WorldWideScience

Sample records for system edas code

  1. Development of environmental dose assessment system (EDAS) code of PC version

    CERN Document Server

    Taki, M; Kobayashi, H; Yamaguchi, T

    2003-01-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessme...

  2. Development of environmental dose assessment system (EDAS) code of PC version

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Mitsumasa; Kikuchi, Masamitsu; Kobayashi, Hideo; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessment with JAERI. (author)

  3. Harnessing VLSI System Design with EDA Tools

    CERN Document Server

    Kamat, Rajanish K; Gaikwad, Pawan K; Guhilot, Hansraj

    2012-01-01

    This book explores various dimensions of EDA technologies for achieving different goals in VLSI system design. Although the scope of EDA is very broad and comprises diversified hardware and software tools to accomplish different phases of VLSI system design, such as design, layout, simulation, testability, prototyping and implementation, this book focuses only on demystifying the code, a.k.a. firmware development and its implementation with FPGAs. Since there are a variety of languages for system design, this book covers various issues related to VHDL, Verilog and System C synergized with EDA tools, using a variety of case studies such as testability, verification and power consumption. * Covers aspects of VHDL, Verilog and Handel C in one text; * Enables designers to judge the appropriateness of each EDA tool for relevant applications; * Omits discussion of design platforms and focuses on design case studies; * Uses design case studies from diversified application domains such as network on chip, hospital on...

  4. Testing The Enhanced Data Authentication System (EDAS)

    International Nuclear Information System (INIS)

    Thomas, M.; Baldwin, G.; Hymel, R.; Goncalves, J.G.M.; Dechamp, L.; ); Johnson, S.; Smejkal, A.; Linnebach, R.; Rue, M.

    2015-01-01

    The Enhanced Data Authentication System (EDAS) is a secure branching concept that provides a safeguards inspectorate a copy of measurement data from operator instrumentation. Both safeguards inspector and facility operator requirements for secure branching have been established in previous work. These dictated the design and development of EDAS hardware and software. This paper presents the test plan for the EDAS prototypes, which need to demonstrate performance against the identified requirements. Sandia National Laboratories (SNL), Directorate-General for Energy (DG-Energy) in Luxembourg, and the Joint Research Centre (JRC) in Ispra will each perform different tests on the EDAS prototypes. Sandia, the developer, will perform comprehensive testing of functionality, robustness, and reliability. The JRC, as an independent technical organization, will evaluate electrical safety and other environmental factors important to facility operator acceptance. The JRC is also able to simulate field trial conditions using equipment similar to what will be used in the field trial. DG-Energy will confirm the Sandia tests and also test the interface of the EDAS prototype to the RADAR data acquisition and analysis system used by the Euratom inspectorate. The EDAS prototypes will be tested in a comprehensive field trial at the Westinghouse Springfields facility in a collaboration between Euratom inspectors and the facility operator. The field trial will support barcode and weight measurements taken related to the movements of nuclear material items entering and exiting the facility. One EDAS prototype will branch barcode scanner data, while the other will branch facility weight scale data. The branched data will be sent securely to an inspector computer, accessible to a Euratom inspector for data analysis. The field trial will test operational factors and environmental conditions. A critical outcome will be to ascertain whether the inspectorate gains an accurate picture of the

  5. EDAS-manual. SATAN - system to analyze tremendous amounts of nuclear data. Vol. 2

    International Nuclear Information System (INIS)

    Goeringer, H.; Gralla, S.; Malzacher, P.; Richter, M.; Schall, D.; Winkelmann, K.

    1988-09-01

    The system to analyze tremendous amounts of nuclear data (SATAN) shows different steps of a special experiment data evaluation called 'Linearisation'. The report contains the EDAS-manual with EDAS-command, TSO-command, macro and procedure. Syntax and usage of EDAS macros are explained. (DG)

  6. Electronic Systems for Spacecraft Vehicles: Required EDA Tools

    Science.gov (United States)

    Bachnak, Rafic

    1999-01-01

    The continuous increase in complexity of electronic systems is making the design and manufacturing of such systems more challenging than ever before. As a result, designers are finding it impossible to design efficient systems without the use of sophisticated Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and lead to a correct by design methodology. This report identifies the EDA tools that would be needed to design, analyze, simulate, and evaluate electronic systems for spacecraft vehicles. In addition, the report presents recommendations to enhance the current JSC electronic design capabilities. This includes cost information and a discussion as to the impact, both positive and negative, of implementing the recommendations.

  7. Field Trial of the Enhanced Data Authentication System (EDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maikael A.; Baldwin, George T.; Hymel, Ross W

    2016-05-01

    The goal of the field trial of EDAS was to demonstrate the utility of secure branching of operator instrumentation for nuclear safeguards, identify any unforeseen implementation and application issues with EDAS, and confirm whether the approach is compatible with operator concerns and constraints.

  8. A technical evaluation of the EDA radon gas continuous monitoring system

    International Nuclear Information System (INIS)

    Bigu, J.

    1979-04-01

    Extensive laboratory and underground tests were conducted with a radon gas continuous monitoring system built by EDA Instruments Inc. The system consists of several remote radon gas sensors linked via signal cables to a central control unit that fully controls the operation of the radon monitors. The system enables four operations to be performed: sampling, background, flush and bypass. The sequence and duration of these functions is programmable. Up to 20 functions in any desired pattern each lasting from 1 min to 23 hr 59 min can be programmed. Several programs were used during the experiments in order to obtain radon and thoron gas levels. The performance of the EDA system was quite satisfactory. It is suggested that ruggedization as well as some other modifications be introdouced into the system to: a) better withstand the harsh underground environment; and b) improve its performance

  9. ITER EDA technical activities

    International Nuclear Information System (INIS)

    Aymar, R.

    1998-01-01

    Six years of technical work under the ITER EDA Agreement have resulted in a design which constitutes a complete description of the ITER device and of its auxiliary systems and facilities. The ITER Council commented that the Final Design Report provides the first comprehensive design of a fusion reactor based on well established physics and technology

  10. ITER EDA and technology

    International Nuclear Information System (INIS)

    Baker, C.C.

    2001-01-01

    The year 1998 was the culmination of the six-year Engineering Design Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project. The EDA results in design and validating technology R and D, plus the associated effort in voluntary physics research, is a significant achievement and major milestone in the history of magnetic fusion energy development. Consequently, the ITER EDA was a major theme at this Conference, contributing almost 40 papers

  11. ITER EDA newsletter. V. 10, special issue

    International Nuclear Information System (INIS)

    2001-07-01

    This ITER EDA Newsletter includes summaries of the reports of ITER EDA JCT Physics unit about ITER physics R and D during the Engineering Design Activities (EDA), ITER EDA JCT Naka JWC ITER technology R and D during the EDA, and Safety, Environment and Health group of ITER EDA JCT, Garching JWS on EDA activities related to safety

  12. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  13. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  14. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  15. ITER EDA status

    International Nuclear Information System (INIS)

    Aymar, R.

    2001-01-01

    The Project has focused on drafting the Plant Description Document (PDD), which will be published as the Technical Basis for the ITER Final Design Report (FDR), and its related documentation in time for the ITER review process. The preparations have involved continued intensive detailed design work, analyses and assessments by the Home Teams and the Joint Central Team, who have co-operated closely and efficiently. The main technical document has been completed in time for circulation, as planned, to TAC members for their review at TAC-17 (19-22 February 2001). Some of the supporting documents, such as the Plant Design Specification (PDS), Design Requirements and Guidelines (DRG1 and DRG2), and the Plant Safety Requirement (PSR) are also available for reference in draft form. A summary paper of the PDD for the Council's information is available as a separate document. A new documentation structure for the Project has been established. This hierarchical structure for documentation facilitates the entire organization in a way that allows better change control and avoids duplications. The initiative was intended to make this documentation system valid for the construction and operation phases of ITER. As requested, the Director and the JCT have been assisting the Explorations to plan for future joint technical activities during the Negotiations, and to consider technical issues important for ITER construction and operation for their introduction in the draft of a future joint implementation agreement. As charged by the Explorers, the Director has held discussions with the Home Team Leaders in order to prepare for the staffing of the International Team and Participants Teams during the Negotiations (Co-ordinated Technical Activities, CTA) and also in view of informing all ITER staff about their future directions in a timely fashion. One important element of the work was the completion by the Parties' industries of costing studies of about 83 ''procurement packages

  16. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers.

    Directory of Open Access Journals (Sweden)

    Wei Yin

    Full Text Available Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED which is caused by genetic ectodysplasin A (EDA deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom.A large Chinese XLHED family was reported and the entire coding region and exon-intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers' tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system.A known frameshift mutation (c.573-574 insT was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI, 18 (78.26% carriers were hypermethylated at these 4 sites.Chinese XLHED carriers often have a hypermethylated EDA promoter.

  17. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  18. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  19. 75 FR 16739 - EDA Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative

    Science.gov (United States)

    2010-04-02

    ...: Promote regional development; Accelerate innovation, technology transfer, and entrepreneurship to create... priorities, which are: Collaborative Regional Innovation. Initiatives that support the development and growth... Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative AGENCY: Economic...

  20. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  1. The Earth Data Analytic Services (EDAS) Framework

    Science.gov (United States)

    Maxwell, T. P.; Duffy, D.

    2017-12-01

    Faced with unprecedented growth in earth data volume and demand, NASA has developed the Earth Data Analytic Services (EDAS) framework, a high performance big data analytics framework built on Apache Spark. This framework enables scientists to execute data processing workflows combining common analysis operations close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using vetted earth data analysis tools (ESMF, CDAT, NCO, etc.). EDAS utilizes a dynamic caching architecture, a custom distributed array framework, and a streaming parallel in-memory workflow for efficiently processing huge datasets within limited memory spaces with interactive response times. EDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be accessed using direct web service calls, a Python script, a Unix-like shell client, or a JavaScript-based web application. New analytic operations can be developed in Python, Java, or Scala (with support for other languages planned). Client packages in Python, Java/Scala, or JavaScript contain everything needed to build and submit EDAS requests. The EDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service enables decision makers to compare multiple reanalysis datasets and investigate trends, variability, and anomalies in earth system dynamics around the globe.

  2. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  3. EDA activities related to safety

    International Nuclear Information System (INIS)

    Gordon, C.; Raeder, J.

    2001-01-01

    This article reviews the accomplishments in ITER safety analysis during the course of the Engineering Design Activities (EDA). The key aspects of ITER safety analysis are: effluents and emissions from normal operation, including planned maintenance activities; occupational safety for workers at the facility; radioactive materials and wastes generated during operation and from decommissioning ; potential incidents and accidents and the resulting transients. As a result of the work during the EDA it is concluded that ITER is safe

  4. ITER EDA Newsletter. V. 2, no. 3

    International Nuclear Information System (INIS)

    1993-03-01

    This ITER EDA (Engineering Design Activities) Newsletter issue includes a description of the ITER Joint Central Team's management, the ITER Management System and supporting software progress, activities of the Special Working Group 2, a brief summary of a technical meeting on the experimental approach to the physics of the high density divertor, a summary on the status of the International Fusion Evaluated Nuclear Data Library (FENDL), and an obituary on Dr. Henry Seligman (IAEA)

  5. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  6. SCALE Code System

    Energy Technology Data Exchange (ETDEWEB)

    Jessee, Matthew Anderson [ORNL

    2016-04-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE

  7. System Based Code: Principal Concept

    International Nuclear Information System (INIS)

    Yasuhide Asada; Masanori Tashimo; Masahiro Ueta

    2002-01-01

    This paper introduces a concept of the 'System Based Code' which has initially been proposed by the authors intending to give nuclear industry a leap of progress in the system reliability, performance improvement, and cost reduction. The concept of the System Based Code intends to give a theoretical procedure to optimize the reliability of the system by administrating every related engineering requirement throughout the life of the system from design to decommissioning. (authors)

  8. Relevant documents initiating the EDA

    International Nuclear Information System (INIS)

    1993-01-01

    In December 1990, the four ITER Parties successfully concluded the Conceptual Design Activities for ITER. In January, 1991, each of the Parties had decided to enter negotiations on co-operation in the ITER EDA, which are to be conducted under the auspices of the IAEA; and each Party was prepared to receive a letter of invitation from the Director General of the IAEA to participate in those negotiations. Four negotiating meetings were held in 1991, the first being in Vienna, the second in Tokyo, the third in Reston near Washington, and the fourth in Moscow. After completion of the negotiations, each of the Parties proceeded domestically to reach its decision to sign the ITER EDA Agreement and its Protocol 1. All formalities were concluded during the first half of 1992, and the EDA documents were signed in Washington on July 21, 1992. Following the signing, each of the Parties provided the Director General with the names of its two ITER Council members. With the formation of the Council, the EDA had begun. This volume contains the papers developed before the start of the EDA. It begins with the Director General's invitation to participate in the negotiations and ends with the Parties' designations of the ITER Council members. While the evolving text of the Agreement and its Protocol 1 is referred to in some of these papers as an attachment, it is only the final, signed text that is reproduced in this volume

  9. ITER EDA newsletter. V. 2, no. 11

    International Nuclear Information System (INIS)

    1993-11-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains an ITER EDA Status Report, and a report on the Fourth International Fusion Neutronics Workshop at the University of California, Los Angeles Campus, October 20-21, 1993

  10. ITER EDA Newsletter. V.3, no.3

    International Nuclear Information System (INIS)

    1994-03-01

    This ITER EDA Newsletter issue contains reports on (i) the completion of the ITER EDA Protocol 1, (ii) the signing of ITER EDA Protocol 2, (iii) a technical meeting on pumping and fuelling and (iv) a technical meeting on the ITER Tritium Plant

  11. ESCADRE and ICARE code systems

    International Nuclear Information System (INIS)

    Reocreux, M.; Gauvain, J.

    1992-01-01

    The French sever accident code development program is following two parallel approaches: the first one is dealing with ''integral codes'' which are designed for giving immediate engineer answers, the second one is following a more mechanistic way in order to have the capability of detailed analysis of experiments, in order to get a better understanding of the scaling problem and reach a better confidence in plant calculations. In the first approach a complete system has been developed and is being used for practical cases: this is the ESCADRE system. In the second approach, a set of codes dealing first with primary circuit is being developed: a mechanistic core degradation code, ICARE, has been issued and is being coupled with the advanced thermalhydraulic code CATHARE. Fission product codes have been also coupled to CATHARE. The ''integral'' ESCADRE system and the mechanistic ICARE and associated codes are described. Their main characteristics are reviewed and the status of their development and assessment given. Future studies are finally discussed. 36 refs, 4 figs, 1 tab

  12. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  13. Status of the ITER EDA

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    This article summarizes progress made in the ITER Engineering Design Activities in the period between the ITER Meeting in Tokyo (January 2000) and June 2000. Topics: Termination of EDA, Joint Central Team and Support, Task Assignments, ITER Physics, Urgent and High Priority Physics Research Areas

  14. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  15. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  16. SASSYS LMFBR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies

  17. ITER EDA newsletter. V. 6, no. 4

    International Nuclear Information System (INIS)

    1997-04-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter reports on the Toroidal Field Model Coil Project (Coil System, Objectives, Design, Project Management, Testing); contains a report of A Combined Workshop of Confinement Modeling and Database and Confinement and Transport Expert Groups held at the San Diego ITER Joint Work Site from April 14. to 18. Progress and status on implementing the ITER Confinement R and D needs as specified at the last Workshops of the Expert Groups in Montreal (Oct. 1996) were reported. 7 figs, 1 tab

  18. Interrelations of codes in human semiotic systems.

    OpenAIRE

    Somov, Georgij

    2016-01-01

    Codes can be viewed as mechanisms that enable relations of signs and their components, i.e., semiosis is actualized. The combinations of these relations produce new relations as new codes are building over other codes. Structures appear in the mechanisms of codes. Hence, codes can be described as transformations of structures from some material systems into others. Structures belong to different carriers, but exist in codes in their "pure" form. Building of codes over other codes fosters t...

  19. System Design Description for the TMAD Code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System

  20. ITER EDA Newsletter. V. 10, no. 7

    International Nuclear Information System (INIS)

    2001-07-01

    This ITER EDA Newsletter presents an overview of meetings held at IAEA Headquarters in Vienna during the week 16-20 July 2001 related to the successful completion of the ITER Engineering Design Activities (EDA). Among them were the final meeting of the ITER Council, the closing ceremony to commemorate the EDA completion, the final meeting of the ITER Management Advisory Committee, a briefing of issues related to ITER developments, and discussions on the possible joint implementation of ITER

  1. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  2. ITER EDA Newsletter. V. 2, no. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This ITER EDA (Engineering Design Activities) Newsletter issue is dedicated to the description of the ITER EDA Home Teams (European Community, Japan, Russian Federation, USA), in particular their composition, tasks, responsibilities, national support and activities, aimed to design the ITER tokamak

  3. ITER EDA Newsletter. Vol. 1, No. 1

    International Nuclear Information System (INIS)

    1992-11-01

    After the ITER Engineering Design Activities (EDA) Agreement and Protocol 1 had been signed by the four ITER parties on July 21, 1992 and had entered into force, the ITER Council suggested at its first meeting (Vienna, September 10-11, 1992) that the publication of the ITER Newsletter be continued during the EDA with assistance of the International Atomic Energy Agency. This suggestion was supported by the Agency and subsequently the ITER office in Vienna assumed its responsibilities for planning and executing activities related to the publication of the Newsletter. The ITER EDA Newsletter is planned to be a monthly publication aimed at disseminating broad information and understanding, including the description of the personal and institutional involvements in the ITER project in addition to technical facts about it. The responsibility for the Newsletter rests with the ITER council. In this first issue the signing of the ITER EDA Activities and Protocol 1 is reported. The EDA organizational structure is described. This issue also reports on the first ITER EDA council meeting, the opening of the ITER EDA NAKA Co-Centre, the first meeting of the ITER Technical Advisory Committee, activities of special working groups, an ITER Technical Meeting, as well as ''News in Brief'' and ''Coming Events''

  4. Expansion of the CHR bone code system

    International Nuclear Information System (INIS)

    Farnham, J.E.; Schlenker, R.A.

    1976-01-01

    This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials

  5. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  6. Coding-Spreading Tradeoff in CDMA Systems

    National Research Council Canada - National Science Library

    Bolas, Eduardo

    2002-01-01

    .... Comparing different combinations of coding and spreading with a traditional DS-CDMA, as defined in the IS-95 standard, allows the criteria to be defined for the best coding-spreading tradeoff in CDMA systems...

  7. The octopus burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de

    1996-09-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  8. The OCTOPUS burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).

  9. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  10. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  11. ITER EDA newsletter. V. 5, no. 8

    International Nuclear Information System (INIS)

    1996-08-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the divertor remote handling development (and of a summer party at the ITER Joint Work Site in Garching, Germany)

  12. ITER EDA newsletter. V. 5, no. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the divertor remote handling development (and of a summer party at the ITER Joint Work Site in Garching, Germany).

  13. ITER EDA newsletter. V. 7, no. 7

    International Nuclear Information System (INIS)

    1998-07-01

    This newsletter contains the articles: 'Extraordinary ITER council meeting', 'ITER EDA final safety meeting' and 'Summary report of the 3rd combined workshop of the ITER confinement and transport and ITER confinement database and modeling expert groups'

  14. ITER EDA newsletter. V. 6, no. 3

    International Nuclear Information System (INIS)

    1997-03-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter reports on the Central Solenoid Model Coil Project (Function, Objectives, Design, Project Management, Testing, Work Organization and Status). 8 figs, 2 tabs

  15. ITER EDA Newsletter. V.3, no.4

    International Nuclear Information System (INIS)

    1994-04-01

    This ITER EDA Newsletter issue contains a report on the fifth meeting of the ITER Management Advisory Committee and a summary of a magnet and safety technical meeting held at Naka, February 22-25, 1994

  16. ITER EDA newsletter. V. 8, no. 8

    International Nuclear Information System (INIS)

    1999-08-01

    This ITER EDA newsletter reports on the programme directors meeting of 28-29 July 1999, the Snowmass Fusion Summer Study Group workshop and the ITER Management Advisory Committee meeting in Garching. Individual abstracts are prepared for the 3 meetings

  17. ITER EDA newsletter. V. 9, no. 2

    International Nuclear Information System (INIS)

    2000-02-01

    This ITER EDA Newsletter reports on the seventh ITER technical meeting on safety and environment and contains the executive summary of the eleventh ITER scrape-off layer and divertor physics expert group meeting. Individual abstracts have been prepared

  18. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  19. Parties working on continuation of ITER EDA

    International Nuclear Information System (INIS)

    Roberts, M.

    1998-01-01

    This article describes efforts of the 4 ITER partners, the European Atomic Energy Community and the governments of Japan, the Russian Federation and the USA, to agree to continuation of the ITER EDA. While the former 3 partners signed an Extension to the EDA, the Americans were refused funding by the US Congress und will therefore be phased out within one year. Copies of the documents signed are provided

  20. ITER EDA newsletter. V. 4, no.12

    International Nuclear Information System (INIS)

    1995-12-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a report on the ninth ITER council meeting held December 12 - 13, 1995 in Garching near Munich, Germany (by Dr. E. Canobbio), a report on the status of the ITER EDA (by Dr. R. Aymar, ITER Director) and a report on the ninth meeting of the ITER Technical Advisory Committee (by Professor P. Rutherford, TAC Chair) held 27 - 29 November 1995, in Garching near Munich, Germany

  1. ITER EDA newsletter. V. 5, no. 7

    International Nuclear Information System (INIS)

    1996-07-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Tenth ITER Council Meeting, held July 24-25, 1996, in St. Petersburg, Russia; a description of the Status of the ITER EDA by the ITER Director, Dr. R. Aymar; and a report on the so-called Task Number One by the ITER Special Working Group (Basis for the Start of Explorations, presenting possible scenarios toward siting, licensing and host support)

  2. ITER EDA newsletter. V. 9, no. 8

    International Nuclear Information System (INIS)

    2000-08-01

    This ITER EDA Newsletter reports on the ITER meeting on 29-30 June 2000 in Moscow, summarizes the status report on the ITER EDA by R. Aymar, the ITER Director, and gives overviews of the expert group workshop on transport and internal barrier physics, confinement database and modelling and edge and pedestal physics, and the IEA workshop on transport barriers at edge and core. Individual abstracts have been prepared

  3. The investigation of the interaction between NCP-EDA and bovine serum albumin by spectroscopic approaches

    Science.gov (United States)

    Yu, Xianyong; Lu, Shiyu; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-12-01

    The fluorescence and ultraviolet spectroscopies were explored to study the interaction between N-confused porphyrins-edaravone diad (NCP-EDA) and bovine serum albumin (BSA) under simulative physiological condition at different temperatures. The experimental results show that the fluorescence quenching mechanism between NCP-EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites and the corresponding thermodynamic parameters (Δ G, Δ H, and Δ S) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between NCP-EDA and BSA was calculated to be 3.63 nm. In addition, the effect of NCP-EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.

  4. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  5. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  6. ITER EDA newsletter. V. 7, no. 9

    International Nuclear Information System (INIS)

    1998-09-01

    Newsletter containing the two articles 'Parties working on continuation of ITER EDA' and 'ITER exhibit at the Austria Centre, Vienna'. The first article describes efforts of the 4 ITER partners, the European Atomic Energy Community and the governments of Japan, the Russian Federation and the USA, to agree to continuation of the ITER EDA. While the former 3 partners signed an Extension to the EDA, the Americans were refused funding by the US Congress und will therefore be phased out within one year. Copies of the documents signed are provided. The second article reports on exhibition featuring a model of ITER and various other means of information on nuclear fusion which took place at the IAEA Headquarters from the 21st to 25th of September 1998. There is also an article in memoriam of Alexander V. Kashirski, who died on the 29th of September 1998

  7. ITER EDA Newsletter. V. 3, no. 10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the ITER-relevant statements made at the occasion of the 15th IAEA fusion conference in Seville, Spain, September 26 - October 1, 1994; (ii) a comprehensive technical presentation of the ITER EDA developments at the same conference; (iii) the first Workshop of the ITER Expert Group on Confinement and Transport, held at the San Diego Joint Work Site on 22-25 August 1994; and (iv) the visit to the San Diego Work Site of the representatives of a local philanthropic group, the ARCS Foundation (Achievement Rewards for College Scientists).

  8. ITER EDA Newsletter. V. 3, no. 10

    International Nuclear Information System (INIS)

    1994-10-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the ITER-relevant statements made at the occasion of the 15th IAEA fusion conference in Seville, Spain, September 26 - October 1, 1994; (ii) a comprehensive technical presentation of the ITER EDA developments at the same conference; (iii) the first Workshop of the ITER Expert Group on Confinement and Transport, held at the San Diego Joint Work Site on 22-25 August 1994; and (iv) the visit to the San Diego Work Site of the representatives of a local philanthropic group, the ARCS Foundation (Achievement Rewards for College Scientists)

  9. ITER EDA newsletter. V. 6, no. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter reports on the STATUS OF THE ITER EDA Overview, Design Work, ITER Physics; contains a report of the Third Technical Meeting on Quality Assurance was held at the ITER Garching Joint Work Site on 25-27 November 1996. The objectives of the meeting were to review the progress made in the Implementation of QA and to identify weal areas which require improvement. The focus was on the Large R and D Projects assigned to the EU Home Team(HT) or placed under the responsibility of the Garching JWS. 1 fig, 3 tabs

  10. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  11. ETF system code: composition and applications

    International Nuclear Information System (INIS)

    Reid, R.L.; Wu, K.F.

    1980-01-01

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies, such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system

  12. A bar coding system for environmental projects

    International Nuclear Information System (INIS)

    Barber, R.B.; Hunt, B.J.; Burgess, G.M.

    1988-01-01

    This paper presents BeCode systems, a bar coding system which provides both nuclear and commercial clients with a data capture and custody management program that is accurate, timely, and beneficial to all levels of project operations. Using bar code identifiers is an essentially paperless and error-free method which provides more efficient delivery of data through its menu card-driven structure, which speeds collection of essential data for uploading to a compatible device. The effects of this sequence include real-time information for operator analysis, management review, audits, planning, scheduling, and cost control

  13. Arabic Natural Language Processing System Code Library

    Science.gov (United States)

    2014-06-01

    Adelphi, MD 20783-1197 This technical note provides a brief description of a Java library for Arabic natural language processing ( NLP ) containing code...for training and applying the Arabic NLP system described in the paper "A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix...and also English) natural language processing ( NLP ), containing code for training and applying the Arabic NLP system described in Stephen Tratz’s

  14. ITER EDA newsletter. V. 9, no. 9

    International Nuclear Information System (INIS)

    2000-09-01

    This ITER EDA Newsletter contains the following 5 contributions: CSMC and CSIC charging tests successfully completed; The ITER divertor cassette project meeting; Blanket R and D and design task meeting; IAEA technical committee meeting on fusion safety; ITER L-6 large project ''blanket remote handling and maintenance''

  15. ITER EDA Newsletter. V. 4, no. 5

    International Nuclear Information System (INIS)

    1995-05-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains comments on the ITER project by the Permanent Representative of the Russian Federation to the International Organizations in Vienna; a report on the ITER Magnet Technical Meeting held at the Joint Work Site at Naka, Japan, April 19-21, 1995; and a contribution entitled ''ITER spouses cross the cultures''

  16. ITER EDA newsletter. V. 2, no. 2

    International Nuclear Information System (INIS)

    1993-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a progress report by the Director, a report on the completion of the first activities of the Special Work Group 2 (SWG-2), a report on a magnet technical meeting, held at Naka, Japan, 26-29 January 1993, and on the US Home Team National Meeting, 25-26 January 1993

  17. ITER EDA Newsletter. V. 3, no. 8

    International Nuclear Information System (INIS)

    1994-08-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on the sixth ITER council meeting; introduces the newly appointed ITER director and reports on his address to the ITER council. The vacuum tank for the ITER model coil testing, installed at JAERI, Naka, Japan is also briefly described

  18. ITER EDA newsletter. V. 10, no. 6

    International Nuclear Information System (INIS)

    2001-06-01

    This ITER EDA Newsletter issue includes information about the ITER Management Advisory Committee Meeting held in Vienna on 16 July 2001 and also a summary of the ninth ITER Technical Meeting on safety and environment held at the ITER Garching Joint Work site, 8 to 10 May, 2001

  19. ITER EDA newsletter. V. 7, no. 12

    International Nuclear Information System (INIS)

    1998-12-01

    This edition of the ITER EDA Newsletter is dedicated to celebrate the achievements of the ITER activities at the San Diego Joint Work Site. Articles by E. Velikhov, A. Davies and R. Aymar mark the final days of American participation in the ITER program

  20. ITER EDA Newsletter. V. 3, no. 6

    International Nuclear Information System (INIS)

    1994-06-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Technical Committee Meeting of the Working Group on Gyrotrons and Windows, held at the Garching Joint Work Site from 16-18 May 1994, and on the Technical Committee Meeting on the ITER Power Supply held at the Naka Joint Work Site from May 10-13, 1994. 1 tab

  1. ITER EDA newsletter. V. 8, no. 9

    International Nuclear Information System (INIS)

    1999-09-01

    This edition of the ITER EDA Newsletter contains a contribution by the ITER Director, R. Aymar, on the subject of developments in ITER Physics R and D report on the completion of the ITER central solenoid model coils installation by H. Tsuji, Head fo the Superconducting Magnet Laboratory at JAERI in Naka, Japan. Individual abstracts are prepared for each of the two articles

  2. ITER EDA newsletter. V. 6, no. 2

    International Nuclear Information System (INIS)

    1997-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter reports on the ITER divertor development project and its objectives; contains a report on the 16th Energy IAEA Fusion Conference (ITER and other Tokamak Issues) held in Montreal, Canada; 287 papers were selected by the Programme Committee for presentation and 178 posters were presented. 3 figs

  3. ITER EDA newsletter. V. 10, no. 3

    International Nuclear Information System (INIS)

    2001-03-01

    This issue contains a report on the meeting of the ITER Council (M. Drew), a report on the ITER EDA status (Dr. R. Aymar), a report on the ITER Council tour of the Clarington Site (Dr. D. Dautovich) . Abstracts of the indivdual reports have been included in the database

  4. ITER EDA newsletter. V. 7, No. 3

    International Nuclear Information System (INIS)

    1998-03-01

    This issue of the ITER Newsletter contains an article of the Status of the ITER EDA and the progress of the ITER activities and a report on the 5th Technical Meeting on Quality which was held in San Diego on 20-22 October 1997

  5. ITER EDA newsletter. V. 8, no. 11

    International Nuclear Information System (INIS)

    1999-11-01

    This ITER EDA Newsletter contains summary reports on the eleventh meeting of the ITER diagnostic expert group in Cadarache, France, on the ITER JCT presentation at the international conference on fusion reactor materials in Colorado Springs, USA and on the seventh workshop on plasma edge theory in fusion devices in Tajimi, Japan. Individual abstracts are prepared for the three contributions

  6. ITER EDA newsletter. V. 4, no. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport.

  7. ITER EDA newsletter. V. 4, no. 9

    International Nuclear Information System (INIS)

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport

  8. ITER EDA newsletter. V. 8, no. 12

    International Nuclear Information System (INIS)

    1999-12-01

    This ITER EDA Newsletter reports about the ITER Management Advisory Committee Meeting in Naka, the ITER Technical Advisory Committee Meeting in Naka and the meeting of the ITER SWG-P2 in Vienna. A separate abstract is prepared for each meeting

  9. ITER EDA newsletter. V. 5, no. 9

    International Nuclear Information System (INIS)

    1996-09-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER project contains an overview of one of the seven large ITER Research and Development Projects identified by the ITER Director, namely the Vacuum Vessel Sector, as well as an account of computer animation created for ITER

  10. ITER EDA Newsletter. V. 4, no. 6

    International Nuclear Information System (INIS)

    1995-06-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a report on the TAC-JCT (Technical Advisory Committee, Joint Technical Team) Informal Technical Reviews and the State Duma Hearings on Fusion (i.e., Parliamentary Hearing on Fusion held in the Russian Federation)

  11. ITER EDA Newsletter. V.4, no.2

    International Nuclear Information System (INIS)

    1995-02-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the exploits of the Special Working Group (SWG-2) designated in Protocol 1 to address task allocations and drafting of Protocol 2; and (ii) a report on the Tritium Plant Group Technical Meeting held at the Naka Joint Work Site on February 1-6, 1995

  12. ITER EDA newsletter. V. 2, no. 12

    International Nuclear Information System (INIS)

    1993-12-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a report of the Second ITER Technical Committee Meeting on Safety, Environment, and Regulatory Approval, San Diego, USA, November 3-12, 1993, and a summary report on an ITER Magnet Technical Meeting, Naka, Japan, October 5-8, 1993

  13. ITER EDA newsletter. V. 2, no. 9

    International Nuclear Information System (INIS)

    1993-09-01

    This ITER EDA (Engineering Design Activities) Newsletter issue contains a report on the third meeting of the ITER Technical Advisory Committee, a summary report for the ITER Magnetic Technical Meeting, a brief account of the International Workshop on Nuclear Data for Fusion Reactor Technology, and a description of approved arrangements for visiting home team personnel

  14. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  15. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  16. Implementing a modular system of computer codes

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out

  17. Plotting system for the MINCS code

    International Nuclear Information System (INIS)

    Watanabe, Tadashi

    1990-08-01

    The plotting system for the MINCS code is described. The transient two-phase flow analysis code MINCS has been developed to provide a computational tool for analysing various two-phase flow phenomena in one-dimensional ducts. Two plotting systems, namely the SPLPLOT system and the SDPLOT system, can be used as the plotting functions. The SPLPLOT system is used for plotting time transients of variables, while the SDPLOT system is for spatial distributions. The SPLPLOT system is based on the SPLPACK system, which is used as a general tool for plotting results of transient analysis codes or experiments. The SDPLOT is based on the GPLP program, which is also regarded as one of the general plotting programs. In the SPLPLOT and the SDPLOT systems, the standardized data format called the SPL format is used in reading data to be plotted. The output data format of MINCS is translated into the SPL format by using the conversion system called the MINTOSPL system. In this report, how to use the plotting functions is described. (author)

  18. ITER EDA newsletter. V. 5, no.1

    International Nuclear Information System (INIS)

    1996-01-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the RF-Based ITER JCT (Joint Central Team) Support Design Team (by N. Kornev), the third international workshop on plasma disruptions (by Dr. A. Hassanein and Dr. V. Litunovski) held at Obninsk, Russia, September 28-29, 1995, and the IAEA Advisory Group Meeting on Completion of Fendl-1 and the start of Fendl-2 (by Dr. A.B. Pashchenko); the Fendl library is a comprehensive collection of high-quality nuclear data, selected from the various existing national data libraries, covering the necessary nuclear input data for all physics and engineering aspects of the material development, design, operation, and safety of the ITER project in its current EDA phase

  19. ITER EDA newsletter. V. 1, no. 2

    International Nuclear Information System (INIS)

    1992-12-01

    This second issue of the ITER Newsletter during the EDA (Engineering Design Activities) reports on (i) the second ITER Council Meeting held in the Russian Research Centre (RRC) ''Kurchatov Institute'', Moscow, Russia, December 15-16, 1992, (ii) the opening ceremony of the ITER Council Office at the RRC, (iii) the first meeting of the ITER Management Advisory Committee (MAC), (iv) the start-up of the ITER EDA at Garching, Germany, (v) descriptions of the ITER Co-Centres at Naka, Japan, and (vi) San Diego, USA, (vii) contact persons activities, (viii) the adoption by the ITER Council of the recommendations by the Special Working Group 1 (SWG-1), (ix) news in brief, and (x) coming events

  20. ITER EDA newsletter. V. 8, no. 10

    International Nuclear Information System (INIS)

    1999-10-01

    This ITER EDA Newsletter contains summary reports on the seventh meeting of the ITER physics expert group on energetic particles, heating and steady state operations in Frascati, Italy, on the fifth international symposium on fusion nuclear technology in Rome, Italy and on the IAEA technical committee meeting on electron cyclotron resonance heating physics and technology for fusion devices in Oh-arai, Japan. Individual abstracts are prepared for the three contributions

  1. ITER EDA newsletter. V. 7, no. 11

    International Nuclear Information System (INIS)

    1998-11-01

    This ITER EDA Newsletter contains a report on the delivery of the outer module of the CS model coil to Naka by K. Okuno et al, a special lecture by H. Yoshikawa, the president of the Science Council of Japan on the future outlook of nuclear fusion and a report on an ITER display during the 17th IAEA Fusion Energy Conference, held in Yokohama, Japan, from October 19 to 24, 1998

  2. ITER EDA Newsletter. V. 6, no. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This issue of the newsletter on Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on Second International Industries` Liaison meeting which was held in Tokyo on 2-4 April 1997 (by Y. Kaneki, JAIF, Japan); an overview report on the Blanket project (by A. Cardella, I.Ioki (ITER Central Team), W. Daenner (EU Home Team)); and a progress report on microwave reflectometry (by J. Sanchez, Madrid, Spain).

  3. ITER EDA newsletter. V. 5, no. 10

    International Nuclear Information System (INIS)

    1996-10-01

    This issue of the newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Fifth ITER Technical Meeting on Safety, Environment, and Regulatory Approval, held September 29 - October 7, 1996 at the ITER San Diego Joint Work Site; and a report on the Fifth ITER Diagnostics Expert Group Workshop and Technical Meeting on Diagnostics held in Montreal, Canada, 12-13 October 1996

  4. ITER EDA Newsletter. V.2, no.5

    International Nuclear Information System (INIS)

    1993-05-01

    This ITER EDA (Engineering Design Activities), Newsletter issue includes reports on the third ITER council meeting in Tokyo on the involvement of other countries, on an outline of the report by the Management Advisory Committee (MAC), on such involvement, and on the improvement by the MAC and the ITER Council to proceed with Task Agreements on the Research and Development programme of the Superconductor Coils and Structures Division

  5. ITER EDA Newsletter. V.4, no.1

    International Nuclear Information System (INIS)

    1995-01-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the seventh ITER Council Meeting held at the Naka Joint Work Site on 14-15 December 1994, (ii) the ''Confinement Modelling and Database Expert Group Workshop'' held in Seville, Spain, 3-4 October 1994, and (iii) the first meeting of the International Organizing Committee for the Seventh International Fusion Reactor Materials Conference

  6. ITER EDA Newsletter. V. 3, no. 7

    International Nuclear Information System (INIS)

    1994-07-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on the sixth meeting on the ITER management advisory committee (MAC-6); on the sixth meeting of the ITER technical advisory committee (TAC-6); a summary of a magnet technical meeting, held at Naka, Japan, June 27-30 1994 is also included. It finally contains an in memoriam on the passing away of Dr. A.I. Kostenko

  7. ITER EDA Newsletter. V. 3, no. 12

    International Nuclear Information System (INIS)

    1994-12-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the seventh Meeting of the Technical Advisory Committee (TAC-7) held at the Joint Work Site in Naka, Japan, 5-7 December 1994; (ii) the seventh Meeting of the ITER Management Advisory Committee (MAC-7) held at the Naka Joint Work Site, November 30 - December 1, 1994; (iii) the Magnet Technical Meeting, held at the Naka Joint Work Site on November 8-11, 1994

  8. ITER EDA Newsletter. V. 4, no. 3

    International Nuclear Information System (INIS)

    1995-03-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the ITER Magnet Technical Meeting held at the Naka Joint Work Site on February 7-10, 1995; (ii) the Second Technical Meeting on ITER Power Supply held on February 20-24, 1995, in St. Petersburg (Russian Federation); and (iii) a description by the Nuclear Data section of the IAEA (Vienna, Austria) on the availability and current status of the FENDL-1 Nuclear Data Libraries for fusion applications

  9. ITER EDA Newsletter. V. 6, no. 5

    International Nuclear Information System (INIS)

    1997-05-01

    This issue of the newsletter on Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on Second International Industries' Liaison meeting which was held in Tokyo on 2-4 April 1997 (by Y. Kaneki, JAIF, Japan); an overview report on the Blanket project (by A. Cardella, I.Ioki (ITER Central Team), W. Daenner (EU Home Team)); and a progress report on microwave reflectometry (by J. Sanchez, Madrid, Spain)

  10. ITER EDA Newsletter. V. 4, no. 4

    International Nuclear Information System (INIS)

    1995-04-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter reports on (i) the Second Meeting of the ITER Physics Expert Group on Diagnostics held at the Japanese Atomic Energy Research Institute, Naka, Japan, on February 8-10, 1995; and (ii) a summary of the Second Workshop of the Confinement Modelling and Database Expert Group, held at the ITER San Diego Work Site, March 13-15, 1995

  11. ITER EDA newsletter. V. 9, no. 11

    International Nuclear Information System (INIS)

    2000-11-01

    This issue of the ITER EDA Newsletter contains discussions of three meetings, i.e., (1) the Third ITER International Industry Liaison Meeting held in Toronto, Canada (November 7-9, 2000), (2) an informal meeting on ITER developments held in Sorrento, Italy (October 9, 2000), and (3) the Thirteenth Meeting of the ITER Physics Expert Group on Diagnostics held in Naka, Japan (September 21-22, 2000)

  12. ITER EDA Newsletter. V. 3, no. 11

    International Nuclear Information System (INIS)

    1994-11-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on (i) the third Technical Meeting on Safety and Environment held at the San Diego Joint Work Site, October 10-14, 1994; (ii) the ITER Expert Group Meeting on Disruptions, Plasma Control and MHD, held in Seville, Spain, September 29-30, 1994; in addition to a brief contribution on aspects of family life for foreigners at the Naka Joint Work Site

  13. ITER EDA newsletter. V. 2, no. 10

    International Nuclear Information System (INIS)

    1993-10-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains progress reports on the Fourth ITER Council Meeting in San Diego, 29 September - 1 October 1993, on the Third Meeting of the ITER Management Advisory Committee (MAC) in Naka, Japan, 16-17 September 1993, and on the flag raising ceremony at the US hosted joint work site in San Diego, California, 1 October 1993

  14. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  15. NALAP: an LMFBR system transient code

    International Nuclear Information System (INIS)

    Martin, B.A.; Agrawal, A.K.; Albright, D.C.; Epel, L.G.; Maise, G.

    1975-07-01

    NALAP is a LMFBR system transient code. This code, adapted from the light water reactor transient code RELAP 3B, simulates thermal-hydraulic response of sodium cooled fast breeder reactors when subjected to postulated accidents such as a massive pipe break as well as a variety of other upset conditions that do not disrupt the system geometry. Various components of the plant are represented by control volumes. These control volumes are connected by junctions some of which may be leak or fill junctions. The fluid flow equations are modeled as compressible, single-stream flow with momentum flux in one dimension. The transient response is computed by integrating the thermal-hydraulic conservation equations from user-initialized operating conditions by an implicit numerical scheme. Point kinetics approximation is used to represent the time dependent heat generation in the reactor core

  16. Considerations about the European Decommissioning Academy (EDA)

    International Nuclear Information System (INIS)

    Slugen, V.; Hinca, R.

    2014-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year.Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning (16:74:10), as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the overbridging this gap.For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe.A graduate of the European Decommissioning Academy (EDA) should have at least bachelor level from technical or natural science Universities or Colleges and at least one year working experiences in the area of NPP decommissioning or nuclear power engineering. This study creates prerequisites for acquiring and completion of professional and specialized knowledge in the subjects which are described. (authors)

  17. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  18. Coding and decoding for code division multiple user communication systems

    Science.gov (United States)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  19. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  20. HELIAS module development for systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, F., E-mail: Felix.Warmer@ipp.mpg.de; Beidler, C.D.; Dinklage, A.; Egorov, K.; Feng, Y.; Geiger, J.; Schauer, F.; Turkin, Y.; Wolf, R.; Xanthopoulos, P.

    2015-02-15

    In order to study and design next-step fusion devices such as DEMO, comprehensive systems codes are commonly employed. In this work HELIAS-specific models are proposed which are designed to be compatible with systems codes. The subsequently developed models include: a geometry model based on Fourier coefficients which can represent the complex 3-D plasma shape, a basic island divertor model which assumes diffusive cross-field transport and high radiation at the X-point, and a coil model which combines scaling aspects based on the HELIAS 5-B reactor design in combination with analytic inductance and field calculations. In addition, stellarator-specific plasma transport is discussed. A strategy is proposed which employs a predictive confinement time scaling derived from 1-D neoclassical and 3-D turbulence simulations. This paper reports on the progress of the development of the stellarator-specific models while an implementation and verification study within an existing systems code will be presented in a separate work. This approach is investigated to ultimately allow one to conduct stellarator system studies, develop design points of HELIAS burning plasma devices, and to facilitate a direct comparison between tokamak and stellarator DEMO and power plant designs.

  1. Analog system for computing sparse codes

    Science.gov (United States)

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  2. A Consistent System for Coding Laboratory Samples

    Science.gov (United States)

    Sih, John C.

    1996-07-01

    A formal laboratory coding system is presented to keep track of laboratory samples. Preliminary useful information regarding the sample (origin and history) is gained without consulting a research notebook. Since this system uses and retains the same research notebook page number for each new experiment (reaction), finding and distinguishing products (samples) of the same or different reactions becomes an easy task. Using this system multiple products generated from a single reaction can be identified and classified in a uniform fashion. Samples can be stored and filed according to stage and degree of purification, e.g. crude reaction mixtures, recrystallized samples, chromatographed or distilled products.

  3. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  4. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  5. A mean field theory of coded CDMA systems

    International Nuclear Information System (INIS)

    Yano, Toru; Tanaka, Toshiyuki; Saad, David

    2008-01-01

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  6. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  7. SRAC95; general purpose neutronics code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Tsuchihashi, Keichiro; Kaneko, Kunio.

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author)

  8. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  9. ITER EDA Newsletter. V. 4, no. 7

    International Nuclear Information System (INIS)

    1995-07-01

    This ITER EDA (Engineering Design Activities) Newsletter issue contains reports on (i) the 8th meeting of the ITER Technical Advisory Committee (TAC-8) held on June 29 - July 7, 1995 at the ITER San Diego Work Site, (ii) the 8th meeting of the ITER Management Advisory Committee (MAC-8) held at the ITER San Diego Work Site on July 9-10, 1995, (iii) the 33rd meeting of the International Fusion Research Council (FRC), held July 11, 1995 at the IAEA Headquarters in Vienna, Austria, and (iv) the ITER participation in the fifth topical meeting on Tritium Technology in Fission, Fusion and Isotopic Applications

  10. ITER EDA newsletter. V. 3, no. 2

    International Nuclear Information System (INIS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, 27-28 January 1994, a visit (28 January 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (28 January 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report

  11. ITER EDA newsletter. V. 5, no. 12

    International Nuclear Information System (INIS)

    1996-12-01

    This issue of the newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Eleventh ITER Council Meeting held on December 17-18, 1996 in Tokyo, Japan; a report on the Eleventh Meeting of the ITER Technical Advisory Committee (TAC-11) Meeting held 3-7 December, 1996, at the ITER Naka Joint Work Site, Japan; and a report on the Fifth Workshop of the Confinement Modelling and Database Expert Group held in Montreal, Canada, October 13-16, 1996

  12. ITER EDA Newsletter. V. 3, no. 9

    International Nuclear Information System (INIS)

    1994-09-01

    This ITER EDA (Engineering Design Activities) Newsletter issue contains a description of the ITER Physics Research and Development (F.Perkins), a report on the first meeting of the ITER Divertor Physics and Divertor Modelling and Database Expert Groups (D. Post, G. Janeschitz, R. Stambaugh, M. Shimada), a report on the first meeting of the ITER Physics Expert Group on Diagnostics (A.E. Costley and K.M. Young), and a contribution entitled ''to meet or not to meet? If yes, for how long?'' (L. Golubchikov)

  13. ITER EDA Newsletter. V. 4, no. 8

    International Nuclear Information System (INIS)

    1995-08-01

    This ITER EDA (Engineering Design Activities) Newsletter issue contains reports on the 8th meeting of the ITER council and on the first Special Review Group (SRG) meeting held 21-23 June, 1995, at the San Diego Joint Work Site, USA. The SWG was established in July 1994 to review the technical, social, and the safety and environmental requirements for siting ITER which will be prepared by the Director and the JCT, and to report the results of the review to the council. Furthermore, a description of the design office at the Garching Joint Work Site is given

  14. Needs for European decommissioning academy (EDA)

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2014-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year. Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning, as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the over-bridging this gap. The main goal is - from about 74% of nuclearized experts (graduated at different technical Universities and increased their nuclear knowledge and skills mostly via on-job training and often in the area of NPP operation) to create nuclear experts for decommissioning via our post-gradual coursed organized in two semester study at our Academy, which will include the lessons, practical exercises in our laboratories, on-site training at NPP V-1 in Jaslovske Bohunice, Slovakia as well as 3 days technical tour to JAVYS (Slovakia), UJV Rez (Czech Rep.) and PURAM (Hungary), respectively. Beside the exams in selected topics (courses), the final thesis written under supervision of recognized experts will be the precondition for graduation and certification of the participants. For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe. The growing decommissioning market creates a potential for new activities, with highly skilled jobs in an innovative field, involving high-level technologies. A clear global positioning of the EU will stimulate the export of know-how to

  15. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    Suyama, Kenya; Hirakawa, Naohiro; Iwasaki, Tomohiko.

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  16. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  17. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  18. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  19. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  20. Code system BCG for gamma-ray skyshine calculation

    International Nuclear Information System (INIS)

    Ryufuku, Hiroshi; Numakunai, Takao; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1979-03-01

    A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)

  1. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  2. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.

    Directory of Open Access Journals (Sweden)

    Matthew P Harris

    2008-10-01

    Full Text Available The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda and ectodysplasin receptor (edar genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100 that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.

  3. Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates

    Science.gov (United States)

    Harris, Matthew P.; Rohner, Nicolas; Schwarz, Heinz; Perathoner, Simon; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2008-01-01

    The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution. PMID:18833299

  4. ITER EDA newsletter. V. 10, no. 4

    International Nuclear Information System (INIS)

    2001-04-01

    This ITER EDA Newsletter presents an overview of the Fourteenth Meeting of the ITER Physics Expert Group on Diagnostics which was held at the Institute for Plasma Physics, Juelich, Germany, 21-23 March 2001. The summary of the Meeting covers the discussions of the Expert Group as well as developments reported on similar meetings concerning ongoing work in diagnostic design and ITER relevant diagnostic development work which took place nearly at the same time. In addition, the outline of the material treated at the International Workshop on the Confinement Database and Modelling Expert Group in collaboration with the Edge and Pedestal Physics Expert Group which was held on 2-6 April 2001 at the Plasma Physics Research Centre of Lausanne (CRPP) Switzerland is presented

  5. ITER EDA newsletter. V. 4, no. 11

    International Nuclear Information System (INIS)

    1995-11-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a report on the Ninth Meeting of the ITER Management Advisory Committee held in St. Petersburg, Russia, on November 3, 1995; a report on the Seventh International Conference on Fusion Reactor Materials held at Obninsk, Russia, 25-29 September, 1995; on the presentation of the ITER Project during a symposium on fusion energy held at Champaign, Illinois, USA, October 1-5, 1995; and on two meetings on ITER diagnostics, i.e., an international workshop on diagnostics for ITER held in Varenna, Italy, 28 August - 1 September, 1995; followed by the Third Diagnostics Expert Group Workshop held September 4-5 in the same location

  6. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1988-01-01

    This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared

  7. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  8. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  9. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  10. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  11. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  12. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  13. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    Science.gov (United States)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  14. SCALE Code System 6.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  15. SCALE Code System 6.2.2

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.

  16. SCALE Code System 6.2.1

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    2016-01-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE's graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  17. Väiketootjad jaekaupmeeste surve all / Eda-Liis Kann

    Index Scriptorium Estoniae

    Kann, Eda-Liis, 1979-

    2004-01-01

    Väiketootjatel on probleeme oma toodangu saamisega suurtesse kauplusekettidesse, sest kaupmeeste esitatud tingimusi on raske täita. Kommenteerivad Sirje Potisepp ja Anti Orav. Vaata samas: Eda-Liis Kann; Andres Kärssin. Kaupluskettide valikut suunavad tarbijad

  18. 75 FR 4259 - Revisions to the EDA Regulations

    Science.gov (United States)

    2010-01-27

    ... review for the RLF Grant every (3) three years,'' when the intention was to give EDA the ability to... entrepreneurship. An Investment will embrace the principles of entrepreneurship, enhance Regional industry clusters...

  19. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  20. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  1. R-matrix analysis code (RAC)

    International Nuclear Information System (INIS)

    Chen Zhenpeng; Qi Huiquan

    1990-01-01

    A comprehensive R-matrix analysis code has been developed. It is based on the multichannel and multilevel R-matrix theory and runs in VAX computer with FORTRAN-77. With this code many kinds of experimental data for one nuclear system can be fitted simultaneously. The comparisions between code RAC and code EDA of LANL are made. The data show both codes produced the same calculation results when one set of R-matrix parameters was used. The differential cross section of 10 B (n, α) 7 Li for E n = 0.4 MeV and the polarization of 16 O (n,n) 16 O for E n = 2.56 MeV are presented

  2. Variable-length code construction for incoherent optical CDMA systems

    Science.gov (United States)

    Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng

    2007-04-01

    The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.

  3. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  4. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  5. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Rollstin, J.A.; Chanin, D.I.; Jow, H.N.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management

  6. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  7. ITER EDA newsletter. V. 10, no. 1

    International Nuclear Information System (INIS)

    2001-01-01

    This article provides a summary of results of the ITER Physics Committee Meeting, which was held on 14 October 2000 at the ITER Garching Joint Work Site, Germany. The ITER Physics Committee is the body responsible for overseeing, through the seven specialized Expert Groups, the R and D activities contributed voluntarily by the ITER Parties. The Parties' Physics Designated Persons, the Chairs and Co-Chairs of ITER Physics Expert Groups and the JCT members involved attended the Meeting. As usual, the meeting was chaired by the ITER Director, Dr. R. Aymar, who reported on the status of the ITER EDA. Dr. Aymar described the steps being taken in preparing the ITER-FEAT Final Design Report (FDR), and further stated that the Report would be available in time to be of benefit to the Negotiations on the ITER Joint Implementation, expected to start around May 2001. All Parties recognize that the ITER Physics Expert Group structure has been useful in focusing the tokamak physics activity on the ITER-relevant issues and provides an efficient worldwide collaboration on confirming innovative solutions. The concept of an international workshop to be organized as a pre-meeting of each Expert Group meeting, in order to involve U.S. scientists in the discussion of generic tokamak physics issues, was introduced in 2000, with some success, and its goal should be pursued

  8. European Decommissioning Academy (EDA). Ready to start

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2015-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  9. Variable code gamma ray imaging system

    International Nuclear Information System (INIS)

    Macovski, A.; Rosenfeld, D.

    1979-01-01

    A gamma-ray source distribution in the body is imaged onto a detector using an array of apertures. The transmission of each aperture is modulated using a code such that the individual views of the source through each aperture can be decoded and separated. The codes are chosen to maximize the signal to noise ratio for each source distribution. These codes determine the photon collection efficiency of the aperture array. Planar arrays are used for volumetric reconstructions and circular arrays for cross-sectional reconstructions. 14 claims

  10. Channel coding in the space station data system network

    Science.gov (United States)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  11. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  12. Module type plant system dynamics analysis code (MSG-COPD). Code manual

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2002-11-01

    MSG-COPD is a module type plant system dynamics analysis code which involves a multi-dimensional thermal-hydraulics calculation module to analyze pool type of fast breeder reactors. Explanations of each module and the methods for the input data are described in this code manual. (author)

  13. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  14. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  15. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  16. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  17. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  18. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  19. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  20. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  1. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  2. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  3. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)

  4. Use of computer codes for system reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).

  5. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  6. Uncertainty and sensitivity analysis using probabilistic system assessment code. 1

    International Nuclear Information System (INIS)

    Honma, Toshimitsu; Sasahara, Takashi.

    1993-10-01

    This report presents the results obtained when applying the probabilistic system assessment code under development to the PSACOIN Level 0 intercomparison exercise organized by the Probabilistic System Assessment Code User Group in the Nuclear Energy Agency (NEA) of OECD. This exercise is one of a series designed to compare and verify probabilistic codes in the performance assessment of geological radioactive waste disposal facilities. The computations were performed using the Monte Carlo sampling code PREP and post-processor code USAMO. The submodels in the waste disposal system were described and coded with the specification of the exercise. Besides the results required for the exercise, further additional uncertainty and sensitivity analyses were performed and the details of these are also included. (author)

  7. 14 CFR Sec. 1-4 - System of accounts coding.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false System of accounts coding. Sec. 1-4 Section... General Accounting Provisions Sec. 1-4 System of accounts coding. (a) A four digit control number is assigned for each balance sheet and profit and loss account. Each balance sheet account is numbered...

  8. Performance Analysis of Optical Code Division Multiplex System

    Science.gov (United States)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  9. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  10. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    International Nuclear Information System (INIS)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes

  11. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  12. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.

  13. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  14. SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi

    2003-01-01

    SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)

  15. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  16. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  17. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  18. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  19. 76 FR 5501 - Request for Comments: Review and Improvement of EDA's Regulations

    Science.gov (United States)

    2011-02-01

    ... creation and growth of Regional Innovation Clusters (RICs). In addition, EDA has identified potential... our stakeholders and the American people. 1. Regional Innovation Clusters (RICs) EDA supports the..., February 1, 2011 / Proposed Rules#0;#0; [[Page 5501

  20. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  1. European Decommissioning Academy (EDA) - successful 1. run in june 2015

    International Nuclear Information System (INIS)

    Slugen, V.; Hornacek, M.

    2015-01-01

    Experiences from the first run of the European Decommissioning Academy (EDA) are reported in details. EDA was created at the Slovak University of Technology in Bratislava Slovakia, based on discussion and expressed needs declared at many international meetings including ECED2013. The first run successfully passed 14 participants during 7.-20.6. 2015. Academy was focused on decommissioning issues via lessons, practical exercises in laboratories, on-site training prepared at NPP V-1 in Jaslovske Bohunice, Slovakia as well as 4 days technical tour to other European decommissioning facilities (Swiss, Italy), respectively. Detailed information can be found at http://kome.snus.sk/inpe/. (authors)

  2. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  3. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible

  4. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  5. 76 FR 19976 - Proposed Information Collection; Comment Request; Survey of EDA Grant Process Improvement

    Science.gov (United States)

    2011-04-11

    ...; Comment Request; Survey of EDA Grant Process Improvement AGENCY: Economic Development Administration.... In 2010, EDA made improvements in its grant application process. The proposed short survey of five to... improvements to the grant application process and to make any necessary adjustments. EDA would like to conduct...

  6. Development of the integrated system reliability analysis code MODULE

    International Nuclear Information System (INIS)

    Han, S.H.; Yoo, K.J.; Kim, T.W.

    1987-01-01

    The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers

  7. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  8. A computerized energy systems code and information library at Soreq

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, I; Shapira, M; Caner, D; Sapier, D [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors).

  9. A computerized energy systems code and information library at Soreq

    International Nuclear Information System (INIS)

    Silverman, I.; Shapira, M.; Caner, D.; Sapier, D.

    1996-01-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors)

  10. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  11. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.

    Science.gov (United States)

    Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra

    2018-04-14

    This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.

  12. ITER EDA newsletter. V. 2, Nos. 7/8

    International Nuclear Information System (INIS)

    1993-01-01

    This ITER EDA (Engineering Design Activities) Newsletter issue includes a description of the ITER Design Integration Division, and reports on the 5th IAEA Technical Committee Meeting on Developments in Fusion Safety held in Toronto, Canada, 7 - 11 June 1993, and on the International Atomic Energy Agency's Atomic and Plasma-Material Interaction Data Activities in support of the ITER Engineering Design Activities

  13. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  14. The PASC-3 code system and the UNIPASC environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.

    1991-08-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and its associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified, Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  15. Sequence Coding and Search System Backfit Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Lovell, C.J.; Stepina, P.L.

    1985-03-01

    The Sequence Coding and Search System is a computer-based encoding system for events described in Licensee Event Reports. This data system contains LERs from 1981 to present. Backfit of the data system to include LERs prior to 1981 is required. This report documents the Quality Assurance Program Plan that EG and G Idaho, Inc. will follow while encoding 1980 LERs

  16. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  17. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  18. Dynamic detection technology of malicious code for Android system

    Directory of Open Access Journals (Sweden)

    Li Boya

    2017-02-01

    Full Text Available With the increasing popularization of mobile phones,people's dependence on them is rising,the security problems become more and more prominent.According to the calling of the APK file permission and the API function in Android system,this paper proposes a dynamic detecting method based on API interception technology to detect the malicious code.The experimental results show that this method can effectively detect the malicious code in Android system.

  19. VDE characteristics during disruption process and its underlying acceleration mechanism in the ITER-EDA tokamak

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Nishio, Satoshi; Yoshino, Ryuji; Kessel, C.E.; Jardin, S.C.

    1996-01-01

    The dynamic behavior of vertical displacement events (VDEs) during a disruption and acceleration mechanisms that govern VDEs in the ITER-EDA tokamak are investigated using the Tokamak Simulation Code. A sudden plasma pressure drop (β p collapse) does not accelerate VDEs for the ITER tokamak. The geometry of the ITER resistive shell is shown to be suitable for preventing a β p collapse-induced VDE, because the magnetic field decay n-index after the β p collapse does not considerably degrade. On the other hand, it is shown that the plasma current quench (I p quench) following the energy quench can accelerate VDEs due to the vertical imbalance of the attractive force arising from the up-down asymmetric shell. The vertical location of the neutral point where the I p quench-induced VDE almost disappears is found to lie at ∼22 cm below the plasma magnetic axis of the nominal equilibrium (Z = 1.44 m). An upward and moderate I p quench-induced VDE can be expected for the nominal configuration in the ITER-EDA tokamak. It is shown that the ITER tokamak has an advantage of avoiding the fatal damage of the complicated structures of the bottom-divertor. (author)

  20. Introduction of thermal-hydraulic analysis code and system analysis code for HTGR

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1984-01-01

    Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)

  1. Nonterminals and codings in defining variations of OL-systems

    DEFF Research Database (Denmark)

    Skyum, Sven

    1974-01-01

    The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems. Fina....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72].......The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems...

  2. ATHENA code manual. Volume 1. Code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Carlson, K.E.; Roth, P.A.; Ransom, V.H.

    1986-09-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation

  3. Lossless Coding Standards for Space Data Systems

    Science.gov (United States)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  4. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  5. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  6. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  7. Sequence Coding and Search System for licensee event reports: code listings. Volume 2

    International Nuclear Information System (INIS)

    Gallaher, R.B.; Guymon, R.H.; Mays, G.T.; Poore, W.P.; Cagle, R.J.; Harrington, K.H.; Johnson, M.P.

    1985-04-01

    Operating experience data from nuclear power plants are essential for safety and reliability analyses, especially analyses of trends and patterns. The licensee event reports (LERs) that are submitted to the Nuclear Regulatory Commission (NRC) by the nuclear power plant utilities contain much of this data. The NRC's Office for Analysis and Evaluation of Operational Data (AEOD) has developed, under contract with NSIC, a system for codifying the events reported in the LERs. The primary objective of the Sequence Coding and Search System (SCSS) is to reduce the descriptive text of the LERs to coded sequences that are both computer-readable and computer-searchable. This system provides a structured format for detailed coding of component, system, and unit effects as well as personnel errors. The database contains all current LERs submitted by nuclear power plant utilities for events occurring since 1981 and is updated on a continual basis. Volume 2 contains all valid and acceptable codes used for searching and encoding the LER data. This volume contains updated material through amendment 1 to revision 1 of the working version of ORNL/NSIC-223, Vol. 2

  8. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  9. Hydrogen detection systems leak response codes

    International Nuclear Information System (INIS)

    Desmas, T.; Kong, N.; Maupre, J.P.; Schindler, P.; Blanc, D.

    1990-01-01

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  10. Source Code Vulnerabilities in IoT Software Systems

    Directory of Open Access Journals (Sweden)

    Saleh Mohamed Alnaeli

    2017-08-01

    Full Text Available An empirical study that examines the usage of known vulnerable statements in software systems developed in C/C++ and used for IoT is presented. The study is conducted on 18 open source systems comprised of millions of lines of code and containing thousands of files. Static analysis methods are applied to each system to determine the number of unsafe commands (e.g., strcpy, strcmp, and strlen that are well-known among research communities to cause potential risks and security concerns, thereby decreasing a system’s robustness and quality. These unsafe statements are banned by many companies (e.g., Microsoft. The use of these commands should be avoided from the start when writing code and should be removed from legacy code over time as recommended by new C/C++ language standards. Each system is analyzed and the distribution of the known unsafe commands is presented. Historical trends in the usage of the unsafe commands of 7 of the systems are presented to show how the studied systems evolved over time with respect to the vulnerable code. The results show that the most prevalent unsafe command used for most systems is memcpy, followed by strlen. These results can be used to help train software developers on secure coding practices so that they can write higher quality software systems.

  11. JEMs and incompatible occupational coding systems: Effect of manual and automatic recoding of job codes on exposure assignment

    NARCIS (Netherlands)

    Koeman, T.; Offermans, N.S.M.; Christopher-De Vries, Y.; Slottje, P.; Brandt, P.A. van den; Goldbohm, R.A.; Kromhout, H.; Vermeulen, R.

    2013-01-01

    Background: In epidemiological studies, occupational exposure estimates are often assigned through linkage of job histories to job-exposure matrices (JEMs). However, available JEMs may have a coding system incompatible with the coding system used to code the job histories, necessitating a

  12. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  13. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  14. System verification and validation report for the TMAD code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the Verification and Validation Report for the TMAD code system, which includes the TMAD code and the LIBMAKR Code. The TMAD code was commissioned to facilitate the interpretation of moisture probe measurements in the Hanford Site waste tanks. In principle, the code is an interpolation routine that acts over a library of benchmark data based on two independent variables, typically anomaly size and moisture content. Two additional variables, anomaly type and detector type, can also be considered independent variables, but no interpolation is done over them. The dependent variable is detector response. The intent is to provide the code with measured detector responses from two or more detectors. The code will then interrogate (and interpolate upon) the benchmark data library and find the anomaly-type/anomaly-size/moisture-content combination that provides the closest match to the measured data. The primary purpose of this document is to provide the results of the system testing and the conclusions based thereon. The results of the testing process are documented in the body of the report. Appendix A gives the test plan, including test procedures, used in conducting the tests. Appendix B lists the input data required to conduct the tests, and Appendices C and 0 list the numerical results of the tests

  15. Integrated Validation System for a Thermal-hydraulic System Code, TASS/SMR-S

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Kim, Hyungjun; Kim, Soo Hyoung; Hwang, Young-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeon-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Development including enhancement and modification of thermal-hydraulic system computer code is indispensable to a new reactor, SMART. Usually, a thermal-hydraulic system code validation is achieved by a comparison with the results of corresponding physical effect tests. In the reactor safety field, a similar concept, referred to as separate effect tests has been used for a long time. But there are so many test data for comparison because a lot of separate effect tests and integral effect tests are required for a code validation. It is not easy to a code developer to validate a computer code whenever a code modification is occurred. IVS produces graphs which shown the comparison the code calculation results with the corresponding test results automatically. IVS was developed for a validation of TASS/SMR-S code. The code validation could be achieved by a comparison code calculation results with corresponding test results. This comparison was represented as a graph for convenience. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. The code developer could gain a confidence about his code modification easily and fast and could be free from tedious and long validation work. The popular software introduced in IVS supplies better usability and portability.

  16. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  17. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  18. Grid-code of Croatian power system

    International Nuclear Information System (INIS)

    Toljan, I.; Mesic, M.; Kalea, M.; Koscak, Z.

    2003-01-01

    Grid Rules by the Croatian Electricity Utility deal with the control and usage of the Croatian power system's transmission and distribution grid. Furthermore, these rules include obligations and permissions of power grid users and owners, with the aim of a reliable electricity supply.(author)

  19. Summary description of the scale modular code system

    International Nuclear Information System (INIS)

    Parks, C.V.

    1987-12-01

    SCALE - a modular code system for Standardized Computer Analyses for Licensing Evaluation - has been developed at Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission staff. The SCALE system utilizes well-established computer codes and methods within standard analytic sequences that allow simplified free-form input, automate the data processing and coupling between codes, and provide accurate and reliable results. System development has been directed at criticality safety, shielding, and heat transfer analysis of spent fuel transport and/or storage casks. However, only a few of the sequences (and none of the individual functional modules) are restricted to cask applications. This report will provide a background on the history of the SCALE development and review the components and their function within the system. The available data libraries are also discussed, together with the automated features that standardize the data processing and systems analysis. 83 refs., 32 figs., 11 tabs

  20. On the automated assessment of nuclear reactor systems code accuracy

    International Nuclear Information System (INIS)

    Kunz, Robert F.; Kasmala, Gerald F.; Mahaffy, John H.; Murray, Christopher J.

    2002-01-01

    An automated code assessment program (ACAP) has been developed to provide quantitative comparisons between nuclear reactor systems (NRS) code results and experimental measurements. The tool provides a suite of metrics for quality of fit to specific data sets, and the means to produce one or more figures of merit (FOM) for a code, based on weighted averages of results from the batch execution of a large number of code-experiment and code-code data comparisons. Accordingly, this tool has the potential to significantly streamline the verification and validation (V and V) processes in NRS code development environments which are characterized by rapidly evolving software, many contributing developers and a large and growing body of validation data. In this paper, a survey of data conditioning and analysis techniques is summarized which focuses on their relevance to NRS code accuracy assessment. A number of methods are considered for their applicability to the automated assessment of the accuracy of NRS code simulations. A variety of data types and computational modeling methods are considered from a spectrum of mathematical and engineering disciplines. The goal of the survey was to identify needs, issues and techniques to be considered in the development of an automated code assessment procedure, to be used in United States Nuclear Regulatory Commission (NRC) advanced thermal-hydraulic T/H code consolidation efforts. The ACAP software was designed based in large measure on the findings of this survey. An overview of this tool is summarized and several NRS data applications are provided. The paper is organized as follows: The motivation for this work is first provided by background discussion that summarizes the relevance of this subject matter to the nuclear reactor industry. Next, the spectrum of NRS data types are classified into categories, in order to provide a basis for assessing individual comparison methods. Then, a summary of the survey is provided, where each

  1. Analytical considerations in the code qualification of piping systems

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1995-01-01

    The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice

  2. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  3. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  4. Transient and fuel performance analysis with VTT's coupled code system

    International Nuclear Information System (INIS)

    Daavittila, A.; Hamalainen, A.; Raty, H.

    2005-01-01

    VTT (technical research center of Finland) maintains and further develops a comprehensive safety analysis code system ranging from the basic neutronic libraries to 3-dimensional transient analysis and fuel behaviour analysis codes. The code system is based on various types of couplings between the relevant physical phenomena. The main tools for analyses of reactor transients are presently the 3-dimensional reactor dynamics code HEXTRAN for cores with a hexagonal fuel assembly geometry and TRAB-3D for cores with a quadratic fuel assembly geometry. HEXTRAN has been applied to safety analyses of VVER type reactors since early 1990's. TRAB-3D is the latest addition to the code system, and has been applied to BWR and PWR analyses in recent years. In this paper it is shown that TRAB-3D has calculated accurately the power distribution during the Olkiluoto-1 load rejection test. The results from the 3-dimensional analysis can be used as boundary conditions for more detailed fuel rod analysis. For this purpose a general flow model GENFLO, developed at VTT, has been coupled with USNRC's FRAPTRAN fuel accident behaviour model. The example case for FRAPTRAN-GENFLO is for an ATWS at a BWR plant. The basis for the analysis is an oscillation incident in the Olkiluoto-1 BWR during reactor startup on February 22, 1987. It is shown that the new coupled code FRAPTRAN/GENFLO is quite a promising tool that can handle flow situations and give a detailed analysis of reactor transients

  5. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  6. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  7. Improvement of JRR-4 core management code system

    International Nuclear Information System (INIS)

    Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N.

    2000-01-01

    In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)

  8. Development of the vacuum system pressure responce analysis code PRAC

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Kawasaki, Kouzou; Noshiroya, Shyoji; Koizumi, Jun-ichi.

    1985-03-01

    In this report, we show the method and numerical results of the vacuum system pressure responce analysis code. Since fusion apparatus is made up of many vacuum components, it is required to analyze pressure responce at any points of the system when vacuum system is designed or evaluated. For that purpose evaluating by theoretical solution is insufficient. Numerical analysis procedure such as finite difference method is usefull. In the PRAC code (Pressure Responce Analysis Code), pressure responce is obtained solving derivative equations which is obtained from the equilibrium relation of throughputs and contain the time derivative of pressure. As it considers both molecular and viscous flows, the coefficients of the equation depend on the pressure and the equations become non-linear. This non-linearity is treated as piece-wise linear within each time step. Verification of the code is performed for the simple problems. The agreement between numerical and theoretical solutions is good. To compare with the measured results, complicated model of gas puffing system is analyzed. The agreement is well for practical use. This code will be a useful analytical tool for designing and evaluating vacuum systems such as fusion apparatus. (author)

  9. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  10. A Coding System for Analysing a Spoken Text Database.

    Science.gov (United States)

    Cutting, Joan

    1994-01-01

    This paper describes a coding system devised to analyze conversations of graduate students in applied linguistics at Edinburgh University. The system was devised to test the hypothesis that as shared knowledge among conversation participants grows, the textual density of in-group members has more cues than that of strangers. The informal…

  11. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  12. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  13. Progress on China nuclear data processing code system

    Science.gov (United States)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  14. Code conversion for system design and safety analysis of NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)

  15. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  16. Simulation of water hammer phenomena using the system code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Bratfisch, Christoph; Koch, Marco K. [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2017-07-15

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  17. Simulation of water hammer phenomena using the system code ATHLET

    International Nuclear Information System (INIS)

    Bratfisch, Christoph; Koch, Marco K.

    2017-01-01

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  18. Development of the versatile reactor analysis code system, MARBLE2

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Jin, Tomoyuki; Hazama, Taira; Hirai, Yasushi

    2015-07-01

    The second version of the versatile reactor analysis code system, MARBLE2, has been developed. A lot of new functions have been added in MARBLE2 by using the base technology developed in the first version (MARBLE1). Introducing the remaining functions of the conventional code system (JOINT-FR and SAGEP-FR), MARBLE2 enables one to execute almost all analysis functions of the conventional code system with the unified user interfaces of its subsystem, SCHEME. In particular, the sensitivity analysis functionality is available in MARBLE2. On the other hand, new built-in solvers have been developed, and existing ones have been upgraded. Furthermore, some other analysis codes and libraries developed in JAEA have been consolidated and prepared in SCHEME. In addition, several analysis codes developed in the other institutes have been additionally introduced as plug-in solvers. Consequently, gamma-ray transport calculation and heating evaluation become available. As for another subsystem, ORPHEUS, various functionality updates and speed-up techniques have been applied based on user experience of MARBLE1 to enhance its usability. (author)

  19. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  20. Development of FBR integrity system code. Basic concept

    International Nuclear Information System (INIS)

    Asayama, Tai

    2001-05-01

    For fast breeder reactors to be commercialized, they must be more reliable, safer, and at the same, economically competitive with future light water reactors. Innovation of elevated temperature structural design standard is necessary to achieve this goal. The most powerful way is to enlarge the scope of structural integrity code to cover items other than design evaluation that has been addressed in existing codes. Items that must be newly covered are prerequisites of design, fabrication, examination, operation and maintenance, etc. This allows designers to choose the most economical combination of design variations to achieve specific reliability that is needed for a particular component. Designing components by this concept, a cost-minimum design of a whole plant can be realized. By determining the reliability that must be achieved for a component by risk technologies, further economical improvement can be expected by avoiding excessive quality. Recognizing the necessity for the codes based on the new concept, the development of 'FBR integrity system code' began in 2000. Research and development will last 10 years. For this development, the basic logistics and system as well as technologies that materialize the concept are necessary. Original logistics and system must be developed, because no existing researches are available in and out of Japan. This reports presents the results of the work done in the first year regarding the basic idea, methodology, and structure of the code. (author)

  1. Java Source Code Analysis for API Migration to Embedded Systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Victor [Univ. of Nebraska, Omaha, NE (United States); McCoy, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guerrero, Jonathan [Univ. of Nebraska, Omaha, NE (United States); Reinke, Carl Werner [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perry, James Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered by APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.

  2. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  3. Analysis of an XADS Target with the System Code TRACE

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor H.; Feng, Bo

    2008-01-01

    Accelerator-driven systems (ADS) present an option to reduce the radioactive waste of the nuclear industry. The experimental Accelerator-Driven System (XADS) has been designed to investigate the feasibility of using ADS on an industrial scale to burn minor actinides. The target section lies in the middle of the subcritical core and is bombarded by a proton beam to produce spallation neutrons. The thermal energy produced from this reaction requires a heat removal system for the target section. The target is cooled by liquid lead-bismuth-eutectics (LBE) in the primary system which in turn transfers the heat via a heat exchanger (HX) to the secondary coolant, Diphyl THT (DTHT), a synthetic diathermic fluid. Since this design is still in development, a detailed investigation of the system is necessary to evaluate the behavior during normal and transient operations. Due to the lack of experimental facilities and data for ADS, the analyses are mostly done using thermal hydraulic codes. In addition to evaluating the thermal hydraulics of the XADS, this paper also benchmarks a new code developed by the NRC, TRACE, against other established codes. The events used in this study are beam power switch-on/off transients and a loss of heat sink accident. The obtained results from TRACE were in good agreement with the results of various other codes. (authors)

  4. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  5. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  6. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  7. Adaptive Wavelet Coding Applied in a Wireless Control System.

    Science.gov (United States)

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  8. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  9. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would be a ...

  10. High-resolution mapping of the x-linked hypohidrotic ectodermal dysplasia (EDA) locus

    Energy Technology Data Exchange (ETDEWEB)

    Zonana, J.; Jones, M.; Litt, M.; Kramer, P.; Browne, D.; Becker, H.W. (Oregon Health Sciences Univ., Portland, OR (United States)); Brockdorff, N.; Rastan, S. (Medical Council Clinical Research Centre, Harrow (United Kingdom)); Davies, K.P.; Clarke, A. (Univ. of Wales College of Medicine, Cardiff (United Kingdom)) (and others)

    1992-11-01

    The X-linked hypohidrotic ectodermal dysplasia (EDA) locus has been previously localized to the subchromosomal region Xq11-q21.1. The authors have extended previous linkage studies and analyzed linkage between the EDA locus and 10 marker loci, including five new loci, in 41 families. Four of the marker loci showed no recombination with the EDA locus, and six other loci were also linked to the EDA locus with recombination fractions of .009-.075. Multipoint analysis gave support to the placement of the PGK1P1 locus proximal to the EDA locus and the DXS453 and PGK1 loci distal to EDA. Further ordering of the loci could be inferred from a human-rodent somatic cell hybrid derived from an affected female with EDA and an X;9 translocation and from studies of an affected male with EDA and a submicroscopic deletion. Three of the proximal marker loci, which showed no recombination with the EDA locus, when used in combination, were informative in 92% of females. The closely linked flanking polymorphic loci DXS339 and DXS453 had heterozygosites of 72% and 76%, respectively, and when used jointly, they were doubly informative in 52% of females. The human DXS732 locus was defined by a conserved mouse probe pcos169E/4 (DXCrc169 locus) that consegregates with the mouse tabby (Ta) locus, a potential homologue to the EDA locus. The absence of recombination between EDA and the DXSA732 locus lends support to the hypothesis that the DXCrc169 locus in the mouse and the DXS732 locus in humans may contain candidate sequences for the Ta and EDA genes, respectively. 36 refs., 1 fig., 5 tabs.

  11. PCS a code system for generating production cross section libraries

    International Nuclear Information System (INIS)

    Cox, L.J.

    1997-01-01

    This document outlines the use of the PCS Code System. It summarizes the execution process for generating FORMAT2000 production cross section files from FORMAT2000 reaction cross section files. It also describes the process of assembling the ASCII versions of the high energy production files made from ENDL and Mark Chadwick's calculations. Descriptions of the function of each code along with its input and output and use are given. This document is under construction. Please submit entries, suggestions, questions, and corrections to (ljc at sign llnl.gov) 3 tabs

  12. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  13. ERRORJ. Covariance processing code system for JENDL. Version 2

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-09-01

    ERRORJ is the covariance processing code system for Japanese Evaluated Nuclear Data Library (JENDL) that can produce group-averaged covariance data to apply it to the uncertainty analysis of nuclear characteristics. ERRORJ can treat the covariance data for cross sections including resonance parameters as well as angular distributions and energy distributions of secondary neutrons which could not be dealt with by former covariance processing codes. In addition, ERRORJ can treat various forms of multi-group cross section and produce multi-group covariance file with various formats. This document describes an outline of ERRORJ and how to use it. (author)

  14. Results from the Coded Aperture Neutron Imaging System (CANIS)

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Hilton, Nathan R.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging- a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  15. Results from the coded aperture neutron imaging system

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging - a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  16. Fusion PIC code performance analysis on the Cori KNL system

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Tuomas S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Raman, Karthic [INTEL Corp. (United States)

    2017-05-25

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization is shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.

  17. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  18. The Vulnerability Assessment Code for Physical Protection System

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2007-01-01

    To neutralize the increasing terror threats, nuclear facilities have strong physical protection system (PPS). PPS includes detectors, door locks, fences, regular guard patrols, and a hot line to a nearest military force. To design an efficient PPS and to fully operate it, vulnerability assessment process is required. Evaluating PPS of a nuclear facility is complicate process and, hence, several assessment codes have been developed. The estimation of adversary sequence interruption (EASI) code analyzes vulnerability along a single intrusion path. To evaluate many paths to a valuable asset in an actual facility, the systematic analysis of vulnerability to intrusion (SAVI) code was developed. KAERI improved SAVI and made the Korean analysis of vulnerability to intrusion (KAVI) code. Existing codes (SAVI and KAVI) have limitations in representing the distance of a facility because they use the simplified model of a PPS called adversary sequence diagram. In adversary sequence diagram the position of doors, sensors and fences is described just as the locating area. Thus, the distance between elements is inaccurate and we cannot reflect the range effect of sensors. In this abstract, we suggest accurate and intuitive vulnerability assessment based on raster map modeling of PPS. The raster map of PPS accurately represents the relative position of elements and, thus, the range effect of sensor can be easily incorporable. Most importantly, the raster map is easy to understand

  19. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  20. ITER EDA newsletter. V. 7, no. 6

    International Nuclear Information System (INIS)

    1998-06-01

    This newsletter contains the articles: 'ITER representation at the 11th Pacific Basin Nuclear Conference', 'Summary of discussion points and further deliberations in the special committee on the ITER project in the Atomic Energy Commission', and 'ITER radio frequency systems'

  1. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    technical competence for the type of tests and calibrations SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 ...and exec t [ ISO / IEC 2005]. f a software system indicates that the SCALe analysis di by a CERT secure coding standard. Successful conforma antees that...to be more secure than non- systems. However, no study has yet been performed to p t ssment in accordance with ISO / IEC 17000: “a demonstr g to a

  2. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  3. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  4. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, G., E-mail: giacomino.bandini@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Polidori, M. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Gerschenfeld, A.; Pialla, D.; Li, S. [Commissariat à l’Energie Atomique (CEA) (France); Ma, W.M.; Kudinov, P.; Jeltsov, M.; Kööp, K. [Royal Institute of Technology (KTH) (Sweden); Huber, K.; Cheng, X.; Bruzzese, C.; Class, A.G.; Prill, D.P. [Karlsruhe Institute of Technology (KIT) (Germany); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Geffray, C.; Macian-Juan, R. [Technische Universität München (TUM) (Germany); Maas, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)

    2015-01-15

    Highlights: • The assessment of RELAP5, TRACE and CATHARE system codes on integral experiments is presented. • Code benchmark of CATHARE, DYN2B, and ATHLET on PHENIX natural circulation experiment. • Grid-free pool modelling based on proper orthogonal decomposition for system codes is explained. • The code coupling methodologies are explained. • The coupling of several CFD/system codes is tested against integral experiments. - Abstract: The THINS project of the 7th Framework EU Program on nuclear fission safety is devoted to the investigation of crosscutting thermal–hydraulic issues for innovative nuclear systems. A significant effort in the project has been dedicated to the qualification and validation of system codes currently employed in thermal–hydraulic transient analysis for nuclear reactors. This assessment is based either on already available experimental data, or on the data provided by test campaigns carried out in the frame of THINS project activities. Data provided by TALL and CIRCE facilities were used in the assessment of system codes for HLM reactors, while the PHENIX ultimate natural circulation test was used as reference for a benchmark exercise among system codes for sodium-cooled reactor applications. In addition, a promising grid-free pool model based on proper orthogonal decomposition is proposed to overcome the limits shown by the thermal–hydraulic system codes in the simulation of pool-type systems. Furthermore, multi-scale system-CFD solutions have been developed and validated for innovative nuclear system applications. For this purpose, data from the PHENIX experiments have been used, and data are provided by the tests conducted with new configuration of the TALL-3D facility, which accommodates a 3D test section within the primary circuit. The TALL-3D measurements are currently used for the validation of the coupling between system and CFD codes.

  5. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs.

  6. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs

  7. Decay heat experiment and validation of calculation code systems for fusion reactor

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of ±10%. (author)

  8. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  9. An Expert System for the Development of Efficient Parallel Code

    Science.gov (United States)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  10. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  11. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  12. Improving system modeling accuracy with Monte Carlo codes

    International Nuclear Information System (INIS)

    Johnson, A.S.

    1996-01-01

    The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed

  13. Coded aperture material motion detection system for the ACPR

    International Nuclear Information System (INIS)

    McArthur, D.A.; Kelly, J.G.

    1975-01-01

    Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages

  14. Characterization of a human X-linked gene from the DXS732E locus in the candidate region for the anhidrotic ectodermal dysplasia (EDA) gene (Xq13.1)

    Energy Technology Data Exchange (ETDEWEB)

    Gault, J.; Zonana, J. [Oregon Health Sciences Univ., Portland, OR (United States); Zeltinger, J. [Univ. of Washington, Seattle, WA (United States)] [and others

    1994-09-01

    A conserved mouse genomic clone was used to identify a homologous human genomic clone (the DXS732E locus), which was subsequently employed to isolate cDNAs from a human fetal brain library. Nine unique overlapping cDNAs were isolated, and sequences analysis of 3.9 kb identified a putative 1 kb ORF. GRAIL analysis of the sequence supported the hypothesis that the putative ORF was coding sequence, and Prosite analysis of the putative ORF identified potential glycosylation and phosphorylation sites. The 5{prime} end of the gene maps within a CpG island, and comparison of cDNA sequences indicate the gene is alternatively spliced at its 3{prime} end. Northern analysis and RT-PCR indicate that two different sized messages appear to be expressed with the gene expressed in human fetal kidney, intestine, brain, and muscle. The gene is expressed in 77 day human skin, a time when hair follicle formation occurs. Anhidrotic ectodermal dysplasia (EDA) results in the abnormal morphogenesis of hair, teeth and eccrine sweat glands. A positional cloning strategy towards cloning the EDA gene had been used, and deletion and X-autosome translocation patients have been useful in further delimiting the EDA region. The present gene at the DXS732E locus is partially deleted in one EDA patient who does not have other apparent abnormalities. No rearrangements of the gene have been detected in two female X-autosome translocation EDA patients, nor in four additional male patients with submicroscopic molecular deletions.

  15. Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia.

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J; Schneider, Pascal

    2014-02-14

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.

  16. Generation and Characterization of Function-blocking Anti-ectodysplasin A (EDA) Monoclonal Antibodies That Induce Ectodermal Dysplasia*

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J.; Schneider, Pascal

    2014-01-01

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated. PMID:24391090

  17. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  18. Parametric analysis and operational performance of EDA-ITER

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Tsunematsu, Toshihide; Fujieda, Hirobumi.

    1994-06-01

    Confinement capability of EDA-ITER is investigated by using a 0-D model based on CDA physics design guidelines. Confinement enhancement factor (H-factor) is evaluated and required fusion power (P FUS ) for the ignition is calculated. It is found that ignition is possible in H-mode plasma (H=2) when helium accumulation (He) is 10% and P FUS ≥ 1 GW. For Rebut-Lallia scaling law, L-mode (H=1) ignition is possible when P FUS ≥ 3 GW. The required fusion power is, however, more than 4 GW even in H-mode plasmas when the helium accumulation is 20%. Therefore, it is an important future work to study how much helium accumulates in a burning plasma. Capability of steady-state mode operation is also investigated. Required current-drive power for H-mode plasma is about 140 MW when He=10% and the fusion gain Q is more than 5. If the enhanced confinement (H∼3) in high safety factor region (q∼5) can be adoptable, steady-state operation with Q>10 is possible and the required current-drive power is about 60 MW. In spite of the larger fusion power, the divertor heat load of EDA-ITER calculated by scaling models is comparable or smaller than that of CDA-ITER due to the longer connection length. Thermal instability of EDA-ITER is also investigated. The growth time is about 15 s for ITER89 power scaling law. Fusion power excursion is investigated in very preliminary way. It is found that the power rises from 1.5 GW to 3 GW in about 100 s if there is no control. Although this instability could be stabilized by beta limit or helium accumulation effect, it is an important future work since it may cause severe problem. (author)

  19. Computer codes and methods for simulating accelerator driven systems

    International Nuclear Information System (INIS)

    Sartori, E.; Byung Chan Na

    2003-01-01

    A large set of computer codes and associated data libraries have been developed by nuclear research and industry over the past half century. A large number of them are in the public domain and can be obtained under agreed conditions from different Information Centres. The areas covered comprise: basic nuclear data and models, reactor spectra and cell calculations, static and dynamic reactor analysis, criticality, radiation shielding, dosimetry and material damage, fuel behaviour, safety and hazard analysis, heat conduction and fluid flow in reactor systems, spent fuel and waste management (handling, transportation, and storage), economics of fuel cycles, impact on the environment of nuclear activities etc. These codes and models have been developed mostly for critical systems used for research or power generation and other technological applications. Many of them have not been designed for accelerator driven systems (ADS), but with competent use, they can be used for studying such systems or can form the basis for adapting existing methods to the specific needs of ADS's. The present paper describes the types of methods, codes and associated data available and their role in the applications. It provides Web addresses for facilitating searches for such tools. Some indications are given on the effect of non appropriate or 'blind' use of existing tools to ADS. Reference is made to available experimental data that can be used for validating the methods use. Finally, some international activities linked to the different computational aspects are described briefly. (author)

  20. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  1. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  2. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  3. Impact of Different Spreading Codes Using FEC on DWT Based MC-CDMA System

    OpenAIRE

    Masum, Saleh; Kabir, M. Hasnat; Islam, Md. Matiqul; Shams, Rifat Ara; Ullah, Shaikh Enayet

    2012-01-01

    The effect of different spreading codes in DWT based MC-CDMA wireless communication system is investigated. In this paper, we present the Bit Error Rate (BER) performance of different spreading codes (Walsh-Hadamard code, Orthogonal gold code and Golay complementary sequences) using Forward Error Correction (FEC) of the proposed system. The data is analyzed and is compared among different spreading codes in both coded and uncoded cases. It is found via computer simulation that the performance...

  4. Structure and operation of the ITS code system

    International Nuclear Information System (INIS)

    Halbleib, J.

    1988-01-01

    The TIGER series of time-independent coupled electron-photon Monte Carlo transport codes is a group of multimaterial and multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron-photon cascade by combining microscopic photon transport with a macroscopic random walk for electron transport. Major contributors to its evolution are listed. The author and his associates are primarily code users rather than code developers, and have borrowed freely from existing work wherever possible. Nevertheless, their efforts have resulted in various software packages for describing the production and transport of the electron-photon cascade that they found sufficiently useful to warrant dissemination through the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory. The ITS system (Integrated TIGER Series) represents the organization and integration of this combined software, along with much additional capability from previously unreleased work, into a single convenient package of exceptional user friendliness and portability. Emphasis is on simplicity and flexibility of application without sacrificing the rigor or sophistication of the physical model

  5. A seismic data compression system using subband coding

    Science.gov (United States)

    Kiely, A. B.; Pollara, F.

    1995-01-01

    This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  6. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi

    2009-05-01

    Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)

  7. Multiple Description Coding for Closed Loop Systems over Erasure Channels

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2013-01-01

    In this paper, we consider robust source coding in closed-loop systems. In particular, we consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network has random delays and erasures on the data-rate limited (digital) forward channel between the encoder (controller......) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet...... by showing that the system can be cast as a Markov jump linear system....

  8. Involvement of the EU industry in ITER EDA

    International Nuclear Information System (INIS)

    Bogusch, E.

    2001-01-01

    Since the fifties, European industry has been involved in research and development in the field of nuclear fusion as a potential future source of energy. Early contributions mainly included deliveries of plant components and services to experimental facilities. In the Engineering Design Activities (EDA) phase of the planned multinational International Thermonuclear Experimental Reactor (ITER) in 1993 to 2001 this commitment of industry was intensified. Industries from seven European countries participated in the project with various contributions, e.g., in the development, design, and manufacture of components, and in the development of methods of planning and executing the complex ITER project. These activities were accompanied by an extensive R and D program. e.g., about materials and methods of manufacturing ITER components. In this way, European industry made an important contribution to the further development of nuclear fusion within the framework of ITER EDA activities, and will be able to continue this work intensively in the expected ITER construction phase to follow. (orig.) [de

  9. BER performance comparison of optical CDMA systems with/without turbo codes

    Science.gov (United States)

    Kulkarni, Muralidhar; Chauhan, Vijender S.; Dutta, Yashpal; Sinha, Ravindra K.

    2002-08-01

    In this paper, we have analyzed and simulated the BER performance of a turbo coded optical code-division multiple-access (TC-OCDMA) system. A performance comparison has been made between uncoded OCDMA and TC-OCDMA systems employing various OCDMA address codes (optical orthogonal codes (OOCs), Generalized Multiwavelength Prime codes (GMWPC's), and Generalized Multiwavelength Reed Solomon code (GMWRSC's)). The BER performance of TC-OCDMA systems has been analyzed and simulated by varying the code weight of address code employed by the system. From the simulation results, it is observed that lower weight address codes can be employed for TC-OCDMA systems that can have the equivalent BER performance of uncoded systems employing higher weight address codes for a fixed number of active users.

  10. Method of laser beam coding for control systems

    Science.gov (United States)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  11. Security Concerns and Countermeasures in Network Coding Based Communications Systems

    DEFF Research Database (Denmark)

    Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani

    2015-01-01

    key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active......This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....

  12. VACOSS - variable coding seal system for nuclear material control

    International Nuclear Information System (INIS)

    Kennepohl, K.; Stein, G.

    1977-12-01

    VACOSS - Variable Coding Seal System - is intended to seal: rooms and containers with nuclear material, nuclear instrumentation and equipment of the operator, instrumentation and equipment at the supervisory authority. It is easy to handle, reusable, transportable and consists of three components: 1. Seal. The light guide in fibre optics with infrared light emitter and receiver serves as lead. The statistical treatment of coded data given in the seal via adapter box guarantees an extremely high degree of access reliability. It is possible to store the data of two undue seal openings together with data concerning time and duration of the opening. 2. The adapter box can be used for input or input and output of data indicating the seal integrity. 3. The simulation programme is located in the computing center of the supervisory authority and permits to determine date and time of opening by decoding the seal memory data. (orig./WB) [de

  13. Alignment effects on a neutron imaging system using coded apertures

    International Nuclear Information System (INIS)

    Thfoin, Isabelle; Landoas, Olivier; Caillaud, Tony; Vincent, Maxime; Bourgade, Jean-Luc; Rosse, Bertrand; Disdier, Laurent; Sangster, Thomas C.; Glebov, Vladimir Yu.; Pien, Greg; Armstrong, William

    2010-01-01

    A high resolution neutron imaging system is being developed and tested on the OMEGA laser facility for inertial confinement fusion experiments. This diagnostic uses a coded imaging technique with a penumbral or an annular aperture. The sensitiveness of these techniques to misalignment was pointed out with both experiments and simulations. Results obtained during OMEGA shots are in good agreement with calculations performed with the Monte Carlo code GEANT4. Both techniques are sensitive to the relative position of the source in the field of view. The penumbral imaging technique then demonstrates to be less sensitive to misalignment compared to the ring. These results show the necessity to develop a neutron imaging diagnostic for megajoule class lasers taking into account our alignment capabilities on such facilities.

  14. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  15. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  16. Development of a domestically-made system code

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from the Fukushima-Daiichi NPP accidents, a new safety standard based on state-of-the-art findings has been established by the Japanese Nuclear Regulation Authority (NRA) and will soon come into force in Japan. In order to ensure a precise response to this movement from a technological point of view, it should be required for safety regulation to develop a new system code with much smaller uncertainty and reinforced simulation capability even in application to beyond-DBAs (BDBAs), as well as with the capability of close coupling to a newly developing severe accident code. Accordingly, development of a new domestically-made system code that incorporates 3-dimensional and 3 or more fluid thermal-hydraulics in tandem with a 3-dimensional neutronics has been started in 2012. In 2012, two branches of development activities, the development of 'main body' and advanced features have been started in parallel for development efficiency. The main body has been started from scratch and the following activities have therefore been performed: 1) development and determination of key principles and methodologies to realize a flexible, extensible and robust platform, 2) determination of requirements definition, 3) start of basic program design and coding and 4) start of a development of prototypical GUI-based pre-post processor. As for the advanced features, the following activities have been performed: 1) development of Phenomena Identification and Ranking Tables (PIRTs) and model capability matrix from normal operations to BDBAs in order to address requirements definition for advanced modeling, 2) development of detailed action plan for modification of field equations, numerical schemes and solvers and 3) start of the program development of field equations with an interfacial area concentration transport equation, a robust solver for condensation induced water hammer phenomena and a versatile Newton-Raphson solver. (author)

  17. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  18. A study on the nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Lee, Jong Bok; Choi, Young Gil; Suh, Soong Hyok; Kang, Byong Heon; Kim, Hee Kyung; Kim, Ko Ryeo; Park, Soo Jin

    1990-12-01

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  19. System code improvements for modelling passive safety systems and their validation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Cron, Daniel von der; Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    GRS has been developing the system code ATHLET over many years. Because ATHLET, among other codes, is widely used in nuclear licensing and supervisory procedures, it has to represent the current state of science and technology. New reactor concepts such as Generation III+ and IV reactors and SMR are using passive safety systems intensively. The simulation of passive safety systems with the GRS system code ATHLET is still a big challenge, because of non-defined operation points and self-setting operation conditions. Additionally, the driving forces of passive safety systems are smaller and uncertainties of parameters have a larger impact than for active systems. This paper addresses the code validation and qualification work of ATHLET on the example of slightly inclined horizontal heat exchangers, which are e. g. used as emergency condensers (e. g. in the KERENA and the CAREM) or as heat exchanger in the passive auxiliary feed water systems (PAFS) of the APR+.

  20. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  1. THYDE-NEU: Nuclear reactor system analysis code

    International Nuclear Information System (INIS)

    Asahi, Yoshiro

    2002-03-01

    THYDE-NEU is applicable not only to transient analyses, but also to steady state analyses of nuclear reactor systems (NRSs). In a steady state analysis, the code generates a solution satisfying the transient equations without external disturbances. In a transient analysis, the code calculates temporal NRS behaviors in response to various external disturbances in such a way that mass and energy of the coolant as well as the number of neutrons conserve. The first half of the report is the description of the methods and models for use in the THYDE-NEU code, i.e., (1) the thermal-hydraulic network model, (2) the spatial kinetics model, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the users' mannual containing the items; (1) the program control, (2) the input requirements, (3) the execution of THYDE-NEU jobs, (4) the output specifications and (5) the sample calculation. (author)

  2. Simplified modeling and code usage in the PASC-3 code system by the introduction of a programming environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.L.; Slobben, J.

    1991-06-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified. Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  3. SALT [System Analysis Language Translater]: A steady state and dynamic systems code

    International Nuclear Information System (INIS)

    Berry, G.; Geyer, H.

    1983-01-01

    SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs

  4. EquiFACS: The Equine Facial Action Coding System.

    Directory of Open Access Journals (Sweden)

    Jen Wathan

    Full Text Available Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats. EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  5. Electronic health record standards, coding systems, frameworks, and infrastructures

    CERN Document Server

    Sinha, Pradeep K; Bendale, Prashant; Mantri, Manisha; Dande, Atreya

    2013-01-01

    Discover How Electronic Health Records Are Built to Drive the Next Generation of Healthcare Delivery The increased role of IT in the healthcare sector has led to the coining of a new phrase ""health informatics,"" which deals with the use of IT for better healthcare services. Health informatics applications often involve maintaining the health records of individuals, in digital form, which is referred to as an Electronic Health Record (EHR). Building and implementing an EHR infrastructure requires an understanding of healthcare standards, coding systems, and frameworks. This book provides an

  6. PWR core follow calculations using the ELCOS code system

    International Nuclear Information System (INIS)

    Grimm, P.; Paratte, J.M.

    1990-01-01

    The ELCOS code system developed at PSI is used to simulate a cycle of a PWR in which one fifth of the assemblies are MOX fuel. The reactor and the calculational methods are briefly described. The calculated critical boron concentrations and power distributions are compared with the measurements at the plant. Although the critical boron concentration is somewhat overpredicted and the computed power distributions are slightly flatter than the measured ones the results of the calculations agree generally well with the measured data. (author) 1 tab., 8 figs., 6 refs

  7. Nonterminals, homomorphisms and codings in different variations of OL-systems. II. Nondeterministic systems

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Salomaa, Arto

    1974-01-01

    Continuing the work begun in Part I of this paper, we consider now variations of nondeterministic OL-systems. The present Part II of the paper contains a systematic classification of the effect of nonterminals, codings, weak codings, nonerasing homomorphisms and homomorphisms for all basic variat...

  8. Geographic Information Systems using CODES linked data (Crash outcome data evaluation system)

    Science.gov (United States)

    2001-04-01

    This report presents information about geographic information systems (GIS) and CODES linked data. Section one provides an overview of a GIS and the benefits of linking to CODES. Section two outlines the basic issues relative to the types of map data...

  9. [Data coding in the Israeli healthcare system - do choices provide the answers to our system's needs?].

    Science.gov (United States)

    Zelingher, Julian; Ash, Nachman

    2013-05-01

    The IsraeLi healthcare system has undergone major processes for the adoption of health information technologies (HIT), and enjoys high Levels of utilization in hospital and ambulatory care. Coding is an essential infrastructure component of HIT, and ts purpose is to represent data in a simplified and common format, enhancing its manipulation by digital systems. Proper coding of data enables efficient identification, storage, retrieval and communication of data. UtiLization of uniform coding systems by different organizations enables data interoperability between them, facilitating communication and integrating data elements originating in different information systems from various organizations. Current needs in Israel for heaLth data coding include recording and reporting of diagnoses for hospitalized patients, outpatients and visitors of the Emergency Department, coding of procedures and operations, coding of pathology findings, reporting of discharge diagnoses and causes of death, billing codes, organizational data warehouses and national registries. New national projects for cLinicaL data integration, obligatory reporting of quality indicators and new Ministry of Health (MOH) requirements for HIT necessitate a high Level of interoperability that can be achieved only through the adoption of uniform coding. Additional pressures were introduced by the USA decision to stop the maintenance of the ICD-9-CM codes that are also used by Israeli healthcare, and the adoption of ICD-10-C and ICD-10-PCS as the main coding system for billing purpose. The USA has also mandated utilization of SNOMED-CT as the coding terminology for the ELectronic Health Record problem list, and for reporting quality indicators to the CMS. Hence, the Israeli MOH has recently decided that discharge diagnoses will be reported using ICD-10-CM codes, and SNOMED-CT will be used to code the cLinical information in the EHR. We reviewed the characteristics, strengths and weaknesses of these two coding

  10. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2008-08-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  11. Evaluation of system codes for analyzing naturally circulating gas loop

    International Nuclear Information System (INIS)

    Lee, Jeong Ik; No, Hee Cheon; Hejzlar, Pavel

    2009-01-01

    Steady-state natural circulation data obtained in a 7 m-tall experimental loop with carbon dioxide and nitrogen are presented in this paper. The loop was originally designed to encompass operating range of a prototype gas-cooled fast reactor passive decay heat removal system, but the results and conclusions are applicable to any natural circulation loop operating in regimes having buoyancy and acceleration parameters within the ranges validated in this loop. Natural circulation steady-state data are compared to numerical predictions by two system analysis codes: GAMMA and RELAP5-3D. GAMMA is a computational tool for predicting various transients which can potentially occur in a gas-cooled reactor. The code has a capability of analyzing multi-dimensional multi-component mixtures and includes models for friction, heat transfer, chemical reaction, and multi-component molecular diffusion. Natural circulation data with two gases show that the loop operates in the deteriorated turbulent heat transfer (DTHT) regime which exhibits substantially reduced heat transfer coefficients compared to the forced turbulent flow. The GAMMA code with an original heat transfer package predicted conservative results in terms of peak wall temperature. However, the estimated peak location did not successfully match the data. Even though GAMMA's original heat transfer package included mixed-convection regime, which is a part of the DTHT regime, the results showed that the original heat transfer package could not reproduce the data with sufficient accuracy. After implementing a recently developed correlation and corresponding heat transfer regime map into GAMMA to cover the whole range of the DTHT regime, we obtained better agreement with the data. RELAP5-3D results are discussed in parallel.

  12. Quality assurance and verification of the MACCS [MELCOR Accident Consequence Code System] code, Version 1.5

    International Nuclear Information System (INIS)

    Dobbe, C.A.; Carlson, E.R.; Marshall, N.H.; Marwil, E.S.; Tolli, J.E.

    1990-02-01

    An independent quality assurance (QA) and verification of Version 1.5 of the MELCOR Accident Consequence Code System (MACCS) was performed. The QA and verification involved examination of the code and associated documentation for consistent and correct implementation of the models in an error-free FORTRAN computer code. The QA and verification was not intended to determine either the adequacy or appropriateness of the models that are used MACCS 1.5. The reviews uncovered errors which were fixed by the SNL MACCS code development staff prior to the release of MACCS 1.5. Some difficulties related to documentation improvement and code restructuring are also presented. The QA and verification process concluded that Version 1.5 of the MACCS code, within the scope and limitations process concluded that Version 1.5 of the MACCS code, within the scope and limitations of the models implemented in the code is essentially error free and ready for widespread use. 15 refs., 11 tabs

  13. Development of GUI systems for the MIDAS code

    International Nuclear Information System (INIS)

    Kim, K.R.; Park, S.H.; Kim, D.H.

    2004-01-01

    MIDAS is being developed at KAERI based on MELCOR as an integrated severe accident analysis code with existing model modification and new model addition. MIDAS was restructured to avoid the pointer based variable referencing style of MELCOR, and enhanced the memory effectiveness using the dynamic allocation method of Fortran 90. This paper describes recent activities of developing the GUI environments for MIDAS code at KAERI. Up to now, we have developed the four PC-based subsystems, which are IEDIT, IPLOT, SATS and HyperKAMG. IEDIT is an input management system that can read MELCOR input files and display its information in the Window panels. Users can modify each item in the panel and the input file will be modified according to that changes. IPLOT is a simple plotting system that can draw MIDAS plot variables trend graphs. SATS is developed as a severe accident training simulator that can display nuclear plant behavior graphically. Moreover SATS provides several controllable pumps and valves which appeared in the severe accidence. Together with SATS and the online severe accident guidance HyperKAMG, combined properly, severe accident mitigation scenarios could be presented graphically and dramatically without any change of MELCOR inputs. GUI development as a part of a severe accident management program package, MIDAS. (author)

  14. Source Code Verification for Embedded Systems using Prolog

    Directory of Open Access Journals (Sweden)

    Frank Flederer

    2017-01-01

    Full Text Available System relevant embedded software needs to be reliable and, therefore, well tested, especially for aerospace systems. A common technique to verify programs is the analysis of their abstract syntax tree (AST. Tree structures can be elegantly analyzed with the logic programming language Prolog. Moreover, Prolog offers further advantages for a thorough analysis: On the one hand, it natively provides versatile options to efficiently process tree or graph data structures. On the other hand, Prolog's non-determinism and backtracking eases tests of different variations of the program flow without big effort. A rule-based approach with Prolog allows to characterize the verification goals in a concise and declarative way. In this paper, we describe our approach to verify the source code of a flash file system with the help of Prolog. The flash file system is written in C++ and has been developed particularly for the use in satellites. We transform a given abstract syntax tree of C++ source code into Prolog facts and derive the call graph and the execution sequence (tree, which then are further tested against verification goals. The different program flow branching due to control structures is derived by backtracking as subtrees of the full execution sequence. Finally, these subtrees are verified in Prolog. We illustrate our approach with a case study, where we search for incorrect applications of semaphores in embedded software using the real-time operating system RODOS. We rely on computation tree logic (CTL and have designed an embedded domain specific language (DSL in Prolog to express the verification goals.

  15. ITER-EDA physics design requirements and plasma performance assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Galambos, J.; Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S.

    1996-01-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R ampersand D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of ∼1.6 that produces a nominal fusion power of ∼1.5 GW for an ignited burn pulse length of ≥1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement (τ E = 0.85 x τ ITER93H ), helium exhaust (τ* He /τ E = 10), representative plasma impurities (n Be /n e = 2%), and beta limit [β N = β(%)/(I/aB) ≤ 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power (∼ 1--1.5 GW) and fluence (∼1 MWa/m 2 ) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust (τ* He /τ E ≤ 5) and potential operation in reverse-shear mode significantly improve ITER performance

  16. Interval Coded Scoring: a toolbox for interpretable scoring systems

    Directory of Open Access Journals (Sweden)

    Lieven Billiet

    2018-04-01

    Full Text Available Over the last decades, clinical decision support systems have been gaining importance. They help clinicians to make effective use of the overload of available information to obtain correct diagnoses and appropriate treatments. However, their power often comes at the cost of a black box model which cannot be interpreted easily. This interpretability is of paramount importance in a medical setting with regard to trust and (legal responsibility. In contrast, existing medical scoring systems are easy to understand and use, but they are often a simplified rule-of-thumb summary of previous medical experience rather than a well-founded system based on available data. Interval Coded Scoring (ICS connects these two approaches, exploiting the power of sparse optimization to derive scoring systems from training data. The presented toolbox interface makes this theory easily applicable to both small and large datasets. It contains two possible problem formulations based on linear programming or elastic net. Both allow to construct a model for a binary classification problem and establish risk profiles that can be used for future diagnosis. All of this requires only a few lines of code. ICS differs from standard machine learning through its model consisting of interpretable main effects and interactions. Furthermore, insertion of expert knowledge is possible because the training can be semi-automatic. This allows end users to make a trade-off between complexity and performance based on cross-validation results and expert knowledge. Additionally, the toolbox offers an accessible way to assess classification performance via accuracy and the ROC curve, whereas the calibration of the risk profile can be evaluated via a calibration curve. Finally, the colour-coded model visualization has particular appeal if one wants to apply ICS manually on new observations, as well as for validation by experts in the specific application domains. The validity and applicability

  17. 42 CFR 405.512 - Carriers' procedural terminology and coding systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Carriers' procedural terminology and coding systems... Determining Reasonable Charges § 405.512 Carriers' procedural terminology and coding systems. (a) General. Procedural terminology and coding systems are designed to provide physicians and third party payers with a...

  18. Hypohidrotic ectodermal dysplasia and immunodeficiency with coincident NEMO and EDA Mutations

    Directory of Open Access Journals (Sweden)

    Michael D. Keller

    2011-11-01

    Full Text Available Ectodermal dysplasias (ED are uncommon genetic disorders resulting in abnormalities in ectodermally-derived structures. Though many ED-associated genes have been described, the NF-κB Essential Modulator (NEMO encoded by the IKBKG gene is unique in that mutations also result in severe humoral and cellular immunologic defects. We describe three unrelated kindreds with defects in both EDA and IKBKG resulting from an X-chromosome crossover. This demonstrates the importance of thorough immunologic consideration of patients with ED even when an EDA etiology is confirmed, and raises the possibility of a specific phenotype arising from coincident mutations in EDA and IKBKB.

  19. Development of EASYQAD version β: A Visualization Code System for QAD-CGGP-A Gamma and Neutron Shielding Calculation Code

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Soon Young; Shin, Chang Ho; Kim, Jong Kyung

    2007-01-01

    EASYQAD had been previously developed by using MATLAB GUI (Graphical User Interface) in order to perform conveniently gamma and neutron shielding calculations at Hanyang University. It had been completed as version α of radiation shielding analysis code. In this study, EASYQAD was upgraded to version β with many additional functions and more user-friendly graphical interfaces. For general users to run it on Windows XP environment without any MATLAB installation, this version was developed into a standalone code system

  20. Aqueous Transport Code Revisions Using Geographic Information Systems

    International Nuclear Information System (INIS)

    Chen, K.F.

    2003-01-01

    STREAM II, developed at the Savannah River Site (SRS) for execution on a personal computer, is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River for emergency response management decision making. The STREAM II code consists of pre-processor, calculation, and post-processor modules. The pre-processor module provides a graphical user interface (GUI) for inputting the initial release data. The GUI passes the user specified data to the calculation module that calculates the pollutant concentrations at downstream locations and the transport times. The calculation module of the STREAM II adopts the transport module of the WASP5 code. WASP5 is a US Environmental Protection Agency water quality analysis program that simulates pollutant transport and fate through surface water using a finite difference method to solve the transport equation. The calculated downstream pollutant concentrations and travel times a re passed to the post-processor for display on the computer screen in graphical and tabular forms. To minimize the user's effort in the emergency situation, the required input parameters are limited to the time and date of release, type of release, location of release, amount and duration of release, and the calculation units. The user, however, could only select one of the seventeen predetermined locations. Hence, STREAM II could not be used for situations in which release locations differ from the seventeen predetermined locations. To eliminate this limitation, STREAM II has been revised to allow users to select the release location anywhere along the specified SRS main streams or the Savannah River by mouse-selection from a map displayed on the computer monitor. The required modifications to STREAM II using geographic information systems (GIS) software is discussed in this paper

  1. Modern Nuclear Data Evaluation with the TALYS Code System

    Science.gov (United States)

    Koning, A. J.; Rochman, D.

    2012-12-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: "Total" Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  2. Modern Nuclear Data Evaluation with the TALYS Code System

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2012-01-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: “Total” Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  3. Design of ACM system based on non-greedy punctured LDPC codes

    Science.gov (United States)

    Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng

    2017-08-01

    In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.

  4. Interface of RETRAN/MASTER Code System for APR1400

    International Nuclear Information System (INIS)

    Ku, Keuk Jong; Kang, Sang Hee; Kim, Han Gon

    2008-01-01

    MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), which was developed by KAERI, is a nuclear analysis and design code which can simulate the pressurized water reactor core or boiling water reactor core in 3-dimensional geometry. RETRAN is a best-estimate code for transient analysis of Non-LOCA. RETRAN code generates neutron number density in core using point kinetics model which includes feedback reactivities and converts the neutron number density into reactor power. It is conventional that RETRAN code for power generation is roughly to extrapolate feedback reactivities which are provided by MASTER code only one time before transient analysis. The purpose of this paper is to interface RETRAN code with MASTER code by real-time processing and to supply adequate feedback reactivities to RETRAN code. So, we develop interface code called MATRAN for real-time feedback reactivity processing. And for the application of MATRAN code, we compare the results of real-time MATRAN code with those of conventional RETRAN/MASTER code

  5. Implications of Sepedi/English code switching for ASR systems

    CSIR Research Space (South Africa)

    Modipa, TI

    2013-12-01

    Full Text Available . We also perform an initial acoustic analysis to determine the impact of such code switching on speech recognition performance. We nd that the frequency of code switching is unexpectedly high, and that the continuum of code switching (from unmodi ed...

  6. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    Science.gov (United States)

    Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.

    2017-11-01

    This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  7. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    Directory of Open Access Journals (Sweden)

    Azura M. S. A.

    2017-01-01

    Full Text Available This paper presents a realization of Wavelength/Time (W/T Two-Dimensional Modified Double Weight (2-D MDW code for Optical Code Division Multiple Access (OCDMA system based on Spectral Amplitude Coding (SAC approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN and minimizing the Multiple Access Interference (MAI noises. At the permissible BER 10-9, the 2-D MDW (APD had shown minimum effective received power (Psr = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN only received -61 dBm. The results show that 2-D MDW (APD has better performance in achieving same BER with longer optical fiber length and with less received power (Psr. Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  8. Software coding for reliable data communication in a reactor safety system

    International Nuclear Information System (INIS)

    Maghsoodi, R.

    1978-01-01

    A software coding method is proposed to improve the communication reliability of a microprocessor based fast-reactor safety system. This method which replaces the conventional coding circuitry, applies a program to code the data which is communicated between the processors via their data memories. The system requirements are studied and the suitable codes are suggested. The problems associated with hardware coders, and the advantages of software coding methods are discussed. The product code which proves a faster coding time over the cyclic code is chosen as the final code. Then the improvement of the communication reliability is derived for a processor and its data memory. The result is used to calculate the reliability improvement of the processing channel as the basic unit for the safety system. (author)

  9. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey

    OpenAIRE

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospi...

  10. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  11. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  12. Confinement margins for ignition and driven operation in Iter Eda ID

    International Nuclear Information System (INIS)

    Johner, J.

    1995-09-01

    Preliminary calculations for ITER EDA ID have been performed using the 1/2D thermal equilibrium code HELIOS. It is found that: - The maximum ignition margin for ITER ID (29%) is 6% less than for ITER OD (35%) and 5% less than for ITER CDA (34%). - Decreasing the ration τ * He /τ E from the nominal value 10 to a value of 5 gives a 12% gain in the maximum ignition margin. Increasing the ration from 10 to 15 causes a 22% loss in the margin. Furthermore, ignited equilibria non longer exist for τ * He /τ E ≥ 17.6. - Operation in driven mode with 50 MW of external power increases the confinement capability by 13%. With 100 MW, the improvement is 24%. - Lowering the fusion power from 1500 to 1000 MW slightly improves the maximum ignition margin (+5%) and allows operation below the Greenwald density limit. - A 10% reduction of the toroidal magnetic field with a correlative diminution of the plasma current for constant safety factor operation, causes a dramatic reduction (-18%) of the maximum ignition margin. - A fraction of neon of 0.68% would completely suppress the ignition margin. Furthermore, ignited equilibria, with the nominal fusion power and τ * He /τ E , no longer exist when the neon fraction exceeds 0.75%. (Author). 2 refs., 10 figs

  13. Verification of the CONPAS (CONtainment Performance Analysis System) code package

    International Nuclear Information System (INIS)

    Kim, See Darl; Ahn, Kwang Il; Song, Yong Man; Choi, Young; Park, Soo Yong; Kim, Dong Ha; Jin, Young Ho.

    1997-09-01

    CONPAS is a computer code package to integrate the numerical, graphical, and results-oriented aspects of Level 2 probabilistic safety assessment (PSA) for nuclear power plants under a PC window environment automatically. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules: (1) ET Editor, (2) Computer, (3) Text Editor, and (4) Mechanistic Code Plotter. Compared with other existing computer codes for Level 2 PSA, and CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friendly interface. The computational performance of CONPAS has been verified through a Level 2 PSA to a reference plant. The results of the CONPAS code was compared with an existing level 2 PSA code (NUCAP+) and the comparison proves that CONPAS is appropriate for Level 2 PSA. (author). 9 refs., 8 tabs., 14 figs

  14. Pressure vessel codes: Their application to nuclear reactor systems

    International Nuclear Information System (INIS)

    1966-01-01

    A survey has been made by the International Atomic Energy Agency of how the problems of applying national pressure vessel codes to nuclear reactor systems have been treated in those Member States that had pressurized reactors in operation or under construction at the beginning of 1963. Fifteen answers received to an official inquiry form the basis of this report, which also takes into account some recently published material. Although the answers to the inquiry in some cases data back to 1963 and also reflect the difficulty of describing local situations in answer to standard questions, it is hoped that the report will be of interest to reactor engineers. 21 refs, 1 fig., 2 tabs

  15. The APR1400 Core Design by Using APA Code System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Koh, Byung Marn

    2008-01-01

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator

  16. Biometric iris image acquisition system with wavefront coding technology

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  17. RFSYS: an inventory code for RF system parameters

    International Nuclear Information System (INIS)

    Treadwell, E.A.

    1983-03-01

    RFSYS is a program which maintains an inventory of rf system parameters associated with the 200 MeV Linear Accelerator at Fermi National Accelerator Laboratory. The program, written by Elliott Treadwell, of the Linac group, offers five modes of operation: (1) Allocates memory space for additional rf systems (data arrays). (2) Prints a total or partial list of old tube parameters on an ADM-3 terminal. (3) Changes tube data stored in the master array. If the number of systems increases, this mode permits the user to enter new data. (4) Computes the average time of operation for a given tube and system. (5) Stops program execution. There is an exit option, (a) create one output data file or (b) create three output files, one of which contains column headers and coded comments. All output files are stored on the CYBER-175 disc, and eventually on high density (6250 B.P.I.) magnetic tapes. This arrangement eliminates the necessity for online data buffers

  18. Control code for laboratory adaptive optics teaching system

    Science.gov (United States)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  19. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  20. X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.

    Science.gov (United States)

    Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L

    2017-01-01

    We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.

  1. Labor tirib haigused päevavalgele / Eda Laas ; interv. Eevi Kuht

    Index Scriptorium Estoniae

    Laas, Eda

    2005-01-01

    Piiral tegutseva veterinaar- ja toidulabori juhataja Eda Laas peab kõige ohtlikumaks uuritavaks loomahaiguseks ka inimesele levivat surmaga lõppevat marutaudi, mille vastu võitlemiseks on riik eriprogrammi kokku pannud

  2. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  3. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  4. A study on the nuclear computer codes installation and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok

    1990-12-01

    From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)

  5. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    Science.gov (United States)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  6. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    Science.gov (United States)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  7. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    International Nuclear Information System (INIS)

    Ratnam, Challa; Rao, Vadlamudi Lakshmana; Goud, Sivagouni Lachaa

    2006-01-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper

  8. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  9. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  10. Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems

    DEFF Research Database (Denmark)

    Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.

    2014-01-01

    We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...

  11. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system

    Science.gov (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah

    2016-10-01

    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  12. Multilevel LDPC Codes Design for Multimedia Communication CDMA System

    Directory of Open Access Journals (Sweden)

    Hou Jia

    2004-01-01

    Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.

  13. Development of System Based Code: Case Study of Life-Cycle Margin Evaluation

    International Nuclear Information System (INIS)

    Tai Asayama; Masaki Morishita; Masanori Tashimo

    2006-01-01

    For a leap of progress in structural deign of nuclear plant components, The late Professor Emeritus Yasuhide Asada proposed the System Based Code. The key concepts of the System Based Code are; (1) life-cycle margin optimization, (2) expansion of technical options as well as combinations of technical options beyond the current codes and standards, and (3) designing to clearly defined target reliabilities. Those concepts are very new to most of the nuclear power plant designers who are naturally obliged to design to current codes and standards; the application of the concepts of the System Based Code to design will lead to entire change of practices that designers have long been accustomed to. On the other hand, experienced designers are supposed to have expertise that can support and accelerate the development of the System Based Code. Therefore, interfacing with experienced designers is of crucial importance for the development of the System Based Code. The authors conducted a survey on the acceptability of the System Based Code concept. The results were analyzed from the possibility of improving structural design both in terms of reliability and cost effectiveness by the introduction of the System Based Code concept. It was concluded that the System Based Code is beneficial for those purposes. Also described is the expertise elicited from the results of the survey that can be reflected to the development of the System Based Code. (authors)

  14. Development of an advanced code system for fast-reactor transient analysis

    International Nuclear Information System (INIS)

    Konstantin Mikityuk; Sandro Pelloni; Paul Coddington

    2005-01-01

    FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)

  15. Prototype demonstration of radiation therapy planning code system

    International Nuclear Information System (INIS)

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care

  16. Web- and system-code based, interactive, nuclear power plant simulators

    International Nuclear Information System (INIS)

    Kim, K. D.; Jain, P.; Rizwan, U.

    2006-01-01

    Using two different approaches, on-line, web- and system-code based graphical user interfaces have been developed for reactor system analysis. Both are LabVIEW (graphical programming language developed by National Instruments) based systems that allow local users as well as those at remote sites to run, interact and view the results of the system code in a web browser. In the first approach, only the data written by the system code in a tab separated ASCII output file is accessed and displayed graphically. In the second approach, LabVIEW virtual instruments are coupled with the system code as dynamic link libraries (DLL). RELAP5 is used as the system code to demonstrate the capabilities of these approaches. From collaborative projects between teams in geographically remote locations to providing system code experience to distance education students, these tools can be very beneficial in many areas of teaching and R and D. (authors)

  17. Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.

    Science.gov (United States)

    Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy

    2017-05-01

    Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W 11 O 38 } ≡ {W 11 } under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W 12 O 42 } ≡ {W 12 }, {W 22 O 74 } ≡ {W 22 } 1a, {W 34 O 116 } ≡ {W 34 } 2a, and {W 36 O 120 } ≡ {W 36 } 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W 11 }-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to

  18. A dual-sided coded-aperture radiation detection system

    International Nuclear Information System (INIS)

    Penny, R.D.; Hood, W.E.; Polichar, R.M.; Cardone, F.H.; Chavez, L.G.; Grubbs, S.G.; Huntley, B.P.; Kuharski, R.A.; Shyffer, R.T.; Fabris, L.; Ziock, K.P.; Labov, S.E.; Nelson, K.

    2011-01-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5x5x50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  19. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey.

    Science.gov (United States)

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospital grounds. These QR code bracelets link to the QR Code Identity website, where detailed information is stored; a smartphone or standalone QR code scanner can be used to scan the code. The design of this system allows authorized personnel (e.g., paramedics, firefighters, or police) to access more detailed patient information than the average smartphone user: emergency service professionals are authorized to access patient medical histories to improve the accuracy of medical treatment. In Istanbul, we tested the self-designed system with 174 participants. To analyze the QR Code Identity Tag system's usability, the participants completed the System Usability Scale questionnaire after using the system.

  20. System Level Evaluation of Innovative Coded MIMO-OFDM Systems for Broadcasting Digital TV

    Directory of Open Access Journals (Sweden)

    Y. Nasser

    2008-01-01

    Full Text Available Single-frequency networks (SFNs for broadcasting digital TV is a topic of theoretical and practical interest for future broadcasting systems. Although progress has been made in the characterization of its description, there are still considerable gaps in its deployment with MIMO technique. The contribution of this paper is multifold. First, we investigate the possibility of applying a space-time (ST encoder between the antennas of two sites in SFN. Then, we introduce a 3D space-time-space block code for future terrestrial digital TV in SFN architecture. The proposed 3D code is based on a double-layer structure designed for intercell and intracell space time-coded transmissions. Eventually, we propose to adapt a technique called effective exponential signal-to-noise ratio (SNR mapping (EESM to predict the bit error rate (BER at the output of the channel decoder in the MIMO systems. The EESM technique as well as the simulations results will be used to doubly check the efficiency of our 3D code. This efficiency is obtained for equal and unequal received powers whatever is the location of the receiver by adequately combining ST codes. The 3D code is then a very promising candidate for SFN architecture with MIMO transmission.

  1. The plasma position control of ITER EDA plasma

    International Nuclear Information System (INIS)

    Senda, Ikuo; Nishio, Satoshi; Tsunematsu, Toshihide; Nishino, Toru; Fujieda, Hirobumi.

    1994-09-01

    The study on the plasma position control of ITER EDA performed by Japan Home Team during the sensitivity study in 1994 is summarized. The controllabilities of plasmas in the Outline Design and elongated version are compared. The model used to describe the motion of the plasma is a rigid model. The PD feedback control is applied with respect to the displacements of the plasma from the equilibrium. Three types of fluctuations, which initiate the motion of the plasma, are examined, namely a finite horizontal fluctuation field, a small horizontal fluctuation field such that the motion of the plasma is governed by the passive structures and an abrupt change of the poloidal beta β p and internal inductance l i . In the simulations of finite horizontal fluctuation fields, controls depend on the strength of the fluctuations, for instance, 3-5V is needed for 5-10G of fluctuation fields in the Outline Design. When the fluctuation field is small and the plasma displacement grows in a characteristic time of the passive structures, a few volt of the control voltage is enough to obtain good controllability. It is shown that the control when (β p , l i ) changes simultaneously is demanding and a large control voltage is required to maintain satisfactory control. Comparing the elongated version with the Outline Design, the control voltage which is larger than the Outline Design by a factor of 2-3 is required to obtain the same controllability in the elongated version. (author)

  2. Development and verification of a coupled code system RETRAN-MASTER-TORC

    International Nuclear Information System (INIS)

    Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.

    2004-01-01

    Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code with the MASTER neutronics code. The TORC code is a standalone code that solves the T-H equations for a given core problem from reading the input file and finally printing the converged solutions. However, in the coupled system, because TORC receives the pin power distributions from the neutronics code MASTER and transfers the T-H results to MASTER iteratively, TORC needs to be controlled by the MASTER code and does not need to solve the given problem completely at each iteration step. By this reason, the coupling of the TORC code with the MASTER code requires several modifications in the I/O treatment, flow iteration and calculation logics. The next section of this paper describes the modifications in the TORC code. The TORC control logic of the MASTER code is then followed. The

  3. A Spanish version for the new ERA-EDTA coding system for primary renal disease

    Directory of Open Access Journals (Sweden)

    Óscar Zurriaga

    2015-07-01

    Conclusions: Translation and adaptation into Spanish represent an improvement that will help to introduce and use the new coding system for PKD, as it can help reducing the time devoted to coding and also the period of adaptation of health workers to the new codes.

  4. QR Codes in the Library: Are They Worth the Effort? Analysis of a QR Code Pilot Project

    OpenAIRE

    Wilson, Andrew M.

    2012-01-01

    The literature is filled with potential uses for Quick Response (QR) codes in the library. Setting, but few library QR code projects have publicized usage statistics. A pilot project carried out in the Eda Kuhn Loeb Music Library of the Harvard College Library sought to determine whether library patrons actually understand and use QR codes. Results and analysis of the pilot project are provided, attempting to answer the question as to whether QR codes are worth the effort for libraries.

  5. ELCOS: the PSI code system for LWR core analysis. Part II: user's manual for the fuel assembly code BOXER

    International Nuclear Information System (INIS)

    Paratte, J.M.; Grimm, P.; Hollard, J.M.

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs

  6. Performance analysis of wavelength/spatial coding system with fixed in-phase code matrices in OCDMA network

    Science.gov (United States)

    Tsai, Cheng-Mu; Liang, Tsair-Chun

    2011-12-01

    This paper proposes a wavelength/spatial (W/S) coding system with fixed in-phase code (FIPC) matrix in the optical code-division multiple-access (OCDMA) network. A scheme is presented to form the FIPC matrix which is applied to construct the W/S OCDMA network. The encoder/decoder in the W/S OCDMA network is fully able to eliminate the multiple-access-interference (MAI) at the balanced photo-detectors (PD), according to fixed in-phase cross correlation. The phase-induced intensity noise (PIIN) related to the power square is markedly suppressed in the receiver by spreading the received power into each PD while the net signal power is kept the same. Simulation results show that the W/S OCDMA network based on the FIPC matrices cannot only completely remove the MAI but effectively suppress the PIIN to upgrade the network performance.

  7. Environmental performance of green building code and certification systems.

    Science.gov (United States)

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  8. Updated Covariance Processing Capabilities in the AMPX Code System

    International Nuclear Information System (INIS)

    Wiarda, Dorothea; Dunn, Michael E.

    2007-01-01

    A concerted effort is in progress within the nuclear data community to provide new cross-section covariance data evaluations to support sensitivity/uncertainty analyses of fissionable systems. The objective of this work is to update processing capabilities of the AMPX library to process the latest Evaluated Nuclear Data File (ENDF)/B formats to generate covariance data libraries for radiation transport software such as SCALE. The module PUFF-IV was updated to allow processing of new ENDF covariance formats in the resolved resonance region. In the resolved resonance region, covariance matrices are given in terms of resonance parameters, which need to be processed into covariance matrices with respect to the group-averaged cross-section data. The parameter covariance matrix can be quite large if the evaluation has many resonances. The PUFF-IV code has recently been used to process an evaluation of 235U, which was prepared in collaboration between Oak Ridge National Laboratory and Los Alamos National Laboratory.

  9. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  10. Library system for a one dimensional tokamak transport code: (LIBJT60), 1

    International Nuclear Information System (INIS)

    Hirayama, Toshio

    1982-12-01

    A library system is developed to control and manage huge programs in terms of FORTRAN source. It is applied to widely used one dimensional tokamak transport codes (LIBJT60), which have been developed in the Division of Large Tokamak Development. The structure of data and program in the transport code turn out to be flexible enough to respond to various demands and this gigantic code frame work can be decomposed into groups of a compact code with a specific function. Some editing support tools for programming and debugging are also developed to save programming work. By applying this library system, users can obtain a code whose functions can be efficiently developed. (author)

  11. Radioactivities evaluation code system for high temperature gas cooled reactors during normal operation

    International Nuclear Information System (INIS)

    Ogura, Kenji; Morimoto, Toshio; Suzuki, Katsuo.

    1979-01-01

    A radioactivity evaluation code system for high temperature gas-cooled reactors during normal operation was developed to study the behavior of fission products (FP) in the plants. The system consists of a code for the calculation of diffusion of FPs in fuel (FIPERX), a code for the deposition of FPs in primary cooling system (PLATO), a code for the transfer and emission of FPs in nuclear power plants (FIPPI-2), and a code for the exposure dose due to emitted FPs (FEDOSE). The FIPERX code can calculate the changes in the course of time FP of the distribution of FP concentration, the distribution of FP flow, the distribution of FP partial pressure, and the emission rate of FP into coolant. The amount of deposition of FPs and their distribution in primary cooling system can be evaluated by the PLATO code. The FIPPI-2 code can be used for the estimation of the amount of FPs in nuclear power plants and the amount of emitted FPs from the plants. The exposure dose of residents around nuclear power plants in case of the operation of the plants is calculated by the FEDOSE code. This code evaluates the dose due to the external exposure in the normal operation and in the accident, and the internal dose by the inhalation of radioactive plume and foods. Further studies of this code system by the comparison with the experimental data are considered. (Kato, T.)

  12. About the coding system of rivers, catchment basing and their characteristics of the republic of Armenia

    International Nuclear Information System (INIS)

    Avagyan, A.A.; Arakelyan, A.A.

    2011-01-01

    The coding of rivers, catchements, lakes and seas is one of the most important requirements of Water Framework Directive of the European Union. This coding provides solutions to actual problems of planning and management of water resources of the Republic of Armenia. The coding system provides the hierarchy of water bodies and watersheds with their typology as well as their geographic and natural conditions, anthropogenic pressures and ecological status. This approach is a fundamentally new complex solution to the coding of water resources. The coding technique allows you to automate the assessment and mapping of environmental risks and areas of water bodies which are subjected to significant pressure and also helps to solve other problems concerning the planning and the management of water resources. A complex code of each water body consists of the following groups of codes: Hydrographic code - an identifier of a water body in the hydrographic system of the country; Codes of static attributes in the system requirements of the Water Framework Directive of the European Union; Codes of static attributes of the qualifiers of the RA National Water Program; Codes of dynamic attributes that define the quality of water and characteristics of water use; Codes of dynamic attributes describing the human impact and determining the ecological status of water body

  13. Modular Modeling System (MMS) code: a versatile power plant analysis package

    International Nuclear Information System (INIS)

    Divakaruni, S.M.; Wong, F.K.L.

    1987-01-01

    The basic version of the Modular Modeling System (MMS-01), a power plant systems analysis computer code jointly developed by the Nuclear Power and the Coal Combustion Systems Divisions of the Electric Power Research Institute (EPRI), has been released to the utility power industry in April 1983 at a code release workshop held in Charlotte, North Carolina. Since then, additional modules have been developed to analyze the Pressurized Water Reactors (PWRs) and the Boiling Water Reactors (BWRs) when the safety systems are activated. Also, a selected number of modules in the MMS-01 library have been modified to allow the code users more flexibility in constructing plant specific systems for analysis. These new PWR and BWR modules constitute the new MMS library, and it includes the modifications to the MMS-01 library. A year and half long extensive code qualification program of this new version of the MMS code at EPRI and the contractor sites, back by further code testing in an user group environment is culminating in the MMS-02 code release announcement seminar. At this seminar, the results of user group efforts and the code qualification program will be presented in a series of technical sessions. A total of forty-nine papers will be presented to describe the new code features and the code qualification efforts. For the sake of completion, an overview of the code is presented to include the history of the code development, description of the MMS code and its structure, utility engineers involvement in MMS-01 and MMS-02 validations, the enhancements made in the last 18 months to the code, and finally the perspective on the code future in the fossil and nuclear industry

  14. Evaluation of the analysis models in the ASTRA nuclear design code system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Park, Chang Jea; Kim, Do Sam; Lee, Kyeong Taek; Kim, Jong Woon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-15

    In the field of nuclear reactor design, main practice was the application of the improved design code systems. During the process, a lot of basis and knowledge were accumulated in processing input data, nuclear fuel reload design, production and analysis of design data, et al. However less efforts were done in the analysis of the methodology and in the development or improvement of those code systems. Recently, KEPO Nuclear Fuel Company (KNFC) developed the ASTRA (Advanced Static and Transient Reactor Analyzer) code system for the purpose of nuclear reactor design and analysis. In the code system, two group constants were generated from the CASMO-3 code system. The objective of this research is to analyze the analysis models used in the ASTRA/CASMO-3 code system. This evaluation requires indepth comprehension of the models, which is important so much as the development of the code system itself. Currently, most of the code systems used in domestic Nuclear Power Plant were imported, so it is very difficult to maintain and treat the change of the situation in the system. Therefore, the evaluation of analysis models in the ASTRA nuclear reactor design code system in very important.

  15. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  16. THYDE-P2 code: RCS (reactor-coolant system) analysis code

    International Nuclear Information System (INIS)

    Asahi, Yoshiro; Hirano, Masashi; Sato, Kazuo

    1986-12-01

    THYDE-P2, being characterized by the new thermal-hydraulic network model, is applicable to analysis of RCS behaviors in response to various disturbances including LB (large break)-LOCA(loss-of-coolant accident). In LB-LOCA analysis, THYDE-P2 is capable of through calculation from its initiation to complete reflooding of the core without an artificial change in the methods and models. The first half of the report is the description of the methods and models for use in the THYDE-P2 code, i.e., (1) the thermal-hydraulic network model, (2) the various RCS components models, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the user's mannual for the THYDE-P2 code (version SV04L08A) containing items; (1) the program control (2) the input requirements, (3) the execution of THYDE-P2 job, (4) the output specifications and (5) the sample problem to demonstrate capability of the thermal-hydraulic network model, among other things. (author)

  17. Experimental transport analysis code system in JT-60

    International Nuclear Information System (INIS)

    Hirayama, Toshio; Shimizu, Katsuhiro; Tani, Keiji; Shirai, Hiroshi; Kikuchi, Mitsuru

    1988-03-01

    Transport analysis codes have been developed in order to study confinement properties related to particle and energy balance in ohmically and neutral beam heated plasmas of JT-60. The analysis procedure is divided into three steps as follows: 1) LOOK ; The shape of the plasma boundary is identified with a fast boundary identification code of FBI by using magnetic data, and flux surfaces are calculated with a MHD equilibrium code of SELENE. The diagnostic data are mapped to flux surfaces for neutral beam heating calculation and/or for radial transport analysis. 2) OFMC ; On the basis of transformed data, an orbit following Monte Carlo code of OFMC calculates both profiles of power deposition and particle source of neutral beam injected into a plasma. 3) SCOOP ; In the last stage, a one dimensional transport code of SCOOP solves particle and energy balance for electron and ion, in order to evaluate transport coefficients as well as global parameters such as energy confinement time and the stored energy. The analysis results are provided to a data bank of DARTS that is used to find an overview of important consideration on confinement with a regression analysis code of RAC. (author)

  18. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  19. Development of Coupled Interface System between the FADAS Code and a Source-term Evaluation Code XSOR for CANDU Reactors

    International Nuclear Information System (INIS)

    Son, Han Seong; Song, Deok Yong; Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon

    2006-01-01

    An accident prevention system is essential to the industrial security of nuclear industry. Thus, the more effective accident prevention system will be helpful to promote safety culture as well as to acquire public acceptance for nuclear power industry. The FADAS(Following Accident Dose Assessment System) which is a part of the Computerized Advisory System for a Radiological Emergency (CARE) system in KINS is used for the prevention against nuclear accident. In order to enhance the FADAS system more effective for CANDU reactors, it is necessary to develop the various accident scenarios and reliable database of source terms. This study introduces the construction of the coupled interface system between the FADAS and the source-term evaluation code aimed to improve the applicability of the CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors

  20. Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico

    Science.gov (United States)

    Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.

    2009-01-01

    The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.

  1. Coding Across Multicodes and Time in CDMA Systems Employing MMSE Multiuser Detector

    Directory of Open Access Journals (Sweden)

    Park Jeongsoon

    2004-01-01

    Full Text Available When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time. In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division multiple access (DS-CDMA systems which employ minimum mean squared error (MMSE multiuser detectors. In particular, when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs for the multicode channels, coding across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding complexity.

  2. Analysis of the KUCA MEU experiments using the ANL code system

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.

    1982-01-01

    This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis.

  3. Analysis of the KUCA MEU experiments using the ANL code system

    International Nuclear Information System (INIS)

    Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.

    1982-01-01

    This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis

  4. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous OCDMA systems

    Science.gov (United States)

    Li, Chuan-qi; Yang, Meng-jie; Zhang, Xiu-rong; Chen, Mei-juan; He, Dong-dong; Fan, Qing-bin

    2014-07-01

    A construction scheme of variable-weight optical orthogonal codes (VW-OOCs) for asynchronous optical code division multiple access (OCDMA) system is proposed. According to the actual situation, the code family can be obtained by programming in Matlab with the given code weight and corresponding capacity. The formula of bit error rate (BER) is derived by taking account of the effects of shot noise, avalanche photodiode (APD) bulk, thermal noise and surface leakage currents. The OCDMA system with the VW-OOCs is designed and improved. The study shows that the VW-OOCs have excellent performance of BER. Despite of coming from the same code family or not, the codes with larger weight have lower BER compared with the other codes in the same conditions. By taking simulation, the conclusion is consistent with the analysis of BER in theory. And the ideal eye diagrams are obtained by the optical hard limiter.

  5. Results of ITER/EDA and Japan's approach in the prolonged research period

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide

    1998-01-01

    The Engineering and Design Activity (EDA) of the International Thermonuclear Experimental Reactor (ITER) started operation with the cooperation of Japan, EU, Russia and the US in July 1992 with a plan to do work on the design of the ITER and necessary R and D. Six years passed and the final report was completed in February 1998, reporting that the initial targets were almost achieved except for design work depending on construction site. It was also decided to prolong the EDA for more three years, though the US did not participate. The new EDA items include: Design to meet site requirements and cost estimation; preparation for application for construction approval; and preparation of technical documents for equipment procurement in the future. Among them, the main EDA item is to design a low-cost ITER to be ready for construction when the three-year joint research is ended. For this, work was done to prepare technical guidelines. The EDA is now making the conceptual design of a new ITER 50% less expensive than the current ITER described in the final design report. Japan has proposed site requirements that are needed for design alteration when the ITER is constructed in Japan. The site requirements are concerned with earthquake resistance, ground, power supply and cooling conditions. (N.H.)

  6. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  7. The research of atmospheric 2D optical PPM CDMA system with turbo coding

    Science.gov (United States)

    Zhou, Xiuli; Li, Zaoxia

    2007-11-01

    The atmospheric two-dimensional optical code-division multiple-access (CDMA) systems using pulse-position modulation (PPM) and Turbo-coded were presented. We analyzed the bit-error rate (BER) of the proposed system using pulse-position modulation (PPM) with considering the effects of the scintillation, avalanche photodiode noise, thermal noise, and multi-user interference. We showed that the atmospheric two dimensional (2D) optical PPM CDMA systems can realize high-speed communications when the logarithm variance of the scintillation is less than 0.1, and the turbo-coded atmospheric optical CDMA system has better bit error rate(BER) performance than the atmospheric optical PPM CDMA systems without turbo-coded. We also showed that the turbo-coded system has better performance than the multi-user detection system.

  8. Code for calculation of spreading of radioactivity in reactor containment systems

    International Nuclear Information System (INIS)

    Vertes, P.

    1992-09-01

    A detailed description of the new version of TIBSO code is given, with applications for accident analysis in a reactor containment system. The TIBSO code can follow the nuclear transition and the spatial migration of radioactive materials. The modelling of such processes is established in a very flexible way enabling the user to investigate a wide range of problems. The TIBSO code system is described in detail, taking into account the new developments since 1983. Most changes improve the capabilities of the code. The new version of TIBSO system is written in FORTRAN-77 and can be operated both under VAX VMS and PC DOS. (author) 5 refs.; 3 figs.; 21 tabs

  9. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2015-01-01

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  10. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany)

    2015-04-15

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  11. Channel coding for underwater acoustic single-carrier CDMA communication system

    Science.gov (United States)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  12. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  13. HTR core physics and transient analyses by the Panthermix code system

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.

  14. HTR core physics and transient analyses by the Panthermix code system

    International Nuclear Information System (INIS)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.

    2005-01-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes

  15. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  16. Coding hazardous tree failures for a data management system

    Science.gov (United States)

    Lee A. Paine

    1978-01-01

    Codes for automatic data processing (ADP) are provided for hazardous tree failure data submitted on Report of Tree Failure forms. Definitions of data items and suggestions for interpreting ambiguously worded reports are also included. The manual is intended to insure the production of accurate and consistent punched ADP cards which are used in transfer of the data to...

  17. Energy Efficient Error-Correcting Coding for Wireless Systems

    NARCIS (Netherlands)

    Shao, X.

    2010-01-01

    The wireless channel is a hostile environment. The transmitted signal does not only suffers multi-path fading but also noise and interference from other users of the wireless channel. That causes unreliable communications. To achieve high-quality communications, error correcting coding is required

  18. Internal Corrosion Control of Water Supply Systems Code of Practice

    Science.gov (United States)

    This Code of Practice is part of a series of publications by the IWA Specialist Group on Metals and Related Substances in Drinking Water. It complements the following IWA Specialist Group publications: 1. Best Practice Guide on the Control of Lead in Drinking Water 2. Best Prac...

  19. Symbol Stream Combining in a Convolutionally Coded System

    Science.gov (United States)

    Mceliece, R. J.; Pollara, F.; Swanson, L.

    1985-01-01

    Symbol stream combining has been proposed as a method for arraying signals received at different antennas. If convolutional coding and Viterbi decoding are used, it is shown that a Viterbi decoder based on the proposed weighted sum of symbol streams yields maximum likelihood decisions.

  20. Power amplifiers for the S-, C-, X- and Ku-bands an EDA perspective

    CERN Document Server

    Božanić, Mladen

    2016-01-01

    This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.

  1. Proposing a Web-Based Tutorial System to Teach Malay Language Braille Code to the Sighted

    Science.gov (United States)

    Wah, Lee Lay; Keong, Foo Kok

    2010-01-01

    The "e-KodBrailleBM Tutorial System" is a web-based tutorial system which is specially designed to teach, facilitate and support the learning of Malay Language Braille Code to individuals who are sighted. The targeted group includes special education teachers, pre-service teachers, and parents. Learning Braille code involves memorisation…

  2. Coupling of 3D neutronics models with the system code ATHLET

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    1999-01-01

    The system code ATHLET for plant transient and accident analysis has been coupled with 3D neutronics models, like QUABOX/CUBBOX, for the realistic evaluation of some specific safety problems under discussion. The considerations for the coupling approach and its realization are discussed. The specific features of the coupled code system established are explained and experience from first applications is presented. (author)

  3. A Coding System for Qualitative Studies of the Information-Seeking Process in Computer Science Research

    Science.gov (United States)

    Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela

    2015-01-01

    Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…

  4. A comparative evaluation of NDR and PSAR using the CASMO-3/MASTER code system

    International Nuclear Information System (INIS)

    Sim, Jeoung Hun; Kim, Han Gon

    2009-01-01

    In order to validate nuclear design data such as the nuclear design report (NDR) and data in preliminary (or final) safety analysis report (PSAR/FSAR) and to use data for the conceptual design of new plants, the CASMO-3/MASTER code system is selected as utility code. The nuclear design of OPR1000 and APR1400 is performed with the DIT/ROCS code system. In contrast with this design code system, the accuracy of CASMO- 3/MASTER code system has not been verified. Relatively little design data has been calculated by the CASMO-3/MASTER code system for OPR1000 and APR1400 and a bias system has not been developed yet. As such, validation of the performance of the CASMO- 3/MASTER code system is necessary. In order to validate the performance of the CASMO- 3/MASTER code system and to develop a calculation methodology, a comparative evaluation with NDR of Ulchin unit 4, cycle 1(U4C1) and the PSAR of Shinkori units 3 and 4 is carried out. The results of this evaluation are presented in this paper

  5. Management-retrieval code system of fission barrier parameter sub-library

    International Nuclear Information System (INIS)

    Zhang Limin; Su Zongdi; Ge Zhigang

    1995-01-01

    The fission barrier parameter (FBP) library, which is a sub-library of Chinese Evaluated Nuclear Parameter library (CENPL), stores various popular used fission barrier parameters from different historical period, and could retrieve the required fission barrier parameters by using the management retrieval code system of the FBP sub-library. The function, feature and operation instruction of the code system are described briefly

  6. Application of startup/core management code system to YGN 3 startup testing

    International Nuclear Information System (INIS)

    Chi, Sung Goo; Hah, Yung Joon; Doo, Jin Yong; Kim, Dae Kyum

    1995-01-01

    YGN 3 is the first nuclear power plant in Korea to use the fixed incore detector system for startup testing and core management. The startup/core management code system was developed from existing ABB-C-E codes and applied for YGN 3 startup testing, especially for physics and CPC(Core Protection Calculator)/COLSS (Core Operating Limit Supervisory System) related testing. The startup/core management code system consists of startup codes which include the CEBASE, CECOR, CEFAST and CEDOPS, and startup data reduction codes which include FLOWRATE, COREPERF, CALMET, and VARTAV. These codes were implemented on an HP/Apollo model 9000 series 400 workstation at the YGN 3 site and successfully applied to startup testing and core management. The startup codes made a great contribution in upgrading the reliability of test results and reducing the test period by taking and analyzing core data automatically. The data reduction code saved the manpower and time for test data reduction and decreased the chance for error in the analysis. It is expected that this code system will make similar contributions for reducing the startup testing duration of YGN 4 and UCN3,4

  7. Geometrical Approach to the Grid System in the KOPEC Pilot Code

    International Nuclear Information System (INIS)

    Lee, E. J.; Park, C. E.; Lee, S. Y.

    2008-01-01

    KOPEC has been developing a pilot code to analyze two phase flow. The earlier version of the pilot code adopts the geometry with one-dimensional structured mesh system. As the pilot code is required to handle more complex geometries, a systematic geometrical approach to grid system has been introduced. Grid system can be classified as two types; structured grid system and unstructured grid system. The structured grid system is simple to apply but is less flexible than the other. The unstructured grid system is more complicated than the structured grid system. But it is more flexible to model the geometry. Therefore, two types of grid systems are utilized to allow code users simplicity as well as the flexibility

  8. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique

    Science.gov (United States)

    Al-Khafaji, H. M. R.; Aljunid, S. A.; Amphawan, A.; Fadhil, H. A.; Safar, A. M.

    2013-03-01

    In this paper, we present a single photodiode detection (SPD) technique for spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems. The proposed technique eliminates both phase-induced intensity noise (PIIN) and multiple-access interference (MAI) in the optical domain. Analytical results show that for 35 simultaneous users transmitting at data rate of 622 Mbps, the bit-error rate (BER) = 1.4x10^-28 for SPD technique is much better compared to 9.3x10^-6 and 9.6x10^-3 for the modified-AND as well as the AND detection techniques, respectively. Moreover, we verified the improved performance afforded by the proposed technique using data transmission simulations.

  9. A bar-code reader for an alpha-beta automatic counting system - FAG

    International Nuclear Information System (INIS)

    Levinson, S.; Shemesh, Y.; Ankry, N.; Assido, H.; German, U.; Peled, O.

    1996-01-01

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors)

  10. A bar-code reader for an alpha-beta automatic counting system - FAG

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, S; Shemesh, Y; Ankry, N; Assido, H; German, U; Peled, O [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors).

  11. DANTSYS: A diffusion accelerated neutral particle transport code system

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O'Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZΘ symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing

  12. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  13. A Systematic Review of Coding Systems Used in Pharmacoepidemiology and Database Research.

    Science.gov (United States)

    Chen, Yong; Zivkovic, Marko; Wang, Tongtong; Su, Su; Lee, Jianyi; Bortnichak, Edward A

    2018-02-01

    Clinical coding systems have been developed to translate real-world healthcare information such as prescriptions, diagnoses and procedures into standardized codes appropriate for use in large healthcare datasets. Due to the lack of information on coding system characteristics and insufficient uniformity in coding practices, there is a growing need for better understanding of coding systems and their use in pharmacoepidemiology and observational real world data research. To determine: 1) the number of available coding systems and their characteristics, 2) which pharmacoepidemiology databases are they adopted in, 3) what outcomes and exposures can be identified from each coding system, and 4) how robust they are with respect to consistency and validity in pharmacoepidemiology and observational database studies. Electronic literature database and unpublished literature searches, as well as hand searching of relevant journals were conducted to identify eligible articles discussing characteristics and applications of coding systems in use and published in the English language between 1986 and 2016. Characteristics considered included type of information captured by codes, clinical setting(s) of use, adoption by a pharmacoepidemiology database, region, and available mappings. Applications articles describing the use and validity of specific codes, code lists, or algorithms were also included. Data extraction was performed independently by two reviewers and a narrative synthesis was performed. A total of 897 unique articles and 57 coding systems were identified, 17% of which included country-specific modifications or multiple versions. Procedures (55%), diagnoses (36%), drugs (38%), and site of disease (39%) were most commonly and directly captured by these coding systems. The systems were used to capture information from the following clinical settings: inpatient (63%), ambulatory (55%), emergency department (ED, 34%), and pharmacy (13%). More than half of all coding

  14. A comparison of thermal algorithms of fuel rod performance code systems

    International Nuclear Information System (INIS)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C.

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance

  15. A comparison of thermal algorithms of fuel rod performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance.

  16. THIDA: code system for calculation of the exposure dose rate around a fusion device

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Igarashi, Masahito.

    1978-12-01

    A code system THIDA has been developed for calculation of the exposure dose rates around a fusion device. It consists of the following: one- and two-dimensional discrete ordinate transport codes; induced activity calculation code; activation chain, activation cross section, radionuclide gamma-ray energy/intensity and gamma-ray group constant files; and gamma ray flux to exposure dose rate conversion coefficients. (author)

  17. A code system to generate multigroup cross-sections using basic data

    International Nuclear Information System (INIS)

    Garg, S.B.; Kumar, Ashok

    1978-01-01

    For the neutronic studies of nuclear reactors, multigroup cross-sections derived from the basic energy point data are needed. In order to carry out the design based studies, these cross-sections should also incorporate the temperature and fuel concentration effects. To meet these requirements, a code system comprising of RESRES, UNRES, FIGERO, INSCAT, FUNMO, AVER1 and BGPONE codes has been adopted. The function of each of these codes is discussed. (author)

  18. Feasibility analysis of the modified ATHLET code for supercritical water cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chong, E-mail: ch.zhou@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany); Yang Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cheng Xu [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Modification of system code ATHLET for supercritical water application. Black-Right-Pointing-Pointer Development and assessment of a heat transfer package for supercritical water. Black-Right-Pointing-Pointer Validation of the modified code at supercritical pressures with the theoretical point-hydraulics model and the SASC code. Black-Right-Pointing-Pointer Application of the modified code to LOCA analysis of a supercritical water cooled in-pile fuel qualification test loop. - Abstract: Since the existing thermal-hydraulic computer codes for light water reactors are not applicable to supercritical water cooled reactors (SCWRs) owing to the limitation of physical models and numerical treatments, the development of a reliable thermal-hydraulic computer code is very important to design analysis and safety assessment of SCWRs. Based on earlier modification of ATHLET for SCWR, a general interface is implemented to the code, which serves as the platform for information exchange between ATHLET and the external independent physical modules. A heat transfer package containing five correlations for supercritical water is connected to the ATHLET code through the interface. The correlations are assessed with experimental data. To verify the modified ATHLET code, the Edwards-O'Brian blow-down test is simulated. As first validation at supercritical pressures, a simplified supercritical water cooled loop is modeled and its stability behavior is analyzed. Results are compared with that of the theoretical model and SASC code in the reference and show good agreement. To evaluate its feasibility, the modified ATHLET code is applied to a supercritical water cooled in-pile fuel qualification test loop. Loss of coolant accidents (LOCAs) due to break of coolant supply lines are calculated for the loop. Sensitivity analysis of some safety system parameters is performed to get further knowledge about their influence on the function of the

  19. Uncertainties in calculations of nuclear design code system for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Shindo, R.; Yamashita, K.; Murata, I.

    1991-01-01

    The nuclear design code system for the HTTR consists of one dimensional cell burnup computer code, developed in JAERI and the TWOTRAN-2 transport code. In order to satisfy related design criteria, uncertainty of the calculation was investigated by comparing the calculated and experimental results. The experiments were performed with a graphite moderated critical assembly. It was confirmed that discrepancies between calculations and experiments were small enough to be allowed in the nuclear design of HTTR. 8 refs, 6 figs

  20. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  1. Assessment of the hemodynamic changes after EDAS combined with bifrontal EGS in pediatric patients with moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yoo Sung; Kim, Yu Kyeong; Lee, Jae Sung; Kim, Seung Ki; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    To assess the effect of encephaloduroarteriosynangiosis (EDAS) with or without bifrontal encephalogaleosynangiosis (EGS) in children with moyamoya disease, we evaluated cerebral hemodynamic changes using brain Tc-99m HMPAO SPECT. Total 34 pediatric patients (M: F=12:22, mean age;93 yrs) enrolled. Bypass surgery for both hemispheres (EDAS with EGS on one side, and EDAS on the other side) in 25 patients, unilateral EDAS with EGS in 7, and unilateral EDAS only in 2 were underwent. Perfusion SPECT before surgery, and 4 to 18 months after final surgery were done. The vascular territories for ICA, MCA and the brain regions for the frontal, parietal, temporal, and the occipital cortices were determined using standard ROls based on K-SPAM. Additionally, medial frontal cortex was selected to assess the effect of EGS. Basal/acetazolamide challenged cerebral blood flow (CBF), and cerebral vascular index (CVRI) were determined using normalized regional brain uptake to the cerebellum. 24 patients became symptom free, and 6 were improved but having some residual symptoms at the last follow up period. The other 3 were worsened after operation. Overall basal/acetazolamide stress CBF and CVRI for each brain region after surgery were increased, however, only the changes of CVRI were significant. Meanwhile, the improvement of CBF or CVRI in the brain regions ipsilateral to the hemisphere having EDAS with EGS was not significantly different when compared with those for the brain regions with EDAS only. Also, the hemodynamic improvement for the mesial frontal cortex in patients after EDAS with EGS was not significant, and showed no difference with those in patient with EDAS only. Quantitative perfusion SPECT demonstrated the hemodynamic improvement after EDAS with or without EGS in pediatric moyamoya disease. Cerebrovascular reserve showed meaningful improvement after surgery, implicating the effect of vascular anastomosis in ischemic areas.

  2. Assessment of the hemodynamic changes after EDAS combined with bifrontal EGS in pediatric patients with moyamoya disease

    International Nuclear Information System (INIS)

    Song, Yoo Sung; Kim, Yu Kyeong; Lee, Jae Sung; Kim, Seung Ki; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2007-01-01

    To assess the effect of encephaloduroarteriosynangiosis (EDAS) with or without bifrontal encephalogaleosynangiosis (EGS) in children with moyamoya disease, we evaluated cerebral hemodynamic changes using brain Tc-99m HMPAO SPECT. Total 34 pediatric patients (M: F=12:22, mean age;93 yrs) enrolled. Bypass surgery for both hemispheres (EDAS with EGS on one side, and EDAS on the other side) in 25 patients, unilateral EDAS with EGS in 7, and unilateral EDAS only in 2 were underwent. Perfusion SPECT before surgery, and 4 to 18 months after final surgery were done. The vascular territories for ICA, MCA and the brain regions for the frontal, parietal, temporal, and the occipital cortices were determined using standard ROls based on K-SPAM. Additionally, medial frontal cortex was selected to assess the effect of EGS. Basal/acetazolamide challenged cerebral blood flow (CBF), and cerebral vascular index (CVRI) were determined using normalized regional brain uptake to the cerebellum. 24 patients became symptom free, and 6 were improved but having some residual symptoms at the last follow up period. The other 3 were worsened after operation. Overall basal/acetazolamide stress CBF and CVRI for each brain region after surgery were increased, however, only the changes of CVRI were significant. Meanwhile, the improvement of CBF or CVRI in the brain regions ipsilateral to the hemisphere having EDAS with EGS was not significantly different when compared with those for the brain regions with EDAS only. Also, the hemodynamic improvement for the mesial frontal cortex in patients after EDAS with EGS was not significant, and showed no difference with those in patient with EDAS only. Quantitative perfusion SPECT demonstrated the hemodynamic improvement after EDAS with or without EGS in pediatric moyamoya disease. Cerebrovascular reserve showed meaningful improvement after surgery, implicating the effect of vascular anastomosis in ischemic areas

  3. Near-Capacity Coding for Discrete Multitone Systems with Impulse Noise

    Directory of Open Access Journals (Sweden)

    Kschischang Frank R

    2006-01-01

    Full Text Available We consider the design of near-capacity-achieving error-correcting codes for a discrete multitone (DMT system in the presence of both additive white Gaussian noise and impulse noise. Impulse noise is one of the main channel impairments for digital subscriber lines (DSL. One way to combat impulse noise is to detect the presence of the impulses and to declare an erasure when an impulse occurs. In this paper, we propose a coding system based on low-density parity-check (LDPC codes and bit-interleaved coded modulation that is capable of taking advantage of the knowledge of erasures. We show that by carefully choosing the degree distribution of an irregular LDPC code, both the additive noise and the erasures can be handled by a single code, thus eliminating the need for an outer code. Such a system can perform close to the capacity of the channel and for the same redundancy is significantly more immune to the impulse noise than existing methods based on an outer Reed-Solomon (RS code. The proposed method has a lower implementation complexity than the concatenated coding approach.

  4. COUPLED SIMULATION OF GAS COOLED FAST REACTOR FUEL ASSEMBLY WITH NESTLE CODE SYSTEM

    Directory of Open Access Journals (Sweden)

    Filip Osusky

    2018-05-01

    Full Text Available The paper is focused on coupled calculation of the Gas Cooled Fast Reactor. The proper modelling of coupled neutronics and thermal-hydraulics is the corner stone for future safety assessment of the control and emergency systems. Nowadays, the system and channel thermal-hydraulic codes are accepted by the national regulatory authorities in European Union for license purposes, therefore the code NESTLE was used for the simulation. The NESTLE code is a coupled multigroup neutron diffusion code with thermal-hydraulic sub-channel code. In the paper, the validation of NESTLE code 5.2.1 installation is presented. The processing of fuel assembly homogeneous parametric cross-section library for NESTLE code simulation is made by the sequence TRITON of SCALE code package system. The simulated case in the NESTLE code is one fuel assembly of GFR2400 concept with reflective boundary condition in radial direction and zero flux boundary condition in axial direction. The results of coupled calculation are presented and are consistent with the GFR2400 study of the GoFastR project.

  5. PRELIMINARY STUDY ON APPLICATION OF MAX PLUS ALGEBRA IN DISTRIBUTED STORAGE SYSTEM THROUGH NETWORK CODING

    Directory of Open Access Journals (Sweden)

    Agus Maman Abadi

    2016-04-01

    Full Text Available The increasing need in techniques of storing big data presents a new challenge. One way to address this challenge is the use of distributed storage systems. One strategy that implemented in distributed data storage systems is the use of Erasure Code which applied to network coding. The code used in this technique is based on the algebraic structure which is called as vector space. Some studies have also been carried out to create code that is based on other algebraic structures such as module.  In this study, we are going to try to set up a code based on the algebraic structure which is a generalization of the module that is semimodule by utilizing the max operations and sum operations at max plus algebra. The results of this study indicate that the max operation and the addition operation on max plus algebra cannot be used to establish a semimodule code, but by modifying the operation "+" as "min", we get a code based on semimodule. Keywords:   code, distributed storage systems, network coding, semimodule, max plus algebra

  6. Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-08-15

    Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.

  7. APPC - A new standardised coding system for trans-organisational PACS retrieval

    International Nuclear Information System (INIS)

    Fruehwald, F.; Lindner, A.; Mostbeck, G.; Hruby, W.; Fruehwald-Pallamar, J.

    2010-01-01

    As part of a general strategy to integrate the health care enterprise, Austria plans to connect the Picture Archiving and Communication Systems (PACS) of all radiological institutions into a nationwide network. To facilitate the search for relevant correlative imaging data in the PACS of different organisations, a coding system was compiled for all radiological procedures and necessary anatomical details. This code, called the Austrian PACS Procedure Code (APPC), was granted the status of a standard under HL7. Examples are provided of effective coding and filtering when searching for relevant imaging material using the APPC, as well as the planned process for future adjustments of the APPC. The implementation and how the APPC will fit into the future electronic environment, which will include an electronic health act for all citizens in Austria, are discussed. A comparison to other nationwide electronic health record projects and coding systems is given. Limitations and possible use in physical storage media are contemplated. (orig.)

  8. Secure Coding for Safety I and C Systems on Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Park, H. S.; Kim, T. H.

    2015-01-01

    This paper addresses secure coding technologies which can reduce the software vulnerabilities and provides secure coding application guidelines for nuclear safety I and C systems. The use of digital equipment may improve their reliability and reduce maintenance costs. But, the design characteristics of nuclear I and C systems are becoming more complex and the possibility of cyber-attacks using software vulnerabilities has been increased. Software defects, bugs and logic flaws have been consistently the primary causes of software vulnerabilities which can introduce security vulnerabilities. In this study, we described a applying methods for secure coding which can reduce the software vulnerabilities. Software defects lists, countermeasures for each defect and coding rules can be applied properly depending on target system's condition. We expect that the results of this study can help developing the secure coding guidelines and significantly reducing or eliminating vulnerabilities in nuclear safety I and C software

  9. Secure Coding for Safety I and C Systems on Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Park, H. S. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, T. H. [Formal Works Inc., Seoul (Korea, Republic of)

    2015-10-15

    This paper addresses secure coding technologies which can reduce the software vulnerabilities and provides secure coding application guidelines for nuclear safety I and C systems. The use of digital equipment may improve their reliability and reduce maintenance costs. But, the design characteristics of nuclear I and C systems are becoming more complex and the possibility of cyber-attacks using software vulnerabilities has been increased. Software defects, bugs and logic flaws have been consistently the primary causes of software vulnerabilities which can introduce security vulnerabilities. In this study, we described a applying methods for secure coding which can reduce the software vulnerabilities. Software defects lists, countermeasures for each defect and coding rules can be applied properly depending on target system's condition. We expect that the results of this study can help developing the secure coding guidelines and significantly reducing or eliminating vulnerabilities in nuclear safety I and C software.

  10. Development Perspective of Regulatory Audit Code System for SFR Nuclear Safety Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Lee, Gil Soo; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    A sodium-cooled fast reactor (SFR) in Korea is based on the KALIMER-600 concept developed by KAERI. Based on 'Long-term R and D Plan for Future Reactor Systems' which was approved by the Korea Atomic Energy Commission in 2008, the KAERI designer is scheduled to apply the design certification of the prototype SFR in 2017. In order to establish regulatory infrastructure for the licensing of a prototype SFR, KINS has develop the regulatory requirements for the demonstration SFR since 2010, and are scheduled to develop the regulatory audit code systems in regard to core, fuel, and system, etc. since 2012. In this study, the domestic code systems used for core design and safety evaluation of PWRs and the nuclear physics and code system for SFRs were briefly reviewed, and the development perspective of regulatory audit code system for SFR nuclear safety evaluation were derived

  11. Implantation of Magint-Maggraf code in the Microvax-3600 system

    International Nuclear Information System (INIS)

    Leite Neto, J.P.; Shiabata, C.S.; Montes, A.

    1990-01-01

    An auxiliary code, named MAGGRAF, was developed and implemented on the MicroVAX-3600 system of the Plasma Laboratory at the Institute for Space Research, in order to perform the graphical output of the numerical results provided by the magnetic field calculation code MAGINT. In this report we present a brief description of the graphical code, of the parameters which specify the different output options, and of the structure of the data file containing these parameters. Some examples are shown to illustrate the versatility of the code, as well as the quality of the graphs. (author)

  12. Noise suppression system of OCDMA with spectral/spatial 2D hybrid code

    Science.gov (United States)

    Matem, Rima; Aljunid, S. A.; Junita, M. N.; Rashidi, C. B. M.; Shihab Aqrab, Israa

    2017-11-01

    In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN), shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.

  13. Noise suppression system of OCDMA with spectral/spatial 2D hybrid code

    Directory of Open Access Journals (Sweden)

    Matem Rima

    2017-01-01

    Full Text Available In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN, shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.

  14. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  15. Applications of the lots computer code to laser fusion systems and other physical optics problems

    International Nuclear Information System (INIS)

    Lawrence, G.; Wolfe, P.N.

    1979-01-01

    The Laser Optical Train Simulation (LOTS) code has been developed at the Optical Sciences Center, University of Arizona under contract to Los Alamos Scientific Laboratory (LASL). LOTS is a diffraction based code designed to beam quality and energy of the laser fusion system in an end-to-end calculation

  16. Information rates of next-generation long-haul optical fiber systems using coded modulation

    NARCIS (Netherlands)

    Liga, G.; Alvarado, A.; Agrell, E.; Bayvel, P.

    2017-01-01

    A comprehensive study of the coded performance of long-haul spectrally-efficient WDM optical fiber transmission systems with different coded modulation decoding structures is presented. Achievable information rates are derived for three different square QAM formats and the optimal format is

  17. A QR code identification technology in package auto-sorting system

    Science.gov (United States)

    di, Yi-Juan; Shi, Jian-Ping; Mao, Guo-Yong

    2017-07-01

    Traditional manual sorting operation is not suitable for the development of Chinese logistics. For better sorting packages, a QR code recognition technology is proposed to identify the QR code label on the packages in package auto-sorting system. The experimental results compared with other algorithms in literatures demonstrate that the proposed method is valid and its performance is superior to other algorithms.

  18. Integration of QR codes into an anesthesia information management system for resident case log management.

    Science.gov (United States)

    Avidan, Alexander; Weissman, Charles; Levin, Phillip D

    2015-04-01

    Quick response (QR) codes containing anesthesia syllabus data were introduced into an anesthesia information management system. The code was generated automatically at the conclusion of each case and available for resident case logging using a smartphone or tablet. The goal of this study was to evaluate the use and usability/user-friendliness of such system. Resident case logging practices were assessed prior to introducing the QR codes. QR code use and satisfactions amongst residents was reassessed at three and six months. Before QR code introduction only 12/23 (52.2%) residents maintained a case log. Most of the remaining residents (9/23, 39.1%) expected to receive a case list from the anesthesia information management system database at the end of their residency. At three months and six months 17/26 (65.4%) and 15/25 (60.0%) residents, respectively, were using the QR codes. Satisfaction was rated as very good or good. QR codes for residents' case logging with smartphones or tablets were successfully introduced in an anesthesia information management system and used by most residents. QR codes can be successfully implemented into medical practice to support data transfer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    HASSAN YOUSIF AHMED

    2012-06-01

    Full Text Available The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA systems using Vector Combinatorial (VC code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes.

  20. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  1. A Mechanism to Avoid Collusion Attacks Based on Code Passing in Mobile Agent Systems

    Science.gov (United States)

    Jaimez, Marc; Esparza, Oscar; Muñoz, Jose L.; Alins-Delgado, Juan J.; Mata-Díaz, Jorge

    Mobile agents are software entities consisting of code, data, state and itinerary that can migrate autonomously from host to host executing their code. Despite its benefits, security issues strongly restrict the use of code mobility. The protection of mobile agents against the attacks of malicious hosts is considered the most difficult security problem to solve in mobile agent systems. In particular, collusion attacks have been barely studied in the literature. This paper presents a mechanism that avoids collusion attacks based on code passing. Our proposal is based on a Multi-Code agent, which contains a different variant of the code for each host. A Trusted Third Party is responsible for providing the information to extract its own variant to the hosts, and for taking trusted timestamps that will be used to verify time coherence.

  2. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    Science.gov (United States)

    Karim, Julia Abdul

    2008-05-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.

  3. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    International Nuclear Information System (INIS)

    Karim, Julia Abdul

    2008-01-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained

  4. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    Science.gov (United States)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  5. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  6. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  7. The symbol coding language for the BUTs processor of in-core reactor control systems

    International Nuclear Information System (INIS)

    Vorob'ev, D.M.; Golovanov, M.N.; Levin, G.L.; Parfenova, T.K.; Filatov, V.P.

    1978-01-01

    A symbolic coding language is described; it has been developed for automation of making up programs for in-core control systems. The systems use the ideology of the CAMAC-VECTOR system and include the BUTs-20 processor. The symbolic coding language has been developed as a programming language of the ASSEMBLER type. Operators of instructions and pseudo-instructions, the rules of reading in the text of the source program, and operator record formats are considered

  8. Use the Bar Code System to Improve Accuracy of the Patient and Sample Identification.

    Science.gov (United States)

    Chuang, Shu-Hsia; Yeh, Huy-Pzu; Chi, Kun-Hung; Ku, Hsueh-Chen

    2018-01-01

    In time and correct sample collection were highly related to patient's safety. The sample error rate was 11.1%, because misbranded patient information and wrong sample containers during January to April, 2016. We developed a barcode system of "Specimens Identify System" through process of reengineering of TRM, used bar code scanners, add sample container instructions, and mobile APP. Conclusion, the bar code systems improved the patient safety and created green environment.

  9. CORESAFE: A Formal Approach against Code Replacement Attacks on Cyber Physical Systems

    Science.gov (United States)

    2018-04-19

    AFRL-AFOSR-JP-TR-2018-0035 CORESAFE:A Formal Approach against Code Replacement Attacks on Cyber Physical Systems Sandeep Shukla INDIAN INSTITUTE OF...Formal Approach against Code Replacement Attacks on Cyber Physical Systems 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4099 5c.  PROGRAM ELEMENT...SUPPLEMENTARY NOTES 14.  ABSTRACT Industrial Control Systems (ICS) used in manufacturing, power generators and other critical infrastructure monitoring and

  10. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  11. Feasibility study on the rod ejection accident analysis with RETRAN-MASTER code system

    International Nuclear Information System (INIS)

    Kim, Y. H.; Lee, C. S.

    2003-01-01

    KEPRI has been developed the in-house methodology for non-LOCA safety analyses based on the codes and methodologies of vendors and EPRI. Using the methodology, the rod ejection accident, which is classified into the generic accident analysis category of reactivity insertion accident in primary system, has been analyzed with RETRAN-MASTER code system. And the feasibility of the coupled code system has been verified by the review of the results. Furthermore, to assess the important parameters to the accident, the sensitivity analyses have been carried out over some parameters

  12. Development of a system of computer codes for severe accident analyses and its applications

    International Nuclear Information System (INIS)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan

    1991-12-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  13. Development of the computer code system for the analyses of PWR core

    International Nuclear Information System (INIS)

    Tsujimoto, Iwao; Naito, Yoshitaka.

    1992-11-01

    This report is one of the materials for the work titled 'Development of the computer code system for the analyses of PWR core phenomena', which is performed under contracts between Shikoku Electric Power Company and JAERI. In this report, the numerical method adopted in our computer code system are described, that is, 'The basic course and the summary of the analysing method', 'Numerical method for solving the Boltzmann equation', 'Numerical method for solving the thermo-hydraulic equations' and 'Description on the computer code system'. (author)

  14. Restructuring of burnup sensitivity analysis code system by using an object-oriented design approach

    International Nuclear Information System (INIS)

    Kenji, Yokoyama; Makoto, Ishikawa; Masahiro, Tatsumi; Hideaki, Hyoudou

    2005-01-01

    A new burnup sensitivity analysis code system was developed with help from the object-oriented technique and written in Python language. It was confirmed that they are powerful to support complex numerical calculation procedure such as reactor burnup sensitivity analysis. The new burnup sensitivity analysis code system PSAGEP was restructured from a complicated old code system and reborn as a user-friendly code system which can calculate the sensitivity coefficients of the nuclear characteristics considering multicycle burnup effect based on the generalized perturbation theory (GPT). A new encapsulation framework for conventional codes written in Fortran was developed. This framework supported to restructure the software architecture of the old code system by hiding implementation details and allowed users of the new code system to easily calculate the burnup sensitivity coefficients. The framework can be applied to the other development projects since it is carefully designed to be independent from PSAGEP. Numerical results of the burnup sensitivity coefficient of a typical fast breeder reactor were given with components based on GPT and the multicycle burnup effects on the sensitivity coefficient were discussed. (authors)

  15. Simulation of LOCA power transients of CANDU6 by SCAN/RELAP-CANDU coupled code system

    International Nuclear Information System (INIS)

    Hong, In Seob; Kim, Chang Hyo; Hwang, Su Hyun; Kim, Man Woong; Chung, Bub Dong

    2004-01-01

    As can be seen in the standalone application of RELAP-CANDU for LOCA analysis of CANDU-PHWR, the system thermal-hydraulic code alone cannot predict the transient behavior accurately. Therefore, best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. The purpose of this research is to develop and test a coupled neutronics and thermal-hydraulics analysis code, SCAN (SNU CANDU-PHWR Neutronics) and RELAP-CANDU, for transient analysis of CANDU-PHWR's. For this purpose, a spatial kinetics calculation module of SCAN, a 3-D CANDU-PHWR neutronics design and analysis code, is dynamically coupled with RELAP-CANDU, the system thermal-hydraulic code for CANDU-PHWR. The performance of the coupled code system is examined by simulation of reactor power transients caused by a hypothetical Loss Of Coolant Accident (LOCA) in Wolsong units, which involves the insertion of positive void reactivity into the core in the course of transients. Specifically, a 40% Reactor Inlet Header (RIH) break LOCA was assumed for the test of the SCAN/RELAP-CANDU coupled code system analysis

  16. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  17. Different morphotypes of functional dentition in the lower molar region of tabby (EDA) mice

    Czech Academy of Sciences Publication Activity Database

    Kristenová, Pavlína; Peterka, Miroslav; Lisi, S.; Gendrault, J. L.; Lesot, H.; Peterková, Renata

    2002-01-01

    Roč. 5, - (2002), s. 205-214 ISSN 1397-5927 R&D Projects: GA AV ČR IAA7039901; GA MŠk OC B8.10; GA ČR GA304/02/0448 Institutional research plan: CEZ:AV0Z5039906 Keywords : breeding * ectodermal dysplasia * EDA Subject RIV: EA - Cell Biology

  18. A novel missense mutation in collagenous domain of EDA gene in a ...

    Indian Academy of Sciences (India)

    2Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an,. Shaanxi 710061 .... The mutation p.P220L of EDA responsible for XLHED affects the evolu- tionarily highly .... for University Students (no.

  19. A novel missense mutation in collagenous domain of EDA gene in a ...

    Indian Academy of Sciences (India)

    Supplementary data: A novel missense mutation in collagenous domain of EDA gene in a. Chinese family with X-linked hypohidrotic ectodermal dysplasia. Daxu Li, Ran Xu, Fumeng Huang, Biyuan Wang, Yu Tao, Zijian Jiang, Hairui Li, Jianfeng Yao,. Peng Xu, Xiaokang Wu, Le Ren, Rui Zhang, John R. Kelsoe and Jie Ma.

  20. Addressing the scaling issue by thermalhydraulic system codes: recent results

    International Nuclear Information System (INIS)

    D'auria, F.; Cherubini, M.; Galassi, G.M.; Muellner, N. . E-mail of corresponding author: dauria@ing.unipi.it; D'auria, F.)

    2005-01-01

    This lecture presents an introduction into the scaling issue following a 'top-down' approach. This means, recent studies which deal with a scaling analysis in LWR with special regards to the WWER Russian reactor type are presented to demonstrate important phenomena for scaling, to be more precise, the counterpart test (CT) methodology. As an example, one CT, a Small Break LOCA carried out in the PSB facility, is presented. PSB is a full height, full pressure rig that reproduces a WWER 1000, power and volume scaling factor is 1:300. The CT has been designed deriving boundary and initial condition from the same test performed in LOBI (that reproduces a PWR). The adopted scaling approach is based on the selection of a few characteristic parameters. They are chosen taking into account their relevance in the behaviour of the transient. The calculation of the SBLOCA has been performed using Relap5/Mod3.3 computer code and its accuracy has been demonstrated by qualitative and quantitative evaluation. For the quantitative evaluation the use of the FFT Based Method is foreseen and the fulfilment of its limits has been obtained. The aim of the example is to give an overview about the theoretical concepts of scaling, which is termed the s caling strategy , and comprises the steps of the selected scaling approach. At the same time interesting results from ongoing research projects will be presented. Comparing experimental data it was found that the investigated facilities show similar behaviour concerning the time trends, and are able to predict on a qualitative level the same thermal hydraulic phenomena. Main obtained results are summarized as follows: PSB and LOBI main parameters have similar trends. This is a confirmation of the validity of the adopted scaling approach and shows that PWR and WWER reactor type behaviour are very close to each other. No new phenomena occur during the CT, notwithstanding the two facilities have a different lay out, and the already known

  1. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  2. Investigation and proposal of the system to affect nuclear fuel type authorization and analysis code certification

    International Nuclear Information System (INIS)

    2006-03-01

    In order to develop the system to affect more advanced and rational regulations of nuclear fuels and earlier introduction of new technologies in nuclear power plants, domestic and overseas safety regulation systems and state of their implementation for water cooled reactor fuel and safety analysis code had been investigated and new regulation system to affect nuclear fuel type authorization and analysis code certification was proposed. Topical report system for common parts related with nuclear fuel type authorization and analysis code certification was firstly proposed for knowledge base. Maintaining consistent safety examination supported by experts, introduction of domestic efficient system for lead irradiation test fuel, and analysis code certification and quality assurance were also proposed. (T. Tanaka)

  3. Experiment data acquisition and analysis system. Vol. 1

    International Nuclear Information System (INIS)

    Busch, F.; Croome, D.; Goeringer, H.; Hartmann, V.; Lowsky, J.; Marinescu, D.; Richter, M.; Winkelmann, K.

    1983-08-01

    The Experiment Data Acquisition and Analysis System EDAS was created to acquire and analyze data collected in experiments carried out at the heavy ion accelerator UNILAC. It has been available since 1975 and has become the most frequently used system for evaluating experiments at GSI. EDAS has undergone constant development, and the many enhancements make this completely revised third edition of the EDAS manual necessary. EDAS consists of two sub-systems: GOLDA for experimental data acquisition on PDP-11's and SATAN mainly for off-line analysis in replay mode on large IBM mainframes. The capacity of one IBM 3081 CPU is mainly dedicated to EDAS processing and is almost fully utilized by this application. More than 200 users from GSI as well as from collaborating laboratories and universities use SATAN in more than 100 sessions daily needing 10 to 20 hours of user CPU time. EDAS is designed as an open system. (orig./HSI)

  4. Cardinality enhancement utilizing Sequential Algorithm (SeQ code in OCDMA system

    Directory of Open Access Journals (Sweden)

    Fazlina C. A. S.

    2017-01-01

    Full Text Available Optical Code Division Multiple Access (OCDMA has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI and improve Bit Error Rate (BER, Phase Induced Intensity Noise (PIIN and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  5. Design evaluation on sodium piping system and comparison of the design codes

    International Nuclear Information System (INIS)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon

    2015-01-01

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  6. Design evaluation on sodium piping system and comparison of the design codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon [KAERI, Daejeon (Korea, Republic of)

    2015-03-15

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  7. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    Science.gov (United States)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  8. Design of Spreading-Codes-Assisted Active Imaging System

    Directory of Open Access Journals (Sweden)

    Alexey Volkov

    2015-07-01

    Full Text Available This work discusses an innovative approach to imaging which can improve the robustness of existing active-range measurement methods and potentially enhance their use in a variety of outdoor applications. By merging a proven modulation technique from the domain of spread-spectrum communications with the bleeding-edge CMOS sensor technology, the prototype of the modulated range sensor is designed and evaluated. A suitable set of application-specific spreading codes is proposed, evaluated and tested on the prototype. Experimental results show that the introduced modulation technique significantly reduces the impacts of environmental factors such as sunlight and external light sources, as well as mutual interference of identical devices. The proposed approach can be considered as a promising basis for a new generation of robust and cost-efficient range-sensing solutions for automotive applications, autonomous vehicles or robots.

  9. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    Science.gov (United States)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  10. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  11. Modelling of the Rod Control System in the coupled code RELAP5-QUABOX/CUBBOX

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    1999-01-01

    There is a general agreement that for many light water reactor transient calculations, it is necessary to use a multidimensional neutron kinetics model coupled to sophisticated thermal-hydraulic models in order to obtain satisfactory results. These calculations are needed for a variety of applications for licensing safety analyses, probabilistic risk assessment, operational support, and training. At FER, Zagreb, a coupling of 3D neutronics code QUABOX/CUBBOX and system code RELAP5 was performed. In the paper the Rod Control System model in the RELAP5 part of the coupled code is presented. A first testing of the model was performed by calculation of reactor trip from full power for NPP Krsko. Results of 3D neutronics calculation obtained by coupled code QUABOX/CUBBOX were compared with point kinetics calculation performed with RELAP5 stand alone code.(author)

  12. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  13. Simulation of the containment spray system test PACOS PX2.2 with the integral code ASTEC and the containment code system COCOSYS

    International Nuclear Information System (INIS)

    Risken, Tobias; Koch, Marco K.

    2011-01-01

    The reactor safety research contains the analysis of postulated accidents in nuclear power plants (npp). These accidents may involve a loss of coolant from the nuclear plant's reactor coolant system, during which heat and pressure within the containment are increased. To handle these atmospheric conditions, containment spray systems are installed in various light water reactors (LWR) worldwide as a part of the accident management system. For the improvement and the safety ensurance in npp operation and accident management, numeric simulations of postulated accident scenarios are performed. The presented calculations regard the predictability of the containment spray system's effect with the integral code ASTEC and the containment code system COCOSYS, performed at Ruhr-Universitaet Bochum. Therefore the test PACOS Px2.2 is simulated, in which water is sprayed in the stratified containment atmosphere of the BMC (Battelle Modell-Containment). (orig.)

  14. PASC-1, Petten AMPX-II/SCALE-3 Code System for Reactor Neutronics Calculation

    International Nuclear Information System (INIS)

    Yaoqing, W.; Oppe, J.; Haas, J.B.M. de; Gruppelaar, H.; Slobben, J.

    1995-01-01

    1 - Description of program or function: The Petten AMPX-II/SCALE-3 Code System PASC-1 is a reactor neutronics calculation programme system consisting of well known IBM-oriented codes, that have been translated into FORTRAN-77, for calculations on a CDC-CYBER computer. Thus, the portability of these codes has been increased. In this system, some AMPX-II and SCALE-3 modules, the one-dimensional transport code ANISN and the 1 to 3-dimensional diffusion code CITATION are linked together on the CDC-CYBER/855 computer. The new cell code XSDRNPM-S and the old XSDRN code are included in the system. Starting from an AMPX fine group library up to CITATION, calculations can be performed for each individual module. Existing AMPX master interface format libraries, such as CSRL-IV, JEF-1, IRI and SCALE-45, and the old XSDRN-formatted libraries such as the COBB library can be used for the calculations. The code system contains the following modules and codes at present: AIM, AJAX, MALOCS, NITAWL-S, REVERT-I, ICE-2, CONVERT, JUAN, OCTAGN, XSDRNPM-S, XSDRN, ANISN and CITATION. The system will be extended with other SCALE modules and transport codes. 2 - Method of solution: The PASC-1 system is based on AMPX-II/SCALE-3 modules. Except for some SCALE-3 modules taken from the SCALIAS package, the original AMPX-II modules were IBM versions written in FORTRAN IV. These modules have been translated into CDC FORTRAN V. In order to test these modules and link them with some codes, some of the sample problem calculations have been performed for the whole PASC-1 system. During these calculations, some FORTRAN-77 errors were found in MALOCS, REVERT, CONVERT and some subroutines of SUBLIB (FORTRAN-77 subroutine library). These errors have been corrected. Because many corrections were made for the REVERT module, it is renamed as REVERT-I (improved version of REVERT). After these corrections, the whole system is running on a CDC-CYBER Computer (NOS-BE operating system). 3 - Restrictions on the

  15. Performance of asynchronous fiber-optic code division multiple access system based on three-dimensional wavelength/time/space codes and its link analysis.

    Science.gov (United States)

    Singh, Jaswinder

    2010-03-10

    A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation.

  16. The Conversion of Wiswesser Line Notations to Ring Codes. I. The Conversion of Ring Systems

    Science.gov (United States)

    Granito, Charles E.; And Others

    1972-01-01

    The computerized conversion of Wiswesser Line Notations to Ring Codes, using a two-part approach, and the set of computer programs generated for the conversion of ring systems are described. (9 references) (Author)

  17. A systematic literature review of automated clinical coding and classification systems.

    Science.gov (United States)

    Stanfill, Mary H; Williams, Margaret; Fenton, Susan H; Jenders, Robert A; Hersh, William R

    2010-01-01

    Clinical coding and classification processes transform natural language descriptions in clinical text into data that can subsequently be used for clinical care, research, and other purposes. This systematic literature review examined studies that evaluated all types of automated coding and classification systems to determine the performance of such systems. Studies indexed in Medline or other relevant databases prior to March 2009 were considered. The 113 studies included in this review show that automated tools exist for a variety of coding and classification purposes, focus on various healthcare specialties, and handle a wide variety of clinical document types. Automated coding and classification systems themselves are not generalizable, nor are the results of the studies evaluating them. Published research shows these systems hold promise, but these data must be considered in context, with performance relative to the complexity of the task and the desired outcome.

  18. Validation Study of CODES Dragonfly Network Model with Theta Cray XC System

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, Misbah [Argonne National Lab. (ANL), Argonne, IL (United States); Ross, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-31

    This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).

  19. An Adaptation of the HELIOS/MASTER Code System to the Analysis of VHTR Cores

    International Nuclear Information System (INIS)

    Noh, Jae Man; Lee, Hyun Chul; Kim, Kang Seog; Kim, Yong Hee

    2006-01-01

    KAERI is developing a new computer code system for an analysis of VHTR cores based on the existing HELIOS/MASTER code system which was originally developed for a LWR core analysis. In the VHTR reactor physics, there are several unique neutronic characteristics that cannot be handled easily by the conventional computer code system applied for the LWR core analysis. Typical examples of such characteristics are a double heterogeneity problem due to the particulate fuels, the effects of a spectrum shift and a thermal up-scattering due to the graphite moderator, and a strong fuel/reflector interaction, etc. In order to facilitate an easy treatment of such characteristics, we developed some methodologies for the HELIOS/MASTER code system and tested their applicability to the VHTR core analysis

  20. Code division multiple-access techniques in optical fiber networks. II - Systems performance analysis

    Science.gov (United States)

    Salehi, Jawad A.; Brackett, Charles A.

    1989-08-01

    A technique based on optical orthogonal codes was presented by Salehi (1989) to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using a optical hard-limiter would, in general, improve system performance.