAIRE

    Selma Zone Fekih Ahmed

    2013-01-01

    This research deals with the importance of the components of the management system according to the phases of organizational life cycle. The goal of our research is to provide the theoretical reflection on the life cycle of the organization and to shed light on the components of the management system for each phase. The conceptual analysis shows that the management system is made up of its three components: ethics, mode of functioning and procedure of regulation. The organizational life cycle...

  8. Life-Cycle Models for Survivable Systems

    National Research Council Canada - National Science Library

    Linger, Richard

    2002-01-01

    .... Current software development life-cycle models are not focused on creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high degree of assurance of survivability...

  9. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 2, Data Analysis-The Methods describes the methods for carrying out data analysis within the systems development life-cycle and demonstrates how the results of fact gathering can be used to produce and verify the analysis deliverables. A number of alternative methods of analysis other than normalization are suggested. Comprised of seven chapters, this book shows the tasks to be carried out in the logical order of progression-preparation, collection, analysis of the existing system (which comprises the tasks of synthesis, verification, an

  10. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  11. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  12. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    Science.gov (United States)

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  13. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  14. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  15. Software Safety Life cycle and Method of POSAFE-Q System

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon

    2006-01-01

    This paper describes the relationship between the overall safety life cycle and the software safety life cycle during the development of the software based safety systems of Nuclear Power Plants. This includes the design and evaluation activities of components as well as the system. The paper also compares the safety life cycle and planning activities defined in IEC 61508 with those in IEC 60880, IEEE 7-4.3.2, and IEEE 1228. Using the KNICS project as an example, software safety life cycle and safety analysis methods applied to the POSAFE-Q are demonstrated. KNICS software safety life cycle is described by comparing to the software development, testing, and safety analysis process with international standards. The safety assessment of the software for POSAFE-Q is a joint Korean German project. The assessment methods applied in the project and the experiences gained from this project are presented

  16. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  17. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  18. Enterprise and system of systems capability development life-cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

  19. FY 1997 survey report on information sharing product life-cycle systems. 2; 1997 nendo joho kyoyugata product life cycle system ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Highly value-added products considering a total life-cycle of products by integrating both production and consumption activities are much in demand, and each information corresponding to each product should be realized by concept integrating both information and product as common element. Survey was made on what a social system integrating production and consumption should be, a product information model, and technology integrating both information and product for raw material, industrial machine and household appliance as examples. An information model shared by the whole production and consumption activities was first prepared. Based on this model, data storage, update, retrieval and dispatch technologies were surveyed and developed for life-cycle systems. Degradation and life sensing technology was surveyed for maintenance, repair and disposal activities using proper unstable information of each product. A support system for use of shared information was developed to promote a new highly value-added function. Total evaluation was made on information sharing product life-cycle systems. 10 refs., 23 figs., 7 tabs.

  20. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle, Book 3: Activity Analysis - The Deliverables provides a comprehensive coverage of the deliverables of activity analysis. The book also details purpose of each deliverable in the context of the next tasks in the systems development cycle (SDC). The text first covers the concept of deliverables and the benefits of making deliverables visible. In the second chapter, the book introduces the main concepts and diagrammatic techniques of activity analysis. The third chapter deals with the important classes or categories of concept, while the fourth

  1. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  2. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  3. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  4. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Akhil Kadiyala

    2016-06-01

    Full Text Available This study evaluated the life cycle greenhouse gas (GHG emissions from different hydroelectricity generation systems by first performing a comprehensive review of the hydroelectricity generation system life cycle assessment (LCA studies and then subsequent computation of statistical metrics to quantify the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh. A categorization index (with unique category codes, formatted as “facility type-electric power generation capacity” was developed and used in this study to evaluate the life cycle GHG emissions from the reviewed hydroelectricity generation systems. The unique category codes were labeled by integrating the names of the two hydro power sub-classifications, i.e., the facility type (impoundment (I, diversion (D, pumped storage (PS, miscellaneous hydropower works (MHPW and the electric power generation capacity (micro (µ, small (S, large (L. The characterized hydroelectricity generation systems were statistically evaluated to determine the reduction in corresponding life cycle GHG emissions. A total of eight unique categorization codes (I-S, I-L, D-µ, D-S, D-L, PS-L, MHPW-µ, MHPW-S were designated to the 19 hydroelectricity generation LCA studies (representing 178 hydropower cases using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of I-S (N = 24, I-L (N = 8, D-µ (N = 3, D-S (N = 133, D-L (N = 3, PS-L (N = 3, MHPW-µ (N = 3, and MHPW-S (N = 1 hydroelectricity generation systems are 21.05 gCO2e/kWh, 40.63 gCO2e/kWh, 47.82 gCO2e/kWh, 27.18 gCO2e/kWh, 3.45 gCO2e/kWh, 256.63 gCO2e/kWh, 19.73 gCO2e/kWh, and 2.78 gCO2e/kWh, respectively. D-L hydroelectricity generation systems produced the minimum life cycle GHGs (considering the hydroelectricity generation system categories with a representation of at least two cases.

  5. A life cycle greenhouse gas inventory of a tree production system

    Science.gov (United States)

    Alissa Kendall; E. Gregory McPherson

    2012-01-01

    PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....

  6. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    Science.gov (United States)

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  7. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  8. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Wang, Jiang-Jiang; Yang, Kun; Xu, Zi-Long; Fu, Chao; Li, Li; Zhou, Zun-Kai

    2014-01-01

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO 2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO 2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO 2 emission of the biomass BCHP system are about 41.9 $ MWh −1 , 41% and 59.60 kg MWh −1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO 2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO 2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  9. LIFE CYCLE ASSESSMENT IN HEALTHCARE SYSTEM OPTIMIZATION. INTRODUCTION

    Directory of Open Access Journals (Sweden)

    V. Sarancha

    2015-03-01

    Full Text Available Article describes the life cycle assessment method and introduces opportunities for method performance in healthcare system settings. LSA draws attention to careful use of resources, environmental, human and social responsibility. Modelling of environmental and technological inputs allows optimizing performance of the system. Various factors and parameters that may influence effectiveness of different sectors in healthcare system are detected. Performance optimization of detected parameters could lead to better system functioning, higher patient safety, economic sustainability and reduce resources consumption.

  10. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  11. 10 CFR 436.19 - Life cycle costs.

    Science.gov (United States)

    2010-01-01

    ... operation and maintenance costs: (c) Replacement costs less salvage costs of replaced building systems; and... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the...

  12. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  13. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  14. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  15. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man –environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  16. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man–environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  17. Implementation of a Cost-Accounting System for Visibility of Weapon Systems Life-Cycle Costs

    National Research Council Canada - National Science Library

    Ugone, Mary

    2001-01-01

    .... The DoD Acquisition Reform Goal 10 required DoD to define requirements and establish an implementation plan for a cost-accounting system that provides routine visibility into weapon system life-cycle...

  18. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  19. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    Science.gov (United States)

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  20. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  1. Sustainable Building Life Cycle Design

    Directory of Open Access Journals (Sweden)

    Ginzburg Alexander

    2016-01-01

    Full Text Available The current building life cycle management system in the Russian Federation is a family of discrete subsystems that exist independently for different building life cycle stages. In this situation building reliability and sustainable functioning are out of the question. The implementation of a united information model (BIM-model intended to describe building entire life cycle will allow to raise the sustainability, but this will happen only if goals and concerns of all participants of the project process are properly coordinated. An important figure of process sustainability is the organizational and technological reliability (OTR that describes the possibility of a system to reach a goal. In case of building life cycle design, the economical efficiency of a building can be considered as the goal. The required technical, ecological, organizational, and other parameters form a complex of constraints that determine the area of allowable values for building functioning. In its broad meaning, OTR may be understood as the probability of receiving an economical effect based on the value of organizational and economical reliability (OER.

  2. Software life cycle process and classification guides for KNICS digital instrumentation and control system design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Son, Han Seung; Kim, Jang Yeol; Kwon, Kee Choon; Lee, Soon Seung; Kim, Doo Hwan [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Documentation should exist that shows that the qualification activities have been successfully accomplished for each life cycle activity group. In particular, the documentation should show that the system safety requirements have been adequately addressed for each life cycle activity group, that no new hazards have been introduced, and that the software requirements, design elements, and code elements that can affect safety have been identified. Because the safety of software can be assured through both the process Verification and Validation (V and V) itself and the V and V of all the intermediate and final products during the software development lifecycle, the development of KNICS Software Safety Framework (KSSF) must be established. As the first activity for establishing KSSF, we have developed this report, Software Life Cycle Process and Classification Guides for KNICS Digital I and C System. This report is organized as follows. Chapter I describes the background, definitions, and references of SLCP. Chapter II describes KNICS safety software categorization. In Chapter III, we define the requirements on software life cycle process for designing digital KNICS. Chapter III.3, that is the main section of the chapter, includes the requirements for software life cycle process planning, the requirements for software life cycle process implementation, and the requirements for software life cycle process design outputs. Finally, we have described the result of a case study on the SLCP for developing the software of ESF-CCS system that is being developed by a private company, BNF. 29 refs., 5 figs., 7 tabs. (Author)

  3. The models of the life cycle of a computer system

    Directory of Open Access Journals (Sweden)

    Sorina-Carmen Luca

    2006-01-01

    Full Text Available The paper presents a comparative study on the patterns of the life cycle of a computer system. There are analyzed the advantages of each pattern and presented the graphic schemes that point out each stage and step in the evolution of a computer system. In the end the classifications of the methods of projecting the computer systems are discussed.

  4. Life Cycle Management

    DEFF Research Database (Denmark)

    Bey, Niki

    2018-01-01

    This chapter gives an overview of Life Cycle Management (LCM)—a discipline that deals with the managerial tasks related to practicing sustainable development in an organisation . Just as Life Cycle Assessment, LCM advocates the life cycle perspective , and it applies this perspective in decision...

  5. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  6. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  7. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  8. Research on the full life cycle management system of smart electric energy meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  9. NASA's Robotics Mining Competition Provides Undergraduates Full Life Cycle Systems Engineering Experience

    Science.gov (United States)

    Stecklein, Jonette

    2017-01-01

    NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design to actual tele-operation of the robot in simulated Mars conditions mining and collecting simulated regolith. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team's score for the competition's grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.

  10. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn

    2015-01-01

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... of usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...... checking and reinforcement learning to synthesize near-optimal scheduling strategies subject to possible hard timing-constaints. We use this to study the trade-off between optimal short-term dynamic payload selection and the operational life of the satellite....

  11. Implementation of a Cost-Accounting System for Visibility of Weapon Systems Life-Cycle Costs

    National Research Council Canada - National Science Library

    Ugone, Mary

    2001-01-01

    ... costs through activity-based costing and management. The system must deliver timely, integrated data for management purposes to permit understanding of total weapon costs, provide a basis for estimating costs of future systems, and feed other tools for life-cycle cost management.

  12. Life Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social Sustainability

    OpenAIRE

    Sakellariou, Nikolaos

    2015-01-01

    AbstractLife Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social SustainabilitybyNikolaos SakellariouDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Alastair T. Iles, ChairThis dissertation investigates the historical and normative bases of what contemporary engineers consider to be the embodiment of sustainability: Life Cycle Assessment (LCA). It explores the interplay among technology ethics, energy syst...

  13. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  14. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Nian, Victor

    2015-01-01

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO 2 /GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235 U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of

  15. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  16. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  17. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S.

    2009-01-01

    This paper describes a design process based on risk-informed probabilistic design methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept embodies use of probabilistic risk assessments to establish target reliabilities for facility systems and components. The target reliabilities are used for system based code margin exchange and performance simulation analyses to optimize design over all phases (design, construction, operation and decommissioning) of a facility's life-cycle. System based code margin exchange reduces excessive level of construction margins for passive components to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. System and subsystem simulation analyses determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The paper includes a description of these risk-informed life-cycle design processes, a summary of work being done, and a discussion of additional work needed to implement the process.

  18. Emissions from photovoltaic life cycles.

    Science.gov (United States)

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  19. An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall

    Directory of Open Access Journals (Sweden)

    Karina Condeixa

    2015-06-01

    Full Text Available Life Cycle Assessment is a methodology that investigates impacts linked to a product or service during its entire life cycle. Life Cycle Assessment studies investigate processes and sub-processes in a fragmented way to ascertain their inputs, outputs and emissions and get an overview of the generating sources of their environmental loads. The lifecycle concept involves all direct and indirect processes of the studied object. This article aims to model the material flows in the masonry and drywall systems and internal walls in a Brazilian scenario, and calculate the climate change impacts generated by the transport of the component materials of the systems. Internal walls of a residential dwelling in Rio de Janeiro are analyzed from a qualitative inventory of all life cycles with an analysis of material flows, based on technical and academic literature. All Life Cycle Impact Assessment of the systems is carried out with international data from the database, and using the IPCC2013 method for climate change impacts. This study disregards the refurbishment and possible extensions within the use phase. Thus, the inventory identifies weaknesses of the systems while the impact assessment validates the results. This study allows us a complete understanding about the inner walls systems in the Brazilian scenario, evidencing its main weaknesses and subsidizes decision-making for the industry and for planning of the new buildings.

  20. Proceedings: 2003 Workshop on Life Cycle Management Planning for Systems, Structures, and Components

    International Nuclear Information System (INIS)

    2003-01-01

    These proceedings of the 2003 EPRI Life Cycle Management Workshop provide nuclear plant owners with an overview of the state of development of methods and tools for performing long-term planning for maintenance, aging management, and obsolescence management of systems, structures, and components important to a plant's long-term safety, power production, and value in a market-driven industry. The proceedings summarize the results of applying life cycle management at several plants

  1. A model for a knowledge-based system's life cycle

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  2. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  3. LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    Science.gov (United States)

    The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...

  4. Sustainable Industrial Product Systems. Integration of Life Cycle Assessment in Product development and Optimization of Product Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Ole Joergen

    1997-12-31

    This thesis contributes to the development and testing of environmental life cycle assessment (LCA) in product development and management in industry. It is based on systems theory and systems engineering. It develops a method for sustainable product development that has been successfully tested in the Nordic project called NEP. The LCA method is also a basis for an optimization model, where life cycle economy and environmental impacts from product systems are optimized with a non-linear model. A more complete mathematical model for LCA, based on the functional requirements on a product system, is also developed. The statistical properties of emission factors are studied using a data set from the Swedish Kraft Mill industry. It is shown that emission factors may be assumed constants in the LCA model, but with rather large variations within a population of Kraft mills. It is shown that there are a few environmental impacts which are important for most types of products under Scandinavian conditions, especially global warming potential, acidification, human toxicity and fossil energy depletion. There are significant differences between the contribution to these impacts from different life cycle stages, where raw material processing and use of products are generally more important than the other stages. Test cases indicate that there are no large conflicts between improvements in environmental impacts and customer requirements. Environmental improvements seem to increase purchase cost of products in some cases, but the life cycle cost of the products seem in most cases to be reduced. It is concluded that there are opportunities for 30-50% improvements in product system, based on relatively simple modifications of the systems. 246 refs., 63 figs., 19 tabs.

  5. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    NARCIS (Netherlands)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Hansen, René Rydhof; Larsen, K.G.; Sankaranarayanan, Sriram; Vicario, Enrico

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact of

  6. LIFE CYCLE DESIGN OF A FUEL TANK SYSTEM

    Science.gov (United States)

    This life cycle design (LCD) project was a collaborative effort between the National Pollution Prevention Center at the University of Michigan, General Motors (GM), and the U.S. Environmental Protection Agency (EPA). The primary objective of this project was to apply life cyc...

  7. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Sala, Serenella; Pant, Rana; Hauschild, Michael Zwicky

    2012-01-01

    Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from "cradle to grave" have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental...... sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA) of products, in recent years, several methodologies have been developed for Life Cycle Impact...... Assessment (LCIA). The Joint Research Center of the European Commission (EC-JRC) led a "science to decision support" process which resulted in the International Reference Life Cycle Data System (ILCD) Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook...

  8. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  9. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    International Nuclear Information System (INIS)

    Bi, Zicheng; Song, Lingjun; De Kleine, Robert; Mi, Chunting Chris; Keoleian, Gregory A.

    2015-01-01

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  10. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    Science.gov (United States)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  11. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?

    DEFF Research Database (Denmark)

    Niero, Monia; Di Felice, Francesco; Ren, Jingzheng

    2014-01-01

    , as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value......This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper......; these correlations can be used to improve the design of new wooden pallets.The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent...

  12. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  13. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    The life cycle assessment (LCA) of a waste management system relies on many internal characteristics such as pollution control systems and recovery efficiencies. It also relies on technical externalities supporting the waste management system in terms of capital goods and energy and material...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...

  14. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  15. 77 FR 50724 - Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of...

    Science.gov (United States)

    2012-08-22

    ... review of applications for permits and licenses. The DG entitled ``Developing Software Life Cycle... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission...

  16. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    social audits. Through an interview with a social auditor it is suggested that the auditor varies the procedures for carrying out the audit in order to get the most valid result. For example, the auditor has to take into account the various tricks a company in a given context normally uses to cheat......This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...

  17. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  18. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  19. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  20. Method for Controlling Space Transportation System Life Cycle Costs

    Science.gov (United States)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  1. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  2. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    Science.gov (United States)

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  3. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  4. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  5. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  6. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...

  7. Combined Life Cycle Assessment and Life Cycle Costing in the Eco-Care-Matrix: A case study on the performance of a modernized manufacturing system for glass containers

    DEFF Research Database (Denmark)

    Auer, Johannes; Bey, Niki; Schäfer, Johannes-Marius

    2017-01-01

    Cycle Assessment, as well as Life Cycle Costing (LCC). The results were then to be displayed in an Eco-Care-Matrix (ECM) in order to quantitatively visualize the improvements when comparing the updated manufacturing system to the previous one and they were to be discussed in terms of (i) ecodesign...

  8. Involving Effectively Teachers and Students in the Life Cycle of an Intelligent Tutoring System

    Directory of Open Access Journals (Sweden)

    Maria Virvou

    2000-01-01

    Full Text Available This paper highlights the important role that teachers and students may play in the life cycle of an intelligent tutoring system. In this research, we have developed a system called “EasyMath”, a tutoring system for Algebra that incorporates intelligence. One of the primary aims of EasyMath is to make it useful in school classrooms. This is why, school teachers of mathematics and their students have been involved throughout the life cycle of EasyMath. The system was developed following the rational unified process, an object-oriented methodology for developing software through multiple iterations. The design of EasyMath has been based on the results of an empirical study that was conducted at schools and the resulting product was evaluated by school teachers as well as students.

  9. Life cycle assessment and the resilience of product systems

    DEFF Research Database (Denmark)

    Pizzol, Massimo

    2015-01-01

    Resilience is the capacity of systems to withstand and recover from disturbance, depends on the structure and architecture of a system, and plays a key role for the sustainability of complex systems. Despite its importance, resilience is not explicitly taken into account by studies of life cycle...... assessment (LCA), which main objective is determining the eco-efficiency of a product system with limited focus on its structure. The question is whether a product system which structure is improved or designed to be more resilient will result in being not only inefficient, but also eco-inefficient, when...... assessed by means of LCA. This study proposes a theoretical modelling approach to compare vulnerable and resilient product systems within the framework of LCA, consisting of assessment of disturbance and system expansion. Examples are provided where the theory is made operational. The structure...

  10. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  11. 20th CIRP International Conference on Life Cycle Engineering

    CERN Document Server

    Song, Bin; Ong, Soh-Khim

    2013-01-01

    This edited volume presents the proceedings of the 20th CIRP LCE Conference, which cover various areas in life cycle engineering such as life cycle design, end-of-life management, manufacturing processes, manufacturing systems, methods and tools for sustainability, social sustainability, supply chain management, remanufacturing, etc.

  12. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Colombo, R.; Gilliaert, D.

    1992-01-01

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  13. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  14. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  15. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  16. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  17. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  18. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  19. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  20. Life Cycle Costing: An Introduction

    DEFF Research Database (Denmark)

    Rödger, Jan-Markus; Kjær, Louise Laumann; Pagoropoulos, Aris

    2018-01-01

    The chapter gives an introduction to life cycle costing (LCC) and how it can be used to support decision-making. It can form the economic pillar in a full life cycle sustainability assessment, but often system delimitations differ depending on the goal and scope of the study. To provide a profound...... as well as guidance on how to collect data to overcome this hurdle. In an illustrative case study on window frames, the eLCC theory is applied and demonstrated with each step along the eLCC procedure described in detail. A final section about advanced LCC introduces how to monetarise externalities and how...

  1. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  2. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  3. Life cycle strategies of copepods in coastal upwelling zones

    Science.gov (United States)

    Peterson, W.

    1998-06-01

    Life cycles of copepods of coastal upwelling zones are of the multigenerational type—as many as 10 or more generations may be produced each year, depending upon water temperature, food concentration and length of the upwelling season. Abundant food resources and moderate temperature convey advantages to those copepods living in coastal upwelling zones, however, there is a clear disadvantage in that coastal upwelling zones are highly advective environments. Typically, water circulation patterns are such that surface waters are carried offshore, deeper waters carried onshore and most of the water column over the continental shelf is moving equatorward. The challenge to copepod species that inhabit upwelling systems is life cycle closure—how do eggs, nauplii, juveniles and adults avoid being swept out of these ecosystems in the face of persistent transport out of the system? In this review, I first list the species which dominate coastal upwelling ecosystems then discuss three variations on the multigenerational life cycle scheme that are observed in upwelling systems. The latter part of the review is devoted to discussion of how individuals are retained in the productive continental shelf waters within coastal upwelling ecosystems. The suggestion is made that the only copepod species that successfully achieve life cycle closure in such systems are those that are preadapted to upwelling circulation patterns. Our quantitative understanding of the relative importance of physical factors (such as advection) and biological factors (birth, growth, and mortality) on life cycle strategies and population dynamics is quite rudimentary. It would help our understanding if there were more field studies and more computer modeling studies that focused on seasonal cycles of abundance, development times and vertical distribution of life cycle stages, and measurements of water circulation patterns.

  4. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  5. Improving life-cycle cost management in the US. Army: analysis of the U.S. Army and Commercial Businesses life-cycle cost management.

    OpenAIRE

    White, Bradley A.

    2001-01-01

    The roles and responsibilities of the Army acquisition and logistics communities, as they pertain to the life-cycle management, are undergoing fundamental change. The early identification and total control of life-cycle cost, in particular operations and sustainment costs which comprises as much as 70-80% of a systems total life-cycle cost, is a high priority for the Army. The basis of this change is adoption of commercial best practices to support the Army's goal to organize. tram. equip, an...

  6. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products...... of sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so-called Life Cycle Sustainability Dashboard (LCSD) is described here...

  7. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2007-01-01

    This paper describes a design process based on risk-informed probabilistic methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept uses probabilistic risk assessments to identify target reliabilities for facility systems and components. Target reliabilities are used in system and subsystem simulation analyses to determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The target reliabilities are also used for system based code margin exchange to reduce excessive level of margins to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. The paper includes a description of a risk informed life-cycle design process, a summary of work being done, and a discussion of work needed to implement the process. (author)

  8. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  9. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  10. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  11. Is it only CO{sub 2} that matters? A life cycle perspective on shallow geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Saner, Dominik; Juraske, Ronnie; Hellweg, Stefanie [Group for Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Kuebert, Markus [Systherma GmbH, Am Haag 12, D-72181 Starzach-Felldorf (Germany); Blum, Philipp [Karlsruhe Institute of Technology (KIT), Institute for Applied Geosciences (AGW), Kaiserstrasse 12, D-76131 Karlsruhe (Germany); Bayer, Peter [Engineering Geology, Geological Institute, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland)

    2010-09-15

    Shallow geothermal systems such as open and closed geothermal heat pump (GHP) systems are considered to be an efficient and renewable energy technology for cooling and heating of buildings and other facilities. The numbers of installed ground source heat pump (GSHP) systems, for example, is continuously increasing worldwide. The objective of the current study is not only to discuss the net energy consumption and greenhouse gas (GHG) emissions or savings by GHP operation, but also to fully examine environmental burdens and benefits related to applications of such shallow geothermal systems by employing a state-of the-art life cycle assessment (LCA). The latter enables us to assess the entire energy flows and resources use for any product or service that is involved in the life cycle of such a technology. The applied life cycle impact assessment methodology (ReCiPe 2008) shows the relative contributions of resources depletion (34%), human health (43%) and ecosystem quality (23%) of such GSHP systems to the overall environmental damage. Climate change, as one impact category among 18 others, contributes 55.4% to the total environmental impacts. The life cycle impact assessment also demonstrates that the supplied electricity for the operation of the heat pump is the primary contributor to the environmental impact of GSHP systems, followed by the heat pump refrigerant, production of the heat pump, transport, heat carrier liquid, borehole and borehole heat exchanger (BHE). GHG emissions related to the use of such GSHP systems are carefully reviewed; an average of 63 t CO{sub 2} equivalent emissions is calculated for a life cycle of 20 years using the Continental European electricity mix with 0.599 kg CO{sub 2} eq/kWh. However, resulting CO{sub 2} eq savings for Europe, which are between -31% and 88% in comparison to conventional heating systems such as oil fired boilers and gas furnaces, largely depend on the primary resource of the supplied electricity for the heat pump

  12. System, structure, and component evaluation for life-cycle management

    International Nuclear Information System (INIS)

    Hanley, N.E.; Banerjee, A.K.; Woods, P.B.; Perrin, J.S.; Marian, F.A.

    1992-01-01

    In recent years, many nuclear organizations and utilities have studied the possibility of extending the service life of nuclear power plants beyond the original license period. From these studies, recommendations have resulted for maintaining the option of future decisions concerning operating license renewal. Several of the recommendations are considered beneficial to the management and operation of nuclear plants in meeting many of their near-term goals. In 1986, Public Service Electric and Gas (PSE and G) concluded that a full-scale nuclear plant license renewal program for their Salem 1 and 2 and Hope Creek nuclear stations was not cost-effective at that time. Rather, it would be better served if the nuclear plant life extension (PLEX) option were maintained for future consideration. To help plan for the life extension option, a strategic 5-yr life cycle management (LCM) program was begun. In support of the LCM program, evaluations for the following Salem structures and components were performed: (1) intake structures, (2) reactor vessel support, (3) containment liner, and (4) containment structure (below grade). This paper discusses the systems, structures, and components (SSC) evaluation methodology and, as an example, discusses the evaluation performed for reactor vessel support

  13. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  14. 19th CIRP Conference on Life Cycle Engineering

    CERN Document Server

    Linke, Barbara

    2012-01-01

    The 19th CIRP Conference on Life Cycle Engineering continues a strong tradition of scientific meetings in the areas of sustainability and engineering within the community of the International Academy for Production Engineering (CIRP). The focus of the conference is to review and discuss the current developments, technology improvements, and future research directions that will allow engineers to help create green businesses and industries that are both socially responsible and economically successful.  The symposium covers a variety of relevant topics within life cycle engineering including Businesses and Organizations, Case Studies, End of Life Management, Life Cycle Design, Machine Tool Technologies for Sustainability, Manufacturing Processes, Manufacturing Systems, Methods and Tools for Sustainability, Social Sustainability, and Supply Chain Management.

  15. Life Cycle Engineering – from methodology to enterprise culture

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Poll, Christian

    2003-01-01

    As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number of method......As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number...... of methodologies and tools for life cycle assessment and development of more eco-efficient products, from complex to simplified, catering to the needs of especially small and medium-sized enterprizes. The tools and data are in place, but dissemination lacks behind. Propagation of life cycle thinking and life cycle...... engineering to larger parts of industry is attempted by strengthening the market pull through integrated product policy measures, and at the same time pushing through information activities, training and dissemination of tools. Experience hitherto shows that these forces are insufficient and that stronger...

  16. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  17. Farinon microwave end of life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Poe, R.C.

    1996-06-24

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  18. A comparative life cycle assessment of marine power systems

    International Nuclear Information System (INIS)

    Ling-Chin, Janie; Roskilly, Anthony P.

    2016-01-01

    Highlights: • Correlation among resources, emissions, key components and processes was attained. • Environmental benefits of innovative power systems were verified. • New-build system showed a great advantage over retrofit and conventional systems. • Relative contribution of significant components remained or became more profound. • Influence of fuel consumption quantity over the estimates varied with impact types. - Abstract: Despite growing interest in advanced marine power systems, knowledge gaps existed as it was uncertain which configuration would be more environmentally friendly. Using a conventional system as a reference, the comparative life cycle assessment (LCA) study aimed to compare and verify the environmental benefits of advanced marine power systems i.e. retrofit and new-build systems which incorporated emerging technologies. To estimate the environmental impact attributable to each system, a bottom-up integrated system approach was applied, i.e. LCA models were developed for individual components using GaBi, optimised operational profiles and input data standardised from various sources. The LCA models were assessed using CML2001, ILCD and Eco-Indicator99 methodologies. The estimates for the advanced systems were compared to those of the reference system. The inventory analysis results showed that both retrofit and new-build systems consumed less fuels (8.28% and 29.7% respectively) and released less emissions (5.2–16.6% and 29.7–55.5% respectively) during operation whilst more resources were consumed during manufacture, dismantling and the end of life. For 14 impact categories relevant to global warming, acidification, eutrophication, photochemical ozone creation and PM/respiratory inorganic health issues, reduction in LCIA results was achieved by retrofit (2.7–6.6%) and new-build systems (35.7–50.7%). The LCIA results of the retrofit system increased in ecotoxicity (1–8%), resource depletion (1–2%) and fossil fuel depletion

  19. FileNet's BPM life-cycle support

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.

    2006-01-01

    Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes. In the research

  20. Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle.

    Science.gov (United States)

    Laneuville, Matthieu; Kameya, Masafumi; Cleaves, H James

    2018-03-20

    Nitrogen is the major component of Earth's atmosphere and plays important roles in biochemistry. Biological systems have evolved a variety of mechanisms for fixing and recycling environmental nitrogen sources, which links them tightly with terrestrial nitrogen reservoirs. However, prior to the emergence of biology, all nitrogen cycling was abiological, and this cycling may have set the stage for the origin of life. It is of interest to understand how nitrogen cycling would proceed on terrestrial planets with comparable geodynamic activity to Earth, but on which life does not arise. We constructed a kinetic mass-flux model of nitrogen cycling in its various major chemical forms (e.g., N 2 , reduced (NH x ) and oxidized (NO x ) species) between major planetary reservoirs (the atmosphere, oceans, crust, and mantle) and included inputs from space. The total amount of nitrogen species that can be accommodated in each reservoir, and the ways in which fluxes and reservoir sizes may have changed over time in the absence of biology, are explored. Given a partition of volcanism between arc and hotspot types similar to the modern ones, our global nitrogen cycling model predicts a significant increase in oceanic nitrogen content over time, mostly as NH x , while atmospheric N 2 content could be lower than today. The transport timescales between reservoirs are fast compared to the evolution of the environment; thus atmospheric composition is tightly linked to surface and interior processes. Key Words: Nitrogen cycle-Abiotic-Planetology-Astrobiology. Astrobiology 18, xxx-xxx.

  1. A Hospital Nursing Adverse Events Reporting System Project: An Approach Based on the Systems Development Life Cycle.

    Science.gov (United States)

    Cao, Yingjuan; Ball, Marion

    2017-01-01

    Based on the System Development Life Cycle, a hospital based nursing adverse event reporting system was developed and implemented which integrated with the current Hospital Information System (HIS). Besides the potitive outcomes in terms of timeliness and efficiency, this approach has brought an enormous change in how the nurses report, analyze and respond to the adverse events.

  2. Ecology and Life Cycle Patterns of Echinococcus Species.

    Science.gov (United States)

    Romig, T; Deplazes, P; Jenkins, D; Giraudoux, P; Massolo, A; Craig, P S; Wassermann, M; Takahashi, K; de la Rue, M

    2017-01-01

    The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    Full Text Available To date, many years’ experience in the construction and operation of high-rise buildings has been accumulated. Its analysis reveals not only the engineering and organizational-technological specifics of such projects, but also systemic gaps in the field of management. In the implementation of large-scale and unique projects for high-rise buildings, the problems and tasks of improving approaches to managing the full life cycle of projects and methods, which will improve their competitiveness, become topical. The systems being used have largely exhausted their resource efficiency, which is associated with automation of traditional “inherited” processes and management structures, as well as development of IT-systems focused on digitalization of the activities of construction company, rather than the project. To solve these problems, it is proposed to carry out: reengineering of the schemes of information interaction between the project’s participants; formation of integrated digital environment for the life cycle of the project; development of systems for integrating data management and project management. Subject: problems, approaches and methods of digitalization of project’s life cycle management in relation to the specifics and features of high-rise buildings. Research objectives: substantiation of the most perspective approaches and methods of information modeling of high-rise construction as the basis for managing the full life cycle of the given project. Materials and methods: the experience of digitalization of design, construction, operation and development of high-rise buildings, presented in specialized literature, is analyzed. The methods for integrating information models of various stages of project’s life cycle and for information interaction of project’s participants are considered. Results: the concept of forming a single digital environment for the project is proposed, taking into account the features of the life

  4. Reliability and life-cycle analysis of deteriorating systems

    CERN Document Server

    Sánchez-Silva, Mauricio

    2016-01-01

    This book compiles and critically discusses modern engineering system degradation models and their impact on engineering decisions. In particular, the authors focus on modeling the uncertain nature of degradation considering both conceptual discussions and formal mathematical formulations. It also describes the basics concepts and the various modeling aspects of life-cycle analysis (LCA).  It highlights the role of degradation in LCA and defines optimum design and operation parameters. Given the relationship between operational decisions and the performance of the system’s condition over time, maintenance models are also discussed. The concepts and models presented have applications in a large variety of engineering fields such as Civil, Environmental, Industrial, Electrical and Mechanical engineering. However, special emphasis is given to problems related to large infrastructure systems. The book is intended to be used both as a reference resource for researchers and practitioners and as an academic text ...

  5. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  6. A Life-cycle Approach to Improve the Sustainability of Rural Water Systems in Resource-Limited Countries

    Directory of Open Access Journals (Sweden)

    Nicholas Stacey

    2012-11-01

    Full Text Available A WHO and UNICEF joint report states that in 2008, 884 million people lacked access to potable drinking water. A life-cycle approach to develop potable water systems may improve the sustainability for such systems, however, a review of the literature shows that such an approach has primarily been used for urban systems located in resourced countries. Although urbanization is increasing globally, over 40 percent of the world’s population is currently rural with many considered poor. In this paper, we present a first step towards using life-cycle assessment to develop sustainable rural water systems in resource-limited countries while pointing out the needs. For example, while there are few differences in costs and environmental impacts for many improved rural water system options, a system that uses groundwater with community standpipes is substantially lower in cost that other alternatives with a somewhat lower environmental inventory. However, a LCA approach shows that from institutional as well as community and managerial perspectives, sustainability includes many other factors besides cost and environment that are a function of the interdependent decision process used across the life cycle of a water system by aid organizations, water user committees, and household users. These factors often present the biggest challenge to designing sustainable rural water systems for resource-limited countries.

  7. Addressing software security and mitigations in the life cycle

    Science.gov (United States)

    Gilliam, David; Powell, John; Haugh, Eric; Bishop, Matt

    2004-01-01

    Traditionally, security is viewed as an organizational and Information Technology (IT) systems function comprising of firewalls, intrusion detection systems (IDS), system security settings and patches to the operating system (OS) and applications running on it. Until recently, little thought has been given to the importance of security as a formal approach in the software life cycle. The Jet Propulsion Laboratory has approached the problem through the development of an integrated formal Software Security Assessment Instrument (SSAI) with six foci for the software life cycle.

  8. A stochastic process model for life cycle cost analysis of nuclear power plant systems

    NARCIS (Netherlands)

    Van der Weide, J.A.M.; Pandey, M.D.

    2013-01-01

    The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

  9. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  10. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  11. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  12. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  13. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  14. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  15. Life-cycle assessment of Nebraska bridges.

    Science.gov (United States)

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  16. Does It Have a Life Cycle?

    Science.gov (United States)

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  17. Life Cycle Design - a Route to the Sustainable Industrial Culture?

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Wenzel, Henrik; Alting, Leo

    1999-01-01

    In the attempt to reorient Society's development in a more sustainable direction attention is focused on the environmental impact of products and systems over their entire life cycle, but how can the environmental life cycle perspective be introduced into the design of new solutions and how much...... can be optained through life cycle design? The authors' experience with integration of environmental considerations in product development is presented, ranging from the detailed interactive approach to the EDIP-method through various simplified approaches. The potential for environmental improvements...... is reviewed and the overall question of to what extent life cycle design is a route to the sustainable industrial culture is discussed....

  18. A full life cycle nuclear knowledge management framework based on digital system

    International Nuclear Information System (INIS)

    Wang, Minglu; Zheng, Mingguang; Tian, Lin; Qiu, Zhongming; Li, Xiaoyan

    2017-01-01

    Highlights: • A full life cycle nuclear power plant knowledge management framework is introduced. • This framework benefits the safe design, construction, operation and maintenance. • This framework enhances safety, economy and reliability of nuclear power plant. - Abstract: The nuclear power plant is highly knowledge-intensive facility. With the rapid advent and development of modern information and communication technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This paper introduces a full cycle nuclear power plant knowledge management framework based on digital system and tries to find solutions to knowledge creation, sharing, transfer, application and further innovation in nuclear industry. This framework utilizes information and digital technology to build top-tier object driven work environment, automatic design and analysis integration platform, digital dynamic performance Verification & Validation (V&V) platform, collaborative manufacture procedure, digital construction platform, online monitoring and configuration management which benefit knowledge management in NPP full life cycle. The suggested framework will strengthen the design basis of the nuclear power plants (NPPs) and will ensure the safety of the NPP design throughout the whole lifetime of the plant.

  19. Application of preference selection index method for decision making over the design stage of production system life cycle

    Directory of Open Access Journals (Sweden)

    Rajesh Attri

    2015-07-01

    Full Text Available The life cycle of production system shows the progress of production system from the inception to the termination of the system. During each stage, mainly in the design stage, certain strategic decisions have to be taken. These decisions are more complex as the decision makers have to assess a wide range of alternatives based on a set of conflicting criteria. As the decision making process is found to be unstructured, characterized by domain dependent knowledge, there is a need to apply an efficient multi-criteria decision making (MCDM tool to help the decision makers in making correct decisions. This paper explores the application of a novel MCDM method i.e. Preference selection index (PSI method to solve various decision-making problems that are generally encountered in the design stage of production system life cycle. To prove the potentiality, applicability and accuracy of PSI method in solving decision making problem during the design stage of production system life cycle, five examples are cited from the literature and are compared with the results obtained by the past researchers.

  20. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  1. Designing for the ISD Life Cycle.

    Science.gov (United States)

    Wallace, Guy W.; Hybert, Peter R.; Smith, Kelly R.; Blecke, Brian D.

    2002-01-01

    Outlines the recent criticisms of traditional ISD (Instructional Systems Design) and discusses the implications that impact the life cycle costs of T&D (Training and Development) projects and their ROI (Return On Investment) potential. Describes a modified approach to ISD which mimics the modular approach of systems engineering design.…

  2. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  3. Petri Net Modeling of Computer Virus Life Cycle | Ikekonwu ...

    African Journals Online (AJOL)

    Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented. The intention of ...

  4. Organizational Life Cycle and the Growth of Information Technology Stage Theory

    Directory of Open Access Journals (Sweden)

    Jamshid Nazemi

    2012-10-01

    Full Text Available : Organizations have the different patterns of behaviors on management practice and the use of systems during their life cycle and due to rapid growth of information technology, the application of appropriate technologies is becoming an essential part of business, as well. The adaptation of appropriate management systems on different stages of organizational life period will affect on sustainability of the firms and success to move to next stage and alignment and collaboration schema of IS/IT and business requirement affects on management effectiveness at every stage. This research investigated the significance of relationship between management behavior and IS/IT usage and the generic approach selected by companies. The results showed that organizations have chosen different approach during their life cycle and as they faced with unique challenges on each stage, a common practice on using information technology and applications became part of organizational life cycle. A generic model for information technology usage on organization life cycle was also developed that will assist organizations to select and develop IS/IT plans which addresses the requirements for each stage of life cycle.

  5. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...... a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate Was Studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved...

  6. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  7. Life cycle management at Ontario Power Generation

    International Nuclear Information System (INIS)

    Spekkens, P.

    2006-01-01

    This paper outlines the Life Cycle Management (LCM) program at Ontario Power Generation. LCM is carried out at different levels that includes components, systems, unit and fleet. A system involves cumulative effect of individual component aging. These components include steam generators, pressure tubes and feeders. A unit involves an overall unit aging strategy integrating all systems. At the fleet level, there is an optimal strategy for plant-level investments including end-of-life of a unit

  8. Life Cycle Assessment on a 765 kV Venezuelan Transmission System

    International Nuclear Information System (INIS)

    Wang, Wenlu; Tremouille, Gilles; Beroual, Abderrahmane; Bessede, Jean-Luc

    2011-03-01

    The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in T and D industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T and D industries, LCA has been done for a lot of products individually, in order to see one product's environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system's environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, in this paper, an LCA using SimaPro (one kind of LCA software) is conducted on a whole Venezuelan 765 kV AC transmission system, which transmits 8000 MW hydro-electrical power through 760 km to this country's load centers, with total 7 substations, i.e. one sending end, 2 intermediate substations and 4 receiving ends. This LCA includes both transmission lines and substations, and then the environmental impacts of the whole transmission system are investigated. (authors)

  9. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Replacement and inspection policies for products with random life cycle

    International Nuclear Information System (INIS)

    Yun, Won Young; Nakagawa, Toshio

    2010-01-01

    In this paper, we consider maintenance policies for products in which the economical life cycle of products is a random variable. First, we study a periodic replacement policy with minimal repair. The system is minimally repaired at failure and is replaced by new one at age T (periodic replacement policy with minimal repair of Barlow and Hunter). The expected present value of total maintenance cost of products with random life cycle is obtained and the optimal replacement interval minimizing the cost is found. Second, we consider an inspection policy for products with random life cycle to detect the system failure. The expected total cost is obtained and the optimal inspection interval is found. Numerical examples are also included.

  11. The System Cost Model: A tool for life cycle cost and risk analysis

    International Nuclear Information System (INIS)

    Hsu, K.; Lundeen, A.; Shropshire, D.; Sherick, M.

    1996-01-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors began development of the System Cost Model (SCM) application. The SCM estimates life cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, and transuranic waste. The SCM uses parametric cost functions to estimate life cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at DOE installations. In addition, SCM can model new TSD facilities based on capacity needs over the program life cycle. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction, operations and maintenance, and decommissioning these waste management facilities. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. A complement to the SCM is the System Cost Model-Risk (SCM-R) model, which provides relative Environmental, Safety, and Health (ES and H) risk information. A relative ES and H risk basis has been developed and applied by LITCO at the INEL. The risk basis is now being automated in the SCM-R to facilitate rapid risk analysis of system alternatives. The added risk functionality will allow combined cost and risk evaluation of EM alternatives

  12. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  13. Emissions from photovoltaic life cycles

    NARCIS (Netherlands)

    Fthenakis, V.M.; Kim, H.C.; Alsema, E.A.|info:eu-repo/dai/nl/073416258

    2008-01-01

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle

  14. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  15. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  16. Life Cycle Assessment in the Cereal and Derived Products Sector

    DEFF Research Database (Denmark)

    Renzulli, Pietro A.; Bacenetti, Jacopo; Benedetto, Graziella

    2015-01-01

    environmental improvement in such systems. Following a brief introduction to the cereal sector and supply chain, this chapter reviews some of the current cereal-based life cycle thinking literature, with a particular emphasis on LCA. Next, an analysis of the LCA methodological issues emerging from......This chapter discusses the application of life cycle assessment methodologies to rice, wheat, corn and some of their derived products. Cereal product systems are vital for the production of commodities of worldwide importance that entail particular environmental hot spots originating from...... their widespread use and from their particular nature. It is thus important for tools such as life cycle assessment (LCA) to be tailored to such cereal systems in order to be used as a means of identifying the negative environmental effects of cereal products and highlighting possible pathways to overall...

  17. Human and ecological life cycle tools for the integrated assessment of systems (HELIAS)

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Kleijn, René; Van Der Voet, Ester; De Koning, Arjan; Van Oers, Lauran; Elshkaki, Ayman; Huele, Ruben; Huppes, Gjalt; Suh, Sangwon; Sleeswijk, Anneke Wegener

    Goal, Scope and Background. CML has contributed to the development of life cycle decision support tools, particularly Substance/Material Flow Analysis (SFA respectively MFA) and Life Cycle Assessment (LCA). Ever since these tools emerged there have been discussions on how these tools relate to each

  18. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  19. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    International Nuclear Information System (INIS)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio

    2017-01-01

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  20. Product Life Cycle - Quality Management Issues

    DEFF Research Database (Denmark)

    Alting, Leo; Majstorovic, Vidosav D.

    2004-01-01

    The strategic goal of our country is European and world integration. Within this context the management of sustainable development considered from the aspect of product’s life cycle and its quality management represents a real challenge for researchers, economy and educational system. The aim...

  1. Development of high-rise buildings: digitalization of life cycle management

    Directory of Open Access Journals (Sweden)

    Gusakova Elena

    2018-01-01

    Full Text Available The analysis of the accumulated long-term experience in the construction and operation of high-rise buildings reveals not only the engineering specificity of such projects, but also systemic problems in the field of project management. Most of the project decisions are made by the developer and the investor in the early stages of the life cycle - from the acquisition of the site to the start of operation, so most of the participants in the construction and operation of the high-rise building are far from the strategic life-cycle management of the project. The solution of these tasks due to the informatization of management has largely exhausted its efficiency resource. This is due to the fact that the applied IT-systems automated traditional "inherited" processes and management structures, and, in addition, they were focused on informatization of the activities of the construction company, rather than the construction project. Therefore, in the development of high-rise buildings, the tasks of researching approaches and methods for managing the full life cycle of projects that will improve their competitiveness become topical. For this purpose, the article substantiates the most promising approaches and methods of informational modeling of high-rise construction as a basis for managing the full life cycle of this project. Reengineering of information interaction schemes for project participants is considered; formation of a unified digital environment for the life cycle of the project; the development of systems for integrating data management and project management.

  2. Development of high-rise buildings: digitalization of life cycle management

    Science.gov (United States)

    Gusakova, Elena

    2018-03-01

    The analysis of the accumulated long-term experience in the construction and operation of high-rise buildings reveals not only the engineering specificity of such projects, but also systemic problems in the field of project management. Most of the project decisions are made by the developer and the investor in the early stages of the life cycle - from the acquisition of the site to the start of operation, so most of the participants in the construction and operation of the high-rise building are far from the strategic life-cycle management of the project. The solution of these tasks due to the informatization of management has largely exhausted its efficiency resource. This is due to the fact that the applied IT-systems automated traditional "inherited" processes and management structures, and, in addition, they were focused on informatization of the activities of the construction company, rather than the construction project. Therefore, in the development of high-rise buildings, the tasks of researching approaches and methods for managing the full life cycle of projects that will improve their competitiveness become topical. For this purpose, the article substantiates the most promising approaches and methods of informational modeling of high-rise construction as a basis for managing the full life cycle of this project. Reengineering of information interaction schemes for project participants is considered; formation of a unified digital environment for the life cycle of the project; the development of systems for integrating data management and project management.

  3. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  4. Moisture Sources and Life Cycle of Convective Systems over Western Colombia

    Directory of Open Access Journals (Sweden)

    Meiry Sayuri Sakamoto

    2011-01-01

    Full Text Available This paper describes life cycle and moisture sources of mesoscale convective systems (MCSs observed over western Colombia. Results show that, in general, MCS are more frequent during boreal summer and autumn, and particularly, systems observed in summer season present longer life and larger extension. On the continent, MCS genesis is strongly affected by sea breeze and diurnal heating and presents a peak from 15 to 18 LST. For oceanic systems, the main genesis period is later, from 00 to 03 LST. Continental and oceanic systems present a tendency of westward displacement. Analysis using a Lagrangian approach implemented to estimate air parcel trajectories suggests that, during boreal winter, the main moisture sources are from the Caribbean Sea and tropical north Atlantic, possibly resulting from the moisture-laden trade winds and the land-ocean temperature contrast over northern South America. In summer, it is clear the influence of ITCZ positioning with moisture particles traveling from the tropical Atlantic over Amazonian river basin. In Autumn, Chilean-Peruvian Pacific is the main moisture source, confirming the importance of Chocó low level jet to MCS genesis.

  5. Investigation into life-cycle costing as a comparative analysis approach of energy systems

    CSIR Research Space (South Africa)

    Mokheseng, B

    2010-08-31

    Full Text Available selection based on a simple payback period. Due to life-cycle stages, often the real costs of the project or equipment, either to the decision maker or the cost bearer, are not reflected by the upfront capital costs. In this paper, the life-cycle costing...

  6. Simplified life-cycle analysis of PV systems in buildings: present situation and future trends

    International Nuclear Information System (INIS)

    Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D.

    1998-01-01

    The integration of photovoltaic (PV) systems in buildings shows several advantages compared to conventional PV power plants. The main objectives of the present study are the quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and the identification of best solutions to maximise their energy efficiency and CO 2 mitigation potential. In order to achieve these objectives, a simplified life-cycle analysis (LCA) has been carried out. Firstly, a number of existing applications have been studied. Secondly, a parametric analysis of possible improvements in the balance-of-system (BOS) has been developed. Finally, the two steps have been combined with the analysis of crystalline silicon technologies. Results are reported in terms of several indicators: energy pay-back time, CO 2 yield and specific CO 2 emissions. The Indicators show that the integration of PV systems in buildings clearly increases the environmental benefits of present PV technology. These benefits will further increase with future PV technologies. Future optimised PV roof-integrated systems are expected to have an energy pay-back time of around 1-5 years (1 year with heat recovery) and to save during their lifetime more than 20 times the amount of CO 2 emitted during their manufacturing (34 times with heat recovery). (Author)

  7. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  8. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD Recommendations for Life Cycle Impact Assessment

    Directory of Open Access Journals (Sweden)

    Serenella Sala

    2012-06-01

    Full Text Available Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from “cradle to grave” have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA of products, in recent years, several methodologies have been developed for Life Cycle Impact Assessment (LCIA. The Joint Research Center of the European Commission (EC-JRC led a “science to decision support” process which resulted in the International Reference Life Cycle Data System (ILCD Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook is the result of a comprehensive process of evaluation and selection of existing methods based on a set of scientific and stakeholder acceptance criteria and involving review and consultation by experts, advisory groups and the public. In this study, we report the main features of the ILCD LCIA recommendation development highlighting relevant issues emerged from this “from science to decision support” process in terms of research needs and challenges for LCIA. Comprehensiveness of the assessment, as well as acceptability and applicability of the scientific developments by the stakeholders, are key elements for the design of new methods and to guarantee the mainstreaming of the sustainability concept.

  9. Applying life cycle management of colombian cocoa production

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz-R

    2014-03-01

    Full Text Available The present research aims to evaluate the usefulness of the application of Life Cycle Management in the agricultural sector focusing on the environmental and socio-economic aspects of decision making in the Colombian cocoa production. Such appraisal is based on the application of two methodological tools: Life Cycle Assessment, which considers environmental impacts throughout the life cycle of the cocoa production system, and Taguchi Loss Function, which measures the economic impact of a process' deviation from production targets. Results show that appropriate improvements in farming practices and supply consumption can enhance decision-making in the agricultural cocoa sector towards sustainability. In terms of agri-business purposes, such qualitative shift allows not only meeting consumer demands for environmentally friendly products, but also increasing the productivity and competitiveness of cocoa production, all of which has helped Life Cycle Management gain global acceptance. Since farmers have an important role in improving social and economic indicators at the national level, more attention should be paid to the upgrading of their cropping practices. Finally, one fundamental aspect of national cocoa production is the institutional and governmental support available for farmers in face of socio-economic or technological needs.

  10. Development methodology for the software life cycle process of the safety software

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, S. S. [BNF Technology, Taejon (Korea, Republic of); Cha, K. H.; Lee, C. S.; Kwon, K. C.; Han, H. B. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    A methodology for developing software life cycle processes (SLCP) is proposed to develop the digital safety-critical Engineered Safety Features - Component Control System (ESF-CCS) successfully. A software life cycle model is selected as the hybrid model mixed with waterfall, prototyping, and spiral models and is composed of two stages , development stages of prototype of ESF-CCS and ESF-CCS. To produce the software life cycle (SLC) for the Development of the Digital Reactor Safety System, the Activities referenced in IEEE Std. 1074-1997 are mapped onto the hybrid model. The SLCP is established after the available OPAs (Organizational Process Asset) are applied to the SLC Activities, and the known constraints are reconciled. The established SLCP describes well the software life cycle activities with which the Regulatory Authority provides.

  11. Development methodology for the software life cycle process of the safety software

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, S. S.; Cha, K. H.; Lee, C. S.; Kwon, K. C.; Han, H. B.

    2002-01-01

    A methodology for developing software life cycle processes (SLCP) is proposed to develop the digital safety-critical Engineered Safety Features - Component Control System (ESF-CCS) successfully. A software life cycle model is selected as the hybrid model mixed with waterfall, prototyping, and spiral models and is composed of two stages , development stages of prototype of ESF-CCS and ESF-CCS. To produce the software life cycle (SLC) for the Development of the Digital Reactor Safety System, the Activities referenced in IEEE Std. 1074-1997 are mapped onto the hybrid model. The SLCP is established after the available OPAs (Organizational Process Asset) are applied to the SLC Activities, and the known constraints are reconciled. The established SLCP describes well the software life cycle activities with which the Regulatory Authority provides

  12. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...... for the life cycle of products meant that systems theory and systems engineering principles were important in this work. Life cycle assessment methodology was important for assessing environmental impacts for case products. The new European regulation for chemicals (REACH) provided the main driver......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...

  13. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  14. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    OpenAIRE

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle Management by means of a four year Action Research project implementing Asset Life Cycle Plans. Five main capabilities emerged: 1. strategic information use; 2. alignment of operations and strategy;...

  15. Life Cycle Assessment of pig production systems of the Noir de Bigorre chain

    OpenAIRE

    Garcia-Launay, F; Rouillon, V; Faure, J; Fonseca, A

    2018-01-01

    Outdoor pig production systems relying on local pig breeds may cope with environmental and socio-economic challenges. They produce high quality products with added economic value and rely mainly on local feed resources. Within the European TREASURE project, we conducted the Life Cycle Assessment (LCA) of the Noir de Bigorre (NDB) pig production systems located in South West of France. The environmental impacts were calculated at farm gate and expressed per kg live pig and per ha land use. Fro...

  16. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  17. Evaluating Managerial Styles for System Development Life Cycle Stages to Ensure Software Project Success

    Science.gov (United States)

    Kocherla, Showry

    2012-01-01

    Information technology (IT) projects are considered successful if they are completed on time, within budget, and within scope. Even though, the required tools and methodologies are in place, IT projects continue to fail at a higher rate. Current literature lacks explanation for success within the stages of system development life-cycle (SDLC) such…

  18. Executive overview and introduction to the SMAP information system life-cycle and documentation standards

    Science.gov (United States)

    1989-01-01

    An overview of the five volume set of Information System Life-Cycle and Documentation Standards is provided with information on its use. The overview covers description, objectives, key definitions, structure and application of the standards, and document structure decisions. These standards were created to provide consistent NASA-wide structures for coordinating, controlling, and documenting the engineering of an information system (hardware, software, and operational procedures components) phase by phase.

  19. Aviation Technology Life Cycle Management: Importance for Aviation Companies, Aerospace Industry Organizations and Relevant Stakeholders

    Directory of Open Access Journals (Sweden)

    Stanislav Szabo

    2017-04-01

    Full Text Available The paper in the introductory part underlines some aspects concerning the importance of Aviation Technology Life Cycle Management and informs on basic international standards for the processes and stages of life cycle. The second part is focused on definition and main objectives of system life cycle management. The authors subsequently inform on system life cycle stages (in general and system life cycle processes according to ISO/IEC/IEEE 15288:2015 standard. Following the fact, that life cycle cost (LCC is inseparable part and has direct connection to the life cycle management, the paper contains brief information regarding to LCC (cost categories, cost breakdown structure, cost estimation a.o.. Recently was issued the first part of Aviation Technology Life Cycle Management monograph (in Slovak: ”Manažment životného cyklu leteckej techniky I”, written by I.Koblen and S.Szabo. Following this fact and direct relation to the topic of article it is a part of article briefly introduced the content of two parts of this monograph (the 2nd part of monograph it has been prepared for the print. The last part of article is focused on issue concerning main assumptions and conditions for successful application of aviation technology life cycle management in aviation companies, aerospace industry organizations as well as from the relevant stakeholders side.

  20. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  1. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    Science.gov (United States)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  2. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  3. Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia

    Science.gov (United States)

    Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.

    2018-03-01

    Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.

  4. Life cycle management of analytical methods.

    Science.gov (United States)

    Parr, Maria Kristina; Schmidt, Alexander H

    2018-01-05

    In modern process management, the life cycle concept gains more and more importance. It focusses on the total costs of the process from invest to operation and finally retirement. Also for analytical procedures an increasing interest for this concept exists in the recent years. The life cycle of an analytical method consists of design, development, validation (including instrumental qualification, continuous method performance verification and method transfer) and finally retirement of the method. It appears, that also regulatory bodies have increased their awareness on life cycle management for analytical methods. Thus, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), as well as the United States Pharmacopeial Forum discuss the enrollment of new guidelines that include life cycle management of analytical methods. The US Pharmacopeia (USP) Validation and Verification expert panel already proposed a new General Chapter 〈1220〉 "The Analytical Procedure Lifecycle" for integration into USP. Furthermore, also in the non-regulated environment a growing interest on life cycle management is seen. Quality-by-design based method development results in increased method robustness. Thereby a decreased effort is needed for method performance verification, and post-approval changes as well as minimized risk of method related out-of-specification results. This strongly contributes to reduced costs of the method during its life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  6. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    NARCIS (Netherlands)

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle

  7. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    is focused on the product system which comprises all the processes which the product and its components meet throughout their lives- from the extraction of raw materials via manufacture, use and waste management to final disposal, or in short from the cradle to the grave (see Figure 1). The focus......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory...... of material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA...

  8. Environmental and ecological life cycle inventories of present and future PV systems in Europe for sustainability policies

    International Nuclear Information System (INIS)

    Frankl, P.; Lombardelli, S.; Corrado, A.

    2004-01-01

    The current use of Life Cycle Inventories (LCI) for the calculation of external costs and energy system modelling and planning is limited by two main factors: 1) lack of harmonization and transparency in the methodology used in LCA studies. 2) lack of transparent and updated and database on recent and emerging PV technologies (and other renewable and distributed generation technologies). These issues have been addressed and overcome by the recent EU research project ECLIPSE. With respect to photovoltaic (PV) systems, four main PV technologies (mc-Si, sc-Si, thin film a-Si, CIS) with different applications (ground-mounted power plants, retrofit and integrated building integrated systems) and derived configurations were analyzed, for a total of 47 system configurations. Each main technology is described in a report, which presents results in detailed and transparent manner, highlighting the crucial parameters which influence LCI results. The latter confirm the low life cycle emissions level and the very high value of PV systems towards sustainable energy systems for the future. (authors)

  9. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within...... regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding...

  10. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  11. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  12. BioEnergy transport systems. Life cycle assessment of selected bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Goeran

    1999-07-01

    Biomass for energy conversion is usually considered as a local resource. With appropriate logistic systems, access to biomass can be improved over a large geographical area. In this study, life cycle assessment (LCA) has been used as method to investigate the environmental impacts of selected bioenergy transport chains. As a case study, chains starting in Sweden and ending in Holland have been investigated. Biomass originates from tree sections or forest residues, the latter upgraded to bales or pellets. The study is concentrated on production of electricity, hot cooling water is considered as a loss. Electricity is, as the main case, produced from solid biomass in the importing country. Electricity can also be produced in the country of origin and exported via the trans-national grid as transportation media. As an alternative, a comparison is made with a coal cycle. The results show that contribution of emissions from long-range transportation is of minor importance. The use of fuels and electricity for operating machines and transportation carriers requires a net energy input in bioenergy systems which amounts to typically 7-9% of delivered electrical energy from the system. Emissions of key substances such as NO{sub x}, CO, S, hydrocarbons, and particles are low. Emissions of CO{sub 2} from biocombustion are considered to be zero since there is approximately no net contribution of carbon to the biosphere in an energy system based on biomass. A method to quantify non-renewability is presented. For coal, the non-renewability factor is calculated to be 110%. For most of the cases with bioenergy, the non-renewability factor is calculated to be between 6 and 11%. Reclamation of biomass results in certain losses of nutrients such as nitrogen, phosphorus and base cations such as K, Ca and Mg. These are balanced by weathering, vitalisation or ash recirculation procedures. Withdrawal of N from the ecological system is approximately 10 times the load from the technical

  13. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    Science.gov (United States)

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  15. Life Cycle Collection Management

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2003-09-01

    Full Text Available Life cycle collection management is a way of taking a long-term approach to the responsible stewardship of the British Library's collections and is one of the Library's strategic strands. It defines the different stages in a collection item's existence over time. These stages range from selection and acquisitions processing, cataloguing and press marking, through to preventive conservation, storage and retrieval. Life cycle collection management seeks to identify the costs of each stage in order to show the economic interdependencies between the phases over time. It thereby aims to demonstrate the long-term consequences of what the library takes into its collections, by making explicit the financial and other implications of decisions made at the beginning of the life cycle for the next 100 plus years. This paper describes the work over the past year at the British Library on this complex and complicated subject. It presents the emerging findings and suggests how it can be used for practical reasons (by individual curators and selectors and for economic, governance and political purposes. The paper describes the next steps in the project, for example, on a predictive data model. The British Library is seeking to benchmark itself against comparable organisations in this area. It intends to work with others on specific comparison for example, of life cycle costing of electronic and paper journals, as a prelude to eliding digital and 'traditional' formats.

  16. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  17. The Sphinx's Riddle: Life and Career Cycles.

    Science.gov (United States)

    Burack, Elmer H.

    1984-01-01

    Career cycles should be considered apart from life cycles, even though the two are interrelated. This essay examines five theories about life and career cycles, and offers insights into their limitations and potential uses. (JB)

  18. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  19. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  20. Life cycle management in product development

    DEFF Research Database (Denmark)

    Skelton, Kristen; Pattis, Anna

    2013-01-01

    The integration of Life Cycle Thinking (LCT) and Life Cycle Management (LCM) into business operations poses great challenges, as it requires a wider range of environmental responsibility often extending beyond a company's immediate control. Simultaneously, it offers many opportunities...

  1. Quantifying Cost Risk Early in the Life Cycle

    International Nuclear Information System (INIS)

    Mar, B.

    2004-01-01

    A new method for analyzing life cycle cost risk on large programs is presented that responds to an increased emphasis on improving sustainability for long-term programs. This method provides better long-term risk assessment and risk management techniques. It combines standard Monte Carlo analysis of risk drivers and a new data-driven method developed by the BMDO. The approach permits quantification of risks throughout the entire life cycle without resorting to difficult to support subjective methods. The BMDO methodology is shown to be relatively straightforward to apply to a specific component or process within a project using standard technical risk assessment methods. The total impact on system is obtained using the program WBS, which allows for the capture of correlated risks shared by multiple WBS items. Once the correlations and individual component risks are captured, a Monte Carlo simulation can be run using a modeling tool such as ANALYTICA to produce the overall life cycle cost risk

  2. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  3. Evaluation of life cycle inventory data for recycling systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Damgaard, Anders; Jensen, Morten Bang

    2014-01-01

    This paper reviews databases on material recycling (primary as well as secondary production) used in life cycle assessments (LCA) of waste management systems. A total of 366 datasets, from 1980 to 2010 and covering 14 materials, were collected from databases and reports. Totals for CO2-equivalent...... the primary production of newsprint, HDPE and glass were 238%, 443% and 452%, respectively. For steel and aluminium the differences were 1761% and 235%, respectively. There is a severe lack of data for some recycled materials; for example, only one dataset existed for secondary cardboard. The study shows...... datasets to use could not be determined from the study. However, from the gathered data, recycling in general showed lower emission of CO2 per kg material than primary production, so the recycling of materials (considered in this study) is thus beneficial in most cases....

  4. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  5. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    Science.gov (United States)

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  6. Life cycle greenhouse gas emissions of anesthetic drugs.

    Science.gov (United States)

    Sherman, Jodi; Le, Cathy; Lamers, Vanessa; Eckelman, Matthew

    2012-05-01

    Anesthesiologists must consider the entire life cycle of drugs in order to include environmental impacts into clinical decisions. In the present study we used life cycle assessment to examine the climate change impacts of 5 anesthetic drugs: sevoflurane, desflurane, isoflurane, nitrous oxide, and propofol. A full cradle-to-grave approach was used, encompassing resource extraction, drug manufacturing, transport to health care facilities, drug delivery to the patient, and disposal or emission to the environment. At each stage of the life cycle, energy, material inputs, and emissions were considered, as well as use-specific impacts of each drug. The 4 inhalation anesthetics are greenhouse gases (GHGs), and so life cycle GHG emissions include waste anesthetic gases vented to the atmosphere and emissions (largely carbon dioxide) that arise from other life cycle stages. Desflurane accounts for the largest life cycle GHG impact among the anesthetic drugs considered here: 15 times that of isoflurane and 20 times that of sevoflurane on a per MAC-hour basis when administered in an O(2)/air admixture. GHG emissions increase significantly for all drugs when administered in an N(2)O/O(2) admixture. For all of the inhalation anesthetics, GHG impacts are dominated by uncontrolled emissions of waste anesthetic gases. GHG impacts of propofol are comparatively quite small, nearly 4 orders of magnitude lower than those of desflurane or nitrous oxide. Unlike the inhaled drugs, the GHG impacts of propofol primarily stem from the electricity required for the syringe pump and not from drug production or direct release to the environment. Our results reiterate previous published data on the GHG effects of these inhaled drugs, while providing a life cycle context. There are several practical environmental impact mitigation strategies. Desflurane and nitrous oxide should be restricted to cases where they may reduce morbidity and mortality over alternative drugs. Clinicians should avoid

  7. Space Transportation System Availability Relationships to Life Cycle Cost

    Science.gov (United States)

    Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.

    2009-01-01

    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that

  8. Life-cycle assessments in the South African water sector: A review ...

    African Journals Online (AJOL)

    Therefore, in South Africa it is important to promote the use of LCAs for the water sector in order to improve efficiency of processes and systems, but also to promote life-cycle based water footprinting and to include differentiated water consumption data into life-cycle inventories to make more efficient use of water as a ...

  9. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    International Nuclear Information System (INIS)

    R.E. Sweeney

    2001-01-01

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance

  10. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    International Nuclear Information System (INIS)

    Sweeney, R.

    2000-01-01

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance

  11. Using Model-Based System Engineering to Provide Artifacts for NASA Project Life-Cycle and Technical Reviews Presentation

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.

  12. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  13. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  14. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Science.gov (United States)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  15. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  16. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  17. Educational Focuses in Organisational Life Cycles.

    Science.gov (United States)

    Miller, Harry G.

    1985-01-01

    Presents four stages frequently associated with the stages of an organization's life cycle: experimentation, growth, maturity, and decline or stability. The author also demonstrates that the impact of employment and thus training related to organizational life cycles suggests a need for understanding the technical preparation required for…

  18. The Logistics Management Decision Support System (LMDSS) : an effective tool to reduce life cycle support costs of aviation systems

    OpenAIRE

    Moore, Ellen E.; Snyder, Carolynn M.

    1998-01-01

    Approved for public release; distribution is unlimited This thesis assesses the capability of the Logistics Management Decision Support System (LMDSS) to meet the information needs of Naval Air Systems Command (NAVAIR) logistics managers based on surveys of logistics managers and interviews with LMDSS program representatives. The LMDSS is being introduced as a tool to facilitate action by NAVAIR logistics managers to reduce the life cycle support costs of aviation systems while protecting ...

  19. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  20. [A Medical Devices Management Information System Supporting Full Life-Cycle Process Management].

    Science.gov (United States)

    Tang, Guoping; Hu, Liang

    2015-07-01

    Medical equipments are essential supplies to carry out medical work. How to ensure the safety and reliability of the medical equipments in diagnosis, and reduce procurement and maintenance costs is a topic of concern to everyone. In this paper, product lifecycle management (PLM) and enterprise resource planning (ERP) are cited to establish a lifecycle management information system. Through integrative and analysis of the various stages of the relevant data in life-cycle, it can ensure safety and reliability of medical equipments in the operation and provide the convincing data for meticulous management.

  1. PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE

    African Journals Online (AJOL)

    Dr Obe

    dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model ... Keywords: Virus lifecycle, Petri nets, modeling. simulation. .... complex process. Figure 2 .... by creating Matlab files for five different computer ...

  2. Integration of Life Cycle Assessment Into Agent-Based Modeling : Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikoli?, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  3. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    International Nuclear Information System (INIS)

    Warner, E.S.; Heath, G.A.

    2012-01-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO 2 -eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO 2 -eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO 2 -eq/kWh by 2050.

  4. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.

    2013-11-15

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  5. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    International Nuclear Information System (INIS)

    Rigamonti, L.; Falbo, A.; Grosso, M.

    2013-01-01

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020

  6. Life cycle assessment of façade coating systems containing manufactured nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hischier, Roland, E-mail: roland.hischier@empa.ch; Nowack, Bernd [Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL) (Switzerland); Gottschalk, Fadri [ETSS (Switzerland); Hincapie, Ingrid [Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL) (Switzerland); Steinfeldt, Michael [University of Bremen FB 4/FG 10 Technological Design and Development (Germany); Som, Claudia [Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL) (Switzerland)

    2015-02-15

    Nanotechnologies are expected to hold considerable potential for the development of new materials in the construction sector. Up to now the environmental benefits and risks of products containing manufactured nanomaterials (MNM) have been quantified only to a limited extent. This study aims to assess the potential environmental, health and safety impacts of coatings containing MNM using Life-cycle assessment: Do paints containing MNM result in a better environmental performance than paints not containing MNM? The study shows that the results depend on a number of factors: (i) The MNM have to substitute an (active) ingredient of the initial paint composition and not simply be an additional ingredient. (ii) The new composition has to extend the lifetime of the paint for such a time period that the consumption of paint along the life cycle of a building is reduced. (iii) Releases of MNM have to be reduced to the lowest level possible (in particular by dumping unused paint together with the packaging). Only when all these boundary conditions are fulfilled, which is the case only for one of the three paint systems examined, is an improved environmental performance of the MNM-containing paint possible for the paint compositions examined in this study.

  7. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... for quality assurance programs in Appendix B to 10 CFR Part 50 as they apply to software development... is one of six RG revisions addressing computer software development and use in safety related systems... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes Used in...

  8. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  9. Quality factors in the life cycle of software oriented to safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Nunez McLeod, J.E.; Rivera, S.S.

    1997-01-01

    The inclusion of software in safety related systems for nuclear power plants, makes it necessary to include the software quality assurance concept. The software quality can be defined as the adjustment degree between the software and the specified requirements and user expectations. To guarantee a certain software quality level it is necessary to make a systematic and planned set of tasks, that constitute a software quality guaranty plan. The application of such a plan involves activities that should be performed all along the software life cycle, and that can be evaluated through the so called quality factors, due to the fact that the quality itself cannot be directly measured, but indirectly as some of it manifestations. In this work, a software life cycle model is proposed, for nuclear power plant safety related systems. A set os software quality factors is also proposed , with its corresponding classification according to the proposed model. (author) [es

  10. Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carpenter Petri, Alberta C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nicholson, Scott R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-29

    The primary goal of this work was to assess the magnitude and variability of published life cycle greenhouse gas (GHG) emission estimates for three types of geothermal electricity generation technologies: enhanced geothermal systems (EGS) binary, hydrothermal (HT) flash, and HT binary. These technologies were chosen to align the results of this report with technologies modeled in National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment Systems (ReEDs) model. Although we did gather and screen life cycle assessment (LCA) literature on hybrid systems, dry steam, and two geothermal heating technologies, we did not analyze published GHG emission estimates for these technologies. In our systematic literature review of the LCA literature, we screened studies in two stages based on a variety of criteria adapted from NREL's Life Cycle Assessment (LCA) Harmonization study (Heath and Mann 2012). Of the more than 180 geothermal studies identified, only 29 successfully passed both screening stages and only 26 of these included estimates of life cycle GHG emissions. We found that the median estimate of life cycle GHG emissions (in grams of carbon dioxide equivalent per kilowatt-hour generated [g CO2eq/kWh]) reported by these studies are 32.0, 47.0, and 11.3 for EGS binary, HT flash, and HT binary, respectively (Figure ES-1). We also found that the total life cycle GHG emissions are dominated by different stages of the life cycle for different technologies. For example, the GHG emissions from HT flash plants are dominated by the operations phase owing to the flash cycle being open loop whereby carbon dioxide entrained in the geothermal fluids is released to the atmosphere. This is in contrast to binary plants (using either EGS or HT resources), whose GHG emissions predominantly originate in the construction phase, owing to its closed-loop process design. Finally, by comparing this review's literature-derived range of HT flash GHG emissions to

  11. New Approaches in Reuseable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  12. New Approaches in Reusable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  13. Life cycle assessment-driven selection of industrial ecology strategies.

    Science.gov (United States)

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  14. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.

    Science.gov (United States)

    Bilich, Andrew; Langham, Kevin; Geyer, Roland; Goyal, Love; Hansen, James; Krishnan, Anjana; Bergesen, Joseph; Sinha, Parikhit

    2017-01-17

    Access to a reliable source of electricity creates significant benefits for developing communities. Smaller versions of electricity grids, known as microgrids, have been developed as a solution to energy access problems. Using attributional life cycle assessment, this project evaluates the environmental and energy impacts of three photovoltiac (PV) microgrids compared to other energy options for a model village in Kenya. When normalized per kilowatt hour of electricity consumed, PV microgrids, particularly PV-battery systems, have lower impacts than other energy access solutions in climate change, particulate matter, photochemical oxidants, and terrestrial acidification. When compared to small-scale diesel generators, PV-battery systems save 94-99% in the above categories. When compared to the marginal electricity grid in Kenya, PV-battery systems save 80-88%. Contribution analysis suggests that electricity and primary metal use during component, particularly battery, manufacturing are the largest contributors to overall PV-battery microgrid impacts. Accordingly, additional savings could be seen from changing battery manufacturing location and ensuring end of life recycling. Overall, this project highlights the potential for PV microgrids to be feasible, adaptable, long-term energy access solutions, with health and environmental advantages compared to traditional electrification options.

  15. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  16. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  17. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  18. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  19. An ideal sealed source life-cycle

    International Nuclear Information System (INIS)

    Tompkins, Joseph Andrew

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they

  20. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  1. Asset Allocation Over the Life Cycle

    DEFF Research Database (Denmark)

    Fischer, Marcel; Kraft, Holger; Munk, Claus

    2013-01-01

    We study the welfare effect of tax-optimizing portfolio decisions in a life cycle model with unspanned labor income and realization-based capital gain taxation. For realistic parameterizations of our model, certainty equivalent welfare gains from fully tax-optimized portfolio decisions are less...... and instead assumes mark-to-market taxation, these gains are less than 0.5%. That is, our work provides a justification for ignoring taxes in life cycle portfolio choice problems - a wide-spread assumption in that literature. However, if capital gains are forgiven at death (as in the U.S.), investors...... with strong bequest motives face substantial welfare costs when not tax-optimizing their portfolio decisions towards the end of the life cycle....

  2. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  3. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    Science.gov (United States)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  4. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    Science.gov (United States)

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  5. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    Energy Technology Data Exchange (ETDEWEB)

    Dones, Roberto [Paul Scherrer Inst., Villigen (Switzerland); Frischknecht, Rolf [Federal Institute of Technology, Zurich (Switzerland)

    1998-04-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  6. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    International Nuclear Information System (INIS)

    Dones, Roberto; Frischknecht, Rolf

    1998-01-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  7. Data life cycle: a perspective from the Information Science

    Directory of Open Access Journals (Sweden)

    Ricardo César Gonçalves Sant’Ana

    2016-08-01

    Full Text Available Introduction: Access and use of data as a key factor has been extended to several areas of knowledge of today's society. It’s necessary to develop a new perspective that presents phases and factors involved in these processes, providing an initial analysis structure, allowing the efforts, skills and actions organization related to the data life cycle. Purpose: This article is a proposal for a new look at the data life cycle, that assumes, as a central element, the data itself, supporting itself on the concepts and contributions that Information Science can provide, without giving up the reflections on the role of other key areas such as Computer Science. Methodology: The methodological procedures consisted of bibliographic research and content analysis to describe the phases and factors related to the Data Life Cycle, developing reflections and considerations from context already consolidated in the development of systems that can corroborate the idea of centrality of data. Results: The results describe the phases of: collect, storage, recovery and discard, permeated by transverse factors: privacy, integration, quality, copyright, dissemination and preservation, composing a Data Life Cycle. Conclusions: The current context of the availability of large volumes of data, with great variety and at speeds that provide access in real time, setting the so-called Big Data that requires new concerns about access and use processes of data. The Information Science may offer a new approach, now centered in the data, and contribute to the optimization of Data Life Cycle as a whole, extending bridges between users and the data they need.

  8. Life Cycle Assessment of the wind farm alpha ventus

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2013-06-01

    Full Text Available Life Cycle Assessments (LCA is an important tool for industry and policy makers, used to determine the actual emissions of a product or technology throughout its whole life cycle. In case of energy production systems or power plants, analysis of energy required to produce the materials and processes; emissions resulting from various processes for materials production and processes resulting into their Cumulated Energy Demand (CED and Global Warming Potential (GWP become important parameters when making decisions on further research, development and deployment of any technology. The method of carrying out such analysis is explained through a case study.

  9. Product configuration system and its impact on product’s life cycle complexity

    DEFF Research Database (Denmark)

    Myrodia, Anna; Kristjansdottir, Katrin; Shafiee, Sara

    2016-01-01

    The purpose of this paper is to identify areas throughout a product's lifecycle processes where complexity can be reduced by implementing a product configuration system (PCS). As discussed in the literature, several benefits are realized by using a PCS in terms of product and process standardizat...... for the company in several life cycle processes....... standardization. This also leads to control and reduce of complexity both in products and processes. To this end, this research attempts to quantify and assess these benefits and is supported by empirical evidence. A case study of an engineering company is used and the results indicate significant improvements...

  10. Addressing the effect of social life cycle assessments

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Dreyer, Louise Camilla; Wangel, Arne

    2012-01-01

    the validity of these hypotheses. Results: Three in some cases potentially overlapping SLCA approaches are presented, assumed to create a beneficial effect in the life cycle in different ways. However, empirical and theoretical findings show that the beneficial effects proposed to arise from the use of each......Purpose: In the recently published ‘Guidelines for social life cycle assessment of products’, it is stated that the ultimate objective of developing the social life cycle assessment (SLCA) is to promote improvements of social conditions for the stakeholders in the life cycle. This article addresses...... how the SLCA should be developed so that its use promotes these improvements. Methods: Hypotheses of how the use of SLCA can promote improvement of social conditions in the life cycle are formulated, after which theories and empirical findings from relevant fields of research are used to address...

  11. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  12. Analysis of ship life cycles: the impact of economic cycles and ship inspection

    NARCIS (Netherlands)

    Bijwaard, G.E.; Knapp, S.

    2009-01-01

    Due to the shipping industry's international legal framework, there are loopholes in the system, which can increase the risk of incidents with high economic costs due to the substandard operation of vessels. This article uses duration analysis and through the creation of ship life cycles provides

  13. The Life Cycle of Centrioles

    OpenAIRE

    Hatch, E.; Stearns, T.

    2010-01-01

    Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have di...

  14. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  15. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  16. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  17. A life-cycle based decision-making framework for electricity generation system planning

    Energy Technology Data Exchange (ETDEWEB)

    Norrie, S.J.; Fang, L. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Environmental Applied Science and Management Graduate Program

    2006-07-01

    This paper proposed a framework for the consideration of multiple objectives in the long-term planning of electricity generation systems. The framework was comprised of 3 components: (1) information based on life-cycle inventories of electricity generation technologies; (2) a set of alternative scenarios to be evaluated and ranked using the framework; and (3) stakeholder values for decision objectives. Scenarios were developed to represent a set of future conditions, and values were derived through the use of questionnaires. Planning for electricity generation in Ontario was selected as a test case for the DM framework. Three scenarios were presented: (1) a business as usual scenario characterized by large, central power plants; (2) a mix of central power plants, distributed generation, and advanced conventional fuel technologies; and (3) small-scale distributed and renewable energy sources and aggressive demand-side management. The life-cycle based information from the scenario evaluation was used to estimate the performance of each scenario on the established decision criteria. Results showed that scenario 3 was the closest to achieving the fundamental objectives according to the decision criteria. It was concluded that the DM framework showed that the use of holistic environmental information and preferential information for multiple objectives can be integrated into a framework that openly and consistently evaluates a set of alternative scenarios. 31 refs., 7 tabs., 4 figs.

  18. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  19. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  20. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  1. Achieving Our Environmental Sustainability Goals: The Opportunities and Pitfalls of Applying Life Cycle Thinking

    Science.gov (United States)

    An increasing number of people around the world are beginning to realize that a systems approach, such as life cycle thinking, is necessary to truly achieve environmental sustainability. Without the holistic perspective that life cycle thinking provides, our actions risk leading ...

  2. Corporate entrepreneurship in organisational life-cycle

    OpenAIRE

    Duobienė, Jurga

    2013-01-01

    Paper deals with the development of corporate entrepreneurship in different stages of organisational life-cycle. The research presents a model for the evaluation of corporate entrepreneurship and systemises relevant theoretical and empirical research in the field of entrepreneurship and corporate entrepreneurship. Moreover, it describes the development of corporate entrepreneurship in the entire organisational life-cycle since most of researchers who discuss the topics of corporate entreprene...

  3. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  4. LIFE CYCLE OF A WINE BRAND

    Directory of Open Access Journals (Sweden)

    Viktoriia Paziuk

    2015-11-01

    Full Text Available The aim of the work is to determine the life cycle of the wine brand, the development of ways to improve its effectiveness at different stages of the life cycle. Being scientifically informed of the existence of the life cycle of the brand allows modern enterprises to enhance their competitive position in the market and take advantage of the acquired differences in order to attract more attention from consumers. Methods. The study is based on scientific methods of research of economic phenomena: the dialectic, abstract logical (in the exercise of theoretical generalizations to the definition of the concept of «life cycle of the perpetrator of the brand, a scientific abstraction, comparison and ordering (the study of factors influencing the life cycle of the perpetrator of the brand and the factors influencing a choice of products for consumers, statistical and problem-chronological (the study of the requirements of the brand in a changing consumer preferences, logical generalization (in determining the social and ethical functions guilty brand. Results. The stages of the life cycle of the wine brand, which take into account its characteristics and form its social and ethical functions. Describing the requirements for the wine brand in the changing tastes and preferences of consumers. Specification of wine promotion of the brand in an increasingly competitive environment. Preconditions have been set for a new wine brand. The practical significance. The brand always increases the value of the product and its entry into new markets, as well as reduces the time to attract consumers. Possibility to ensure the growth of the brand in a declining market; building market share in a highly competitive environment; marketing innovative products in order to create a new sales strategy. After all, to gain and maintain the popularity of a certain product, one must personalize it with giving associations and a way to provide it with distinctive features. Only

  5. Life Cycle Development of Obesity and Its Determinants

    DEFF Research Database (Denmark)

    Cavaco, Sandra; Eriksson, Tor; Skalli, Ali

    This paper is concerned with how obesity and some of its determinants develop over individuals’ life cycles. In particular we examine empirically the role and relative importance of early life conditions (parents’ education and socioeconomic status) and individuals’ own education as adults and how...... their impacts on the probability of overweight and obesity evolves over the life cycle. As the data set includes information about the individuals’ health behaviours (smoking and physical exercise) at various ages we can also examine the impact of these at different stages of the persons’ life cycle. The data......’ socioeconomic status predicts obesity in early adulthood whereas individuals’ own socioeconomic status as adults is more important in explaining obesity at later stages of the life cycle, and (iii) changes in obesity status are associated with changes in health behaviours....

  6. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Metadata Life Cycles, Use Cases and Hierarchies

    Directory of Open Access Journals (Sweden)

    Ted Habermann

    2018-05-01

    Full Text Available The historic view of metadata as “data about data” is expanding to include data about other items that must be created, used, and understood throughout the data and project life cycles. In this context, metadata might better be defined as the structured and standard part of documentation, and the metadata life cycle can be described as the metadata content that is required for documentation in each phase of the project and data life cycles. This incremental approach to metadata creation is similar to the spiral model used in software development. Each phase also has distinct users and specific questions to which they need answers. In many cases, the metadata life cycle involves hierarchies where latter phases have increased numbers of items. The relationships between metadata in different phases can be captured through structure in the metadata standard, or through conventions for identifiers. Metadata creation and management can be streamlined and simplified by re-using metadata across many records. Many of these ideas have been developed to various degrees in several Geoscience disciplines and are being used in metadata for documenting the integrated life cycle of environmental research in the Arctic, including projects, collection sites, and datasets.

  8. The Ferrocyanide/Stabilized Carbon System, a New Class of High Rate, Long Cycle Life, Aqueous Electrolyte Batteries

    KAUST Repository

    Huggins, R. A.

    2013-02-21

    Transient energy sources, such as wind and solar systems are getting increased attention. Their integration with the energy distribution grid requires methods for energy storage. The required characteristics of this type of storage are quite different from those for energy storage in portable devices. Size and weight are not so important. Instead, matters such as power, cost, calendar life, cycle life, and safety become paramount. A new family of hexacyanoferrate materials with the same open framework crystal structure as Prussian Blue has been recently developed with characteristics ideally suited for this type of application. Several monovalent cations can be rapidly and reversibly inserted into these materials, with very little crystallographic distortion, leading to high rates and long cycle lives. In addition, a new type of composite negative electrode material has been developed that has the rapid kinetics typical of carbon electrodes, but with a potential that varies little with the state of charge. The result is the development of a new battery system, the ferrocyanide/stabilized carbon, MHCF-SC, system. © 2013 The Electrochemical Society.

  9. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems

    Science.gov (United States)

    Li, Yi; Huang, Youyi; Ye, Quanliang; Zhang, Wenlong; Meng, Fangang; Zhang, Shanxue

    2018-03-01

    The major limitation of optimization models applied previously for rainwater harvesting (RWH) systems is the systematic evaluation of environmental and human health impacts across all the lifecycle stages. This study integrated life cycle assessment (LCA) into a multi-objective optimization model to optimize the construction areas of green rooftops, porous pavements and green lands in Beijing of China, considering the trade-offs among 24 h-interval RWH volume (QR), stormwater runoff volume control ratio (R), economic cost (EC), and environmental impacts (EI). Eleven life cycle impact indicators were assessed with a functional unit of 10,000 m2 of RWH construction areas. The LCA results showed that green lands performed the smallest lifecycle impacts of all assessment indicators, in contrast, porous pavements showed the largest impact values except Abiotic Depletion Potential (ADP) elements. Based on the standardization results, ADP fossil was chosen as the representative indicator for the calculation of EI objective in multi-objective optimization model due to its largest value in all RWH systems lifecycle. The optimization results for QR, R, EC and EI were 238.80 million m3, 78.5%, 66.68 billion RMB Yuan, and 1.05E + 16 MJ, respectively. After the construction of optimal RWH system, 14.7% of annual domestic water consumption and 78.5% of maximum daily rainfall would be supplied and controlled in Beijing, respectively, which would make a great contribution to reduce the stress of water scarcity and water logging problems. Green lands have been the first choice for RWH in Beijing according to the capacity of rainwater harvesting and less environmental and human impacts. Porous pavements played a good role in water logging alleviation (R for 67.5%), however, did not show a large construction result in this study due to the huge ADP fossil across the lifecycle. Sensitivity analysis revealed the daily maximum precipitation to be key factor for the robustness of the

  10. A comparison of major petroleum life cycle models | Science ...

    Science.gov (United States)

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  11. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  12. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    Science.gov (United States)

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  13. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  14. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  15. LIFE Materials: Fuel Cycle and Repository Volume 11

    International Nuclear Information System (INIS)

    Shaw, H.; Blink, J.A.

    2008-01-01

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  16. Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Pere Fullana-i-Palmer

    2011-03-01

    Full Text Available Recently increasing attention has been paid to complementing environmental Life Cycle Assessment (LCA with social aspects. The paper discusses the selection of social impacts and indicators from existing frameworks like Social Life Cycle Assessment (SLCA and Social Impact Assessment (SIA. Two ongoing case studies, addressing sustainability assessment within decision support, were considered: (1 Integrated Water Resources Management (IWRM in Indonesia; and (2 Integrated Packaging Waste Management in Spain and Portugal (FENIX. The focus was put on social impacts occurring due to decisions within these systems, such as choice of technologies, practices or suppliers. Thus, decision makers—here understood as intended users of the studies’ results—are not consumers that buy (or do not buy a product, such as in recent SLCA case-studies, but mainly institutions that decide about the design of the water or packaging waste management system. Therefore, in the FENIX project, a list of social impacts identified from literature was sent to the intended users to be ranked according to their priorities. Finally, the paper discusses to what extent the entire life cycle is reflected in SLCA impact categories and indicators, and explains how both life-cycle and on-site-related social impacts were chosen to be assessed. However, not all indicators in the two projects will assess all stages of the life cycle, because of their varying relevance in the different stages, data availability and practical interest of decision makers.

  17. Guidelines to perform Life Cycle Analysis of Buildings

    NARCIS (Netherlands)

    Blok, R.; Gervasio, H.; Braganca, L.; Koukkari, H.; Blok, R.

    2008-01-01

    This paper gives a short introduction and attempts to give guidelines on how to perform a life Cycle Analysis (LCA) of a Building. Because a building is a complex system with many subsystems with building elements out of different materials, each fulfilling different functions the LCA of a building

  18. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique

  19. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique when it comes to

  20. From life cycle talking to taking action

    NARCIS (Netherlands)

    Potting, J.; Curran, M.A.; Blottnitz, von H.

    2010-01-01

    Introduction - The biannual Life Cycle Management conference series aims to create a platform for users and developers of Life Cycle Assessment (LCA) and related tools to share their experiences. A key concern of the LCM community has been to move beyond the production of LCA reports toward using

  1. Asset life cycle plans: twelve steps to assist strategic decision-making in asset life cycle management

    NARCIS (Netherlands)

    Ruitenburg, Richard Jacob; Braaksma, Anne Johannes Jan; van Dongen, Leonardus Adriana Maria; Carnero, Maria Carmen; Gonzalez-Prida, Vicente

    2017-01-01

    Effective management of physical assets should deliver maximum business value. Therefore, Asset Management standards such as PAS 55 and ISO 55000 ask for a life cycle approach. However, most existing methods focus only on the short term of the asset's life or the estimation of its remaining life.

  2. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  3. The use of life-cycle analysis to address energy cycle externality problems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1996-01-01

    Life-cycle analysis is defined and the various impacts from energy systems to be included in such analysis are discussed. A preliminary version of a scenario for a future Danish energy systems based upon a bottom-up energy demand scenario and renewable energy sources. LCAs of wind turbine and Si solar roof-top modules are presented. The various impacts from Danish wind and building-integrated solar power generation are discussed and compared with the impacts from coal-fired power generation. The former electricity generating system looks more favorable. (author). 20 refs, 9 figs

  4. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    Science.gov (United States)

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  5. Life cycle assessment of a willow bioenergy cropping system

    International Nuclear Information System (INIS)

    Heller, M.C.; Keoleian, G.A.; Volk, Timothy A.

    2003-01-01

    The environmental performance of willow biomass crop production systems in New York (NY) is analyzed using life cycle assessment (LCA) methodology. The base-case, which represents current practices in NY, produces 55 units of biomass energy per unit of fossil energy consumed over the biomass crop's 23-year lifetime. Inorganic nitrogen fertilizer inputs have a strong influence on overall system performance, accounting for 37% of the non-renewable fossil energy input into the system. Net energy ratio varies from 58 to below 40 as a function of fertilizer application rate, but application rate also has implications on the system nutrient balance. Substituting inorganic N fertilizer with sewage sludge biosolids increases the net energy ratio of the willow biomass crop production system by more than 40%. While CO 2 emitted in combusting dedicated biomass is balanced by CO 2 adsorbed in the growing biomass, production processes contribute to the system's net global warming potential. Taking into account direct and indirect fuel use, N 2 O emissions from applied fertilizer and leaf litter, and carbon sequestration in below ground biomass and soil carbon, the net greenhouse gas emissions total 0.68 g CO 2 eq. MJ biomassproduced -1 . Site specific parameters such as soil carbon sequestration could easily offset these emissions resulting in a net reduction of greenhouse gases. Assuming reasonable biomass transportation distance and energy conversion efficiencies, this study implies that generating electricity from willow biomass crops could produce 11 units of electricity per unit of fossil energy consumed. Results form the LCA support the assertion that willow biomass crops are sustainable from an energy balance perspective and contribute additional environmental benefits

  6. Life Cycle Thinking and Integrated Product Deliveries in renovation projects: Extending the concept of Integrated Product Deliveries with Product Service Systems

    DEFF Research Database (Denmark)

    Schipull Kauschen, Jan

    2012-01-01

    on renovation projects from Denmark, using different forms of IPDs for façade renovation and discusses the different stakeholder’s perspectives on life cycle thinking and their interests and values regarding sustainable building. Furthermore is the concept of Product Service Systems (PSS) as a valuable...... IPDs with regard to longevity and adaptability. CONCLUSION The new type of service-focused IPD and the related life-cycle responsibility (development, building phase, maintenance and dismantling/adaption/recycling) creates incentive to integrate life cycle thinking into the development process of IPDs......, resulting in more sustainable building solutions with a greater extend of positive environmental, economical and social impacts. The research presented will also show the importance of adaption and configuration of these complex building components by architects and planners, as they will have a great...

  7. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  8. Life cycle cost and risk estimation of environmental management options

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.

    1996-01-01

    The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically

  9. Assessment of RFID Investment in the Military Logistics Systems Through The Life Cycle Cost (LCC) Model

    OpenAIRE

    Ozdemir, Ahmet; Bayrak, Mustafa

    2015-01-01

    Radio Frequency Identification (RFID) is an emerging technology that has been recently used in numerous business and public fields. Most military applications of RFID have focused on logistics systems. Since RFID investment requires high initial cost and its benefits are hard to see in the short term, it needs an appropriate investment decision model. The purpose of this research is to propose a Life Cycle Cost (LCC) model for RFID integration into the Military Logistics System (MLS). The stu...

  10. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  11. On the Automatic Generation of Plans for Life Cycle Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.

    2000-01-01

    Designing products for easy assembly and disassembly during their entire life cycles for purposes including product assembly, product upgrade, product servicing and repair, and product disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and manufacturing plan selection criteria, as compared to initial assembly, require re-visiting significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or to applied studies of life cycle assembly processes that give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, optimize, and analyze the cycle assembly processes. The study of assembly planning is at the very heart of manufacturing research facilities and academic engineering institutions; and, in recent years a number of significant advances in the field of assembly planning have been made. These advances have ranged from the development of automated assembly planning systems, such as Sandia's Automated Assembly Analysis System Archimedes 3.0{copyright}, to the startling revolution in microprocessors and computer-controlled production tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), flexible manufacturing systems (EMS), and computer-integrated manufacturing (CIM). These results have kindled considerable interest in the study of algorithms for life cycle related assembly processes and have blossomed into a field of intense interest. The intent of this manuscript is to bring together the fundamental results in this area, so that the unifying principles and underlying concepts of algorithm design may more easily be implemented in practice.

  12. DETERMINANTS OF ENTERPRISES LIFE CYCLE IN MODERN CONDITIONS OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Alla Polianska

    2016-03-01

    Full Text Available In the article the theoretical basis of organization life cycle research as well as the particularly of the organization life cycle concept implementation for solving of modern targets of enterprises and organizations development are highlighted. The determinants of one life cycle stage transformation to the other at the enterprises, that allows to better understand the conditions of its functioning and to identify factors that affect the viability of the company and its duration, are considered. Management technologies at different stages of organizations life cycle are proposed. Keywords: enterprise, development, organizations life cycle, determinants, Oil and Gas company JEL: M 20

  13. Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)

    Science.gov (United States)

    Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.

    2017-12-01

    We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis

  14. The Life Cycle Analysis Toolbox

    International Nuclear Information System (INIS)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-01-01

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools

  15. Future scenario development within life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina

    Life Cycle Assessment (LCA) is an acknowledged tool for quantifying the sustainability of waste management solutions. However, the use of LCA for decision-making is hindered by the strong dependency of the LCA results on the assumptions regarding the future conditions in which the waste management...... solutions will operate. Future scenario methods from the management engineering field may provide valid approaches for formulating consistent assumptions on future conditions for the waste management system modelled with LCA. However, the standardized LCA procedure currently does not offer much guidance...... field. The quantitative modelling implications were tested within real-scale LCA models focusing on the management of residual waste in Denmark. In a wide range of scenarios, this thesis addressed the influence on the LCA model results of realistic technology and waste composition uncertainties, as well...

  16. The life cycle of centrioles.

    Science.gov (United States)

    Hatch, E; Stearns, T

    2010-01-01

    Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have different functions. Here, we discuss how new centrioles are assembled, what mechanisms limit centriole number, and the consequences of the inherent asymmetry of centriole duplication and segregation.

  17. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    Science.gov (United States)

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Life cycle assessment of two biowaste management systems for Barcelona, Spain

    International Nuclear Information System (INIS)

    Gueereca, Leonor Patricia; Gasso, Santiago; Baldasano, Jose Maria; Jimenez-Guerrero, Pedro

    2006-01-01

    A life cycle assessment (LCA) is performed in this study in order to evaluate the environmental implications of the management of the fermentable fraction of waste in the Barcelona Metropolitan Area (BMA), comparing the present management system with the system proposed for the future. The energy and water consumption were quantified, as well as the used area and the emissions to the atmosphere and water. The software TRACI was used in order to assess the potential impact on the categories of acidification, eutrophication, toxicity and harm to the human health (under the criteria of cancer, non-cancer and pollutants), global warming, depletion of the ozone layer, formation of photochemical smog, water use, land use and fossil fuel use. The results show that the management system proposed for the future reduces 7 out of the 12 potential impacts analyzed, due mainly to the change in the technology of landfill (baling-wrapping landfill). However, this system requires of further research to assess the impacts on a long term. The worst option for biowaste management is the traditional landfill, based on the multibarrier concept. The results of this work suggest that the future biowaste management system is better in environmental terms than the present system. (author)

  19. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  20. Building Industry Enterprises Logistic System according to their Life-cycle and Organizational Adaptation

    Directory of Open Access Journals (Sweden)

    Natalya Voznenko

    2016-01-01

    Full Text Available This article presents a survey of the Ukrainian machinery-building industry enterprises performance in 2012-2014 due to the state of their logistic systems development and companies’ life-cycle stage. The review of existing theoretical approaches shows the range of possible criteria for evaluation at each level of the industry, enterprise and product. The conducted research evaluates the Ukrainian machinery-building industry and the companies that create that potential. The peculiarities of the organizational adaptation of the above mentioned enterprises and the developed recommendations will help to establish an adaptive management and gain enterprises’ market competitiveness.

  1. Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression In Vitro.

    Science.gov (United States)

    Wilke, Georgia; Ravindran, Soumya; Funkhouser-Jones, Lisa; Barks, Jennifer; Wang, Qiuling; VanDussen, Kelli L; Stappenbeck, Thaddeus S; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Sibley, L David

    2018-06-27

    Among the obstacles hindering Cryptosporidium research is the lack of an in vitro culture system that supports complete life development and propagation. This major barrier has led to a shortage of widely available anti- Cryptosporidium antibodies and a lack of markers for staging developmental progression. Previously developed antibodies against Cryptosporidium were raised against extracellular stages or recombinant proteins, leading to antibodies with limited reactivity across the parasite life cycle. Here we sought to create antibodies that recognize novel epitopes that could be used to define intracellular development. We identified a mouse epithelial cell line that supported C. parvum growth, enabling immunization of mice with infected cells to create a bank of monoclonal antibodies (MAbs) against intracellular parasite stages while avoiding the development of host-specific antibodies. From this bank, we identified 12 antibodies with a range of reactivities across the parasite life cycle. Importantly, we identified specific MAbs that can distinguish different life cycle stages, such as trophozoites, merozoites, type I versus II meronts, and macrogamonts. These MAbs provide valuable tools for the Cryptosporidium research community and will facilitate future investigation into parasite biology. IMPORTANCE Cryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and

  2. Integrated design strategy for product life-cycle management

    Science.gov (United States)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  3. Innovative predictive maintenance concepts to improve life cycle management

    NARCIS (Netherlands)

    Tinga, Tiedo

    2014-01-01

    For naval systems with typically long service lives, high sustainment costs and strict availability requirements, an effective and efficient life cycle management process is very important. In this paper four approaches are discussed to improve that process: physics of failure based predictive

  4. Title IV Cash Management Life Cycle Training. Participant's Guide.

    Science.gov (United States)

    Department of Education, Washington, DC.

    This participant's guide includes: "Introduction: Welcome to Cash Management Life Cycle Training"; "Module 1: Review of Cash Management Principles" (cash management overview and activity); "Module 2: Common Origination and Disbursement (COD) System Overview" (e.g., full participants and phase-in participants, COD…

  5. Towards evaluation and prediction of building sustainability using life cycle behaviour simulation

    Directory of Open Access Journals (Sweden)

    Marzouk Mohamed

    2017-01-01

    Full Text Available Nowadays researchers and practitioners are oriented towards questioning how effective are the different building life cycle activities contribution to preserving the environment and fulfilling the need for equilibrium. Terminologies such as Building sustainability and Green Buildings have long been adopted yet the evaluation of such has been driven through the use of rating systems. LEED of the United States, BREEAM of the United Kingdom, and Pearl of the United Arab Emirates are namely good examples of these rating systems. This paper introduces a new approach for evaluation of building life cycle sustainability through simulation of activities interaction and studying its behaviour. The effort focuses on comprehending impact and effect of suitability related activities over the whole building life cycle or period of time. The methodology includes gathering a pool of parameters through benchmarking of five selected rating systems, analytical factorization for the gathered parameters is used to elect the most influencing parameters. Followed by simulation modelling using System dynamics to capture the interaction of the considered parameters. The resulting behaviour obtained from simulation is studied and used in designing a tool for prediction of sustainability.

  6. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  7. Steam generator life cycle management challenges - on-going and new build

    International Nuclear Information System (INIS)

    Spekkens, P.

    2009-01-01

    Ontario Power Generation (OPG) is committed to the safe, reliable, and cost-effective operation of its fleet of CANDU plants. Steam Generators (SGs) are a major component of the heat transport system in these plants and maintaining their health is an essential element to achieving plant safety, reliability and economic performance. OPG has been actively engaged in formal life cycle management of its SGs for about 15 years. Over this time, we have developed stable, mature, detailed life cycle plans for each of our plants on a unit by unit, and in some cases, SG by SG, basis. These plans have been externally reviewed over the years by our regulator and by other third-party experts, and they've been acknowledged as being among the best life cycle plans anywhere. Although we are pleased that our life cycle plans are as detailed and mature as they are, we certainly aren't fully satisfied because they're not perfect. Even if they were perfect at any point in time, they wouldn't be for very long because the environment is constantly changing, both the technical environment and the business environment. This paper presents some of these challenges and offers some possible solutions or suggestions based on OPG's experience. The paper describes the background on SG life cycle management in OPG, i.e. what it is and how we do it. Then it presents challenges in the following areas: despite having some very detailed and technically strong life cycle plans, we still face some technical issues; in addition, we face challenges in integrating these plans into the overall business processes within the company; up until now, our life cycle planning has been aimed at early-and mid-life in our units. But our units are aging and we are now within sight, at least in a life cycle management sense, of a point at which decisions need to be made on refurbishment, life extension or retirement of the units. We need to adjust our life cycle management approach as we approach those major

  8. Life Cycle Impact Assessment Research Developments and Needs

    Science.gov (United States)

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  9. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  10. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  11. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  12. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Science.gov (United States)

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  13. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. KOH concentration effect on cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, Hong S.; Verzwyvelt, S. A.

    1987-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  15. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

    2016-01-01

    The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Life cycle versus balanced funds: An emerging market perspective

    Directory of Open Access Journals (Sweden)

    Elbie Louw

    2017-08-01

    Full Text Available Background: Inadequate retirement savings is an international challenge. Additionally, individuals are not cognisant of how asset allocation choices ultimately impact retirement savings. Life cycle and balanced funds are popular asset allocation strategies to save towards retirement. However, recent research is questioning the efficacy of life cycle funds that switch to lower risk asset classes as retirement approaches. Aim: The purpose of this study is to compare the performance of life cycle funds with balanced funds to determine whether either dominates the other. The study compares balanced and life cycle funds with similar starting asset allocations as well as those where the starting asset allocations differ. Setting: The study has a South African focus and constructs funds using historical data for the main local asset classes; that is, equity, fixed income and cash, as well as a proxy for foreign equity covering the period 1986–2013. Method: The study makes use of Monte Carlo simulations and bootstrap with replacement, and compares the simulated outcomes using stochastic dominance as decision-making criteria. Results: The results indicate that life cycle funds fail to dominate balanced funds by first-order or almost stochastic dominance when funds have a similar starting asset allocation. It is noteworthy that there are instances where the opposite is true, that is, balanced funds dominate life cycle funds. These results highlight that while the life cycle funds provide more downside protection, they significantly suppress the upside potential compared to balanced funds. When the starting asset allocations of the balanced and life cycle funds differ, the stochastic dominance results are inconsistent as to the efficacy of the life cycle fund strategies considered. Conclusion: The study shows that whether one fund is likely to dominate the other is strongly dependent on the underlying asset allocation strategies of the funds

  17. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  18. Low temperature heat from natural gas. Life cycle analysis for efficient systems

    International Nuclear Information System (INIS)

    Zogg, M.

    2000-01-01

    A life cycle analysis drawn up on behalf of the Swiss Federal Office of Energy shows that the combined cycle power plant + heat pump (GuD-WP) combination produces less greenhouse effect and makes only about half the contribution to summer smog formation as the operation of heat pumps with the power mix habitually used in Western Europe today. In the co-generation unit + heat pump (BHKW-WP) combination, the environmental impact shows the same values as in current West European power generation

  19. Life cycle assessment of products and technologies. LCA Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, H.; Nors, M. (eds.)

    2009-12-15

    VTT Technical Research Centre of Finland organised a Symposium 'Life Cycle Assessment of Products and Technologies' on the 6th of October, 2009. The Symposium gave a good overview of methods, tools and applications of Life Cycle Assessment developed and utilised in several technology fields of VTT. The 12 Symposium papers deal with recent LCA studies on products and technologies. The scope ranges from beverage cups to urban planning, from inventory databases to rating systems. Topical issues relating to climate change concern biorefineries and the overall impacts of the utilisation of biomass. The calculation of carbon footprints is also introduced through paper products and magazines. One example of LCA tools developed at VTT addresses cement manufacturing. VTT's transport emission database, LIPASTO, was introduced in detail. The use of LCA methods and life cycle thinking is described in various contexts: product development in relation to precision instruments; selection of materials and work processes in relation to sediment remediation project; and procedures of sustainability rating through VTT's office building Digitalo. The Climate Bonus project presented a demonstrated ICT support that informs about the greenhouse gas emissions and carbon footprints of households. (orig.)

  20. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  1. Life Cycle Thinking and Integrated Product Deliveries in renovation projects: Extending the concept of Integrated Product Deliveries with Product Service Systems

    DEFF Research Database (Denmark)

    Schipull Kauschen, Jan

    2012-01-01

    extension to the concept of IPDs discussed. Due to extended product responsibility, the concept of PSSs will offer new possibilities of planning and pre-defining life cycles of IPDs more precisely than for regular building components. Reducing or eliminating point-of-sales will induce producers to optimize...... on renovation projects from Denmark, using different forms of IPDs for façade renovation and discusses the different stakeholder’s perspectives on life cycle thinking and their interests and values regarding sustainable building. Furthermore is the concept of Product Service Systems (PSS) as a valuable...

  2. When Product Life Cycle Meets Customer Activity Cycle

    DEFF Research Database (Denmark)

    Tan, Adrian Ronald

    2007-01-01

    Manufacturing companies have traditionally focused their efforts on designing, developing and producing products to offer on the market. Today global competition and demands for greater company responsibility of products throughout their entire life cycle are driving manufacturing companies to sh...

  3. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the envir......The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating......, and of the opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding...... of possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  4. Optimizing the data life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kilian [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Jung, Christopher [KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2013-07-01

    Today, data play a central role in most fields of Science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and the data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied for scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The Helmholtz Portfolio Extension ''Large Scale Data Management and Analysis'' (LSDMA) focuses on the optimization of the data life cycle in different research areas. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team provides data analysis tools and services which are common to several DLCLs. This presentation describes the various activities within LSDMA and focuses on the work done in the DLCL ''Structure of Matter''. The main topics of this DLCL are the support for the international projects FAIR (Facility for Anti Proton and Ion Research) which will evolve around GSI in Darmstadt and the European XFEL and PETRA III at DESY in Hamburg.

  5. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  6. Computer Software for Life Cycle Cost.

    Science.gov (United States)

    1987-04-01

    34 111. 1111I .25 IL4 jj 16 MICROCOPY RESOLUTION TEST CHART hut FILE C AIR CoMMNAMN STFF COLLG STUJDET PORTO i COMpUTER SOFTWARE FOR LIFE CYCLE CO879...obsolete), physical life (utility before physically wearing out), or application life (utility in a given function)." (7:5) The costs are usually

  7. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  8. Holistic energy system modeling combining multi-objective optimization and life cycle assessment

    Science.gov (United States)

    Rauner, Sebastian; Budzinski, Maik

    2017-12-01

    Making the global energy system more sustainable has emerged as a major societal concern and policy objective. This transition comes with various challenges and opportunities for a sustainable evolution affecting most of the UN’s Sustainable Development Goals. We therefore propose broadening the current metrics for sustainability in the energy system modeling field by using industrial ecology techniques to account for a conclusive set of indicators. This is pursued by including a life cycle based sustainability assessment into an energy system model considering all relevant products and processes of the global supply chain. We identify three pronounced features: (i) the low-hanging fruit of impact mitigation requiring manageable economic effort; (ii) embodied emissions of renewables cause increasing spatial redistribution of impact from direct emissions, the place of burning fuel, to indirect emissions, the location of the energy infrastructure production; (iii) certain impact categories, in which more overall sustainable systems perform worse than the cost minimal system, require a closer look. In essence, this study makes the case for future energy system modeling to include the increasingly important global supply chain and broaden the metrics of sustainability further than cost and climate change relevant emissions.

  9. Performance improvement: an active life cycle product management

    Science.gov (United States)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  10. Where is My Pay? Critical Success Factors of a Payroll System – A System Life Cycle Approach

    Directory of Open Access Journals (Sweden)

    Mohan Thite

    2014-06-01

    Full Text Available Majority of firms deploy technologies in HR administrative applications. While payroll processing is a routine transactional activity, poor design and implementation of payroll system can cause immense harm to employee and organizational well-being. Based on the case study of a flawed payroll system in a large and complex public sector organization in Australia, we highlight the key success factors using the system life cycle approach underpinned by the agile philosophy. It highlights the critical importance of strategic organizational review, user involvement and ongoing communication with diverse stakeholders during the planning, analysis, design, implementation and review stages of a payroll project. It reinforces the need for the adoption of and adherence to sound project and change management methodologies. We also explore the limitations of shared service center approach.

  11. Life cycle thinking in impact assessment—Current practice and LCA gains

    Energy Technology Data Exchange (ETDEWEB)

    Bidstrup, Morten, E-mail: Bidstrup@plan.aau.dk

    2015-09-15

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.

  12. An approach to incorporate risks into a product's life-cycle assessment

    International Nuclear Information System (INIS)

    Pirhonen, P.

    1995-01-01

    Life-cycle assessment is usually based on regular discharges that occur at a more or less constant rate. Nevertheless, the more factors that are taken into account in the LCA the better picture it gives on the environmental aspects of a product. In this study an approach to incorporate accidental releases into a products' life-cycle assessment was developed. In this approach accidental releases are divided into two categories. The first category consists of those unplanned releases which occur with a predicted level and frequency. Due to the high frequency and small release size at a time, these accidental releases can be compared to continuous emissions. Their global impacts are studied in this approach. Accidental releases of the second category are sudden, unplanned releases caused by exceptional situations, e.g. technical failure, action error or disturbances in process conditions. These releases have a singular character and local impacts are typical of them. As far as the accidental releases of the second category are concerned, the approach introduced in this study results in a risk value for every stage of a life-cycle, the sum of which is a risk value for the whole life-cycle. Risk value is based on occurrence frequencies of incidents and potential environmental damage caused by releases. Risk value illustrates the level of potential damage caused by accidental releases related to the system under study and is meant to be used for comparison of these levels of two different products. It can also be used to compare the risk levels of different stages of the life-cycle. An approach was illustrated using petrol as an example product. The whole life-cycle of petrol from crude oil production to the consumption of petrol was studied

  13. Life cycle thinking in impact assessment—Current practice and LCA gains

    International Nuclear Information System (INIS)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains

  14. An IMS Station life cycle from a sustainment point of view

    Science.gov (United States)

    Brely, Natalie; Gautier, Jean-Pierre; Foster, Daniel

    2014-05-01

    The International Monitoring System (IMS) is to consist of 321 monitoring facilities, composed of four different technologies with a variety of designs and equipment types, deployed in a range of environments around the globe. The International Monitoring System is conceived to operate in perpetuity through maintenance, replacement and recapitalization of IMS facilities' infrastructure and equipment when the end of service life is reached [CTBT/PTS/INF.1163]. Life Cycle techniques and modellization are being used by the PTS to plan and forecast life cycle sustainment requirements of IMS facilities. Through historical data analysis, Engineering inputs and Feedback from experienced Station Operators, the PTS currently works towards increasing the level of confidence on these forecasts and sustainment requirements planning. Continued validation, feedback and improvement of source data from scientific community and experienced users is sought and essential in order to ensure limited effect on data availability and optimal costs (human and financial).

  15. Development of an Enhanced Generic Data Mining Life Cycle (DMLC)

    OpenAIRE

    Hofmann, Markus; Tierney, Brendan

    2017-01-01

    Data mining projects are complex and have a high failure rate. In order to improve project management and success rates of such projects a life cycle is vital to the overall success of the project. This paper reports on a research project that was concerned with the life cycle development for large scale data mining projects. The paper provides a detailed view of the design and development of a generic data mining life cycle called DMLC. The life cycle aims to support all members of data mini...

  16. The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.

    Science.gov (United States)

    Burdett, Emily R R; Barrett, Justin L

    2016-06-01

    Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.

  17. Studying the effect on system preference by varying coproduct allocation in creating life-cycle inventory.

    Science.gov (United States)

    Curran, Mary Ann

    2007-10-15

    How one models the input and output data for a life-cycle assessment (LCA) can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, specific guidance is still lacking: Earlier research focused on the effects of applying various allocation schemes to industrial processes when creating life-cycle inventories. To determine the impact of different allocation approaches upon product choice, this study evaluated the gas- and water-phase emissions during the production, distribution, and use of three hypothetical fuel systems (data that represent conventional gasoline and gasoline with 8.7 and 85% ethanol were used as the basis for modeling). This paper presents an explanation of the allocation issue and the results from testing various allocation schemes (weight, volume, market value, energy, and demand-based) when viewed across the entire system. Impact indicators for global warming, ozone depletion, and human health noncancer (water impact) were lower for the ethanol-containing fuels, while impact indicators for acidification, ecotoxicity, eutrophication, human health criteria, and photochemical smog were lower for conventional gasoline (impacts for the water-related human health cancer category showed mixed results). The relative ranking of conventional gasoline in relation to the ethanol-containing fuels was consistent in all instances, suggesting that, in this case study, the choice of allocation methodology had no impact on indicating which fuel has lower environmental impacts.

  18. Life cycle management and assessment: approaches and visions towards sustainable manufacturing

    DEFF Research Database (Denmark)

    Westkämper, Engelbert; Alting, Leo; Arndt, Günther

    2000-01-01

    . The goal of this approach is to protect resources and maximize effectiveness by means of life cycle assessment, product data management, technical support and, last but not least, life cycle costing. This paper shows the existing approaches of LCM and discusses their prospects and further development....... concepts are required, new regulations have been passed or consumer values are changing, the differences between business areas are disappearing. Life cycle management (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, manufacturing and life cycle activities...

  19. Total Product Life Cycle (TPLC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Total Product Life Cycle (TPLC) database integrates premarket and postmarket data about medical devices. It includes information pulled from CDRH databases...

  20. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  1. Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.

    Science.gov (United States)

    McAuley, William J.; Nutty, Cheri L.

    The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…

  2. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila

    2008-01-01

    Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several similarit......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...... similarities with other social assessment tools, but in order to limit the review, only claims to address social impacts from an LCA-like framework is considered. Main Features. The review is to a large extent based on conference proceedings and reports of which some are not easily accessible, since very...... stage in the product life cycle. Another very important difference among the proposals is their position towards the use of generic data. Several of the proposals argue that social impacts are connected to the conduct of the company leading to the conclusion that each individual company in the product...

  3. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  4. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  5. Life cycle costing of food waste: A review of methodological approaches.

    Science.gov (United States)

    De Menna, Fabio; Dietershagen, Jana; Loubiere, Marion; Vittuari, Matteo

    2018-03-01

    Food waste (FW) is a global problem that is receiving increasing attention due to its environmental and economic impacts. Appropriate FW prevention, valorization, and management routes could mitigate or avoid these effects. Life cycle thinking and approaches, such as life cycle costing (LCC), may represent suitable tools to assess the sustainability of these routes. This study analyzes different LCC methodological aspects and approaches to evaluate FW management and valorization routes. A systematic literature review was carried out with a focus on different LCC approaches, their application to food, FW, and waste systems, as well as on specific methodological aspects. The review consisted of three phases: a collection phase, an iterative phase with experts' consultation, and a final literature classification. Journal papers and reports were retrieved from selected databases and search engines. The standardization of LCC methodologies is still in its infancy due to a lack of consensus over definitions and approaches. Research on the life cycle cost of FW is limited and generally focused on FW management, rather than prevention or valorization of specific flows. FW prevention, valorization, and management require a consistent integration of LCC and Life Cycle Assessment (LCA) to avoid tradeoffs between environmental and economic impacts. This entails a proper investigation of methodological differences between attributional and consequential modelling in LCC, especially with regard to functional unit, system boundaries, multi-functionality, included cost, and assessed impacts. Further efforts could also aim at finding the most effective and transparent categorization of costs, in particular when dealing with multiple stakeholders sustaining costs of FW. Interpretation of results from LCC of FW should take into account the effect on larger economic systems. Additional key performance indicators and analytical tools could be included in consequential approaches

  6. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  7. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  8. A resource guide to nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Klein, D.J.

    1993-11-01

    Forecasting the useful economic life of a nuclear unit and addressing the complementary issue of license renewal, both key elements of life cycle management, are complex undertakings. This guide is a resource document emphasizing the technical elements of life cycle management (LCM) with focus on the determination of adequate maintenance programs and the identification of data and records necessary to support them. Information on other life cycle management issues, such as license renewal regulation, is also provided. Because of the volume of information required for LCM evaluations and the need for periodic updating, this Guide is presented as an updatable ''electronic book.''

  9. Life cycle management and assessment: approaches and visions towards sustainable manufacturing

    DEFF Research Database (Denmark)

    Westkämper, Engelbert; Alting, Leo; Arndt, Günther

    2001-01-01

    and optimizes the interaction of product design, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize effectiveness by means of life cycle assessment, product data management, technical support and, last but not least, life cycle costing. This paper shows....... Economically successful business areas can also be explored. Whether new service concepts are required, new regulations have been passed or consumer values are changing, the differences between business areas are disappearing. Life cycle management (LCM) considers the product life cycle as a whole...... the existing approaches of LCM and discusses their prospects and further development....

  10. MDEP Generic Common Position No DICWG-03. Common position on verification and validation throughout the life cycle of digital safety systems

    International Nuclear Information System (INIS)

    2013-01-01

    Verification and validation (V and V) is essential throughout the life cycle of nuclear power plant safety systems. This common position applies to V and V activities for digital safety systems throughout their life cycles. This encompasses both the software and hardware of such systems. The Digital Instrumentation and Controls Working Group (DICWG) has agreed that a common position on this topic is warranted given the use of Digital I and C in new reactor designs, its safety implications, and the need to develop a common understanding from the perspectives of regulatory authorities. This action follows the DICWG examination of the regulatory requirements of the participating members and of relevant industry standards and IAEA documents. The DICWG proposes a common position based on its recent experience with the new reactor application reviews and operating plant issues

  11. Evaluation of life-cycle air emission factors of freight transportation.

    Science.gov (United States)

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  12. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  13. Rules of Thumb in Life-Cycle Saving Decisions

    OpenAIRE

    Winter, Joachim; Schlafmann, Kathrin; Rodepeter, Ralf

    2011-01-01

    We analyse life-cycle saving decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. We simulate life-cycle saving decisions using three simple rules and compute utility losses relative to the solution of the optimization problem. Our simulations suggest that utility losses induced by following simple decision rules are relatively low. Moreover, the two main saving motives re ected by the canonical life-cyc...

  14. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    Science.gov (United States)

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  15. Designer and Constructor Practices to Ensure Life Cycle Performance

    National Research Council Canada - National Science Library

    Shelton, Joelle

    1998-01-01

    .... Many of these attempts focus on reducing costs and improving functionality, such as life cycle cost analysis and value engineering, while others, such as design-build, focus on specific phases of the life cycle...

  16. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  17. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    Science.gov (United States)

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A First Case Study of a Life Cycle-Based Alternatives Assessment (LCAA)

    DEFF Research Database (Denmark)

    Fantke, Peter; Huang, L.; Overcash, Michael

    2017-01-01

    cycle impacts. Our approach is evaluated in a case study, through which we outline future research needs to fully operationalize a consistent and Life Cycle-based Alternatives Assessment (LCAA). We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions...... and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. When combined with chemical masses in products and further with toxicity information, this approach is a resourceful way to inform AA. Our case study reveals that replacing...... various population groups including workers, consumers and the general public, while life cycle impacts need to focus on categories relevant for a given AA chemical-product application. We systematically define the scope of AA and identify key elements for quantitatively considering exposure and life...

  19. Integrating RAMS engineering and management with the safety life cycle of IEC 61508

    International Nuclear Information System (INIS)

    Lundteigen, Mary Ann; Rausand, Marvin; Utne, Ingrid Bouwer

    2009-01-01

    This article outlines a new approach to reliability, availability, maintainability, and safety (RAMS) engineering and management. The new approach covers all phases of the new product development process and is aimed at producers of complex products like safety instrumented systems (SIS). The article discusses main RAMS requirements to a SIS and presents these requirements in a holistic perspective. The approach is based on a new life cycle model for product development and integrates this model into the safety life cycle of IEC 61508. A high integrity pressure protection system (HIPPS) for an offshore oil and gas application is used to illustrate the approach.

  20. IT logistics support life cycle of products in air engine

    Directory of Open Access Journals (Sweden)

    М.С. Кулик

    2009-02-01

    Full Text Available  Questions of increase of efficiency of a supply with information of creation and support in operation of modern aviation engines are considered. The revealed most perspective directions of development of complex systems of support of life cycle aviation technics.

  1. Life cycle reliability assessment of new products—A Bayesian model updating approach

    International Nuclear Information System (INIS)

    Peng, Weiwen; Huang, Hong-Zhong; Li, Yanfeng; Zuo, Ming J.; Xie, Min

    2013-01-01

    The rapidly increasing pace and continuously evolving reliability requirements of new products have made life cycle reliability assessment of new products an imperative yet difficult work. While much work has been done to separately estimate reliability of new products in specific stages, a gap exists in carrying out life cycle reliability assessment throughout all life cycle stages. We present a Bayesian model updating approach (BMUA) for life cycle reliability assessment of new products. Novel features of this approach are the development of Bayesian information toolkits by separately including “reliability improvement factor” and “information fusion factor”, which allow the integration of subjective information in a specific life cycle stage and the transition of integrated information between adjacent life cycle stages. They lead to the unique characteristics of the BMUA in which information generated throughout life cycle stages are integrated coherently. To illustrate the approach, an application to the life cycle reliability assessment of a newly developed Gantry Machining Center is shown

  2. Future of lignite resources: a life cycle analysis.

    Science.gov (United States)

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  3. Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney

    2010-10-01

    Full Text Available Citing the myriad applications of nanotechnology, this paper emphasizes the need to conduct “life cycle” based assessments as early in the new product development process as possible, for a better understanding of the potential environmental and human health consequences of nanomaterials over the entire life cycle of a nano-enabled product. The importance of this reasoning is further reinforced through an illustrative case study on automotive exterior body panels, which shows that the perceived environmental benefits of nano-based products in the Use stage may not adequately represent the complete picture, without examining the impacts in the other life cycle stages, particularly Materials Processing and Manufacturing. Nanomanufacturing methods often have associated environmental and human health impacts, which must be kept in perspective when evaluating nanoproducts for their “greenness.” Incorporating life-cycle thinking for making informed decisions at the product design stage, combining life cycle and risk analysis, using sustainable manufacturing practices, and employing green chemistry alternatives are seen as possible solutions.

  4. Management plan documentation standard and Data Item Descriptions (DID). Volume of the information system life-cycle and documentation standards, volume 2

    Science.gov (United States)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    This is the second of five volumes of the Information System Life-Cycle and Documentation Standards. This volume provides a well-organized, easily used standard for management plans used in acquiring, assuring, and developing information systems and software, hardware, and operational procedures components, and related processes.

  5. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Z.; Yangali-Quintanilla, V.; Ghaffour, NorEddine; Amy, Gary L.; Leiknes, TorOve; Vrouwenvelder, Johannes S.

    2015-01-01

    -RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality

  6. A lithium–oxygen battery with a long cycle life in an air-like atmosphere

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T.; Karis, Klas; Jokisaari, Jacob R.; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S.; Khalili-Araghi, Fatemeh; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2018-03-01

    Lithium–air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium–oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium–oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium–air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium–oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  7. A lithium-oxygen battery with a long cycle life in an air-like atmosphere.

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2018-03-21

    Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  8. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  9. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    Science.gov (United States)

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study

  10. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    Science.gov (United States)

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  11. Life cycle and nano-products: end-of-life assessment

    International Nuclear Information System (INIS)

    Asmatulu, Eylem; Twomey, Janet; Overcash, Michael

    2012-01-01

    Understanding environmental impacts of nanomaterials necessitates analyzing the life cycle profile. The initial emphasis of nanomaterial life cycle studies has been on the environmental and health effects of nanoproducts during the production and usage stages. Analyzing the end-of-life (eol) stage of nanomaterials is also critical because significant impacts or benefits for the environment may arise at that particular stage. In this article, the Woodrow Wilson Center’s Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI) model was used, which contains a relatively large and complete nanoproduct list (1,014) as of 2010. The consumer products have wide range of applications, such as clothing, sports goods, personal care products, medicine, as well as contributing to faster cars and planes, more powerful computers and satellites, better micro and nanochips, and long-lasting batteries. In order to understand the eol cycle concept, we allocated 1,014 nanoproducts into the nine end-of-life categories (e.g., recyclability, ingestion, absorption by skin/public sewer, public sewer, burning/landfill, landfill, air release, air release/public sewer, and other) based on probable final destinations of the nanoproducts. This article highlights the results of this preliminary assessment of end-of-life stage of nanoproducts. The largest potential eol fate was found to be recyclability, however little literature appears to have evolved around nanoproduct recycling. At lower frequency is dermal and ingestion human uptake and then landfill. Release to water and air are much lower potential eol fates for current nanoproducts. In addition, an analysis of nano-product categories with the largest number of products listed indicated that clothes, followed by dermal-related products and then sports equipment were the most represented in the PEN CPI (http

  12. Life cycle and nano-products: end-of-life assessment

    Energy Technology Data Exchange (ETDEWEB)

    Asmatulu, Eylem; Twomey, Janet; Overcash, Michael, E-mail: mrovercash@earthlink.net [Wichita State University, Department of Industrial and Manufacturing Engineering (United States)

    2012-03-15

    Understanding environmental impacts of nanomaterials necessitates analyzing the life cycle profile. The initial emphasis of nanomaterial life cycle studies has been on the environmental and health effects of nanoproducts during the production and usage stages. Analyzing the end-of-life (eol) stage of nanomaterials is also critical because significant impacts or benefits for the environment may arise at that particular stage. In this article, the Woodrow Wilson Center's Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI) model was used, which contains a relatively large and complete nanoproduct list (1,014) as of 2010. The consumer products have wide range of applications, such as clothing, sports goods, personal care products, medicine, as well as contributing to faster cars and planes, more powerful computers and satellites, better micro and nanochips, and long-lasting batteries. In order to understand the eol cycle concept, we allocated 1,014 nanoproducts into the nine end-of-life categories (e.g., recyclability, ingestion, absorption by skin/public sewer, public sewer, burning/landfill, landfill, air release, air release/public sewer, and other) based on probable final destinations of the nanoproducts. This article highlights the results of this preliminary assessment of end-of-life stage of nanoproducts. The largest potential eol fate was found to be recyclability, however little literature appears to have evolved around nanoproduct recycling. At lower frequency is dermal and ingestion human uptake and then landfill. Release to water and air are much lower potential eol fates for current nanoproducts. In addition, an analysis of nano-product categories with the largest number of products listed indicated that clothes, followed by dermal-related products and then sports equipment were the most represented in the PEN CPI (http

  13. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  14. Life cycle assessment of metals: a scientific synthesis.

    Directory of Open Access Journals (Sweden)

    Philip Nuss

    Full Text Available We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining. For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use, and report the shares for all metals to both impact categories.

  15. Life cycle assessment of palm-derived biodiesel in Taiwan

    KAUST Repository

    Maharjan, Sumit; Wang, Wei-Cheng; Teah, Heng Yi

    2016-01-01

    . This study aims to evaluate the cradle-to-grave life cycle environmental performance of palm biodiesel within two different Asian countries, Malaysia and Taiwan. The phases of the life cycle such as direct land-use-change impact, plantation and milling

  16. Comparative evaluation of life cycle assessment models for solid waste management

    International Nuclear Information System (INIS)

    Winkler, Joerg; Bilitewski, Bernd

    2007-01-01

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different

  17. Nanotechnology and Life Cycle Assessment. A systems approach to Nanotechnology and the environment

    DEFF Research Database (Denmark)

    Klöpffer, Walter; Curran, Mary Ann; Frankl, Paolo

    This report summarizes the results of “Nanotechnology and Life Cycle Assessment,” a twoday workshop jointly convened by the Woodrow Wilson Center Project on Emerging Nanotechnologies; the United States Environmental Protection Agency Office of Research and Development; and the European Commission......, RTD.G4 “Nano S&T: Converging Science and Technologies.” Held in October 2006, the workshop involved international experts from the fields of Life Cycle Assessment (LCA) and nanotechnology. The main program of the workshop consisted of introductory lectures, group discussions and a final plenary...... identified and discussed by the groups. The purpose of the workshop was to determine whether existing LCA tools and methods are adequate to use on a new technology. This document provides an overview of LCA and nanotechnology, discusses the current state of the art, identifies current knowledge gaps that may...

  18. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  19. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  20. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects

    DEFF Research Database (Denmark)

    Pant, Deepak; Singh, Anoop; Bogaert, Gilbert Van

    2011-01-01

    Bioelectrochemical systems (BESs) are devices capable of converting organic waste fraction present in wastewaters into useful energy vectors such as electricity or hydrogen. In recent years a large amount of research has been done on these unique systems in order to improve their performance both...... in terms of waste treatment as well as electric current production. Already there are plans to upscale this technology to convince the end-users of its potential. However, there are not many studies available on the life cycle of these systems with the current state of the art. In this article...... a methodology has been proposed to perform the life cycle assessment (LCA) of the BESs and some recommendations have been given which may be useful in carrying out LCA of these systems. Not only the direct benefits in terms of energy saved in aerating the wastewater treatment plants, but also the resulting...

  1. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  2. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    Science.gov (United States)

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  3. Base Camp Life Cycle Management: Focusing on the Critical Elements

    Science.gov (United States)

    2011-12-01

    needs of the occupants, although “building” this infrastructure often meant cobbling together prefabricated buildings or tents as much as it meant...as System Boundaries.” Journal of Industrial Ecology 10, no. 1 (2006): 61-77. Rebitzer, G. and Hunkeler, D. Life Cycle Costing in LCM: Ambitions

  4. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  5. Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems

    DEFF Research Database (Denmark)

    Corominas, Lluís; Larsen, Henrik Fred; Flores-Alsina, Xavier

    2013-01-01

    This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating....../or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting...... of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P...

  6. Holistic Evaluation of Decentralized Water Reuse: Life Cycle Assessment and Cost Analysis of Membrane Bioreactor Systems in Water Reuse Implementation

    Science.gov (United States)

    Understand environmental and cost impacts of transitional decentralized MBR systems with sewer mining Assess aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR) Use LCA and life cycle cost (LCC) analysis to quantify impacts Investigate LCA and LCC performance of MBRs under various re...

  7. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  8. Comparative myoanatomy of cycliophoran life cycle stages

    DEFF Research Database (Denmark)

    Neves, Ricardo C.; Cunha, Maria R.; Funch, Peter

    2010-01-01

    The metazoan phylum Cycliophora includes small cryptic epibionts that live attached to the mouthparts of clawed lobsters. The life cycle is complex, with alternating sexual and asexual generations, and involves several sessile and free-living stages. So far, the morphological and genetic characte......The metazoan phylum Cycliophora includes small cryptic epibionts that live attached to the mouthparts of clawed lobsters. The life cycle is complex, with alternating sexual and asexual generations, and involves several sessile and free-living stages. So far, the morphological and genetic...

  9. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    Science.gov (United States)

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  10. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India

    Energy Technology Data Exchange (ETDEWEB)

    Achten, Wouter M.J. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India); Almeida, Joana [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Grupo de Disciplinas da Ecologia da Hidrosfera, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Fobelets, Vincent; Bolle, Evelien; Muys, Bart [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Mathijs, Erik [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Singh, Virendra P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India); Tewari, Dina N. [Utthan NGO, Centre for Sustainable Development and Poverty Alleviation, 18-A, Auckland Road, Civil Lines, Allahabad 211 001 (India); Verchot, Louis V. [Centre for International Forestry Research, P.O. Box 0113 BOCBD, Bogor 16000 (Indonesia)

    2010-12-15

    Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH{sub 4} emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options. (author)

  11. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India

    International Nuclear Information System (INIS)

    Achten, Wouter M.J.; Almeida, Joana; Fobelets, Vincent; Bolle, Evelien; Mathijs, Erik; Singh, Virendra P.; Tewari, Dina N.; Verchot, Louis V.; Muys, Bart

    2010-01-01

    Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH 4 emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options.

  12. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    Treyer, Karin; Bauer, Christian; Simons, Andrew

    2014-01-01

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  13. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  14. Optimization of life cycle management costs

    International Nuclear Information System (INIS)

    Banerjee, A.K.

    1994-01-01

    As can be seen from the case studies, a LCM program needs to address and integrate, in the decision process, technical, political, licensing, remaining plant life, component replacement cycles, and financial issues. As part of the LCM evaluations, existing plant programs, ongoing replacement projects, short and long-term operation and maintenance issues, and life extension strategies must be considered. The development of the LCM evaluations and the cost benefit analysis identifies critical technical and life cycle cost parameters. These open-quotes discoveriesclose quotes result from the detailed and effective use of a consistent, quantifiable, and well documented methodology. The systematic development and implementation of a plant-wide LCM program provides for an integrated and structured process that leads to the most practical and effective recommendations. Through the implementation of these recommendations and cost effective decisions, the overall power production costs can be controlled and ultimately lowered

  15. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    Science.gov (United States)

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-01

    A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.

  16. Methodologies for verification and validation of expert systems as a function of component, criticality and life-cycle phase

    International Nuclear Information System (INIS)

    Miller, L.

    1992-01-01

    The review of verification and validation (V and V) methods presented here is based on results of the initial two tasks of a contract with the US Nuclear Regulatory Commission and the Electric Power Research Institute to Develop and Document Guidelines for Verifying and Validating Expert Systems. The first task was to review the applicability of conventional software techniques to expert systems; the second was to directly survey V and V practices associated with development of expert systems. Subsequent tasks will focus on selecting, synthesizing or developing V and V methods appropriate for the overall system, for specific expert systems components, and for different phases of the life-cycle. In addition, final guidelines will most likely be developed for each of three levels of expert systems: safety-related (systems whose functions directly relate to system safety, so-called safety-critical systems), important-to-safety (systems which support the critical safety functions), and non-safety (systems which are unrelated to safety functions). For the present purposes of categorizing and discussing various types of V and V methods, the authors simplify the life-cycle and consider only two aspects - systems validation phase. The authors identified a number of techniques for the first, combined, phase and two general classes of V and V techniques for the latter phase: static testing techniques, which do not involve execution of the system code, and dynamic testing techniques, which do. In the next two sections the author reviews first the applicability to expert systems of conventional V and V techniques and, second, the techniques expert system developers actually use. In the last section the authors make some general observations

  17. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis

    Directory of Open Access Journals (Sweden)

    Giacomo Falcone

    2016-08-01

    Full Text Available The wine sector is going through a significant evolution dealing with the challenges of competition issues in international markets and with necessary commitments to sustainability improvement. In the wine supply chain, the agricultural phase represents a potential source of pollution and costs. From the farmers’ point of view, these contexts require them to be more attentive and find a compromise among environmental benefits, economic benefits, and costs linked to farming practices. This paper aims to make a sustainability assessment of different wine-growing scenarios located in Calabria (Southern Italy that combines conflicting insights, i.e., environmental and economic ones, by applying Life Cycle Assessment (LCA and Life Cycle Costing (LCC to identify the main hotspots and select the alternative scenarios closest to the ideal solution through the VIKOR multicriteria method. In particular, the latter allowed us to obtain synthetic indices for a two-dimensional sustainability assessment. Conventional practices associated to the espalier training system represent the best compromise from both environmental and economic points of view, due to the higher yield per hectare. The choices regarding Functional Unit (FU and indicators were shown to have a high influence on results.

  18. Econometric analysis of ship life cycles - are safety inspections effective?

    NARCIS (Netherlands)

    G.E. Bijwaard (Govert); S. Knapp (Sabine)

    2008-01-01

    textabstractDue to the shipping industry’s international legal framework and the existence of loopholes in the system, an estimated 5-10 percent of substandard ships exist which are more likely to have incidents with high economic cost. This article uses ship life cycles to provide insight into

  19. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  20. Influence of service life on Life Cycle Assessments

    NARCIS (Netherlands)

    van Nunen, H.; Hendriks, N.A.; Erkelens, P.A.

    2003-01-01

    Environmental assessment is part of present decision making. But, because of difficulties the assessments are not as profound as could be. Life Cycle Assessment (LCA) is a cradle-to-grave approach and consequently a time factor is embedded. Until now this time factor is fixed and calculations are

  1. From BIM to life cycle information management in infrastructure

    NARCIS (Netherlands)

    Nederveen, G.A. van; Wolfert, R.; Ruitenbeek, M. van de

    2014-01-01

    In principle, Building Information Modelling (BIM) should provide a basis for infrastructure information management during the whole life-cycle. In practice however, the use of BIM is normally limited to the design and construction phases. It seems that the use of BIM information in other life-cycle

  2. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  3. Optimal Life Cycle Portfolio Choice with Housing Market Cycles

    DEFF Research Database (Denmark)

    Fischer, Marcel; Stamos, Michael Z.

    2013-01-01

    income, and pre-existing housing wealth but also the state of the housing market significantly affect household decisions. Consistently with the data, the model predicts that in good states of housing market cycles (1) homeownership rates increase, (2) households buying homes invest a larger share......In recent decades U.S. households have experienced residential house prices moving persistently, that is, returns being positively serially correlated. We set up a realistically calibrated life cycle model with slow-moving time variation in expected housing returns, showing that not only age, labor...

  4. Supporting the full BPM life-cycle using process mining and intelligent redesign

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.; Siau, K.

    2007-01-01

    Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis by the FileNet P8

  5. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  6. Life cycle synchronization is a viral drug resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Iulia A Neagu

    2018-02-01

    Full Text Available Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for

  7. A Framework for BIM-Enabled Life-Cycle Information Management of Construction Project

    Directory of Open Access Journals (Sweden)

    Xun Xu

    2014-08-01

    Full Text Available BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM-based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organize the life-cycle information well, the information components and information flow during the project life-cycle are defined. Then, the application of BIM in life-cycle information management is analysed. This framework will provide a unified platform for information management and ensure data integrity.

  8. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  9. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    International Nuclear Information System (INIS)

    Boeser, C; Chwalek, T; Giffels, M; Kuznetsov, V; Wildish, T

    2014-01-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  10. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    Science.gov (United States)

    Boeser, C.; Chwalek, T.; Giffels, M.; Kuznetsov, V.; Wildish, T.

    2014-06-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  11. Learning by doing – creating competences in engineering students on how and when to perform and use life cycle assessments

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2003-01-01

    The course Life cycle assessment of products and systems has been given for eight consecutive years at the Technical University of Denmark. From the beginning, the course has been a targeted on life cycle assessment with a strong emphasis on the performance and use of life cycle assessment...... as decision support to industry and authorities. While different applications of life cycle assessments are introduced in lectures during the course, the main focus is on how to do an LCA....

  12. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    Energy Technology Data Exchange (ETDEWEB)

    Stadel, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Drexel Univ., Philadelphia, PA (United States); Gursel, Petek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  13. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; Kirchhübel, Nienke

    2017-01-01

    and certain cationic metals is included in existing characterization models within life cycle impact assessment (LCIA). However, a variety of additional inorganic substances used e.g. in the textile, personal care, and building and construction industry are included neither in current life cycle inventory...... databases, nor current LCIA methods. Without the integration of the various economically relevant and potentially human toxic and/or ecotoxic inorganic substances such as inorganic salts, acids, bases and elements, however, no satisfying conclusions regarding the environmental sustainability of any......Life cycle assessment (LCA) is used to compare products and product systems in terms of their environmental sustainability and for that LCA needs to include all potential impacts on humans and the environment. Currently, quantifying the toxicity potential of several thousand organic substances...

  14. Life cycle of transformer oil

    Directory of Open Access Journals (Sweden)

    Đurđević Ksenija R.

    2008-01-01

    Full Text Available The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil plays a very important role in transformer operation, since it provides insulation and cooling, helps extinguishing sparks and dissolves gases formed during oil degradation. In addition to this, it also dissolves moisture and gases from cellulose insulation and atmosphere it is exposed to. Further and by no means less important functions of transformer are of diagnostic purpose. It has been determined that examination and inspection of insulation oil provide 70% of information on transformer condition, which can be divided in three main groups: dielectric condition, aged transformer condition and oil degradation condition. By inspecting and examining the application oil it is possible to determine the condition of insulation, oil and solid insulation (paper, as well as irregularities in transformer operation. All of the above-mentioned reasons and facts create ground for the subject of this research covering two stages of transformer oil life cycle: (1 proactive maintenance and monitoring of transformer oils in the course of utilization with reference to influence of transformer oil condition on paper insulation condition, as well as the condition of the transformer itself; (2 regeneration of transformer oils for the purpose of extension of utilization period and paper insulation revitalization potential by means of oil purification. The study highlights advantages of oil-paper insulation revitalization over oil replacement. Besides economic, there are

  15. Development of System Based Code: Case Study of Life-Cycle Margin Evaluation

    International Nuclear Information System (INIS)

    Tai Asayama; Masaki Morishita; Masanori Tashimo

    2006-01-01

    For a leap of progress in structural deign of nuclear plant components, The late Professor Emeritus Yasuhide Asada proposed the System Based Code. The key concepts of the System Based Code are; (1) life-cycle margin optimization, (2) expansion of technical options as well as combinations of technical options beyond the current codes and standards, and (3) designing to clearly defined target reliabilities. Those concepts are very new to most of the nuclear power plant designers who are naturally obliged to design to current codes and standards; the application of the concepts of the System Based Code to design will lead to entire change of practices that designers have long been accustomed to. On the other hand, experienced designers are supposed to have expertise that can support and accelerate the development of the System Based Code. Therefore, interfacing with experienced designers is of crucial importance for the development of the System Based Code. The authors conducted a survey on the acceptability of the System Based Code concept. The results were analyzed from the possibility of improving structural design both in terms of reliability and cost effectiveness by the introduction of the System Based Code concept. It was concluded that the System Based Code is beneficial for those purposes. Also described is the expertise elicited from the results of the survey that can be reflected to the development of the System Based Code. (authors)

  16. The value of the exergetic life cycle assessment besides the LCA

    NARCIS (Netherlands)

    Cornelissen, Rene; Hirs, Gerard

    2002-01-01

    In this paper the value of the exergetic life cycle assessment (ELCA) has been analysed. The ELCA uses the framework of the life cycle assessment (LCA) and can be seen as the exergy analysis of a complete life cycle. The value of the ELCA besides the LCA has been discussed. It is shown that the ELCA

  17. Consumption Over Life Cycle: How Different is Housing?

    OpenAIRE

    Fang (Annie) Yang

    2006-01-01

    Micro data over the life cycle shows different patterns of consumption for housing and non-housing goods: the consumption profile of non-housing goods is hump-shaped while the consumption profile for housing first increases monotonically and then flattens out. These patterns hold true at each consumption quartile. This paper develops aquantitative, dynamic general equilibrium model of life-cycle behavior, which generates consumption profiles consistent with the observed data. Borrowing constr...

  18. Sourcing Life Cycle Inventory Data

    Science.gov (United States)

    The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...

  19. Life-cycle exposure to microcystin-LR interferes with the reproductive endocrine system of male zebrafish.

    Science.gov (United States)

    Su, Yujing; Li, Li; Hou, Jie; Wu, Ning; Lin, Wang; Li, Guangyu

    2016-06-01

    Recently, MC-LR reproductive toxicity drew great attention. Limited information was available on endocrine-disrupting effects of MC-LR on the reproduction system in fish. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30μg/L MC-LR for 90 d until they reached sexual maturity. Male zebrafish were selected, and changes in growth and developmental parameters, testicular histological structure as well as the levels of gonadal steroid hormones were studied along with the related-gene transcriptional responses in the hypothalamic-pituitary-gonadal axis (HPG-axis). The results, for the first time, show a life cycle exposure to MC-LR causes growth inhibition, testicular damage and delayed sperm maturation. A significant decrease in T/E2 ratio indicated that MC-LR disrupted sex steroid hormones balance. The changes in transcriptional responses of HPG-axis related genes revealed that MC-LR promoted the conversion of T to E2 in circulating blood. It was also noted that vtg1 mRNA expression in the liver was up-regulated, which implied that MC-LR could induce estrogenic-like effects at environmentally relevant concentrations and long-term exposure. Our findings indicated that a life cycle exposure to MC-LR causes endocrine disruption with organic and functional damage of the testis, which might compromise the quality of life for the survivors and pose a potent threat on fish reproduction and thus population dynamics in MCs-contaminated aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.

    Science.gov (United States)

    Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma

    2018-05-01

    A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades

    Energy Technology Data Exchange (ETDEWEB)

    Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

    2012-02-15

    The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results

  2. Life cycle planning: An evolving concept

    International Nuclear Information System (INIS)

    Moore, P.J.R.; Gorman, I.G.

    1994-01-01

    Life-cycle planning is an evolving concept in the management of oil and gas projects. BHP Petroleum now interprets this idea to include all development planning from discovery and field appraisal to final abandonment and includes safety, environmental, technical, plant, regulatory, and staffing issues. This article describes in the context of the Timor Sea, how despite initial successes and continuing facilities upgrades, BHPP came to perceive that current operations could be the victim of early development successes, particularly in the areas of corrosion and maintenance. The search for analogies elsewhere lead to the UK North Sea, including the experiences of Britoil and BP, both of which performed detailed Life of Field studies in the later eighties. These materials have been used to construct a format and content for total Life-cycle plans in general and the social changes required to ensure their successful application in Timor Sea operations and deployment throughout Australia

  3. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    MacLean, Heather L; Spatari, Sabrina

    2009-01-01

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  4. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  5. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  6. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  7. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  8. Publication Life Cycle at CERN Document Server

    CERN Multimedia

    Witowski, Sebastian; Costa, Flavio; Gabancho, Esteban; Marian, Ludmila; Tzovanakis, Harris

    2017-01-01

    This presentation guides listeners through all the stages of publication life cycle at CERN Document Server, from the ingestion using one of the various tools, through curation and processing, until the data is ready to be exported to other systems. It describes different tools that we are using to curate the incoming publications as well as to further improve the existing data on CDS. The second part of the talk goes through various challenges we have faced in the past and how we are going to overcome them in the new version of CDS.

  9. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  10. Improving Life-Cycle Cost Management of Spacecraft Missions

    Science.gov (United States)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  11. Impact of the utilization of a product configuration system on product’s life cycle complexity

    DEFF Research Database (Denmark)

    Myrodia, Anna; Kristjansdottir, Katrin; Shafiee, Sara

    The purpose of this paper is to identify areas throughout a product’s lifecycle processes where complexity can be reduced by implementing a product configuration system (PCS). As discussed in the literature, several benefits are realized by using a PCS in terms of product and process standardizat...... for the company in several life cycle processes....... standardization. This also leads to control and reduce of complexity both in products and processes. To this end, this research attempts to quantify and assess these benefits and is supported by empirical evidence. A case study of an engineering company is used and the results indicate significant improvements...

  12. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  13. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  14. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... of resource use and emissions associated with a product’s life cycle can be aggregated into impact categories (e.g., nonrenewable energy use, land occupation, global warming, acidification, etc.) and further aggregated into overall damage impacts (e.g., impacts on biodiversity, human health, and resource...

  15. Life cycle human health impacts of 875 pesticides

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Oliver

    2016-01-01

    present a consistent framework for characterizing human toxicological impacts associated with pesticides applied to agricultural crops in the frame of life cycle impact assessment based on state-of-the-art data and methods. Methods We combine a dynamic multicrop plant uptake model designed for evaluating......-crop combinations of 10 orders of magnitude. Conclusions Our framework is operational for use in current life cycle impact assessment models, is made available for USEtox, and closes an important gap in the assessment of human exposure to pesticides. For ready use in life cycle assessment studies, we present...... pesticide-crop combination-specific characterization factors normalized to pesticide mass applied and provide default data for application times and loss due to post-harvest food processing. When using our data, we emphasize the need to consult current pesticide regulation, since each pesticide...

  16. Entity information life cycle for big data master data management and information integration

    CERN Document Server

    Talburt, John R

    2015-01-01

    Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to hand

  17. Comparison of the organic waste management systems in the danish-german border region using life cycle assessment

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Scheutz, Charlotte; Møller, Jacob

    The treatment of organic waste from household in the Danish-German border region is very diverse, the Danish area only uses incineration for the treatment while the German system includes combined biogas and composting, mechanical and biological treatment and incineration. Data on all parts...... of the organic waste treatment has been collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life...... cycle assessment showing large differences in the environmental performance of the two different regions....

  18. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies

    Directory of Open Access Journals (Sweden)

    Andi Mehmeti

    2018-02-01

    Full Text Available A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2 economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented and endpoint (3 damage-oriented levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas, coal gasification, water electrolysis via proton exchange membrane fuel cell (PEM, solid oxide electrolyzer cell (SOEC, biomass gasification and reforming, and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope, Water scarcity footprint (WSF quantified using Available WAter REmaining (AWARE method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway, identify the drivers of environmental impact, quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.

  19. Life cycle assessment study of a Chinese desktop personal computer.

    Science.gov (United States)

    Duan, Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li, Jinhui

    2009-02-15

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

  20. Life cycle assessment study of a Chinese desktop personal computer

    International Nuclear Information System (INIS)

    Duan Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li Jinhui

    2009-01-01

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps - i.e. the end of life phase - lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study

  1. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.

    Science.gov (United States)

    Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud

    2018-04-15

    Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Local systems, global impacts. Using life cycle assessment to analyse the potential and constraints of industrial symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, L.

    2011-08-15

    Human activities extract and displace different substances and materials from the earthAEs crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper 1). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle

  3. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Sliter, G.E.; Negin, C.A.

    1998-11-01

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  4. Dynamic life cycle assessment (LCA) of renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, M. [Institut for Energy and Environmental Research, Heidelberg (Germany)

    2006-01-01

    Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are 'imported' into the system due to the 'background system' (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies. Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to 'external' services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation. The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. (author)

  5. A Life-Cycle Analysis of Social Security with Housing

    OpenAIRE

    Chen, Kaiji

    2009-01-01

    This paper incorporates two features of housing in a life-cycle analysis of social security: housing as a durable good and housing market frictions. We find that with housing as a durable good unfunded social security substantially crowds out housing consumption throughout the life cycle. By contrast, aggregate non-durable consumption is higher when social security is present, although it is postponed until late in life. Moreover, in the presence of housing market frictions, social security l...

  6. KOH concentration effect on the cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    Effects of KOH concentration on the cycle life of a sintered-type nickel electrode were studied in a boiler plate nickel-hydrogen cell at 23 C using an accelerated 45-min cycle regime at 80 percent depth of discharge. The cycle life improved greatly as the KOH concentration decreased, although the initial capacity of the cell decreased slightly. The cycle life improved by a factor of two or more when the KOH concentration was reduced from 36 to 31 percent and by a similar factor from reductions of 31 to 26 percent. For many applications, this life improvement may outweigh the initial capacity decrease.

  7. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  8. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  9. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Science.gov (United States)

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  10. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  11. Life cycle evaluation of spaceflight qualified nickel-hydrogen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Brill, J.N. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    Life cycle test results are summarized from more than 300 spaceflight qualified nickel-hydrogen (NiH{sub 2}) battery cells currently on life test. Cells ranging in size from 4 ampere-hours (Ah) to 120 Ah are being tested under a variety of conditions to support current NiH{sub 2} battery applications. Results to date include 55,600 accelerated LEO cycles at 30% DOD; 102,840 accelerated LEO cycles at 15% DOD; 44,900 cycles under a real-time LEO profile; 44,100 cycles in real-time LEO; 30 accelerated GEO eclipse seasons and 7 real-time GEO eclipse seasons, both at 75% DOD maximum. Alternative separator materials have completed more than 40,000 charge/discharge cycles in accelerated LEO testing and advanced design electrocatalytic hydrogen electrodes have completed more than 16,000 cycles in real-time LEO testing. Common pressure vessel cell designs have completed 18,000 cycles in real-time LEO testing at 45% DOD.

  12. Life cycle assessment of a wind farm and related externalities

    DEFF Research Database (Denmark)

    Schleisner, Liselotte

    2000-01-01

    This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different...... materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described......, and the model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies. (C) 2000 Elsevier Science Ltd. All rights reserved....

  13. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    Science.gov (United States)

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  14. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients.

    Science.gov (United States)

    Spitzer, Jan

    2013-04-01

    The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.

  15. LIFE vs. LWR: End of the Fuel Cycle

    International Nuclear Information System (INIS)

    Farmer, J.C.; Blink, J.A.; Shaw, H.F.

    2008-01-01

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources (International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  16. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish...... cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34......-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts...

  17. Development of computer software for pavement life cycle cost analysis.

    Science.gov (United States)

    1988-01-01

    The life cycle cost analysis program (LCCA) is designed to automate and standardize life cycle costing in Virginia. It allows the user to input information necessary for the analysis, and it then completes the calculations and produces a printed copy...

  18. The product life cycle revisited

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    1995-01-01

    Efter et introduktionsafsnit følger afsnit II, hvor der gives en historisk analyse af Life Cycle Assessment (LCA) og Environmental Impact Assessment (EIA). I afsnit III munder analysen ud i en vurdering af ligheder og forskelle mellem LCA analyser og EIA analyser, og en diskussion følger af...

  19. Menopause: A Life Cycle Transition.

    Science.gov (United States)

    Evarts, Barbara Kess; Baldwin, Cynthia

    1998-01-01

    Family therapists need to address the issue of menopause proactively to be of benefit to couples and families during this transitional period in the family life cycle. Physical, psychological, and psychosocial factors affecting the menopausal woman and her family, and ways to address these issues in counseling are discussed. (Author/EMK)

  20. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., KS (United States)

    2010-03-01

    The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has

  1. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  2. Comparative life-cycle assessment of a small wind turbine for residential off-grid use

    International Nuclear Information System (INIS)

    Fleck, Brian; Huot, Marc

    2009-01-01

    As the popularity of renewable energy systems grows, small wind turbines are becoming a common choice for off-grid household power. However, the true benefits of such systems over the traditional internal combustion systems are unclear. This study employs a life-cycle assessment methodology in order to directly compare the environmental impacts, net-energy inputs, and life-cycle cost of two systems: a stand-alone small wind turbine system and a single-home diesel generator system. The primary focus for the investigation is the emission of greenhouse gases (GHG) including CO 2 , CH 4 , and N 2 O. These emissions are calculated over the life-cycle of the two systems which provide the same amount of energy to a small off-grid home over a twenty-year period. The results show a considerable environmental benefit for small-scale wind power. The wind generator system offered a 93% reduction of GHG emissions when compared to the diesel system. Furthermore, the diesel generator net-energy input was over 200 MW, while the wind system produced an electrical energy output greater than its net-energy input. Economically, the conclusions were less clear. The assumption was made that diesel fuel cost over the next twenty years was based on May 2008 prices, increasing only in proportion to inflation. As such, the net-present cost of the wind turbine system was 14% greater than the diesel system. However, a larger model wind turbine would likely benefit from the effects of the 'economy of scale,' producing superior results both economically and environmentally. (author)

  3. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  4. On the use of different models for consequential life cycle assessment

    NARCIS (Netherlands)

    Yang, Yi; Heijungs, Reinout

    2018-01-01

    Purpose: Consequential life cycle assessment (CLCA) studies how a system responds to a decision in question. There has been a growing body of CLCA studies in the last decade, with different models being incorporated from other fields, partly to compensate for the limitations of the conventional

  5. Life-cycle design for sustainable architecture

    Directory of Open Access Journals (Sweden)

    Francesca Thiébat

    2013-05-01

    Full Text Available Sustainability in architecture should involve environmental and social aspects and also economic aspects. However, in a design process budget issues usually outweigh ecological aspects. How can we then drive clients and builders to put more socially responsible buildings on the market that do not exceed the fixed budget but are environmentally friendly? This paper propose an economic and environmental assessment tool to aid private or public building designers and owners to find the global sustainability value of a green building within a life cycle perspective. Sustainable life cycle tools for buildings design and construction help to achieve successfully integrated architecture. The research here presented proposes a new point of view of the “time-cost-quality triangle” of Project Management, by introducing three further aspects: environment, society and aesthetics.

  6. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Patricia M., E-mail: pmg24@drexel.edu [Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19038 (United States); Spatari, Sabrina; Cucura, Jeffrey [Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19038 (United States)

    2013-04-15

    Highlights: ► We use LCA to study environmental impacts of grouting techniques for site remediation. ► We consider colloidal silica permeation grouting and cement jet grouting. ► Manufacturing and transportation contribute significantly in all impact categories. ► Activity outside of direct site activity is important in assessing impacts. ► LCA can be used to consider sustainability criteria for remediation decisions. -- Abstract: Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental “systems-level” decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required

  7. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies

    International Nuclear Information System (INIS)

    Gallagher, Patricia M.; Spatari, Sabrina; Cucura, Jeffrey

    2013-01-01

    Highlights: ► We use LCA to study environmental impacts of grouting techniques for site remediation. ► We consider colloidal silica permeation grouting and cement jet grouting. ► Manufacturing and transportation contribute significantly in all impact categories. ► Activity outside of direct site activity is important in assessing impacts. ► LCA can be used to consider sustainability criteria for remediation decisions. -- Abstract: Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental “systems-level” decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required

  8. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.

    Science.gov (United States)

    Kendall, Alissa; Price, Lindsay

    2012-03-06

    Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.

  9. Life cycle assessment applied to wastewater treatment; Analyse de cycle de vie appliquee aux systemes de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Renou, S.

    2006-01-15

    Nowadays, the environmental performances of wastewater treatment systems are not properly analyzed. Thus, the development of an exhaustive and reliable method is needed to help stakeholders to choose the best environmental solutions. Life cycle assessment (LCA) was selected as a starting point to answer this problem. LCA has been tested. This tool is essential to analyze the environmental performances of wastewater treatment systems. In order to fulfill our goal, the best compromise seems to be the association of LCA, to assess global impacts, with others methodologies, to assess local impacts. Finally, a software has been developed to compare urban sludge treatment and recovering process trains. Two impacts, energy and greenhouse effect, are currently included in. The software and its development steps are described and illustrated through two case studies. This tool has made LCA easier to apply and more useful to wastewater field stakeholders. (author)

  10. A Life-Cycle Risk-Informed Systems Structured Nuclear Code

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2002-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The design code is a separate volume from the code for inservice inspections and both are separate from the standards for operations and maintenance. The ASME code for inservice inspections and code for nuclear plant operations and maintenance have adopted risk-informed methodologies for inservice inspection, preventive maintenance, and repair and replacement decisions. The American Institute of Steel Construction and the American Concrete Institute have incorporated risk-informed probabilistic methodologies into their design codes. It is proposed that the ASME nuclear code should undergo a planned evolution that integrates the various nuclear codes and standards and adopts a risk-informed approach across a facility life-cycle - encompassing design, construction, operation, maintenance and closure. (author)

  11. A Simulation Model for the Waterfall Software Development Life Cycle

    OpenAIRE

    Bassil, Youssef

    2012-01-01

    Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to be completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied client...

  12. Enterprise systems' life cycle in pursuit of resilient smart factory for emerging aircraft industry: a synthesis of Critical Success Factors'(CSFs), theory, knowledge gaps, and implications

    Science.gov (United States)

    Rashid, Asif; Masood, Tariq; Erkoyuncu, John Ahmet; Tjahjono, Benny; Khan, Nawar; Shami, Muiz-ud-din

    2018-02-01

    The research aims to investigate business value critical success factors (CSFs) of enterprise systems (ES) through their life cycle in pursuit of resilient smart factory for emerging aircraft industry. This article provides an extensive literature analysis of past 22 years based on conscientious criteria of authors: (i) who have published strategic content relevant to CSFs, (ii) received more than 300 citations and (iii) concurrently published two or more papers relevant to ES CSFs. The most cited strategic CSFs were termed as classical CSFs. The 22 CSFs were identified, validated and synthesised for better understanding of success across life cycle by aircraft industry experts. The top 10 empirically verified CSFs have numerous differences with past generic classical CSFs. This article canvases real insights of two distinct views: process and variance approaches of the ES CSFs. The process approach, which is a neglected research area, facilitates the researchers for identification of ES life cycle process coupled with a view of resource deployment when it is needed the most. While the variance approach facilitates practitioners and researchers in finding out which resource (CSF) is relatively more important. The significant findings for ES life cycle can help the practitioners and researchers to make rational decisions throughout the ES life cycle.

  13. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  14. The Life Cycle Cost (LCC) of Life Support Recycling and Resupply

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    Brief human space missions supply all the crew's water and oxygen from Earth. The multiyear International Space Station (ISS) program instead uses physicochemical life support systems to recycle water and oxygen. This paper compares the Life Cycle Cost (LCC) of recycling to the LCC of resupply for potential future long duration human space missions. Recycling systems have high initial development costs but relatively low durationdependent support costs. This means that recycling is more cost effective for longer missions. Resupplying all the water and oxygen requires little initial development cost but has a much higher launch mass and launch cost. The cost of resupply increases as the mission duration increases. Resupply is therefore more cost effective than recycling for shorter missions. A recycling system pays for itself when the resupply LCC grows greater over time than the recycling LCC. The time when this occurs is called the recycling breakeven date. Recycling will cost very much less than resupply for long duration missions within the Earth-Moon system, such as a future space station or Moon base. But recycling would cost about the same as resupply for long duration deep space missions, such as a Mars trip. Because it is not possible to provide emergency supplies or quick return options on the way to Mars, more expensive redundant recycling systems will be needed.

  15. The Adult Life Spiral: A Critique of the Life Cycle Model.

    Science.gov (United States)

    Stein, Peter; Etzkowitz, Henry

    We can identify and describe alternate paths of adulthood utilizing data from interviews with single adults. Our review of major models used in adulthood studies suggests that a developmental model, such as Daniel Levinson's life cycle model, is too tied to the notion of the imminent unfolding of the life course. The age-stratification theory…

  16. Network Theory Integrated Life Cycle Assessment for an Electric Power System

    Directory of Open Access Journals (Sweden)

    Heetae Kim

    2015-08-01

    Full Text Available In this study, we allocate Greenhouse gas (GHG emissions of electricity transmission to the consumers. As an allocation basis, we introduce energy distance. Energy distance takes the transmission load on the electricity energy system into account in addition to the amount of electricity consumption. As a case study, we estimate regional GHG emissions of electricity transmission loss in Chile. Life cycle assessment (LCA is used to estimate the total GHG emissions of the Chilean electric power system. The regional GHG emission of transmission loss is calculated from the total GHG emissions. We construct the network model of Chilean electric power grid as an undirected network with 466 nodes and 543 edges holding the topology of the power grid based on the statistical record. We analyze the total annual GHG emissions of the Chilean electricity energy system as 23.07 Mt CO2-eq. and 1.61 Mt CO2-eq. for the transmission loss, respectively. The total energy distance for the electricity transmission accounts for 12,842.10 TWh km based on network analysis. We argue that when the GHG emission of electricity transmission loss is estimated, the electricity transmission load should be separately considered. We propose network theory as a useful complement to LCA analysis for the complex allocation. Energy distance is especially useful on a very large-scale electric power grid such as an intercontinental transmission network.

  17. Techno-Economics & Life Cycle Assessment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  18. Organizational Life Cycles and Shifting Criteria of Effectiveness: Some Preliminary Evidence

    OpenAIRE

    Robert E. Quinn; Kim Cameron

    1983-01-01

    This paper discusses the relationships between stage of development in organizational life cycles and organizational effectiveness. We begin the paper by reviewing nine models of organizational life cycles that have been proposed in the literature. Each of these models identifies certain characteristics that typify organizations in different stages of development. A summary model of life cycle stages is derived that integrates each of these nine models. Next, a framework of organizational eff...

  19. SUNSPOT CYCLES IMPACTS ON TOURISM AND QUALITY OF LIFE

    Directory of Open Access Journals (Sweden)

    Tadeja Jere Jakulin

    2017-09-01

    Full Text Available We live under the influence of natural cycles caused by the rotation of our planet and its revolution around the sun. The nature of our nearest star is also subject to cyclical change. This article presents a study of a correlation between sunspot cycles and foreign tourists arrivals in Slovenia, based on historical data between sunspot cycles and sea salt production in Slovenia's Municipality of Piran during the Maunder Minimum period (1645-1715. The production of salt by the solar evaporation of brine in salt pans and tourist industry are seasonal economic activities that are affected by changes to the weather. The paper looks at sea salt production in Piran during a particular period in the past. The repetition of the sea salt production in the past is not possible. For this reason, the study uses mathematical tools and an additional case study, which analyses arrivals of foreign tourists to Slovenia over the past 65 years (1948-2012. The study has two purposes: to identify a linear correlation coefficient, which provides evidence of a correlation between arrivals of foreign tourists to Slovenia and sunspot cycles and to develop a causal loop diagram (CLD or so called qualitative model of a complex tourism system, which shows the interdependency of sunspot cycles, tourism system, and quality of life.

  20. Technological and life cycle assessment of organics processing odour control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bindra, Navin [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Dubey, Brajesh, E-mail: bkdubey@civil.iitkgp.ernet.in [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dutta, Animesh [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada)

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  1. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  2. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  3. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    Science.gov (United States)

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  4. A CASKCOM: A cask life cycle cost model

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    CASKCOM (cask cost model) is a computerized model which calculates the life cycle costs (LCC) associated with specific transportation cask designs and discounts those costs, if the user so chooses, to a net present value. The model has been used to help analyze and compare the life cycle economics of burnup credit and nonburnup credit cask designs being considered as conditions for a new generation of spent fuel transportation casks. CASKCOM is parametric in the sense that its input data can be easily changed in order to analyze and compare the life cycle cost implications arising from alternative assumptions. The input data themselves are organized into two main groupings. The first grouping comprises a set of data which is independent of cask design. This first grouping does not change from the analysis of one cask design to another. The second grouping of data is specific to each individual cask design. This second grouping thus changes each time a new cask design is analyzed

  5. Small business life cycle: statics and dynamics (S

    Directory of Open Access Journals (Sweden)

    Matejun Marek

    2017-12-01

    Full Text Available The aim of the paper is the presentation of theoretical foundations and the structure of original, 8-stage statics and dynamics model in the small business life cycle. Based on theoretical considerations, two hypotheses concerning the impact of dynamic and static nature of the life-cycle stages on selected determinants and effects of SMEs’ development were formulated. The hypotheses were verified based on the results of the survey conducted on a sample of 1,741 SMEs from 22 countries of the European Union. The results indicate that companies in the dynamic life-cycle stages are run by more enterprising owners, operate in more promising markets with a higher potential and make greater use of market niches thus limiting the level of competition. At the same time, such companies are characterised by higher levels of flexibility and involvement in innovative activities, which translates into obtaining a significantly higher level of business performance, in the area of quantitative as well as qualitative results.

  6. Sustainable Development Factors in Pavement Life-Cycle: Highway/Airport Review

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-03-01

    Full Text Available Sustainability has gained as much importance as management in business. Sustainable pavement development as a business practice should involve making evaluations according to the triple bottom line in the pavement life-cycle. Despite the current approaches to evaluating the social as well as economic and environmental feasibility of pavement projects (involving highway and airport infrastructure, there has recently been a lack of consensus on a methodology to guarantee sustainability upon assessment and analysis during the pavement life-cycle. As sustainability is a complex issue, this study intends to further explore sustainability and elaborate on its meaning. The second step involves a general depiction of the major sustainability appraisal tools, namely cost-benefit analysis, life-cycle cost analysis, life-cycle assessment, multi-criteria decision-making, environmental impact assessment and social life-cycle assessment, and an explanation of their cons and pros. Subsequently, the article addresses the application of an organized methodology to highlight the main factors or concepts that should be applied in sustainable pavement development and, more specifically, in sustainable pavement management. In the final step, research recommendations toward sustainability are given. This study is aimed to assist decision-makers in pavement management to plan sustainability frameworks in accordance with probable boundaries and restrictions.

  7. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  8. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  9. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  10. Life cycle assessment of the application of nanoclays in wire coating

    International Nuclear Information System (INIS)

    Tellaetxe, A; Blázquez, M; Unzueta, I; Arteche, A; Egizabal, A; Ermini, V; Rose, J; Chaurand, P

    2012-01-01

    A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic life

  11. Life cycle assessment of different sea cucumber ( Apostichopus japonicus Selenka) farming systems

    Science.gov (United States)

    Wang, Guodong; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang; Xu, Kefeng

    2015-12-01

    The life cycle assessment was employed to evaluate the environmental impacts of three farming systems (indoor intensive, semi-intensive and extensive systems) of sea cucumber living near Qingdao, China, which can effectively overcome the interference of inaccurate background parameters caused by the diversity of economic level and environment in different regions. Six indicators entailing global warming potential (1.86E + 04, 3.45E + 03, 2.36E + 02), eutrophication potential (6.65E + 01, -1.24E + 02, -1.65E + 02), acidification potential (1.93E + 02, 4.33E + 01, 1.30E + 00), photochemical oxidant formation potential (2.35E-01, 5.46E -02, 2.53E-03), human toxicity potential (2.47E + 00, 6.08E-01, 4.91E + 00) and energy use (3.36E + 05, 1.27E + 04, 1.48E + 03) were introduced in the current study. It was found that all environmental indicators in the indoor intensive farming system were much higher than those in semi-intensive and extensive farming systems because of the dominant role of energy input, while energy input also contributed as the leading cause factor for most of the indicators in the semi-intensive farming system. Yet in the extensive farming system, infrastructure materials played a major role. Through a comprehensive comparison of the three farming systems, it was concluded that income per unit area of indoor intensive farming system was much higher than those of semi-intensive and extensive farming systems. However, the extensive farming system was the most sustainable one. Moreover, adequate measures were proposed, respectively, to improve the environmental sustainability of each farming system in the present study.

  12. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    International Nuclear Information System (INIS)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  13. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark); Kromann, Mikkel A. [COWI A/S, Parallelvej 2, 2800 Kgs. Lyngby (Denmark); Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark)

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  15. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  16. Life cycle replacement by gene introduction under an allee effect in periodical cicadas.

    Science.gov (United States)

    Nariai, Yukiko; Hayashi, Saki; Morita, Satoru; Umemura, Yoshitaka; Tainaka, Kei-ichi; Sota, Teiji; Cooley, John R; Yoshimura, Jin

    2011-04-06

    Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect) could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes ("broods") with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages.

  17. Life cycle replacement by gene introduction under an allee effect in periodical cicadas.

    Directory of Open Access Journals (Sweden)

    Yukiko Nariai

    2011-04-01

    Full Text Available Periodical cicadas (Magicicada spp. in the USA are divided into three species groups (-decim, -cassini, -decula of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes ("broods" with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages.

  18. Life-cycle assessment of textiles manufacture of polyester shirt (VB)

    DEFF Research Database (Denmark)

    Othman, Samer; Peter, Oduro Justice; Hassan, Osama

    1998-01-01

    According to the EDIP (Environmental Design of Industrial Products), It is made possible to perform resource and environmental profile analysis of the 100% polyester shirt. In order to understand the true life-cycle consequences, life-cycle analysis of a typical 100% polyester shirt was carried out...

  19. An attributional life cycle assessment for an Italian residential multifamily building.

    Science.gov (United States)

    Vitale, Pierluca; Arena, Umberto

    2017-09-06

    The study describes an attributional life cycle assessment carried out according to the ISO standards and focused on an Italian multifamily residential building. The aim was developing an exhaustive and reliable inventory of high-quality primary data, comparing the environmental impacts along the three stages of the building life cycle. The pre-use phase takes into account the production of all the construction materials, transportation, and on-site assembling. The use phase quantifies the resource consumptions for 50 years of the building utilization and ordinary maintenance. The end-of-life phase includes the building demolition and the management of generated wastes. The results quantify how the design criteria affect the environmental performances of the residential building along its life cycle. The role of the pre-use phase appears remarkable for global warming potential (GWP), due to the huge impacts of steel and concrete production processes. The use phase gives the largest contributions, which reach 77% and 84% of the total, for the categories of global warming and non-renewable energy. The end-of-life phase provides limited avoided impacts. A comparative analysis quantifies the improvements achievable with an alternative type of partitions and external walls. Acronyms: AC: air conditioning; C&DW: construction and demolition waste; CFL: compact fluorescent lamp; DHW: domestic hot water; EC: European Commission; EU: European Union; GDP: gross domestic product; GHG: greenhouse gases; GWP: global warming potential; LCA: life cycle assessment; LCI: life cycle inventory; LCIA: life cycle impact assessment; MFA: material flow analysis; NREP: non-renewable energy potential; RINP: respiratory inorganics potential; WFD: Waste Framework Directive.

  20. Application of product life cycle concept to private label management

    Directory of Open Access Journals (Sweden)

    Sandra Horvat

    2013-06-01

    Full Text Available Private labels have recorded significant growth rates worldwide, becoming a serious threat to manufacturer brands. Development of private labels in many different product categories increased the complexity of their management. Therefore, this paper examines the possibility of using the product life cycle concept in private label management. Given that private labels are a specific brand type, it is necessary to adjust certain elements of the product life cycle concept, as it was developed on the basis of manufacturer brands. For instance, in the growth stage of the product life cycle, retailers expand private labels to a number of product categories and use the push strategy while manufacturers tend to expand their distribution network in the expansion of their brands and predominantly use the pull strategy in doing so. Furthermore, there is a focus shift from low-price strategy, predominantly used in the introduction phase, to increasing the quality and private label value in the later stages of the product life cycle.