The octopus burnup and criticality code system
International Nuclear Information System (INIS)
Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.
1996-01-01
The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)
The OCTOPUS burnup and criticality code system
International Nuclear Information System (INIS)
Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de
1996-06-01
The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)
Burnup calculation code system COMRAD96
Energy Technology Data Exchange (ETDEWEB)
Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu
1997-06-01
COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)
Burnup calculation code system COMRAD96
International Nuclear Information System (INIS)
Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.
1997-06-01
COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)
Systemization of burnup sensitivity analysis code. 2
International Nuclear Information System (INIS)
Tatsumi, Masahiro; Hyoudou, Hideaki
2005-02-01
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For
Integrated burnup calculation code system SWAT
Energy Technology Data Exchange (ETDEWEB)
Suyama, Kenya; Hirakawa, Naohiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwasaki, Tomohiko
1997-11-01
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user`s manual of SWAT. (author)
Revised SWAT. The integrated burnup calculation code system
Energy Technology Data Exchange (ETDEWEB)
Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)
2000-07-01
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)
Revised SWAT. The integrated burnup calculation code system
International Nuclear Information System (INIS)
Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide
2000-07-01
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)
Systemization of burnup sensitivity analysis code (2) (Contract research)
International Nuclear Information System (INIS)
Tatsumi, Masahiro; Hyoudou, Hideaki
2008-08-01
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion
Restructuring of burnup sensitivity analysis code system by using an object-oriented design approach
International Nuclear Information System (INIS)
Kenji, Yokoyama; Makoto, Ishikawa; Masahiro, Tatsumi; Hideaki, Hyoudou
2005-01-01
A new burnup sensitivity analysis code system was developed with help from the object-oriented technique and written in Python language. It was confirmed that they are powerful to support complex numerical calculation procedure such as reactor burnup sensitivity analysis. The new burnup sensitivity analysis code system PSAGEP was restructured from a complicated old code system and reborn as a user-friendly code system which can calculate the sensitivity coefficients of the nuclear characteristics considering multicycle burnup effect based on the generalized perturbation theory (GPT). A new encapsulation framework for conventional codes written in Fortran was developed. This framework supported to restructure the software architecture of the old code system by hiding implementation details and allowed users of the new code system to easily calculate the burnup sensitivity coefficients. The framework can be applied to the other development projects since it is carefully designed to be independent from PSAGEP. Numerical results of the burnup sensitivity coefficient of a typical fast breeder reactor were given with components based on GPT and the multicycle burnup effects on the sensitivity coefficient were discussed. (authors)
SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP
International Nuclear Information System (INIS)
Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi
2009-05-01
Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)
MONTEBURNS 2.0: An Automated, Multi-Step Monte Carlo Burnup Code System
International Nuclear Information System (INIS)
2007-01-01
A - Description of program or function: MONTEBURNS Version 2 calculates coupled neutronic/isotopic results for nuclear systems and produces a large number of criticality and burnup results based on various material feed/removal specifications, power(s), and time intervals. MONTEBURNS is a fully automated tool that links the LANL MCNP Monte Carlo transport code with a radioactive decay and burnup code. Highlights on changes to Version 2 are listed in the transmittal letter. Along with other minor improvements in MONTEBURNS Version 2, the option was added to use CINDER90 instead of ORIGEN2 as the depletion/decay part of the system. CINDER90 is a multi-group depletion code developed at LANL and is not currently available from RSICC, nor from the NEA Databank. This MONTEBURNS release was tested with various combinations of CCC-715/MCNPX 2.4.0, CCC-710/MCNP5, CCC-700/MCNP4C, CCC-371/ORIGEN2.2, ORIGEN2.1 and CINDER90. Perl is required software and is not included in this distribution. MCNP, ORIGEN2, and CINDER90 are not included. The following changes have been made: 1) An increase in the number of removal group information that must be provided for each material in each step in the feed input file. 2) The capability to use CINDER90 instead of ORIGEN2.1 as the depletion/decay part of the code. 3) ORIGEN2.2 can also be used instead of ORIGEN2.1 in Monteburns. 4) The correction of including the capture cross sections to metastable as well as ground states if applicable for an isotope (i.e. Am-241 and Am-243 in particular). 5) The ability to use a MCNP input file that has a title card starting with 'm' (this was a bug in the first version of Monteburns). 6) A decrease in run time for cases involving decay-only steps (power of 0.0). Monteburns does not run MCNP to calculate cross sections for a step unless it is an irradiation step. 7) The ability to change the cross section libraries used each step. If different cross section libraries are desired for multiple steps. 8
International Nuclear Information System (INIS)
Suyama, K.; Mochizuki, H.; Okuno, H.; Miyoshi, Y.
2004-01-01
This paper provides validation results of SWAT2, the revised version of SWAT, which is a code system combining point burnup code ORIGEN2 and continuous energy Monte Carlo code MVP, by the analysis of post irradiation examinations (PIEs). Some isotopes show differences of calculation results between SWAT and SWAT2. However, generally, the differences are smaller than the error of PIE analysis that was reported in previous SWAT validation activity, and improved results are obtained for several important fission product nuclides. This study also includes comparison between an assembly and a single pin cell geometry models. (authors)
Analysis of recent post irradiation tests by Japanese and French burnup analysis code systems
International Nuclear Information System (INIS)
Iwasaki, Tomohiko; Hiraizumi, Hiroaki; Youinou, Gilles
2002-01-01
Benchmark problem based on Japanese Post Irradiation Experiment (PIE) data was analyzed by Japanese burnup analysis code and French one under the cooperative research program between the Japanese University Association (JUA) in Japan and Commissariat a l'Enegie Atomique (CEA) in France. Significant discrepancies over 10% were found between the Japanese and French results for 238 Pu, 243 Am, 244 Cm, 125 Sb, 154 Eu, 134 Cs and 144 Ce. It is supposed that the difference of C/E for 243 Am and 244 Cm between Japanese results and French ones is due to the (n,gamma) reaction of 242m Am. For 125 Sb and 154 Eu, the C/E values are improved by using new cross section and fission yield libraries. (author)
Energy Technology Data Exchange (ETDEWEB)
Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik
2014-06-15
In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.
Fuel analysis code FAIR and its high burnup modelling capabilities
International Nuclear Information System (INIS)
Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1995-01-01
A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs
International Nuclear Information System (INIS)
Cepraga, D.; Boeriu, St.; Gheorghiu, E.; Cristian, I.; Patrulescu, I.; Cimporescu, D.; Ciuvica, P.; Velciu, E.
1975-01-01
The calculation system DACC-5 is a zero-dimensional reactor physics code used to calculate the criticality and burn-up of light-water reactors. The code requires as input essential extensive reactor parameters (fuel rod radius, water density, etc.). The nuclear constants (intensive parameters) are calculated with a five-group model (2 thermal and 3 fast groups). A fitting procedure is systematically employed to reduce the computation time of the code. Zero-dimensional burn-up calculations are made in an automatic way. Part one of the paper contains the code physical model and computer structure. Part two of the paper will contain tests of DACC-5 credibility for different light-water power lattices
High burnup models in computer code fair
International Nuclear Information System (INIS)
Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.
1997-01-01
An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs
International Nuclear Information System (INIS)
Serov, I.V.; Hoogenboom, J.E.
1993-07-01
The main calculational tool is the CITATION code. CITATION is used for both static and burnup calculations. The pointwise flux density and power distributions obtained from these calculations are used to obtain the values of the desired quantities at the beginning of a burnup cycle. To obtain the most trustful values of the desired quantities CONHOR employs experimental information together with the CITATION calculated flux distributions. Axially averaged foil activation rates are obtained based on both CITATION pointwise flux density distributions and measured foil activity counts. These two sets of activation rates are called the distributions of auxiliary quantities and are compared with each other in order to pick up the corrections to the U-235 number densities in fuel containing elements. The methodical corrections to the calculational auxiliary quantities are obtained on this basis as well. They are used to obtain the methodical corrections to the desired quantities. The corrected desired quantities are the recommended ones. The correction procedure requires the knowledge of the sensitivity coefficients of the average foil activation rates with respect to the U-235 number densities (through the text of this manual U-235 is denoted also and especially in the input-output description sections as a BUrning-COrrected material, or 'BuCo' material). These sensitivity coefficients are calculated by the CONHOR SENS module. CITATION is employed to perform the calculations with perturbed values of U-235 number densities. Burnup calculations can be performed being based on either corrected or uncorrected U-235 number densities. Through the text of this manual XXXX means a 4-symbol identification of the burnup cycle to be studied. XX-1 and XX+1 mean correspondingly the previous and the following cycles. (orig./HP)
Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN
International Nuclear Information System (INIS)
Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi; Kaneko, Toshiyuki.
1996-12-01
The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code 'MULTI-KENO' and the routine for the burnup calculation of the one dimensional burnup code 'UNITBURN'. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)
Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN
Energy Technology Data Exchange (ETDEWEB)
Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Toshiyuki
1996-12-01
The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code `MULTI-KENO` and the routine for the burnup calculation of the one dimensional burnup code `UNITBURN`. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)
Burnup calculations using serpent code in accelerator driven thorium reactors
International Nuclear Information System (INIS)
Korkmaz, M.E.; Agar, O.; Yigit, M.
2013-01-01
In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232 Th and mixed 233 U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)
Burnup calculations using serpent code in accelerator driven thorium reactors
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, M.E.; Agar, O. [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Physics Dept.; Yigit, M. [Aksaray Univ. (Turkey). Physics Dept.
2013-07-15
In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed {sup 232}Th and mixed {sup 233}U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)
International Nuclear Information System (INIS)
Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi
2001-01-01
The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor
BEAVRS full core burnup calculation in hot full power condition by RMC code
International Nuclear Information System (INIS)
Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan
2017-01-01
Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.
Methods of RECORD, an LWR fuel assembly burnup code
International Nuclear Information System (INIS)
Skardhamar, T.; Naess, H.K.
1982-06-01
The RECORD computer code is a detailed rector physics code for performing efficient LWR fuel assembly calculations, taking into account most of the features found in BWR and PWR fuel designs. The code calculates neutron spectrum, reaction rates and reactivity as a function of fuel burnup, and it generates the few-group data required for use in full scale core simulation and fuel management calculations. The report describes the methods of the RECORD computer code and the basis for fundamental models selected, and gives a review of code qualifications against measured data. (Auth. /RF)
Evolution of the ELESTRES code for application to extended burnups
International Nuclear Information System (INIS)
Tayal, M.; Ranger, A.; Singhal, N.; Mak, R.
1990-01-01
The computer code ELESTRES is frequently used at Atomic Energy of Canada Limited to assess the integrity of CANDU fuel under normal operating conditions. The code also provides initial conditions for evaluating fuel behaviour during high-temperature transients. This paper describes recent improvements in the code in the areas of pellet expansion and of fission gas release. Both of these are very important considerations in ensuring fuel integrity at extended burnups. Firstly, in calculations of pellet expansion, the code now accounts for the effect of thermal stresses on the volume of gas bubbles at the boundaries of UO 2 grains. This has a major influence on the expansion of the pellet during power-ramps. Secondly, comparisons with data showed that the previous fission gas package significantly underpredicted the fission gas release at high burnups. This package has now been improved via modifications to the following modules: distance between neighbouring bubbles on grain boundaries; diffusivity; and thermal conductivity. The predictions of the revised version of the code show reasonable agreement with measurements of ridge strains and of fission gas release. An illustrative example demonstrates that the code can be used to identify a fuel design that would: reduce the sheath stresses at circumferential ridges by a factor of 2-10; and keep the gas pressure at very high burnups to below the coolant pressure
A high burnup model developed for the DIONISIO code
Soba, A.; Denis, A.; Romero, L.; Villarino, E.; Sardella, F.
2013-02-01
A group of subroutines, designed to extend the application range of the fuel performance code DIONISIO to high burn up, has recently been included in the code. The new calculation tools, which are tuned for UO2 fuels in LWR conditions, predict the radial distribution of power density, burnup, and concentration of diverse nuclides within the pellet. The balance equations of all the isotopes involved in the fission process are solved in a simplified manner, and the one-group effective cross sections of all of them are obtained as functions of the radial position in the pellet, burnup, and enrichment in 235U. In this work, the subroutines are described and the results of the simulations performed with DIONISIO are presented. The good agreement with the data provided in the FUMEX II/III NEA data bank can be easily recognized.
Accuracy assessment of a new Monte Carlo based burnup computer code
International Nuclear Information System (INIS)
El Bakkari, B.; ElBardouni, T.; Nacir, B.; ElYounoussi, C.; Boulaich, Y.; Meroun, O.; Zoubair, M.; Chakir, E.
2012-01-01
Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k ∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.
Taking burnup credit for interim storage and transportation system for BWR fuels
International Nuclear Information System (INIS)
Yoshioka, K.I.
2000-01-01
In the back-end issues of nuclear fuel cycle, selection of reprocessing or one-through is a big issue. For both of the cases, a reasonable interim storage and transportation system is required. This study proposes an advanced practical monitoring and evaluation system. The system features the followings: (l) Storage racks and transportation casks taking credit for burnup. (2) A burnup estimation system using a compact monitor with Cd- Te detectors and fission chambers. (3) A neutron emission-rate evaluation methodology, especially important for high burnup MOX fuels. (4) A nuclear materials management system for safeguards. Current storage system and transport casks are designed on the basis of a fresh fuel assumption. The assumption is too conservative. Taking burnup credit gives a reasonable design while keeping conservatism. In order to establish a reasonable burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of some modules such as TGBLA, ORIGEN, CITATION, MCNP and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. The code takes operational history such as, power density, void fraction into account. This code is applied to the back-end issues for a more accurate design of a storage and a transportation system. The ORIGEN code is well-known one-point isotope depletion code. In the calculation system, the code calculates isotope compositions using libraries generated from the TGBLA code. The CITATION code, the MCNP code, and the KENO code are three dimensional diffusion code, continuous energy Monte Carlo code, discrete energy Monte Carlo code, respectively. Those codes calculate k- effective of the storage and transportation systems using isotope compositions generated from the ORIGEN code. The CITATION code and the KENO code are usually used for practical designs. The MCNP code is used for reference
Development and verification of Monte Carlo burnup calculation system
International Nuclear Information System (INIS)
Ando, Yoshihira; Yoshioka, Kenichi; Mitsuhashi, Ishi; Sakurada, Koichi; Sakurai, Shungo
2003-01-01
Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)
The CORSYS neutronics code system
International Nuclear Information System (INIS)
Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.
1994-01-01
The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs
Burnup verification tests with the FORK measurement system-implementation for burnup credit
International Nuclear Information System (INIS)
Ewing, R.I.
1994-01-01
Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. It was designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program and is well suited to verify burnup and cooling time records at commercial Pressurized Water Reactor (PWR) sites. This report deals with the application of the FORK system to burnup credit operations
A multi-platform linking code for fuel burnup and radiotoxicity analysis
Cunha, R.; Pereira, C.; Veloso, M. A. F.; Cardoso, F.; Costa, A. L.
2014-02-01
A linking code between ORIGEN2.1 and MCNP has been developed at the Departamento de Engenharia Nuclear/UFMG to calculate coupled neutronic/isotopic results for nuclear systems and to produce a large number of criticality, burnup and radiotoxicity results. In its previous version, it evaluated the isotopic composition evolution in a Heat Pipe Power System model as well as the radiotoxicity and radioactivity during lifetime cycles. In the new version, the code presents features such as multi-platform execution and automatic results analysis. Improvements made in the code allow it to perform simulations in a simpler and faster way without compromising accuracy. Initially, the code generates a new input for MCNP based on the decisions of the user. After that, MCNP is run and data, such as recoverable energy per prompt fission neutron, reaction rates and keff, are automatically extracted from the output and used to calculate neutron flux and cross sections. These data are then used to construct new ORIGEN inputs, one for each cell in the core. Each new input is run on ORIGEN and generates outputs that represent the complete isotopic composition of the core on that time step. The results show good agreement between GB (Coupled Neutronic/Isotopic code) and Monteburns (Automated, Multi-Step Monte Carlo Burnup Code System), developed by the Los Alamos National Laboratory.
International Nuclear Information System (INIS)
Timofeeva, O.A.; Kurakin, K.U.
2006-01-01
The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)
Taking burnup credit for interim storage and transportation system for BWR fuels
International Nuclear Information System (INIS)
Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.
2001-01-01
In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)
Burnup credit implementation in WWER spent fuel management systems: Status and future aspects
International Nuclear Information System (INIS)
Manolova, M.
1998-01-01
This paper describes the motivation for possible burnup credit implementation in WWER spent fuel management systems in Bulgaria. The activities being done are described, namely: the development and verification of a 3D few-group diffusion burnup model; the application of the KORIGEN code for evaluation of WWER fuel nuclear inventory during reactor core lifetime and after spent fuel discharge; using the SCALE modular system (PC Version 4.1) for criticality safety analyses of spent fuel storage facilities. Future plans involving such important tasks as validation and verification of computer systems and libraries for WWER burnup credit analysis are shown. (author)
International Nuclear Information System (INIS)
1998-04-01
The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report
Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki
1997-11-01
EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.
ALEPH 1.1.2: A Monte Carlo burn-up code
International Nuclear Information System (INIS)
Haeck, W.; Verboomen, B.
2006-01-01
In the last 40 years, Monte Carlo particle transport has been applied to a multitude of problems such as shielding and medical applications, to various types of nuclear reactors, . . . The success of the Monte Carlo method is mainly based on its broad application area, on its ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, complex interaction laws, detailed energy-angle correlations, multi-particle physics, . . . ), on its capability of modeling geometries from simple 1D to complex 3D, . . . There is also a current trend in Monte Carlo applications toward high detail 3D calculations (for instance voxel-based medical applications), something for which deterministic codes are neither suited nor performant as to computational time and precision. Apart from all these fields where Monte Carlo particle transport has been applied successfully, there is at least one area where Monte Carlo has had limited success, namely burn-up and activation calculations where the time parameter is added to the problem. The concept of Monte Carlo burn-up consists of coupling a Monte Carlo code to a burn-up module to improve the accuracy of depletion and activation calculations. For every time step the Monte Carlo code will provide reaction rates to the burn-up module which will return new material compositions to the Monte Carlo code. So if static Monte Carlo particle transport is slow, then Monte Carlo particle transport with burn-up will be even slower as calculations have to be performed for every time step in the problem. The computational issues to perform accurate Monte Carlo calculations are however continuously reduced due to improvements made in the basic Monte Carlo algorithms, due to the development of variance reduction techniques and due to developments in computer architecture (more powerful processors, the so-called brute force approach through parallel processors and networked systems
Determination of axial profit performed burnup credit by SCALE 4.3-system
International Nuclear Information System (INIS)
Miro, R.; Verdu, G.; Munoz-Cobo, J. L.
1998-01-01
SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs
International Nuclear Information System (INIS)
Neuber, J.C.; Kuehl, H.
2001-01-01
This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)
Triton burnup measurements in KSTAR using a neutron activation system
Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.
2016-11-01
Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.
A burn-up module coupling to an AMPX system
International Nuclear Information System (INIS)
Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.
1990-01-01
The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es
Fuel burnup calculation of Ghana MNSR using ORIGEN2 and REBUS3 codes.
Abrefah, R G; Nyarko, B J B; Fletcher, J J; Akaho, E H K
2013-10-01
Ghana Research Reactor-1 core is to be converted from HEU fuel to LEU fuel in the near future and managing the spent nuclear fuel is very important. A fuel depletion analysis of the GHARR-1 core was performed using ORIGEN2 and REBUS3 codes to estimate the isotopic inventory at end-of-cycle in order to help in the design of an appropriate spent fuel cask. The results obtained for both codes were consistent for U-235 burnup weight percent and Pu-239 build up as a result of burnup. Copyright © 2013 Elsevier Ltd. All rights reserved.
New high burnup fuel models for NRC's licensing audit code, FRAPCON
International Nuclear Information System (INIS)
Lanning, D.D.; Beyer, C.E.; Painter, C.L.
1996-01-01
Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data
Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly
International Nuclear Information System (INIS)
El bakkari, B.; El Bardouni, T.; Merroun, O.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Chakir, E.
2009-01-01
The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k ∞ ) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.
New approach to derive linear power/burnup history input for CANDU fuel codes
International Nuclear Information System (INIS)
Lac Tang, T.; Richards, M.; Parent, G.
2003-01-01
The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)
LASER-R a computer code for reactor cell and burnup calculations in neutron transport theory
International Nuclear Information System (INIS)
Cristian, I.; Cirstoiu, B.; Dumitrache, I.; Cepraga, D.
1976-04-01
The LASER-R code is an IBM 370/135 version of the Westinghouse code, LASER, based on the THERMOS and MUFT codes developped by Poncelet. It can be used to perform thermal reactor cell calculations and burnup calculations. The cell exhibits 3-4 concentric areas: fuel, cladding, moderator and scattering ring. Besides directions for use, a short description of the physical model, numerical methods and output is presented
A new approach to make collapsed cross section for burnup calculation of subcritical system
International Nuclear Information System (INIS)
Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao
2008-01-01
A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)
International Nuclear Information System (INIS)
Korkmaz, Mehmet E.; Agar, Osman
2014-01-01
In this research, we investigated the burnup characteristics and the conversion of fertile 232 Th into fissile 233 U in the core of a Sodium-Cooled Fast Reactor (SFR). The SFR fuel assemblies were designed for burning 232 Th fuel (fuel pin 1) and 233 U fuel (fuel pin 2) and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method) and TTA (Transmutation Trajectory Analysis) method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff) was between 0.964 and 0.954 and peaking factor is 1.88867.
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, Mehmet E.; Agar, Osman [Karamanoglu Mehmetbey University, Faculty of Kamil Oezdag Science, Karaman (Turkmenistan)
2014-06-15
In this research, we investigated the burnup characteristics and the conversion of fertile {sup 232}Th into fissile {sup 233}U in the core of a Sodium-Cooled Fast Reactor (SFR). The SFR fuel assemblies were designed for burning {sup 232}Th fuel (fuel pin 1) and {sup 233}U fuel (fuel pin 2) and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method) and TTA (Transmutation Trajectory Analysis) method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff) was between 0.964 and 0.954 and peaking factor is 1.88867.
Directory of Open Access Journals (Sweden)
MEHMET E. KORKMAZ
2014-06-01
Full Text Available In this research, we investigated the burnup characteristics and the conversion of fertile 232Th into fissile 233U in the core of a Sodium-Cooled Fast Reactor (SFR. The SFR fuel assemblies were designed for burning 232Th fuel (fuel pin 1 and 233U fuel (fuel pin 2 and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method and TTA (Transmutation Trajectory Analysis method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff was between 0.964 and 0.954 and peaking factor is 1.88867.
Development of a fuel rod thermal-mechanical analysis code for high burnup fuel
International Nuclear Information System (INIS)
Owaki, M.; Ikatsu, N.; Ohira, K.; Itagaki, N.
2001-01-01
The thermal-mechanical analysis code for high burnup BWR fuel rod has been developed by NFI. The irradiation data accumulated up to the assembly burnup of 55 GWd/t in commercial BWRs were adopted for the modeling. In the code, pellet thermal conductivity degradation with burnup progress was considered. Effects of the soluble FPs, irradiation defects and porosity increase due to RIM effect were taken into the model. In addition to the pellet thermal conductivity degradation, the pellet swelling due to the RIM porosity was studied. The modeling for the high burnup effects was also carried out for (U, Gd)O 2 and MOX fuel. The thermal conductivities of all pellet types, UO 2 , (U, Gd)O 2 and (U, Pu)O 2 pellets, are expressed by the same form of equation with individual coefficient γ in the code. The pellet center temperature was calculated using this modeling code, and compared with measured values for the code verification. The pellet center temperature calculated using the thermal conductivity degradation model agreed well with the measured values within ±150 deg. C. The influence of rim porosity on pellet center temperature is small, and the temperature increase in only 30 deg. C at 75 GWd/t and 200 W/cm. The pellet center temperature of MOX fuel was also calculated, and it was found that the pellet center temperature of MOX fuel with 10wt% PuO 2 is about 60 deg. C higher than UO 2 fuel at 75 GWd/t and 200 W/cm. (author)
Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes
Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.
2017-02-01
International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.
Energy Technology Data Exchange (ETDEWEB)
Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL
2015-01-01
Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k_{eff}) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup
International Nuclear Information System (INIS)
Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.
1986-09-01
Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)
Modelling of high burnup structure in UO2 fuel with the RTOP code
International Nuclear Information System (INIS)
Likhanskii, V.; Zborovskii, V.; Evdokimov, I.; Kanyukova, V.; Sorokin, A.
2008-01-01
The present work deals with self-consistent physical approach aimed to derive the criterion of fuel restructuring avoiding correlations. The approach is based on study of large over pressurized bubbles formation on dislocations, at grain boundaries and in grain volume. At first, stage of formation of bubbles non-destroyable by fission fragments is examined using consistent modelling of point defects and fission gas behavior near dislocation and in grain volume. Then, evolution of formed large non-destroyable bubbles is considered using results of the previous step as initial values. Finally, condition of dislocation loops punching by sufficiently large over pressurized bubbles is regarded as the criterion of fuel restructuring onset. In the present work consideration of large over pressurized bubbles evolution is applied to modelling of the restructuring threshold depending on temperature, burnup and grain size. Effect of grain size predicted by the model is in qualitative agreement with experimental observations. Restructuring threshold criterion as an analytical function of local burnup and fuel temperature is derived and compared with HBRP project data. To predict rim-layer width formation depending on fuel burnup and irradiation conditions the model is implemented into the mechanistic fuel performance code RTOP. Calculated dependencies give upper estimate for the width of restructured region. Calculations show that one needs to consider temperature distribution within pellet which depends on irradiation history in order to model rim-structure formation
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, N.; Cabellos, O. [Madrid Polytechnic Univ., Dept. of Nuclear Engineering (Spain); Cabellos, O.; Sanz, J. [Madrid Polytechnic Univ., 2 Instituto de Fusion Nuclear (Spain); Sanz, J. [Univ. Nacional Educacion a Distancia, Dept. of Power Engineering, Madrid (Spain)
2005-07-01
We present a new code system which combines the Monte Carlo neutron transport code MCNP-4C and the inventory code ACAB as a suitable tool for high burnup calculations. Our main goal is to show that the system, by means of ACAB capabilities, enables us to assess the impact of neutron cross section uncertainties on the inventory and other inventory-related responses in high burnup applications. The potential impact of nuclear data uncertainties on some response parameters may be large, but only very few codes exist which can treat this effect. In fact, some of the most reported effective code systems in dealing with high burnup problems, such as CASMO-4, MCODE and MONTEBURNS, lack this capability. As first step, the potential of our system, ruling out the uncertainty capability, has been compared with that of those code systems, using a well referenced high burnup pin-cell benchmark exercise. It is proved that the inclusion of ACAB in the system allows to obtain results at least as reliable as those obtained using other inventory codes, such as ORIGEN2. Later on, the uncertainty analysis methodology implemented in ACAB, including both the sensitivity-uncertainty method and the uncertainty analysis by the Monte Carlo technique, is applied to this benchmark problem. We estimate the errors due to activation cross section uncertainties in the prediction of the isotopic content up to the high-burnup spent fuel regime. The most relevant uncertainties are remarked, and some of the most contributing cross sections to those uncertainties are identified. For instance, the most critical reaction for Am{sup 242m} is Am{sup 241}(n,{gamma}-m). At 100 MWd/kg, the cross-section uncertainty of this reaction induces an error of 6.63% on the Am{sup 242m} concentration.The uncertainties in the inventory of fission products reach up to 30%.
DRAGON, Reactor Cell Calculation System with Burnup
International Nuclear Information System (INIS)
2007-01-01
1 - Description of program or function: DRAGON is a collection of models to simulate the neutronic behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations which can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. The user must supply cross sections. DRAGON can access directly standard microscopic cross-section libraries in the following formats: DRAGON, MATXS (TRANSX-CTR), WIMSD4, WIMS-AECL, and APOLLO. It has the capability of exchanging macroscopic and microscopic cross-section libraries with a code such as PSR-0206/TRANSX-CTR or PSR-0317/TRANSX-2 by the use of the GOXS and ISOTXS format files. Macroscopic cross sections can also be read in DRAGON via the input data stream. 2 - Method of solution: DRAGON contains a multigroup iterator conceived to control a number of different algorithms for the solution of the neutron transport equation. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are included in a source term. The current version, DRAGON 9 71124 (Release 3.02), which was released in January 1998, contains three such algorithms. The JPM option solves the integral transport equation using the interface current method applied to homogeneous blocks; the SYBIL option solves the integral transport equation using the collision probability method for simple one-dimensional (1-D) or two-dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; and the
International Nuclear Information System (INIS)
Cetnar, Jerzy
2014-01-01
The recent development of MCB - Monte Carlo Continuous Energy Burn-up code is directed towards advanced description of modern reactors, including double heterogeneity structures that exist in HTR-s. In this, we exploit the advantages of MCB methodology in integrated approach, where physics, neutronics, burnup, reprocessing, non-stationary process modeling (control rod operation) and refined spatial modeling are carried in a single flow. This approach allows for implementations of advanced statistical options like analysis of error propagation, perturbation in time domain, sensitivity and source convergence analyses. It includes statistical analysis of burnup process, emitted particle collection, thermal-hydraulic coupling, automatic power profile calculations, advanced procedures of burnup step normalization and enhanced post processing capabilities. (author)
An economic evaluation of a storage system for casks with burnup credit
International Nuclear Information System (INIS)
Mimura, Masahiro; Tsuda, Kazuaki; Yamada, Nobuyuki; O-iwa, Akio.
1993-01-01
It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)
Burnup simulations of different fuel grades using the MCNPX Monte Carlo code
Directory of Open Access Journals (Sweden)
Asah-Opoku Fiifi
2014-01-01
Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.
International Nuclear Information System (INIS)
Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen
2013-01-01
The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)
Core burn-up calculation method of JRR-3
International Nuclear Information System (INIS)
Kato, Tomoaki; Yamashita, Kiyonobu
2007-01-01
SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)
Directory of Open Access Journals (Sweden)
Gholamzadeh Zohreh
2014-12-01
Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view
SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP
International Nuclear Information System (INIS)
Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi
2003-01-01
SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)
Technical description of the burn-up software system MOP
International Nuclear Information System (INIS)
Schutte, C.K.
1991-05-01
The burn-up software system MOP is a research tool primary intended to study the behaviour of fission products in any reactor composition. Input data are multi-group cross-sections and data concerning the nuclide chains. An option is available to calculate a fundamental mode neutron spectrum for the specified reactor composition. A separate program can test the consistency of the specified nuclide chains. Options are available to calculate time-dependent cross-sections of lumped fission products and to take account of the leakage of gaseous fission products from the reactor core. The system is written in FORTRAN77 for a CYBER computer, using the operating system NOS/BE. The report gives a detailed technical description of the applied algorithms and the flow and storage of data. Information is provided for adapting the system to other computer configurations. (author). 5 refs.; 11 figs
Shi, Xue-Ming; Peng, Xian-Jue
2016-09-01
Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.
A comparison study of the 1MeV triton burn-up in JET using the HECTOR and SOCRATE codes
International Nuclear Information System (INIS)
Gorini, G.; Kovanen, M.A.
1988-01-01
The burn-up of the 1MeV tritons in deuterium plasmas has been measured in JET for various plasma conditions. To interpret these measurements the containment, slowing down and burn-up of fast tritons needs to be modelled with a reasonable accuracy. The numerical code SOCRATE has been written for this specific purpose and a second code, HECTOR, has been adapted to study the triton burn-up problem. In this paper we compare the results from the two codes in order to exclude possible errors in the numerical models, to assess their accuracy and to study the sensitivity of the calculation to various physical effects. (author)
Improvements on burnup chain model and group cross section library in the SRAC system
International Nuclear Information System (INIS)
Akie, Hiroshi; Okumura, Keisuke; Takano, Hideki; Ishiguro, Yukio; Kaneko, Kunio.
1992-01-01
Data and functions of the cell burnup calculation of the SRAC system were revised to improve mainly the accuracy of the burnup calculation of high conversion light water reactors (HCLWRs). New burnup chain models were developed in order to treat fission products (FPs) and actinide nuclides in detail. Group cross section library, SRACLIB-JENDL2, was generated based on JENDL-2 nuclear data file. In generating this library, emphasis was placed on FPs and actinides. Also revised were the data such as the average energy release per fission for various actinides. These improved data were verified by performing the burnup analysis of PWR spent fuels. Some new functions were added to the SRAC system for the convenience to yield macroscopic cross sections used in the core burnup process. (author)
BASHAN: A few-group three-dimensional diffusion code with burnup and fuel management features
International Nuclear Information System (INIS)
Pearce, D.F.
1970-12-01
The diffusion equation for a two or three-dimensional, two-group or multi-group downscatter problem is solved by conventional finite difference techniques. An x-y-z geometry is assumed with an 'in-channel' mesh point representation. Options are available which allow representation of a soluble poison dispersed throughout the reactor, and also absorber rods in specified channels. The power distribution and multiplication factor k eff are calculated and a point rating map is used to advance the irradiation at each mesh point by a specified time-step so that burnup is followed. Fuel changes may be made so that radial shuffling and axial shuffling fuel management schemes can be studies. The code has been written in FORTRAN S2 for an IBM 7030 (STRETCH) computer which, with a fast store of 80,000 locations, allows problems of up to 15,000 mesh points to be dealt with. Conversion to FORTRAN IV for IBM 360 has now been completed. (author)
International Nuclear Information System (INIS)
Campolina, D. de A. M.; Lima, C.P.B.; Veloso, M.A.F.
2013-01-01
For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately
International Nuclear Information System (INIS)
2001-08-01
The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately
Campolina, Daniel de A. M.; Lima, Claubia P. B.; Veloso, Maria Auxiliadora F.
2014-06-01
For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95th percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input.
Automated generation of burnup chain for reactor analysis applications
International Nuclear Information System (INIS)
Tran, Viet-Phu; Tran, Hoai-Nam; Yamamoto, Akio; Endo, Tomohiro
2017-01-01
This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO 2 and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.
International Nuclear Information System (INIS)
Min Ku Jeon; Chang Hwa Lee; Jung Hoon Choi; In Hak Cho; Kweon Ho Kang; Hwan-Seo Park; Geun Il Park; Chang Je Park
2013-01-01
The effect of fuel burn-up on the radioactivation behavior of cladding hull materials was investigated using the ORIGEN-S code for various materials of Zircaloy-4, Zirlo, HANA-4, and HANA-6 and for various fuel burn-ups of 30, 45, 60, and 75 GWD/MTU. The Zircaloy-4 material is the only one that does not contain Nb as an alloy constituent, and it was revealed that 125 Sb, 125m Te, and 55 Fe are the major sources of radioactivity. On the other hand, 93m Nb was identified as the most radioactive nuclide for the other materials although minor radioactive nuclides varied owing to their different initial constituents. The radioactivity of 94 Nb was of particular focus owing to its acceptance limit against a Korean intermediate-/low-level waste repository. The radioactivation calculation results revealed that only Zircaloy-4 is acceptable for the Korean repository, while the other materials required at least 4,900 of Nb decontamination factor owing to the high radioactivity of 94 Nb regardless of the fuel burn-up. A discussion was also made on the feasibility of Zr recovery methods (chlorination and electrorefining) for selective recovery of Zr so that it can be disposed of in the Korean repository. (author)
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Zhang Jian; Yu Hong; Gang Zhi
2012-01-01
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
International Nuclear Information System (INIS)
Valach, M.; Zymak, J.; Svoboda, R.
1997-01-01
This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs
Activity ratio measurement and burnup analysis for high burnup PWR fuels
International Nuclear Information System (INIS)
Sato, Shunsuke; Nauchi, Yasushi; Hayakawa, Takehito; Kimura, Yasuhiko; Suyama, Kenya
2015-01-01
Applying burnup credit to spent fuel transportation and storage system is beneficial. To take burnup credit to criticality safety design for a spent fuel transportation cask and storage rack, the burnup of target fuel assembly based on core management data must be confirmed by experimental methods. Activity ratio method, in which measured the ratio of the activity of a nuclide to that of another, is one of the ways to confirm burnup history. However, there is no public data of gamma-ray spectrum from high burnup fuels and validation of depletion calculation codes is not sufficient in the evaluation of the burnup or nuclide inventories. In this study, applicability evaluation of activity ratio method was carried out for high burnup fuel samples taken from PWR lead use assembly. In the gamma-ray measurement experiments, energy spectrum was taken in the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), and 134 Cs/ 137 Cs and 154 Eu/ 137 Cs activity ratio were obtained. With the MVP-BURN code, the activity ratios were calculated by depletion calculation tracing the operation history. As a result, 134 Cs/ 137 Cs and 154 Eu/ 137 Cs activity ratios for UO 2 fuel samples show good agreements and the activity ratio method has good applicability to high burnup fuels. 154 Eu/ 134 Cs activity ratio for Gd 2 O 3 +UO 2 fuels also shows good agreements between calculation results and experimental results as well as the activity ratio for UO 2 fuels. It also becomes clear that it is necessary to pay attention to not only burnup but also axial burnup distribution history when confirming the burnup of UO 2 +Gd 2 O 3 fuel with 134 Cs/ 137 Cs activity ratios. (author)
Comparative study on plutonium and MA recycling in equilibrium burnup and standard burnup of PWR
International Nuclear Information System (INIS)
Waris, Abdul; Kurniadi, Rizal; Su'ud, Zaki; Permana, Sidik
2005-01-01
The equilibrium burnup model is a powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor. However, this method needs to be verified since the method is not a standard tool. The present study aimed to compare the characteristics of plutonium recycling and plutonium and minor actinides (MA) recycling in PWR with the equilibrium burnup and the standard burnup. In order to become more comprehensive study, an influence of moderator-to-fuel volume ratio (MFR) changes by changing the pin-pitch of fuel cell has been evaluated. The MFR ranges from 0.5 to 4.0. For the equilibrium burnup we used equilibrium cell-burnup code. We have employed 1368 nuclides in the equilibrium calculation with 129 of them are heavy metals (HMs). For standard burnup, SRAC2002 code has been utilized with 26 HMs and 66 fission products (FPs). The JENDL 3.2 library has been employed for both burnup schemes. The uranium, plutonium and MA vector, which resulted from the equilibrium burnup are directly used as fuel input composition for the standard burnup calculation. Both burnup results demonstrate that plutonium recycling and plutonium and MA recycling can be conducted safer in tight lattice core. They are also show the similar trend in neutron spectrum, which become harder with the increasing number of recycled heavy nuclides as well as the decreasing of the MFR values. However, there are some discrepancy on the effective multiplication factor and the conversion ratio, especially for the reactor core for MFR ≥ 2.0. (author)
Estimation of the Fuel Depletion Code Bias and Uncertainty in Burnup-Credit Criticality Analysis
International Nuclear Information System (INIS)
Kim, Jong Woon; Cho, Nam Zin; Lee, Sang Jin; Bae, Chang Yeal
2006-01-01
In the past, criticality safety analyses for commercial light-water-reactor (LWR) spent nuclear fuel (SNF) storage and transportation canisters assumed the spent fuel to be fresh (unirradiated) fuel with uniform isotopic compositions. This fresh-fuel assumption provides a well-defined, bounding approach to the criticality safety analysis that eliminates concerns related to the fuel operating history, and thus considerably simplifies the safety analysis. However, because this assumption ignores the inherent decrease in reactivity as a result of irradiation, it is very conservative. The concept of taking credit for the reduction in reactivity due to fuel burnup is commonly referred to as burnup credit. Implementation of burnup credit requires the computational prediction of the nuclide inventories (compositions) for the dominant fissile and absorbing nuclide species in spent fuel. In addition to that, the bias and uncertainty in the predicted concentration of all nuclides used in the analysis be established by comparisons of calculated and measured radiochemical assay data. In this paper, three methods for considering the bias and uncertainty will be reviewed. The estimated bias and uncertainty that the results of 3rd method are presented
VENTURE-PC 1.1, Reactor Analysis System with Sensitivity and Burnup
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: The VENTURE program solves the usual neutronics eigenvalue, adjoint, fixed source, and criticality search problems. It treats up to three dimensions, maps power density, and does first-order perturbation analysis at the macroscopic cross section level. The BURNER code solves the nuclide chain equations to estimate the nuclide concentrations and burnup at the end of an exposure time or after a shutdown period. This package is based on the CCC-459/BOLD VENTURE IV code system developed at Oak Ridge National Laboratory. In January 1989 the University of Cincinnati contributed the first VENTURE-PC package to RSICC's collection. It was a subset of the mainframe version consisting of the VENTURE and BURNER modules plus several processing modules. VENTURE-PC was distributed as CCC-459 until July 1997 when a new version (with updated source code compatible with newer FORTRAN-77 compilers, some revisions, and extensions to solve much larger problems) was contributed by Argonne National Laboratory. The principle code modules included in the VENTURE-PC system are: VENTURE: Multigroup neutronics finite-difference diffusion theory. BURNER: Depletion calculation for reactor core analysis. Other modules within VENTURE-PC are: DVENTR: Venture input processor; DCRSPR: Neutron cross section processor; DUTLIN: Control file (CNTRL) input processor; DCMACR: Citation format cross section input processor; CRXSPR: Cross section processor; DENMAN: Fuel repositioning module. In August of 1999, Argonne again contributed an updated version of the code which overcomes problem size constraints caused by binary record length limits inherent to the Fortran 90 compiler. The need for long records is detected and avoided by sub-blocking them. Also, the latest Fortran 95 compiler offers substantial speed gains on the newest processors. The source code is updated to be compatible with either Fortran 90 or Fortran 95. In August 2002, the package was updated with
Energy Technology Data Exchange (ETDEWEB)
Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-08-01
PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)
International Nuclear Information System (INIS)
Akishina, E.P.; Kostenko, B.F.; Ivanov, V.V.
2003-01-01
A new method of research in spatial structures that result from uranium dioxide burning in nuclear reactors of modern atomic plants is suggested. The method is based on the presentation of images of the mentioned structures in the form of the working field of a cellular automaton (CA). First, it has allowed one to extract some important quantitative characteristics of the structures directly from the micrographs of the uranium fuel surface. Secondly, the CA has been found out to allow one to formulate easily the dynamics of the evolution of the studied structures in terms of such micrograph elements as spots, spots' boundaries, cracks, etc. Relation has been found between the dynamics and some exactly solvable models of the theory of cellular automata, in particular, the Ising model and the vote model. This investigation gives a detailed description of some CA algorithms which allow one to perform the fuel surface image processing and to model its evolution caused by burnup or chemical etching. (author)
Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION
Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.
The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature
BOLD/VENTURE-4, Reactor Analysis System with Sensitivity and Burnup
International Nuclear Information System (INIS)
1998-01-01
cross section variation or correlation on nuclide concentrations is provided, but a temperature dependence is coded. Steady state condition with continuous fueling is established by a global iterative scheme that applies the criticality search scheme in the neutronics and models fuel movement directly in the exposure code. Time-dependent sensitivity data applies the forward march, reverse importance approach. The codes do not process data from the user input data stream allowing flexible task assignment along selected calculational paths. Multigroup cross section data are produced locally using the PSR-0063/AMPX II or CCC-0450/SCALE-2 code systems to produce resonance shielding (NITAWL) and cell weighted (XSDRN) microscopic cross sections. Locally, each code is compiled and loaded, and only one version is maintained in a quality assurance state in load module form. An on-line catalog procedure, installed with system support, provides job control instructions with nominal default of space allocation to files. Executing the catalog procedure makes the driver memory resident. The first user input data line must be the control module name used for the run. VENTURE-PC: The VENTURE module applies the finite-difference diffusion or a simple P1 approximation. VENTURE uses an outer-inner iteration scheme with several different data handling methods. Over-relaxation is applied to the inner and outer iterations, and succeeding flux iterates may be accelerated with the Chebychev process. - The BURNER code (module EXPOSURE) uses a difference formulation based on average generation rates; or a matrix exponential formulation to approximate the solution of the coupled burnup differential equations; or an explicit solution for simply coupled nuclide chains. Space dependence is included by working with zone averaged fluxes
SRAC95; general purpose neutronics code system
Energy Technology Data Exchange (ETDEWEB)
Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio
1996-03-01
SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).
Burn-up measurements coupling gamma spectrometry and neutron measurement
International Nuclear Information System (INIS)
Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.
2006-01-01
The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)
An analysis of water reactor burnup data with the METHUSELAH II code
International Nuclear Information System (INIS)
Floyd, M.; Hicks, D.
1964-10-01
The METHUSELAH II code has been used to predict long term reactivity and isotopic changes in the YANKEE, Dresden and NRX reactors. In general it is shown that there is a satisfactory measure of agreement and the first core lives of YANKEE and Dresden appear well predicted. However there are discrepancies in the isotopic composition of the plutonium formed which appear to be correlated with the degree of hardness of the reactor spectrum. It is demonstrated that plausible changes in nuclear data could reduce the discrepancies. (author)
Incorporation of the variation in conductivity with burnup in the stability of code predictive LAPUR
International Nuclear Information System (INIS)
Escriba, A.; Munoz-cobo, J. L.; Merino, R.; Melara, J.; Albendea, M.
2013-01-01
In the field of nuclear safety, the analysis of the stability of boiling water reactors is one of the biggest challenges for researchers. LAPUR code that allows to obtain the parameters of stability of the plant (Decay rate and frequency), being one of the programs used by IBERDROLA can be used for these calculations. With the collaboration of the research group TIN of the Polytechnic University of Valencia, a model of loss of conductivity of uranium has joined with the burned LAPUR. This update allows you to play the phenomenon in a more realistic way. This improvement has been validated and verified contrasting results with reference values.
COGEMA/TRANSNUCLEAIRE's experience with burnup credit
International Nuclear Information System (INIS)
Chanzy, Y.; Guillou, E.
1998-01-01
Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)
International Nuclear Information System (INIS)
Reid, R.L.; Barrett, R.J.; Brown, T.G.
1985-03-01
The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged
Burnup simulations of different fuel grades using the MCNPX Monte Carlo code
Asah-Opoku Fiifi; Liang Zhihua; Huque Ziaul; Kommalapati Raghava R.
2014-01-01
Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX), uranium oxide ...
Analysis of temperature reactivity coefficient at very high burn-ups for pressurized water reactor
International Nuclear Information System (INIS)
Yu Shihe; Dai Xiang; Cao Xinrong
2012-01-01
In the high burn-up core, as the initial enrichment increases, the fast/thermal flux ratio also increases. The harder neutron spectrum influences the temperature reactivity coefficients. In this paper, a very high burn-up core was designed, very high burn-up levels was achieved using higher enrichments and various feed assembly and loading pattern options. The CASMO-4/SIMULATE-3 code system is used to model the high burn-up core and calculate temperature reactivity coefficient for the burn-up more than 60 GWD/T. The results show that the hardening of the neutron spectrum leads to more negative moderator temperature coefficients at high burn-ups irrespective of whether or not there is burnable poison; the is little variation with fuel temperature coefficient. (authors)
International Nuclear Information System (INIS)
Carvalho, F. de A.T. de.
1985-01-01
This study investigates some antecipated transients without scram for a pressurized water cooled reactor, using coupling of the containment CORAN code to the ALMOD code system, under severe random conditions. This coupling has the objective of including containment model as part of an unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle, a failure in the closure of the pressurizer relief valve was also investigated. (Author) [pt
SRAC2006: A comprehensive neutronics calculation code system
International Nuclear Information System (INIS)
Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro
2007-02-01
The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)
Detailed Burnup Calculations for Testing Nuclear Data
Leszczynski, F.
2005-05-01
A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross
Development of methods for burn-up calculations for LWR's
International Nuclear Information System (INIS)
Jaschik, W.
1978-01-01
This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de
Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment
International Nuclear Information System (INIS)
Dalle, Hugo M.
2009-01-01
High burnup PWR fuel is currently being studied at CDTN/CNEN-MG. Monte Carlo burnup code system MONTEBURNS is used to characterize the neutronic behavior of the fuel. In order to validate the code system and calculation methodology to be used in this study the Japanese Takahama-3 Benchmark was chosen, as it is the single burnup benchmark experimental data set freely available that partially reproduces the conditions of the fuel under evaluation. The burnup of the three PWR fuel rods of the Takahama-3 burnup benchmark was calculated by MONTEBURNS using the simplest infinite fuel pin cell model and also a more complex representation of an infinite heterogeneous fuel pin cells lattice. Calculations results for the mass of most isotopes of Uranium, Neptunium, Plutonium, Americium, Curium and some fission products, commonly used as burnup monitors, were compared with the Post Irradiation Examinations (PIE) values for all the three fuel rods. Results have shown some sensitivity to the MCNP neutron cross-section data libraries, particularly affected by the temperature in which the evaluated nuclear data files were processed. (author)
Influence of FIMA burnup on actinides concentrations in PWR reactors
Directory of Open Access Journals (Sweden)
Oettingen Mikołaj
2016-01-01
Full Text Available In the paper we present the study on the dependence of actinides concentrations in the spent nuclear fuel on FIMA burnup. The concentrations of uranium, plutonium, americium and curium isotopes obtained in numerical simulation are compared with the result of the post irradiation assay of two spent fuel samples. The samples were cut from the fuel rod irradiated during two reactor cycles in the Japanese Ohi-2 Pressurized Water Reactor. The performed comparative analysis assesses the reliability of the developed numerical set-up, especially in terms of the system normalization to the measured FIMA burnup. The numerical simulations were preformed using the burnup and radiation transport mode of the Monte Carlo Continuous Energy Burnup Code – MCB, developed at the Department of Nuclear Energy, Faculty of Energy and Fuels of AGH University of Science and Technology.
Using Laguerre polynomials to compute the matrix exponential in burnup calculations
Energy Technology Data Exchange (ETDEWEB)
She, D.; Zhu, A.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ., Beijing, 100084 (China)
2012-07-01
An essential part of burnup analysis is to solve the burnup equations. The burnup equations can be regarded as a first-order linear system and solved by means of matrix exponential methods. Because of its large spectrum, it is difficult to compute the exponential of the burnup matrix. Conventional methods of computing the matrix exponential, such as the truncated Taylor expansion and the Pade approximation, are not applicable to burnup calculations. Recently the Chebyshev Rational Approximation Method (CRAM) has been applied to solve burnup matrix exponential and shown to be robust and accurate. However, the main defect of CRAM is that its coefficients are not easy to obtain. In this paper, an orthogonal polynomial expansion method, called Laguerre Polynomial Approximation Method (LPAM), is proposed to compute the matrix exponential in burnup calculations. The polynomial sequence of LPAM can be easily computed in any order and thus LPAM is quite convenient to be utilized into burnup codes. Two typical test cases with the decay and cross-section data taken from the standard ORIGEN 2.1 libraries are calculated for validation, against the reference results provided by CRAM of 14 order. Numerical results show that, LPAM is sufficiently accurate for burnup calculations. The influences of the parameters on the convergence of LPAM are also discussed. (authors)
International Nuclear Information System (INIS)
Shindo, R.; Yamashita, K.; Murata, I.
1991-01-01
The nuclear design code system for the HTTR consists of one dimensional cell burnup computer code, developed in JAERI and the TWOTRAN-2 transport code. In order to satisfy related design criteria, uncertainty of the calculation was investigated by comparing the calculated and experimental results. The experiments were performed with a graphite moderated critical assembly. It was confirmed that discrepancies between calculations and experiments were small enough to be allowed in the nuclear design of HTTR. 8 refs, 6 figs
International Nuclear Information System (INIS)
Khvostov, G.; Zimmermann, M.A.; Sugiyama, T.; Fuketa, T.
2008-01-01
The LS-1 RIA-simulating test conducted in NSRR with high-burnup fuel base irradiated in the BWR KKL to a pellet burn-up of 69 MWd/kgU is analysed using the FALCON fuel behaviour code coupled with the advanced GRSW-A model for fission gas release and swelling of the uranium dioxide fuels. A reasonable agreement of the results of calculation with the measured value of fission gas release in the failed fuel rod, amounting to about 23 % of total gas generated in the pellets is obtained. The mechanisms able to result in as significant fission gas release as measured by the post-test-examination are analysed with the model and discussed in consideration of the predicted initial micro-structural state of the fuel after the base irradiation. The minor role of gaseous swelling in the early failure of the LS-1 test-fuel-rod is shown by calculation, which is due to premature brittle cracking of the highly hydrated cladding under the conditions of the Room-Temperature capsule used in the LS-1 test. However, a significant potential impact of the gaseous swelling on cladding strain-stress conditions during the RIA is shown by the calculation when assuming a sufficient residual cladding ductility in the hypothetical test with the same parameters as in LS-1, but under conditions of the High- Temperature-High-Pressure capsule. (authors)
A guide to the AUS modular neutronics code system
International Nuclear Information System (INIS)
Robinson, G.S.
1987-04-01
A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system
Gao, Wen
2015-01-01
This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV
Fuel management and core design code systems for pressurized water reactor neutronic calculations
International Nuclear Information System (INIS)
Ahnert, C.; Arayones, J.M.
1985-01-01
A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions
COREBN; A Core burn-up calculation module for SRAC2006
奥村 啓介
2007-01-01
COREBN is an auxiliary code of the SRAC system for multi-dimensional core burn-up calculation based on the diffusion theory and interpolation of macroscopic cross-sections tabulated to local parameters such as burn-up degree, moderator temperature and so on. The macroscopic cross-sections are prepared by cell burn-up calculations with the collision probability method of SRAC. SRAC and COREBN have wide applicability for various types of cell and core geometries. They have been used mainly for ...
WWER expert system for fuel failure analysis using the RTOP-CA code
International Nuclear Information System (INIS)
Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Khromov, A.; Kanukova, V.; Apollonova, O.; Ugryumov, A.
2008-01-01
The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)
Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4
International Nuclear Information System (INIS)
Tombakoglu, M.; Cecen, Y.
2001-01-01
In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)
Energy Technology Data Exchange (ETDEWEB)
Tavares, Desirée Yael de Sena; Silva, Adilson Costa da; Lima, Zelmo Rodrigues de, E-mail: zelmolima@yahoo.com.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
This work proposes to implement the cell calculation considering the fuel burning using the WIMSD-5B code. The cell calculation procedure allows to determine the nuclear parameters present in the multi-group neutron diffusion equation and for this purpose the neutron transport theory is used in a problem with dimensional reduction, but in contrast is considered a large number of groups associated with the neutron spectrum. There are a variety of reactor physics codes that determine the nuclear parameters by solving the neutron transport equation applied to an equivalent cell representing a fuel element. The WIMSD-5B code is a deterministic code that solves the transport equation using collision probability method. The simulation of fuel burning in the cell calculation took into account different nuclear data libraries. The WIMSD-5B code supports several nuclear data libraries and in the present work the following libraries were used: IAEA, ENDFB-VII.1, JENDL3.2, JEFF3.1 and JEF2.2, all formatted for 69 energy groups. (author)
ALEPH: An optimal approach to Monte Carlo burn-up
International Nuclear Information System (INIS)
Verboomen, B.
2007-01-01
The incentive of creating Monte Carlo burn-up codes arises from its ability to provide the most accurate locally dependent spectra and flux values in realistic 3D geometries of any type. These capabilities linked with the ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, detailed energy-angle correlations, multi-particle physics, etc.) could make Monte Carlo burn-up codes very powerful, especially for hybrid and advanced nuclear systems (like for instance Accelerator Driven Systems). Still, such Monte Carlo burn-up codes have had limited success mainly due to the rather long CPU time required to carry out very detailed and accurate calculations, even with modern computer technology. To work around this issue, users often have to reduce the number of nuclides in the evolution chains or to consider either longer irradiation time steps and/or larger spatial burn-up cells, jeopardizing the accuracy of the calculation in all cases. There should always be a balance between accuracy and what is (reasonably) achievable. So when the Monte Carlo simulation time is as low as possible and if calculating the cross sections and flux values required for the depletion calculation takes little or no extra time compared to this simulation time, then we can actually be as accurate as we want. That is the optimum situation for Monte Carlo burn-up calculations.The ultimate goal of this work is to provide the Monte Carlo community with an efficient, flexible and easy to use alternative for Monte Carlo burn-up and activation calculations, which is what we did with ALEPH. ALEPH is a Monte Carlo burn-up code that uses ORIGEN 2.2 as a depletion module and any version of MCNP or MCNPX as the transport module. For now, ALEPH has been limited to updating microscopic cross section data only. By providing an easy to understand user interface, we also take away the burden from the user. For the user, it is as if he is
Conceptual cask design with burnup credit
International Nuclear Information System (INIS)
Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong
2003-01-01
Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)
Burnup analysis of the VVER-1000 reactor using thorium-based fuel
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science
2014-12-15
This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. Revision 2
Energy Technology Data Exchange (ETDEWEB)
None, None
1998-09-01
The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the
International Nuclear Information System (INIS)
Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan
2015-01-01
Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes
TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES
International Nuclear Information System (INIS)
DOE
1997-01-01
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k eff , of a spent nuclear fuel package. Fifty-seven UO 2 , UO 2 /Gd 2 O 3 , and UO 2 /PuO 2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k eff (which can be a function of the trending parameters) such that the biased k eff , when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection
Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1
Energy Technology Data Exchange (ETDEWEB)
None, None
1997-04-01
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package
Energy Technology Data Exchange (ETDEWEB)
Jessee, Matthew Anderson [ORNL
2016-04-01
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE
Methodology for burnup credit application for WWER-440 reactors in Slovakia
International Nuclear Information System (INIS)
Chrapciak, V.
2006-01-01
Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservative while maintaining an adequate criticality safety margin. Application of burnup credit requires knowledge of the reactivity state of the irradiated fuel for which burnup credit is taken. The isotopic inventory and reactivity has to by calculated with validated codes. By depletion calculation is necessary to take into account: 1) List of used nuclides 2) Cooling time 3) Core parameters by irradiation - Fuel temperature - Moderator temperature/density - Soluble boron - Specific power and operating history 4) Axial and horizontal burnup profiles In this paper is numerical evaluation of impact of above parameters on reactivity for WWER-440 fuel (enrichment 3.6%) in condition of wet storage presented. The bounding conditions are defined. The SCALE 5.0 system is used for depletion and criticality calculation (Authors)
Strategies for Application of Isotopic Uncertainties in Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Gauld, I.C.
2002-12-23
Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103
International Nuclear Information System (INIS)
Yang, W.S.; Taiwo, T.A.
2001-01-01
The main purpose of the accelerator transmutation of waste (ATW) system is to reduce the radiotoxicity of the high-level waste to be disposed of in the repository by removing the transuranic (TRU) elements from the spent fuel and transmuting them in the ATW blanket. The radiotoxicity reduction is primarily achieved by reducing the fraction of the initial TRU inventory that is not transmuted and lost to the waste stream. To minimize this fractional loss, it is necessary to maximize the discharge burnup and to minimize the reprocessing and fuel fabrication losses. The maximization of the discharge burnup is also required to reduce the fuel cycle cost of the ATW system. In this paper, we present the preliminary results of physics design studies aimed at maximizing the discharge burnup of lead-bismuth eutectic (LBE) and sodium-cooled ATW blankets fueled with TRU-Zr/Zr metallic dispersion fuel. The focus is on discharge burnup maximization in the physics design of the blanket; the feasibility of attaining this high, targeted burnup with the selected fuel form remains to be demonstrated. The discharge burnup is proportional to the average power density and the fuel residence time and is inversely proportional to the fuel volume fraction and the TRU fraction in fuel. This relation suggests that the discharge burnup can be maximized by designing for the maximum power density and fuel residence time and the minimum fuel volume fraction. However, these quantities are interrelated and limited by various design constraints: 1. The TRU fraction in fuel is determined such that the desired subcriticality level is achieved for the selected blanket configuration and fuel management scheme. This quantity is constrained by the maximum volumetric fraction of fuel particles in the dispersion fuel, which is assumed to be 0.25. 2. The peak fast fluence and the discharge burnup are limited by the need to ensure the fuel pin integrity. In the proposed dispersion fuel, fission products are
TRIGA fuel burn-up calculations and its confirmation
Energy Technology Data Exchange (ETDEWEB)
Khan, R., E-mail: rustamzia@yahoo.co [Vienna University of Technology (TU Wien)/Atominstitute (ATI), Stadionallee 2, A-1020, Vienna (Austria); Karimzadeh, S.; Boeck, H. [Vienna University of Technology (TU Wien)/Atominstitute (ATI), Stadionallee 2, A-1020, Vienna (Austria)
2010-05-15
The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.
International Nuclear Information System (INIS)
Geller, L.; Goldstein, L.; Franks, W.A.
1986-01-01
This paper reviews some of the considerations utilities must evaluate when going to higher discharge burnups. The advantages and disadvantages of higher discharge burnups are described, as well as a consistent approach for evaluating optimum discharge burnup and its comparison to current practice. When an analysis is performed over the life of the plant, the design of the terminal cycles has significant impact on the lifetime savings from higher burnups. Designs for high burnup cycles have a greater average inventory value in the core. As one goes to higher burnup, there is a greater likelihood of discarding a larger value in unused fuel unless the terminal cycles are designed carefully. This effect can be large enough in some cases to wipe out the lifetime cost savings relative to operating with a higher discharge burnup cycle
International Nuclear Information System (INIS)
Santos, A. dos.
1990-01-01
The new methodology developed in this work has the following purposes: a) to implement a burnup capability into the HAMMER-TECHNION/9/computer code by using the CINDER-2/10/computer code to perform the transmutation analysis for the actinides and fission products; b) to implement a reduced version of the CINDER-2 fission product chain structure to treat explicity nearly 99% of all original CINDER-2 fission product absorption in a typical PWR unit cell; c) to treat the effect of the fission product neutron absorption in an unit cell in a multigroup basis; d) to develop a tentative validation procedure for the ENOF/C-V stable and long-lived fission product nuclear data based on the available experimental data/11-14/. The analysis will be performed by using the reduce chain in the coupled system CINDER-2 to generate the time dependent effective four group cross sections for actinides and fission products and CINDER-2 to perform the complete transmutation analysis with its built-in chain structure. (author)
Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model
Directory of Open Access Journals (Sweden)
Abdul Waris
2008-03-01
Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.
ESCADRE and ICARE code systems
International Nuclear Information System (INIS)
Reocreux, M.; Gauvain, J.
1992-01-01
The French sever accident code development program is following two parallel approaches: the first one is dealing with ''integral codes'' which are designed for giving immediate engineer answers, the second one is following a more mechanistic way in order to have the capability of detailed analysis of experiments, in order to get a better understanding of the scaling problem and reach a better confidence in plant calculations. In the first approach a complete system has been developed and is being used for practical cases: this is the ESCADRE system. In the second approach, a set of codes dealing first with primary circuit is being developed: a mechanistic core degradation code, ICARE, has been issued and is being coupled with the advanced thermalhydraulic code CATHARE. Fission product codes have been also coupled to CATHARE. The ''integral'' ESCADRE system and the mechanistic ICARE and associated codes are described. Their main characteristics are reviewed and the status of their development and assessment given. Future studies are finally discussed. 36 refs, 4 figs, 1 tab
SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE
Directory of Open Access Journals (Sweden)
F.N. HASOON
2006-12-01
Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.
System Code Models and Capabilities
International Nuclear Information System (INIS)
Bestion, D.
2008-01-01
System thermalhydraulic codes such as RELAP, TRACE, CATHARE or ATHLET are now commonly used for reactor transient simulations. The whole methodology of code development is described including the derivation of the system of equations, the analysis of experimental data to obtain closure relation and the validation process. The characteristics of the models are briefly presented starting with the basic assumptions, the system of equations and the derivation of closure relationships. An extensive work was devoted during the last three decades to the improvement and validation of these models, which resulted in some homogenisation of the different codes although separately developed. The so called two-fluid model is the common basis of these codes and it is shown how it can describe both thermal and mechanical nonequilibrium. A review of some important physical models allows to illustrate the main capabilities and limitations of system codes. Attention is drawn on the role of flow regime maps, on the various methods for developing closure laws, on the role of interfacial area and turbulence on interfacial and wall transfers. More details are given for interfacial friction laws and their relation with drift flux models. Prediction of chocked flow and CFFL is also addressed. Based on some limitations of the present generation of codes, perspectives for future are drawn.
A simplified burnup calculation strategy with refueling in static molten salt reactor
International Nuclear Information System (INIS)
Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.
2015-01-01
Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)
International Nuclear Information System (INIS)
Paratte, J.M.; Grimm, P.; Hollard, J.M.
1996-02-01
ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs
Lattice cell burnup calculation
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1977-01-01
Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics
International Nuclear Information System (INIS)
Carvalho, F. de A.T. de.
1985-01-01
Some antecipated transients without scram (ATWS) for a pressurized water cooled reactor, model KWU 1300 MWe, are studied using coupling of the containment code CORAN to the system model code ALMOD, under severe random conditions. This coupling has the objective of including containment model as part of a unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle a failure in the closure of the pressurizer relief valve was also investigated. For the beginning of the cycle, the containment participates actively during the transient. It is noted that the effect of the burn-up in the fuel is to reduce the seriousness of these transients. On the other hand, the failure in the closure of the pressurized relief valve makes this transients more severe. Moreover, the containment safety or radiological public safety is not affected in any of the cases. (Author) [pt
Modular ORIGEN-S for multi-physics code systems
International Nuclear Information System (INIS)
Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack
2011-01-01
The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including
Energy Technology Data Exchange (ETDEWEB)
Behler, Matthais; Hannstein, Volker; Kilger, Robert; Sommer, Fabian; Stuke, Maik
2017-06-15
The Application of the method of Burn-up Credit on Boiling Water Reactor fuel is much more complex than in the case of Pressurized Water Reactors due to the increased heterogeneity and complexity of the fuel assemblies. Strongly varying enrichments, complex fuel assembly geometries, partial length fuel rods, and strong axial variations of the moderator density make the verification of conservative irradiation conditions difficult. In this Report, it was investigated whether it is possible to take into account the burn-up in criticality analyses for systems with irradiated Boiling Water Reactor fuel on the basis of freely available experimental data and by additionally applying stochastic methods. In order to achieve this goal, existing methods for stochastic analysis were adapted and further developed in order to being applicable to the specific conditions needed in Boiling Water Reactor analysis. The aim was to gain first insight whether a workable scheme for using burn-up credit in Boiling Water Reactor applications can be derived. Due to the fact that the different relevant quantities, like e.g. moderator density and the axial power profile, are strongly correlated, the GRS-tool SUnCISTT for Monte-Carlo uncertainty quantification was used in the analysis. This tool was coupled to a simplified, consistent model for the irradiation conditions. In contrast to conventional methods, this approach allows to simultaneously analyze all involved effects.
DRAGON 3.05D, Reactor Cell Calculation System with Burnup
International Nuclear Information System (INIS)
2007-01-01
1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is
A SAS2H/KENO-V methodology for 3D fuel burnup analysis
International Nuclear Information System (INIS)
Milosevic, M.; Greenspan, E.; Vujic, J.
2002-01-01
An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark.44 core. Detailed k sub e sub f sub f and power density evolution with burnup are reported. (author)
Actinide-only burnup credit methodology for PWR spent nuclear fuel
International Nuclear Information System (INIS)
Lancaster, D.B.; Fuentes, E.; Kang, C.; Rahimi, M.
1998-01-01
A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps: 1. Validate a computer code system to calculate isotopic concentrations of spent nuclear fuel created during burnup in the reactor core and subsequent decay. 2. Validate a computer code system to predict the subcritical multiplication factor, k eff , of a spent nuclear fuel package by use of UO 2 and UO 2 /Puo 2 critical experiments. 3. Establish conditions for the SNF (depletion analysis) and package (criticality analysis) which bounds k eff . 4. Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). 5. Verify by measurement that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. (author)
Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry
International Nuclear Information System (INIS)
Yang, W.S.; Finck, P.J.; Khalil, H.S.
1990-01-01
A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs
International Nuclear Information System (INIS)
Khvostov, Grigori; Novikov, Vladimir; Medvedev, Anatoli; Bogatyr, Serguey
2005-01-01
An advanced model GRSWEL-A for fission gas behavior and micro-structural evolutions in Light Water Reactor (LWR) fuels was developed for and embedded in the START-3 fuel performance code. This paper represents the physical basis and verification of the model with emphasis on analysis of High Burn-up Structure (HBS), which is generally ascribed to a so-called rim-layer of high burn-up fuel pellets. Specifically, the issues of microscopic polygonization, loss of matrix fission gas, growth of fuel porosity and fission gas release are highlighted. The effects of HBS on total fission gas release, temperature distribution in the pellet, pellet swelling and permanent strain of the cladding are considered in the appropriate section of the paper by means of comparative and sensitivity analysis with the use of both modeling and available experimental data. In all the cases, an accounting for the present effects is found to be an important integral part of thorough analysis of LWR fuel behavior. Aside from the description of current capabilities of modeling, some priority directions of further improvement are outlined. (author)
MTR core loading pattern optimization using burnup dependent group constants
Directory of Open Access Journals (Sweden)
Iqbal Masood
2008-01-01
Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.
Model biases in high-burnup fast reactor simulations
International Nuclear Information System (INIS)
Touran, N.; Cheatham, J.; Petroski, R.
2012-01-01
A new code system called the Advanced Reactor Modeling Interface (ARMI) has been developed that loosely couples multiscale, multiphysics nuclear reactor simulations to provide rapid, user-friendly, high-fidelity full systems analysis. Incorporating neutronic, thermal-hydraulic, safety/transient, fuel performance, core mechanical, and economic analyses, ARMI provides 'one-click' assessments of many multi-disciplined performance metrics and constraints that historically require iterations between many diverse experts. The capabilities of ARMI are implemented in this study to quantify neutronic biases of various modeling approximations typically made in fast reactor analysis at an equilibrium condition, after many repetitive shuffles. Sensitivities at equilibrium that result in very high discharge burnup are considered ( and >20% FIMA), as motivated by the development of the Traveling Wave Reactor. Model approximations discussed include homogenization, neutronic and depletion mesh resolution, thermal-hydraulic coupling, explicit control rod insertion, burnup-dependent cross sections, fission product model, burn chain truncation, and dynamic fuel performance. The sensitivities of these approximations on equilibrium discharge burnup, k eff , power density, delayed neutron fraction, and coolant temperature coefficient are discussed. (authors)
High Burnup Fuel Performance and Safety Research
Energy Technology Data Exchange (ETDEWEB)
Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)
2007-03-15
The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.
Energy Technology Data Exchange (ETDEWEB)
Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.
2017-11-15
The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.
A PWR Thorium Pin Cell Burnup Benchmark
Energy Technology Data Exchange (ETDEWEB)
Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.
2000-05-01
As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.; DeHart, M.D.
2000-03-01
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
International Nuclear Information System (INIS)
Wagner, J.C.; DeHart, M.D.
2000-01-01
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified
Conservative axial burnup distributions for actinide-only burnup credit
International Nuclear Information System (INIS)
Kang, C.; Lancaster, D.
1997-11-01
Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit
International Nuclear Information System (INIS)
Gabriel, T.A.
1993-01-01
The purpose of this paper is to describe a program package, CALOR93, that has been developed to design and analyze different detector systems, in particular, calorimeters which are used in high energy physics experiments to determine the energy of particles. One's ability to design a calorimeter to perform a certain task can have a strong influence upon the validity of experimental results. The validity of the results obtained with CALOR93 has been verified many times by comparison with experimental data. The codes (HETC93, SPECT93, LIGHT, EGS4, MORSE, and MICAP) are quite generalized and detailed enough so that any experimental calorimeter setup can be studied. Due to this generalization, some software development is necessary because of the wide diversity of calorimeter designs
Validation of SCALE-4 for burnup credit applications
International Nuclear Information System (INIS)
Bowman, S.M.; DeHart, M.D.; Parks, C.V.
1995-01-01
In the past, a criticality analysis of PWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. If credit is allowed for fuel burnup in the design of casks that are used in the transport of spent light water reactor fuel to a repository, the increase in payload can lead to a significant reduction in the cost of transport and a potential reduction in the risk to the public. A portion of the work has been performed at ORNL in support of the US DOE efforts to demonstrate a validation approach for criticality safety methods to be used in burnup credit cask design. To date, the SCALE code system developed at ORNL has been the primary computational tool used by DOE to investigate technical issues related to burnup credit. The ANSI/ANS-8.1 criticality safety standard requires validation and benchmarking of the calculational methods used in evaluating criticality safety limits for applications outside reactors by correlation against critical experiments that are applicable. Numerous critical experiments for fresh PWR-type fuel in storage and transport configurations exist and can be used as part of a validation database. However, there are no critical experiments with burned PWR-type fuel in storage and transport configurations. As an alternative, commercial reactors offer an excellent source of measured critical configurations. The results reported demonstrate the ability of the ORNL SCALE-4 methodology to predict a value of k eff very close to the known value of 1.0, both for fresh fuel criticals and for the more complex reactor criticals. Beyond these results, additional work in the determination of biases and uncertainties is necessary prior to use in burnup credit applications
Expansion of the CHR bone code system
International Nuclear Information System (INIS)
Farnham, J.E.; Schlenker, R.A.
1976-01-01
This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials
International Nuclear Information System (INIS)
Suyama, Kenya; Mochizuki, Hiroki
2006-01-01
The value of the burnup is one of the most important parameters of samples taken by post-irradiation examination (PIE). Generally, it is evaluated by the Neodymium-148 method. Precise evaluation of the burnup value requires: (1) an effective fission yield of 148 Nd; (2) neutron capture reactions of 147 Nd and 148 Nd; (3) a conversion factor from fissions per initial heavy metal to the burnup unit GWd/t. In this study, the burnup values of the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken by the Japan Atomic Energy Research Institute, were re-evaluated using more accurate corrections for each of these three items. The PIE data were then re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. The re-evaluation of the effective fission yield of 148 Nd has an effect of 1.5-2.0% on burnup values. Considering the neutron capture reactions of 147 Nd and 148 Nd removes dependence of C/E values of 148 Nd on the burnup value. The conversion factor from FIMA(%) to GWd/t changes according to the burnup value. Its effect on the burnup evaluation is small for samples having burnup of larger than 30 GWd/t. The analyses using the corrected burnup values showed that the calculated 148 Nd concentrations and the PIE data is approximately 1%, whereas this was 3-5% in prior analyses. This analysis indicates that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected by 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is an approximately 0.6% change in PIE samples having the burnup of larger than 30 GWd/t. Finally, comparison between calculation results using a single pin-cell model and an assembly model is carried out. Because the results agreed with each other within a few percent, we concluded that the single pin-cell model is suitable for the analysis of PIE samples and that the underestimation of plutonium isotopes, which occurred in the previous analyses, does not result from a geometry
AUS98 - The 1998 version of the AUS modular neutronic code system
Energy Technology Data Exchange (ETDEWEB)
Robinson, G.S.; Harrington, B.V
1998-07-01
AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous AUS publications are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM main-frame computers to UNIX workstations This report gives details of all system aspects of AUS and all modules except the POW3D multi-dimensional diffusion module refs., tabs.
International Nuclear Information System (INIS)
Chipsham, E.; Jarvis, O.N.; Sadler, G.
1989-01-01
Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs
Analysis of burnup credit on spent fuel storage
International Nuclear Information System (INIS)
Matsumura, T.; Sasahara, A.
1999-01-01
Chemical analyses were carried out on high burnup UO 2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins. Measured data of the composition of nuclides from 234 U to 242 Pu were used for evaluation of ORIGEN-2/82 code. Criticality calculations were executed for the casks which were being designed to store 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for (1) axial and horizontal profiles of burnup, and void history (BWR), (2) operational histories such as control rod insertion history, BPR insertion history and others, and (3) calculational accuracy of ORIGEN-2/82 code on the composition of nuclides. Present evaluation shows that introduction of burnup credit has a substantial merit in criticality safety analysis of the cask, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for present reactivity bias evaluation and showed a possibility of simplifying the reactivity bias evaluation in burnup credit. Finally, adapting procedures of burnup credit such as the burnup meter were evaluated. (author)
Energy Technology Data Exchange (ETDEWEB)
DeHart, M.D.
1996-05-01
Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.
International Nuclear Information System (INIS)
DeHart, M.D.
1996-05-01
Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports
Analysis on burn-up behaviors for accelerator-driven sub-critical facility
International Nuclear Information System (INIS)
Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao
2000-01-01
An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91
OECD/NEA burnup credit calculational criticality benchmark Phase I-B results
International Nuclear Information System (INIS)
DeHart, M.D.; Parks, C.V.; Brady, M.C.
1996-06-01
In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155
OECD/NEA burnup credit calculational criticality benchmark Phase I-B results
Energy Technology Data Exchange (ETDEWEB)
DeHart, M.D.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Labs., Las Vegas, NV (United States)
1996-06-01
In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155.
DANDE: a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1986-01-01
This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs
DANDE: a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1985-06-01
This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem
Parallel GPU implementation of PWR reactor burnup
International Nuclear Information System (INIS)
Heimlich, A.; Silva, F.C.; Martinez, A.S.
2016-01-01
Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.
Directory of Open Access Journals (Sweden)
Kępisty Grzegorz
2015-09-01
Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.
International Nuclear Information System (INIS)
Paratte, J.M.; Foskolos, K.; Grimm, P.; Hollard, J.M.
1996-01-01
ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the first one is presented here. From a basic neutronic data library in ENDF/B format, the code ETOBOX produces a condensed cross section library. Smooth cross sections are integrated into energy groups. In the ETOBOX 'resonance range' the resonance parameters are transformed into pointwise cross sections. Outside this range the resolved as well as the unresolved resonances are integrated into groups for 3 values of the temperature and 4 values of the dilution cross section. The transfer matrices are calculated in the epithermal as well as in the thermal energy range for a given order of anisotropy for the elastic and the inelastic scattering, as well as for the (n,xn) reactions. In the thermal energy range the transfer matrices are calculated for a maximum of 10 different temperatures. The pointwise resonance cross sections are Doppler broadened for the same temperatures. A working library can be defined as a reduced list of the nuclides calculated, where the coupling between each other is established for burnup calculations. This manual shows all input commands which can be used while running the different modules of ETOBOX. The last chapter describes the library produced. (author) figs., tabs., refs
Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)
2008-04-15
Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.
OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results
Energy Technology Data Exchange (ETDEWEB)
DeHart, M.D.
1993-01-01
Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are {sup 149}Sm, {sup 151}Sm, and {sup 155}Gd.
Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations
International Nuclear Information System (INIS)
Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.
2008-01-01
Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files
Nuclide analysis in high burnup fuel samples irradiated in Vandellos 2
Energy Technology Data Exchange (ETDEWEB)
Zwicky, H.U., E-mail: hans-urs.zwicky@bluewin.c [Zwicky Consulting GmbH, Chilacherstr. 17, 5236 Remigen (Switzerland); Low, J.; Granfors, M. [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden); Alejano, C.; Conde, J.M. [Consejo de Seguridad Nuclear, Justo Dorado 11, 28040 Madrid (Spain); Casado, C.; Sabater, J.; Lloret, M.; Quecedo, M. [ENUSA, Santiago Rosinol 12, 28040 Madrid (Spain); Gago, J.A. [ENRESA, Emilio Vargas 7, 28043 Madrid (Spain)
2010-07-01
In the framework of a high burnup fuel demonstration programme, rods with an enrichment of 4.5% {sup 235}U were operated to a rod average burnup of about 70 MWd/kgU in the Spanish Vandellos 2 pressurised water reactor. The rods were sent to hot cells and used for different research projects. This paper describes the isotopic composition measurements performed on samples of those rods, and the analysis of the measurement results based on comparison against calculated values. The fraction and composition of fission gases released to the rod free volume was determined for two of the rods. About 8% of Kr and Xe produced by fission were released. From the isotopic composition of the gases, it could be concluded that the gases were not preferentially released from the peripheral part of the fuel column. Local burnup and isotopic content of gamma emitting nuclides were determined by quantitatively evaluating axial gamma scans of the full rods. Nine samples were cut at different axial levels from three of the rods and analysed in two campaigns. More than 50 isotopes of 16 different elements were assessed, most of them by Inductively Coupled Plasma Mass Spectrometry after separation with High Performance Liquid Chromatography. In general, these over 400 data points gave a consistent picture of the isotopic content of irradiated fuel as a function of burnup. Only in a few cases, the analysis provided unexpected results that seem to be wrong, in most cases due to unidentified reasons. Sample burnup analysis was performed by comparing experimental isotopic abundances of uranium and plutonium composition as well as neodymium isotopic concentrations with corresponding CASMO based data. The results were in agreement with values derived independently from gamma scanning and from core design data and plant operating records. Measured isotope abundances were finally assessed using the industry standard SAS2H sequence of the SCALE code system. This exercise showed good agreement
V.S.O.P. (99/05) computer code system
Energy Technology Data Exchange (ETDEWEB)
Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.
2005-11-01
V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)
International Nuclear Information System (INIS)
Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.
2016-01-01
longer process time (CPU) is required. Treatment of the gadolinium rod is still a key issue. The difference of the neutron multiplication factor generated by the burn-up calculation results was confirmed by the analysis using the same criticality calculation code, MVP. It was less than 3% when the latest code system was used, including continuous-energy Monte Carlo codes and deterministic codes. This is the first time this kind of value has been shown by an extensive international benchmark problem. These results show that even if calculation codes are benchmarked using the well-qualified experimental data before being adopted in the safety review process, it should be understood that some uncertainty in the evaluation of the neutron multiplication factor arising from the uncertainty of the burn-up calculation methodology used still remains
Energy Technology Data Exchange (ETDEWEB)
Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC
2005-12-20
In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version
EGS4 code system and its application
International Nuclear Information System (INIS)
Shin, Chang Ho; Kim, Jong Kyung
1998-01-01
The EGS4 code system is a powerful and user-friend software package permitting state-of-the-art Monte Carlo solution of time-independent coupled electron/photon transport problems, with or without presence of macroscopic electric and magnetic fields. The EGS4 code system consists of EGS4, PEGS4, and USER code. The EGS4 code is designed to simulate electromagnetic cascades in various geometries and at energies up to a few thousand GeV and down to cut-off kinetic energies of 10 and 1 keV for electrons and photons, respectively. The radiation transport of electrons or photons can be simulated in any elements, compound, or mixture. The PEGS4 code, data preparation package, creates data to be used by the EGS4 code, using cross section tables for elements 1 through 100. USER code should be written. This consists of a MAIN program and the subroutines HOWFAR and AUSGAB, the latter two determining the geometry and output (scoring), respectively. The EGS4 code system has been written in a MORTRAN language, extended FORTRAN language. The EGS4 code system has been used in a wide range of applications, such as beam target design, accelerator shielding analysis, gas bremsstrahlung analysis, nuclear data evaluation, and so on. An example is calculation of photonuclear reaction (γ, n) yield and produced neutron energy distribution. In this work, the routine for photonuclear reaction yield and neutron energy distribution calculation was developed using the EGS4 code system. The photonuclear reaction yield was obtained by the convolution of the photonuclear reaction cross section and photon differential track length. The photonuclear reaction cross section was evaluated from Lorentz formula. Benchmark calculation was performed to compare our results with Hansen's those. The results obtained from the EGS4 code system and Hansen's those are in good agreement
Economic benefits of increased discharge burnup for PWR
International Nuclear Information System (INIS)
Liu Dingqin
1991-09-01
Increased discharge burnup brings a great deal of benefits to the utilities. The total fuel cost and its fraction in different fuel cycle activities have been calculated at different discharge burnup level and given specific conditions by using DQUECO code developed by author himself for the Qinshan NPP1 and Daya Bay NPP on a 12 month cycle. It is also pointed out that increasing burnup from 33.0 GWd/tU to 40.7 GWd/tU for the Daya Bay NPP and increasing burnup from 24.0 GWd/tU to 32.0 GWd/tU for the Qinshan NPP1 are not only technically possible, but also economically beneficial
International Nuclear Information System (INIS)
2018-01-01
The 'Burnup Credit' Working Group was established in 1997 to examine the various parameters, such as the irradiation conditions, the burnup profile and the nuclides (actinides and fission products), to be taken into consideration in the criticality studies that take credit from burnup. This report offers an overview of the work that has been completed or agreed under this framework. It presents the group findings on the following topics: - the axial distribution of nuclides or the axial burnup profile; - methods for validating the actual burnup and its axial distribution; - the calculation of nuclide concentrations after irradiation; - the calculation methods that will be used to determine the effective multiplication factor for systems containing used fuel assemblies. This document gathers together the work carried out by the French Burnup Credit Working Group; it is not a guide validating a particular method for taking burnup credit into account. All of the findings presented here may serve as a basis in industry for defining a method to take account of burnup credit in criticality studies; any industrial body effectively adopting such a method will also be responsible for defining it, based on its knowledge of the used fuel assemblies and the configuration to be addressed. This document forms a collection of the work completed by the Working Group up to 1 January 2007 but does not necessarily reflect ongoing work in the various institutes. (authors)
Energy Technology Data Exchange (ETDEWEB)
Ilas, Germina [ORNL; Gauld, Ian C [ORNL
2011-01-01
This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.
Burnup credit effect on proposed cask payloads
International Nuclear Information System (INIS)
Hall, I.K.
1989-01-01
The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted
Transnucleaire's experience with burnup credit in transport operations
International Nuclear Information System (INIS)
Malesys, P.
2001-01-01
Facing a continued increase in fuel enrichment values, Transnucleaire has progressively implemented a burnup credit programme in order to maintain or, where possible, to improve the capacity of its transport packagings without physical modification. Many package design approvals, based on a notion of burnup credit, have been granted by the French competent authority for transport since the early eighties, and many of these approvals have been validated by foreign competent authorities. Up to now, these approvals are restricted to fuel assemblies made of enriched uranium and irradiated in pressurized water reactors (PWR). The characterization of the irradiated fuel and the reactivity of the package are evaluated by calculation, performed using qualified French codes developed by the CEA (Commisariat a l'Energie Atomique/French Atomic Energy Commission): CESAR as a depletion code and APOLO-MORET as a criticality code. The approvals are based on the hypothesis that the burnup considered is that applied on the least irradiated region of the fuel assemblies, the conservative approach being not to take credit for any axial profile of burnup along the fuel assembly. The most reactive configuration is calculated and the burnup credit is also restricted to major actinides only. On the operational side and in compliance with regulatory requirements, verification is made before transport, in order to meet safety objectives as required by the transport regulations. Besides a review of documentation related to the irradiation history of each fuel assembly, it consists of either a qualitative (go/no-go) verification or of a quantitative measurement, depending on the level of burnup credit. Thus the use of burnup credit is now a common practice with Transnucleaire's packages, particularly in France and Germany. New improvements are still in progress and qualifications of the calculation code are now well advanced, which will allow in the near future the use of six selected
International Nuclear Information System (INIS)
Leege, P.F.A. de; Li, J.M.; Kloosterman, J.L.
1995-04-01
This users' guide gives a description of the functionality and the requested input of the SAS6 code sequence which can be used to perform burnup and criticality calculations based on functional modules from the SCALE-4 code system and libraries. The input file for the SAS6 control module is very similar to that of the other SAS and CSAS control modules available in the SCALE-4 system. Especially the geometry input of SAS6 is quite similar to that of SAS2H. However, the functionality of SAS6 is different from that of SAS2H. The geometry of the reactor lattice can be treated in more detail because use is made of the two-dimensional lattice code WIMS-D/IRI (An adapted version of WIMS-D/4) instead of the one-dimensional transport code XSDRNPM-S. Also the neutron absorption and production rates of nuclides not explicitly specified in the input can be accounted for by six pseudo nuclides. Furthermore, the centre pin can be subdivided into maximal 10 zones to improve the burnup calculation of the centre pin and to obtain more accurate k-infinite values for the assembly. Also the time step specification is more flexible than in the SAS2H sequence. (orig.)
Advanced thermionic reactor systems design code
International Nuclear Information System (INIS)
Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.
1991-01-01
An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance
The dependence of the global neutronic parameters on the fuel burnup for CANDU SEU43 core
International Nuclear Information System (INIS)
Balaceanu, V.; Pavelescu, M.
2010-01-01
In order to reduce the total fuel costs for the CANDU reactors, mainly by extending the fuel burnup limits, some fuel bundle concepts have been developed in different CANDU owner countries. Therefore, in our Institute the SEU43 (Slightly Enriched Uranium with 43 fuel elements) project was started in early '90s. The neutronic behavior analysis of the CANDU core with SEU43 fuel was an important step in our project design. The objective of this paper is to highline an analysis of the neutronic behavior of the CANDU SEU43 core with the fuel burnup. More exactly, the study refers to the dependence of some global neutronic parameters, mainly the reactivity, on the fuel burnup. Two types of CANDU core were taken into consideration: reference core (without any reactivity devices) and perturbed core (with a strong reactivity system inserted). The considered reactivity system is the Mechanical Control Absorber (MCA) one. The performed parameters are: k eff. values, the MCA reactivity worth and flux distributions. The fuel bundles in the core are SEU43, with the fuel enrichment in U 235 of 0.96% and at nominal power. For the fuel burnup the values are: 0.00 GWd/tU (fresh fuel); 8.00 GWd/tU and 25.00 GWd/tU. For reaching this objective, a global neutronic calculation system named WIMSPIJXYZ LEGENTR is used. Starting from a 69-groups ENDF/B-V based library, this system uses three transport codes: (1) the standard lattice-cell code WIMS, for generating macroscopic cross sections in supercell option and also for burnup calculations; (2) the PIJXYZ code for 3D simulation of the MCA reactivity devices and the 3D correction of the macroscopic cross sections; (3) the LEGENTR 3D transport code for estimating global neutronic parameters (CANDU core). The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON and DIREN codes. This comparison shows a good agreement between these results. (orig.)
International Nuclear Information System (INIS)
Haj Hassan, H.; Ghazi, N.; Hainoun, A.
2007-01-01
The codes WIMSD-4 and BORGLES - part of the MTR-PC code package- have been applied to prepare the microscopic cross section library for the main elements of MNSR core for 6 neutron energy groups. The generated library was utilized from the 3D code CITATION to perform the calculation of fuel burn up and depletion including the identification of main fission products and its effects on the multiplication factor. In this regard some modifications have been introduced to the subroutine NUCY in CITATION to incorporate estimating the concentration of the related actinides and fission products. The burn up results indicated that the core life time of MNSR is being mainly estimated by Sm-149 following by Gd-157 and Cd-113. The accumulation of these actinides during 100 continuous operation days caused a reduction of ca. 2 mk for the excess reactivity. This result seems to be in good agreement with the available empirical value of 1.8 mk which relates to the whole discontinuous operation period of the reactor since its start and up to now. The calculation procedure simulates the sporadic operation with an adequate continuous operation period. This approximation is valid for the long lived actinides that mainly dictate the core life time. However, it is an overestimation for the concentration of short lived radioactive products like Xe-135. In the framework of this analysis the possibility of replacement of current MNSR fuel through low enriched fuels has been explored for two the fuel types U02-Mg and U3Si-Al. The results indicate that the first type (UO2-Mg) realize the criticality conditions with low enrichment of 20%, whereas the second type (U3Si-Al) required increasing the uranium enrichment up to 33%. For both fuel types the contribution of plutonium isotopes on the criticality has been also evaluated. Additionally, the influence of mixing burnable absorbers (Gd-113, Cd- 113) with the fresh fuels was investigated to identify their long-term control effect on the
The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William B. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-06-01
Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidance in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.
Improved decoding for a concatenated coding system
DEFF Research Database (Denmark)
Paaske, Erik
1990-01-01
The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...
Low Spectral Efficiency Trellis Coded Modulation Systems
2006-09-01
2 bBW R= . The three alternative systems are all non- TCM systems and consist of QPSK with independent r=1/2 error correction coding on the in-phase...and quadrature components, with null-to-null bandwidth 2 bBW R= , 8-ary biorthogonal keying (8-BOK) with r=2/3 error correction coding with bandwidth...21 12 bBW R= and 16-BOK with r=3/4 error correction coding and with bandwidth 44 24 bBW R= . At the beginning of the analysis only the effect of
SRAC: JAERI thermal reactor standard code system for reactor design and analysis
International Nuclear Information System (INIS)
Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.
1983-01-01
The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)
The ELCOS Code System - From Basic Neutron Files to Fuel Cycle Simulation
International Nuclear Information System (INIS)
Segev, M.; Galperin, A.
2002-01-01
The performance record of ELCOS The reactor analysis group in the department of nuclear engineering in the Ben-Gurion University has been conducting fuel cycle analyses, for several years now, using the Swiss-based ELCOS code system. This code system was launched at about the year 1987 (1). We became certified users of it when we had actively participated in several of its upgrading activities since 1995 (2). The PSI institute, home of the ELCOS system, is routinely engaged in the use of the ELCOS for analysis of fuel cycles in operation in Switzerland, as a service to the Swiss PWR and BWR utilities. A special 1994 study (3) has shown the ELCOS system fully capable of analyzing a fuel cycle based on a modern, complex, core which consists of about a dozen fuel types, BP (Burnable Poison) insertions in the form of WABAs (Westinghaus Advanced Burnable Absorber), and burnable poison smears in the form of IFBAs (Integrated Fuel Burnable Absorber). The ELCOS analysis compared well with power plant data, as concerns both the soluble boron run-down curve and the in-core power distribution (assembly by assembly). For ten years now our group has been in the lead in a world wide search for a beneficial Thorium Uranium symbiosis. For such a symbiosis to be effective the assembly of the core must not consist of fuel rods in which U and Th are homogeneously mixed, but rather the assembly is divided into a central zone in which U rods constitute a Seed of neutrons, and a peripheral zone, the Blanket, absorbing the seed neutrons to build 233 U. The flexibility of the ELCOS enabled us relatively routine calculations of fuel cycles based on this Seed-Blanket geometry (4). The Structure of ELCOS ELCOS is structured mainly as two codes run in succession: BOXER- an assembly code based on the neutronics of coupled unit cells, then SILWER, a 3D nodal diffusion code for the core. The execution of BOXER generates assembly, 2 group, homogenized, burnup dependent, macroscopic cross sections
Energy Technology Data Exchange (ETDEWEB)
Hernandez, J.L.; Alonso, G.; Perusquia, R.; Montes, J.L.; Hernandez, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin-mx
2003-07-01
An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods {approx} 1 pcm in hot condition and of {approx} 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)
Burnup degree measuring device
International Nuclear Information System (INIS)
Tone, Tatsuo.
1994-01-01
A fixing stand on which a nuclear fuel support and a detector guide support stand are disposed is placed at a predetermined position in a fuel storage pool. Spent nuclear fuels stored in the pool are set in the nuclear fuel support. A closed end of a detector guide tube is secured to the detector guide support stand. The radiation detector is inserted to the detector guide tube, and it is disposed at a predetermined position near the nuclear fuel support. Radiation detection signals detected by the radiation detector are sent to a measuring device for measuring a burnup degree of spent nuclear fuels disposed to the outside of the pool by way of cables. Since the radiation detector is placed near the spent nuclear fuels only upon measurement of the burnup degree, radiation injuries of the radiation detector and the cables are reduced. Further, since the radiation detector and the cables are kept from contact with pool water, radiation decontamination upon maintenance and inspection is not necessary, to facilitate a calibration operation. (I.N.)
Simulation of integral local tests with high-burnup fuel
International Nuclear Information System (INIS)
Gyori, G.
2011-01-01
The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)
High frequency coded imaging system with RF.
Lewandowski, Marcin; Nowicki, Andrzej
2008-08-01
Coded transmission is an approach to solve the inherent compromise between penetration and resolution required in ultrasound imaging. Our goal was to examine the applicability of the coded excitation to HF (20-35 MHz) ultrasound imaging. A novel real-time imaging system for research and evaluation of the coded transmission was developed. The digital programmable coder- digitizer module based on the field programmable gate array (FPGA) chip supports arbitrary waveform coded transmission and RF echo sampling up to 200 megasamples per second, as well as real-time streaming of digitized RF data via a high-speed USB interface to the PC. All RF and image data processing were implemented in the software. A novel balanced software architecture supports real-time processing and display at rates up to 30 frames/sec. The system was used to acquire quantitative data for sine burst and 16-bit Golay code excitation at 20 MHz fundamental frequency. SNR gain close to 14 dB was obtained. The example of the skin scan clearly shows the extended penetration and improved contrast when a 35-MHz Golay code is used. The system presented is a practical and low-cost implementation of a coded excitation technique in HF ultrasound imaging that can be used as a research tool as well as to be introduced into production.
Analysis of rim effect in high burnup (U, Gd)O2 fuel
International Nuclear Information System (INIS)
Kameyama, Takanori; Matsumura, Tetsuo; Kinoshita, Mikiyasu
1992-01-01
Extending burnup of LWR fuel is efficient to reduce the fuel cycle cost and the number of spent fuels. Gadolinia will be mixed in LWR fuels to control the initial reactivity of the high burnup assembly because gadolinia is one of the good burnable poisons of neutron. Rim effect in (U,Gd)O 2 fuel was analyzed by the detailed burnup analysis code VIMBURN. The rim effect in (U,Gd)O 2 is more significant than that in UO 2 fuel below 20 MWd/kgU and the difference of the rim effects in both fuels decreases as burnup proceeds above 20 MWd/kgU. The rim effects in (U,Gd)O 2 and UO 2 fuels are in the same level at high burnup of 80 MWd/kgU when the rim structure forms. The burnup rate of (U,Gd)O 2 rod is less than that of UO 2 rods surrounding the (U,Gd)O 2 rod in the assembly due to neutron absorption of gadolinium. Accordingly local burnup at the peripheral region in (U,Gd)O 2 fuel reaches the high burnup of 80 MWd/kgU a little after the local burnup in UO 2 fuel does. Therefore, it can be predicted that the impact of rim structure on the fuel behaviour in (U,Gd)O 2 fuel is as much as in UO 2 fuel at high burnup of the assembly. (author)
Performance of code 'FAIR' in IAEA CRP on FUMEX
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Kakodkar, A.
1996-01-01
A modern fuel performance analysis code FAIR has been developed for analysing high burnup fuel pins of water/heavy water cooled reactors. The code employs finite element method for modelling thermo mechanical behaviour of fuel pins and mechanistic models for modelling various physical and chemical phenomena affecting the behaviour of nuclear reactor fuel pins. High burnup affects such as pellet thermal conductivity degradation, enhanced fission gas release and radial flux redistribution are incorporated in the code FAIR. The code FAIR is capable of performing statistical analysis of fuel pins using Monte Carlo technique. The code is implemented on BARC parallel processing system ANUPAM. The code has recently participated in an International Atomic Energy Agency (IAEA) coordinated research program (CRP) on fuel modelling at extended burnups (FUMEX). Nineteen agencies from different countries participated in this exercise. In this CRP, spread over a period of three years, a number of high burnup fuel pins irradiated at Halden reactor are analysed. The first phase of the CRP is a blind code comparison exercise, where the computed results are compared with experimental results. The second phase consists of modifications to the code based on the experimental results of first phase and statistical analysis of fuel pins. The performance of the code FAIR in this CRP has been very good. The present report highlights the main features of code FAIR and its performance in the IAEA CRP on FUMEX. 14 refs., 5 tabs., ills
Determination of IRT-2M fuel burnup by gamma spectrometry.
Koleška, Michal; Viererbl, Ladislav; Marek, Milan; Ernest, Jaroslav; Šunka, Michal; Vinš, Miroslav
2016-01-01
A spectrometric system was developed for evaluating spent fuel in the LVR-15 research reactor, which employs highly enriched (36%) IRT-2M-type fuel. Such system allows the measurement of detailed fission product profiles. Within these measurements, nuclides such as (137)Cs, (134)Cs, (144)Ce, (106)Ru and (154)Eu may be detected in fuel assemblies with different cooling times varying between 1.67 and 7.53 years. Burnup calculations using the MCNPX Monte Carlo code data showed good agreement with measurements, though some discrepancies were observed in certain regions. These discrepancies are attributed to the evaluation of irradiation history, reactor regulation pattern and buildup schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jung Suk Kim
2015-12-01
Full Text Available The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233U, 242Pu, 150Nd, and 133Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code.
Credit to fuel burnup for criticality safety evaluations in Spain
International Nuclear Information System (INIS)
Conde, J.M.; Recio, M.
1998-01-01
The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analysis characteristics specific to burnup credit are described, namely the need to increase the experimental data to allow for a more detailed validation of the depletion codes, and of the criticality codes when applied to spent fuel. Reactivity effects that arise in burnup credit analysis, such as axial and radial effects, fuel irradiation history and others are revised. The methods used to address them in the approved methodologies are outlined. Finally, the regulatory approach used to accept these new analytical methodologies is described. (author)
Implementing a modular system of computer codes
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.
1983-07-01
A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out
MOSRA-SRAC. Lattice calculation module of the modular code system for nuclear reactor analyses MOSRA
International Nuclear Information System (INIS)
Okumura, Keisuke
2015-10-01
MOSRA-SRAC is a lattice calculation module of the Modular code System for nuclear Reactor Analyses (MOSRA). This module performs the neutron transport calculation for various types of fuel elements including existing light water reactors, research reactors, etc. based on the collision probability method with a set of the 200-group cross-sections generated from the Japanese Evaluated Nuclear Data Library JENDL-4.0. It has also a function of the isotope generation and depletion calculation for up to 234 nuclides in each fuel material in the lattice. In these ways, MOSRA-SRAC prepares the burn-up dependent effective microscopic and macroscopic cross-section data to be used in core calculations. A CD-ROM is attached as an appendix. (J.P.N.)
International Nuclear Information System (INIS)
Campolina, Daniel de Almeida Magalhaes
2009-01-01
In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)
Plotting system for the MINCS code
International Nuclear Information System (INIS)
Watanabe, Tadashi
1990-08-01
The plotting system for the MINCS code is described. The transient two-phase flow analysis code MINCS has been developed to provide a computational tool for analysing various two-phase flow phenomena in one-dimensional ducts. Two plotting systems, namely the SPLPLOT system and the SDPLOT system, can be used as the plotting functions. The SPLPLOT system is used for plotting time transients of variables, while the SDPLOT system is for spatial distributions. The SPLPLOT system is based on the SPLPACK system, which is used as a general tool for plotting results of transient analysis codes or experiments. The SDPLOT is based on the GPLP program, which is also regarded as one of the general plotting programs. In the SPLPLOT and the SDPLOT systems, the standardized data format called the SPL format is used in reading data to be plotted. The output data format of MINCS is translated into the SPL format by using the conversion system called the MINTOSPL system. In this report, how to use the plotting functions is described. (author)
Accuracy considerations for Chebyshev rational approximation method (CRAM) in Burnup calculations
Energy Technology Data Exchange (ETDEWEB)
Pusa, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)
2013-07-01
The burnup equations can in principle be solved by computing the exponential of the burnup matrix. However, due to the difficult numerical characteristics of burnup matrices, the problem is extremely stiff and the matrix exponential solution has previously been considered infeasible for an entire burnup system containing over a thousand nuclides. It was recently discovered by the author that the eigenvalues of burnup matrices are generally located near the negative real axis, which prompted introducing the Chebyshev rational approximation method (CRAM) for solving the burnup equations. CRAM can be characterized as the best rational approximation on the negative real axis and it has been shown to be capable of simultaneously solving an entire burnup system both accurately and efficiently. In this paper, the accuracy of CRAM is further studied in the context of burnup equations. The approximation error is analyzed based on the eigenvalue decomposition of the burnup matrix. It is deduced that the relative accuracy of CRAM may be compromised if a nuclide concentration diminishes significantly during the considered time step. Numerical results are presented for two test cases, the first one representing a small burnup system with 36 nuclides and the second one a full a decay system with 1531 nuclides. (authors)
Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias
International Nuclear Information System (INIS)
Mat sumura, T.; Sasahara, A.; Takei, M.; Takekawa, T.; Kagehira, K.; Nicolaou, G.; Betti, M.
1998-01-01
Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)
V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009
Energy Technology Data Exchange (ETDEWEB)
Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.
2010-07-15
V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)
Improvement of burnup analysis for pebble bed reactors with an accumulative fuel loading scheme
International Nuclear Information System (INIS)
Simanullang, Irwan Liapto; Obara, Toru
2015-01-01
Given the limitations of natural uranium resources, innovative nuclear power plant concepts that increase the efficiency of nuclear fuel utilization are needed. The Pebble Bed Reactor (PBR) shows some potential to achieve high efficiency in natural uranium utilization. To simplify the PBR concept, PBR with an accumulation fuel loading scheme was introduced and the Fuel Handling System (FHS) removed. In this concept, the pebble balls are added little by little into the reactor core until the pebble balls reach the top of the reactor core, and all pebble balls are discharged from the core at the end of the operation period. A code based on the MVP/MVP-BURN method has been developed to perform an analysis of a PBR with the accumulative fuel loading scheme. The optimum fuel composition was found using the code for high burnup performance. Previous efforts provided several motivations to improve the burnup performance: First, some errors in the input code were corrected. This correction, and an overall simplification of the input code, was implemented for easier analysis of a PBR with the accumulative fuel loading scheme. Second, the optimum fuel design had been obtained in the infinite geometry. To improve the optimum fuel composition, a parametric survey was obtained by varying the amount of Heavy Metal (HM) uranium per pebble and the degree of uranium enrichment. Moreover, an entire analysis of the parametric survey was obtained in the finite geometry. The results show that improvements in the fuel composition can lead to more accurate analysis with the code. (author)
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1974-01-01
One of the major problems in burnup studies is the reasonably fast and accurate calculation of the space-and-energy dependent neutron flux and reaction rates for realistic power reactor fuel geometries and compositions, and its optimal integration in the global reactor calculations. The scope of the present research was to develop improved methods trying to satisfy the above requirements. In the epithermal region, simple and efficient approximation is proposed which allows the analytical solution for the space dependence of the spherical harmonics flux moments, and hence the derivation of the recurrence relations between he flux moments at successive lethargy pivotal points. A new matrix formalism to invert the coefficient matrix of band structure resulted in a reduce computer time and memory demands. The research on epithermal region is finalized in computing programme SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, and the related integral quantities as reaction rates and resonance integrals. For partial verification of the above methods a Monte Carlo procedure was developed. Using point-wise representation of variables, a flexible and fast convergent integral transport method SEPT i developed. Expanding the neutron source and flux in finite series of arbitrary polynomials, the space-and-energy dependent integral transport equation is transformed into a general linear algebraic form, which is solved numerically. A simple and efficient procedure for deriving multipoint equations and constructing matrix is proposed and examined, and no unwanted oscillations were noticed. The energy point method was combined with the spherical harmonics method as well. A multi zone few-group program SPECTAR for global reactor calculations was developed. For testing, the flux distribution, neutron leakage and effective multiplication factor for the PWR reactor of the power station San Onofre were calculated. In order to verify
Isotopic Bias and Uncertainty for Burnup Credit Applications
International Nuclear Information System (INIS)
J.M. Scaglione
2002-01-01
The application of burnup credit requires calculating the isotopic inventory of the irradiated fuel. The depletion calculation simulates the burnup of the fuel under reactor operating conditions. The result of the depletion analysis is the predicted isotopic composition, which is ultimately input to a criticality analysis to determine the system multiplication factor (k eff ). This paper demonstrates an approach for calculating the isotopic bias and uncertainty in k eff for commercial spent nuclear fuel burnup credit. This paper covers 74 different radiochemical assayed spent fuel samples from 22 different fuel assemblies that were irradiated in eight different pressurized water reactors (PWRs). The samples evaluated span an enrichment range of 2.556 wt% U-235 through 4.67 wt% U-235, and burnups from 6.92 GWd/MTU through 55.7 GWd/MTU
Parametric neutronic analyses related to burnup credit cask design
International Nuclear Information System (INIS)
Parks, C.V.
1989-01-01
The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of k eff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models
Symbol synchronization in convolutionally coded systems
Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.
1979-01-01
Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.
An integrated radiation physics computer code system.
Steyn, J. J.; Harris, D. W.
1972-01-01
An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.
International Nuclear Information System (INIS)
Wong, C.P.C.; Merrill, B.
2014-01-01
Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively
VVER-1000 burnup credit benchmark (CB5). New results evaluation
International Nuclear Information System (INIS)
Manolova, M.; Mihaylov, N.; Prodanova, R.
2008-01-01
The validation of depletion codes is an important task in spent fuel management, especially for burnup credit application in criticality safety analysis of spent fuel facilities. Because of lack of well documented experimental data for VVER-1000, the validation could be made on the basis of code intercomparison based on the numerical benchmark problems. Some years ago a VVER-1000 burnup credit benchmark (CB5) was proposed to the AER research community and the preliminary results from three depletion codes were compared. In the paper some new results for the isotopic concentrations of twelve actinides and fifteen fission products calculated by the depletion codes SCALE5.1, WIMS9, SCALE4.4 and NESSEL-NUKO are compared and evaluated. (authors)
Energy Technology Data Exchange (ETDEWEB)
Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.
2004-09-14
This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.
Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup
Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.
2017-12-01
Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.
Arabic Natural Language Processing System Code Library
2014-06-01
POS Tagging, and Dependency Parsing. Fourth Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL). English (Note: These are for...Detection, Affix Labeling, POS Tagging, and Dependency Parsing" by Stephen Tratz presented at the Statistical Parsing of Morphologically Rich Languages ...and also English ) natural language processing (NLP), containing code for training and applying the Arabic NLP system described in Stephen Tratz’s
Thermal-mechanical analyses of fuel rods in extended burnup cycles
International Nuclear Information System (INIS)
Rajan, S.R.; Sheppard, K.D.
1984-01-01
The purpose of this work was to investigate analytically the impact of low-leakage extended burnup cycling schemes on fuel performance in pressurized water reactors (PWRs). The thermal-mechanical analysis was done with the COMETHE code. Power histories from various fuel cycling schemes were imposed on a single fuel design, and the behaviour of rod internal pressure, fuel centerline temperature, and susceptibility to PCI-induced failure assessed as a function of burnup. These estimates were made both for base load operating histories as well as power histories that included load-follow operations. The high burnup schemes were found to have potential, though not severe, increases in internal pin pressure and cladding hoop stresses. Load follow operations are not expected to degrade fuel performance at conventional burnups, but tend to aggravate the situation of tensile cladding hoop stress at higher burnups. (author)
The role of ORIGEN-S in the design of burnup credit spent fuel casks
International Nuclear Information System (INIS)
Brady, M.C.
1991-01-01
Current licensing practices for spent fuel pools, storage facilities, and transportation casks require a conservative ''fresh fuel assumption'' be used in the criticality analysis. Burnup credit refers to a new approach in criticality analyses for spent fuel handling systems in which reactivity credit is allowed for the depleted state of the fuel. Studies have shown that the increased cask capacities that can be achieved with burnup credit offer both economic and risk incentives. The US Department of Energy is currently sponsoring a program to develop analysis methodologies and establish a new generation of spent fuel casks using the principle of burnup credit. The key difference in this new approach is the necessity to accurately predict the isotopic composition of the spent fuel. ORIGEN-S was selected to satisfy this requirement because of the flexibility and user-friendly input offered via its usage in the Standardized Computer Analyses for Licensing and Evaluation (SCALE) code system. Specifically, through the Shielding Analysis Sequence 2H (SAS2H), ORIGEN-S is linked with cross-section processing codes and one-dimensional transport analyses to produce problem-specific cross-section data for the point-depletion calculation. The utility code COUPLE facilitates updating basic cross-section and fission-yield data for the calculations. This paper describes the fundamental role fulfilled by ORIGEN-S in the development of the analysis methodology, validation of the methods, definition of criticality safety margins and other licensing considerations in the design of a new generation of spent fuel casks. Particular emphasis is given to the performance of ORIGEN-S in comparisons with measurements of irradiated fuel compositions and in predicting isotopics for use in the calculation of reactor restart critical configurations that are performed as a part of the validation process
Coded aperture imaging using imperfect detector systems
International Nuclear Information System (INIS)
Byard, K.; Ramsden, D.
1994-01-01
The imaging properties of a gamma-ray telescope which employs a coded aperture in conjunction with a modular detection plane has been investigated. Gaps in the detection plane, which arise as a consequence of the design of the position sensitive detector used, produce artifacts in the deconvolved images which reduce the signal to noise ratio for the detection of point sources. The application of an iterative image processing algorithm is shown to restore the image quality to that expected from an ideal detector. The efficiency of image processing has enabled its subsequent application to a general coded aperture system in order to gain a significant improvement in the field of view without compromising the angular resolution. (orig.)
Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS
Energy Technology Data Exchange (ETDEWEB)
Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2004-07-01
MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.
Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS
International Nuclear Information System (INIS)
Lee, Young Jin; Chung, Bub Dong
2004-01-01
MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures
Adaptation of the Specific Affect Coding System (SPAFF
Directory of Open Access Journals (Sweden)
Tomaž Erzar
2013-06-01
Full Text Available The article describes the Slovenian adaptation of the Specific Affect Coding System (SPAFF which was developed by Gottman and colleagues (Gottman and Coan, 2007 for the purpose of examining emotional expression. We present a short history and problems of coding emotions, codes of the system, coding procedure, training of coders, and rules of accurate observing. Also presented are the experiences with the new system, arguments for adaptation of codes to therapeutic processes and suggestions for further improvements.
Power excursion analysis for high burnup cores
Energy Technology Data Exchange (ETDEWEB)
Diamond, D.J.; Neymotin, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)
1996-02-01
A study was undertaken of power excursions in high burnup cores. There were three objectives in this study. One was to identify boiling water reactor (BWR) and pressurized water reactor (PWR) transients in which there is significant energy deposition in the fuel. Another was to analyze the response of BWRs to the rod drop accident (RDA) and other transients in which there is a power excursion. The last objective was to investigate the sources of uncertainty in the RDA analysis. In a boiling water reactor, the events identified as having significant energy deposition in the fuel were a rod drop accident, a recirculation flow control failure, and the overpressure events; in a pressurized water reactor, they were a rod ejection accident and boron dilution events. The RDA analysis was done with RAMONA-4B, a computer code that models the space- dependent neutron kinetics throughout the core along with the thermal hydraulics in the core, vessel, and steamline. The results showed that the calculated maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important uncertainties in each of these categories are discussed in the report.
Energy Technology Data Exchange (ETDEWEB)
Leege, P.F.A. de; Li, J.M.; Kloosterman, J.L.
1995-04-01
This users` guide gives a description of the functionality and the requested input of the SAS6 code sequence which can be used to perform burnup and criticality calculations based on functional modules from the SCALE-4 code system and libraries. The input file for the SAS6 control module is very similar to that of the other SAS and CSAS control modules available in the SCALE-4 system. Especially the geometry input of SAS6 is quite similar to that of SAS2H. However, the functionality of SAS6 is different from that of SAS2H. The geometry of the reactor lattice can be treated in more detail because use is made of the two-dimensional lattice code WIMS-D/IRI (An adapted version of WIMS-D/4) instead of the one-dimensional transport code XSDRNPM-S. Also the neutron absorption and production rates of nuclides not explicitly specified in the input can be accounted for by six pseudo nuclides. Furthermore, the centre pin can be subdivided into maximal 10 zones to improve the burnup calculation of the centre pin and to obtain more accurate k-infinite values for the assembly. Also the time step specification is more flexible than in the SAS2H sequence. (orig.).
Code system BCG for gamma-ray skyshine calculation
International Nuclear Information System (INIS)
Ryufuku, Hiroshi; Numakunai, Takao; Miyasaka, Shun-ichi; Minami, Kazuyoshi.
1979-03-01
A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Han, Sun Ho; Ha, Yeong Keong; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2008-11-15
Destructive methods were used for the burnup determination of a PWR nuclear fuel irradiated to a high burnup in power reactors. The total burnup was determined from a measurement of the Nd and Cs isotope burnup monitors. The methods included U, Pu, {sup 148}Nd, {sup 145}Nd+{sup 146}Nd, total of the Nd isotopes, and {sup 133}Cs and {sup 137}Cs determinations by the isotope dilution mass spectrometric method (IDMS) by using quadrupole spikes ({sup 233}U, {sup 242}Pu, {sup 150}Nd and {sup 133}Cs). The methods involved two sequential anion exchange resin (AG 1X8 and 1X4) separation procedures and a Cs purification with a cation exchange resin (AG 50WX4) separation procedure. The effective fission yield was calculated from the weighted fission yields averaged over the irradiation period. The results obtained by the Nd and Cs isotopes from the mass spectrometric measurement were compared with those by the ORIGEN code.
Technical development on burn-up credit for spent LWR fuels
International Nuclear Information System (INIS)
Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori
2000-10-01
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)
Technical Development on Burn-up Credit for Spent LWR Fuel
Energy Technology Data Exchange (ETDEWEB)
Gauld, I.C.
2001-12-26
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.
Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor
International Nuclear Information System (INIS)
Nguyen Phuoc Lan; Do Quang Binh
2016-01-01
In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)
Ultrasonic measurement of high burn-up fuel elastic properties
International Nuclear Information System (INIS)
Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.
2006-01-01
The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.
1996-05-01
A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)
Energy Technology Data Exchange (ETDEWEB)
Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio
1996-05-01
A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).
SENSITIVITY AND UNCERTAINTY ANALYSIS OF COMMERCIAL REACTOR CRITICALS FOR BURNUP CREDIT
International Nuclear Information System (INIS)
Radulescu, Georgeta; Mueller, Don; Wagner, John C.
2009-01-01
The purpose of this study is to provide insights into the neutronic similarities that may exist between a generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the type of CRC state-points that may be applicable for validation of burnup credit criticality safety calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-section sensitivity and uncertainty analysis methods developed at Oak Ridge National Laboratory and the TSUNAMI set of tools in the SCALE code system as a means to investigate system similarity on an integral and nuclide-reaction specific level. The results indicate that, except for the fresh fuel core configuration, all analyzed CRC state-points are either highly similar, similar, or marginally similar to a generic cask containing spent nuclear fuel assemblies with burnups ranging from 10 to 60 GWd/MTU. Based on the integral system parameter, C k , approximately 30 of the 40 CRC state-points are applicable to validation of burnup credit in the generic cask containing typical spent fuel assemblies with burnups ranging from 10 to 60 GWd/MTU. The state-points providing the highest similarity (C k > 0.95) were attained at or near the end of a reactor cycle. The C k values are dominated by neutron reactions with major actinides and hydrogen, as the sensitivities of these reactions are much higher than those of the minor actinides and fission products. On a nuclide-reaction specific level, the CRC state-points provide significant similarity for most of the actinides and fission products relevant to burnup credit. A comparison of energy-dependent sensitivity profiles shows a slight shift of the CRC K eff sensitivity profiles toward higher energies in the thermal region as compared to the K eff sensitivity profile of the generic cask. Parameters representing
Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian
2015-09-01
An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.
Validation issues for depletion and criticality analysis in burnup credit
International Nuclear Information System (INIS)
Parks, C.V.; Broadhead, B.L.; Dehart, M.D.; Gauld, I.C.
2001-01-01
This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage, and disposal. The issues discussed are ones that have been identified by one or more constituents of the United States technical community (national laboratories, licensees, and regulators) that have been exploring the use of burnup credit. There is not necessarily agreement on the importance of the various issues, which sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data (radiochemical assays and critical experiments) covering the full range and characteristics of spent nuclear fuel in away-from-reactor systems. The paper will also introduce recent efforts initiated at Oak Ridge National Laboratory (ORNL) to provide technical information that can help better assess the value of different experiments. The focus of the paper is on experience with validation issues related to use of burnup credit for transport and dry storage applications. (author)
A simple numerical coding system for clinical electrocardiography
Robles de Medina, E.O.; Meijler, F.L.
1974-01-01
A simple numerical coding system for clinical electrocardiography has been developed. This system enables the storage in coded form of the ECG analysis. The code stored on a digital magnetic tape can be used for a computer print-out of the analysis, while the information can be retrieved at any time
An empirical formulation to describe the evolution of the high burnup structure
Lemes, Martín; Soba, Alejandro; Denis, Alicia
2015-01-01
In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in
On Analyzing LDPC Codes over Multiantenna MC-CDMA System
Directory of Open Access Journals (Sweden)
S. Suresh Kumar
2014-01-01
Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.
Burnup measurements with the Los Alamos fork detector
International Nuclear Information System (INIS)
Bosler, G.E.; Rinard, P.M.
1991-01-01
The fork detector system can determine the burnup of spent-fuel assemblies. It is a transportable instrument that can be mounted permanently in a spent-fuel pond near a loading area for shipping casks, or be attached to the storage pond bridge for measurements on partially raised spent-fuel assemblies. The accuracy of the predicted burnup has been demonstrated to be as good as 2% from measurements on assemblies in the United States and other countries. Instruments have also been developed at other facilities throughout the world using the same or different techniques, but with similar accuracies. 14 refs., 2 figs., 2 tabs
Simulation of High Burnup Structure in UO2 Using Potts Model
International Nuclear Information System (INIS)
Oh, Jae Yong; Koo, Yang Hyun; Lee, Byung Ho
2009-01-01
The evolution of a high burnup structure (HBS) in a light water reactor (LWR) UO 2 fuel was simulated using the Potts model. A simulation system for the Potts model was defined as a two-dimensional triangular lattice, for which the stored energy was calculated from both the irradiation damage of the UO 2 matrix and the formation of a grain boundary in the newly recrystallized small HBS grains. In the simulation, the evolution probability of the HBS is calculated by the system energy difference between before and after the Monte Carlo simulation step. The simulated local threshold burnup for the HBS formation was 62 MWd/kgU, consistent with the observed threshold burnup range of 60-80 MWd/kgU. The simulation revealed that the HBS was heterogeneously nucleated on the intergranular bubbles in the proximity of the threshold burnup and then additionally on the intragranular bubbles for a burnup above 86 MWd/kgU. In addition, the simulation carried out under a condition of no bubbles indicated that the bubbles played an important role in lowering the threshold burnup for the HBS formation, thereby enabling the HBS to be observed in the burnup range of conventional high burnup fuels
Energy Technology Data Exchange (ETDEWEB)
Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-08-01
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.
Energy Technology Data Exchange (ETDEWEB)
Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-05-01
The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.
Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio
Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi
2014-09-01
Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of thereactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to runthe analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor typeas a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.
International Nuclear Information System (INIS)
Chiang, Min-Han; Wang, Jui-Yu; Sheu, Rong-Jiun; Liu, Yen-Wan Hsueh
2014-01-01
The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects
Energy Technology Data Exchange (ETDEWEB)
Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)
2014-05-01
The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.
Comparison of analysis methods for burnup credit applications
International Nuclear Information System (INIS)
Sanders, T.L.; Brady, M.C.; Renier, J.P.; Parks, C.V.
1989-01-01
The current approach used for the development and certification of spent fuel storage and transport casks requires an assumption of fresh fuel isotopics in the criticality safety analysis. However, it has been shown that there is a considerable reactivity reduction when the isotopics representative of the depleted (or burned) fuel are used in a criticality analysis. Thus, by taking credit for the burned state of the fuel (i.e., burnup credit), a cask designer could achieve a significant increase in payload. Accurate prediction of k eff for spent fuel arrays depends both on the criticality safety analysis and the prediction of the spent fuel isotopics via a depletion analysis. Spent fuel isotopics can be obtained from detailed multidimensional reactor analyses, e.g. the code PDQ, or from point reactor burnup models. These reactor calculations will help verify the adequacy of the isotopics and determine Δk eff biases for various analysis assumptions (with and without fission products, actinide absorbers, burnable poison rods, etc.). New software developed to interface PDQ multidimensional isotopics with KENO V.a reactor and cask models is described. Analyses similar to those performed for the reactor cases are carried out with a representative burnup credit cask model using the North Anna fuel. This paper presents the analysis methodology that has been developed for evaluating the physics issues associated with burnup credit. It is applicable in the validation and characterization of fuel isotopics as well as in determining the influence of various analysis assumptions in terms of δk eff . The methodology is used in the calculation of reactor restart criticals and analysis of a typical burnup credit cask
Next generation Zero-Code control system UI
CERN. Geneva
2017-01-01
Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.
Energy Technology Data Exchange (ETDEWEB)
Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)
2015-07-01
Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)
Cell verification of parallel burnup calculation program MCBMPI based on MPI
International Nuclear Information System (INIS)
Yang Wankui; Liu Yaoguang; Ma Jimin; Wang Guanbo; Yang Xin; She Ding
2014-01-01
The parallel burnup calculation program MCBMPI was developed. The program was modularized. The parallel MCNP5 program MCNP5MPI was employed as neutron transport calculation module. And a composite of three solution methods was used to solve burnup equation, i.e. matrix exponential technique, TTA analytical solution, and Gauss Seidel iteration. MPI parallel zone decomposition strategy was concluded in the program. The program system only consists of MCNP5MPI and burnup subroutine. The latter achieves three main functions, i.e. zone decomposition, nuclide transferring and decaying, and data exchanging with MCNP5MPI. Also, the program was verified with the pressurized water reactor (PWR) cell burnup benchmark. The results show that it,s capable to apply the program to burnup calculation of multiple zones, and the computation efficiency could be significantly improved with the development of computer hardware. (authors)
Variable-length code construction for incoherent optical CDMA systems
Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng
2007-04-01
The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.
A Robust Cross Coding Scheme for OFDM Systems
Shao, X.; Slump, Cornelis H.
2010-01-01
In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the
Communication Systems Simulator with Error Correcting Codes Using MATLAB
Gomez, C.; Gonzalez, J. E.; Pardo, J. M.
2003-01-01
In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…
Application of burnup credit concept to transport
International Nuclear Information System (INIS)
Futamura, Yoshiaki; Nakagome, Yoshihiro.
1994-01-01
For the design and safety assessment of the casks for transporting spent fuel, the fuel contained in them has been assumed to be new fuel. The reason is, it was difficult to evaluate the variation of the reactivity of fuel, and the research on the affecting factors and the method of measuring burnup were not much advanced. Recently, high burnup fuel has been adopted, and initial degree of enrichment rose. The research has been advanced for pursuing the economy of the casks for spent fuel, and burnup credit has become applicable to their design and safety assessment. As the result, the containing capacity increases by about 20%. When burnup credit is considered, it is necessary to confirm accurately the burnup of spent fuel. The burnup dependence of the concentration of fissile substances and neutron emissivity, the coolant void dependence of the concentration of fissile substances, and the relation of neutron multiplication rate with initial degree of enrichment or burnup are discussed. The conceptual design of casks considering burnup credit and its assessment, the merit, problem and the countermeasures to it when burnup credit is introduced are described. (K.I.)
Phenomena and parameters important to burnup credit
International Nuclear Information System (INIS)
Parks, C.V.; Dehart, M.D.; Wagner, J.C.
2001-01-01
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)
MELCOR Accident Consequence Code System (MACCS)
International Nuclear Information System (INIS)
Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I.
1990-02-01
This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs
MELCOR Accident Consequence Code System (MACCS)
Energy Technology Data Exchange (ETDEWEB)
Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))
1990-02-01
This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.
MELCOR Accident Consequence Code System (MACCS)
International Nuclear Information System (INIS)
Rollstin, J.A.; Chanin, D.I.; Jow, H.N.
1990-02-01
This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management
Nuclear modules of ITER tokamak systems code
International Nuclear Information System (INIS)
Gohar, Y.; Baker, C.; Brooks, J.
1987-10-01
Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs
New burnup calculation of TRIGA IPR-R1 reactor
International Nuclear Information System (INIS)
Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z.
2015-01-01
The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)
Recent developments in the Los Alamos radiation transport code system
International Nuclear Information System (INIS)
Forster, R.A.; Parsons, K.
1997-01-01
A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results
Ting-Toomey, Stella
A study was conducted to test the reliability and validity of the Intimate Coding System (INCS)--an instrument designed to code verbal conversation in intimate relationships. Subjects, 34 married couples, completed Spanier's Dyadic Adjustment Scale, which elicited information about relational adjustment and satisfaction in intimate couples in…
High rate concatenated coding systems using bandwidth efficient trellis inner codes
Deng, Robert H.; Costello, Daniel J., Jr.
1989-05-01
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.
Morse Monte Carlo Radiation Transport Code System
Energy Technology Data Exchange (ETDEWEB)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)
Secure Cooperative Regenerating Codes for Distributed Storage Systems
Koyluoglu, O. Ozan; Rawat, Ankit Singh; Vishwanath, Sriram
2012-01-01
Regenerating codes enable trading off repair bandwidth for storage in distributed storage systems (DSS). Due to their distributed nature, these systems are intrinsically susceptible to attacks, and they may also be subject to multiple simultaneous node failures. Cooperative regenerating codes allow bandwidth efficient repair of multiple simultaneous node failures. This paper analyzes storage systems that employ cooperative regenerating codes that are robust to (passive) eavesdroppers. The ana...
The application of LDPC code in MIMO-OFDM system
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1
Directory of Open Access Journals (Sweden)
Muhammad Atta
2011-01-01
Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.
International Nuclear Information System (INIS)
Okonogi, Kazunari; Nakamura, Takehiko; Yoshinaga, Makio; Hosoyamada, Ryuji
1999-03-01
As a series of the pulse irradiation tests with the irradiated fuel, the high-enriched fuel rods pre-irradiated in the JMTR as well as the fuels irradiated in commercial reactors have been irradiated in the NSRR. In the pre-irradiation at the JMTR, the test fuels were placed at the irradiation holes in the reflector region far from the driver core to keep the linear heat generation rate of the test fuel low. Accordingly, neutron energy spectra of the irradiation holes for the test fuels are softened due to the higher moderator ratio than in those of the ordinary LWR core, which causes quite different burnup characteristics. JMTR post irradiation condition corresponds to the pre-test condition in the NSRR. Therefore, proper understanding of the condition is quite important for the precise evaluating the energy deposition and FP generation in the test. Then, neutron spectra at the JMTR irradiation field were evaluated and its effects on the burnup calculation were quantified. Basing on the configuration of the JMTR core in the operation cycle No.85, neutron diffusion calculations of 107 groups were executed in 2-D slab (X-Y) geometry of CITATION of SRAC95 code system, and neutron energy spectra of the irradiation hole for the test fuels were evaluated. Burnup calculations of Test JMN-1 fuel with the estimated neutron energy spectra were performed and the results were compared to both the measurements and calculation results with the PWR and BWR libraries in ORIGEN2 code. SWAT code was used to collapse the 107 groups spectra into 1 group libraries for the ORIGEN2 use. The calculation results for both the generation and depletion of U, Pu and Nd with the JMTR libraries obtained in the present study were in the reasonably good agreement with the measurements, while in the case of calculation with the PWR and BWR libraries in ORIGEN2, the generation of fission products having mass numbers from 105 to 130 and some actinides were overestimated by about 1.5 to 3.5 times
MARS code manual volume I: code structure, system models, and solution methods
International Nuclear Information System (INIS)
Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl
2010-02-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
Burnup measurements at the RECH-1 research reactor
International Nuclear Information System (INIS)
Henriquez, C.; Navarro, G.; Pereda, C.; Torres, H.; Pena, L.; Klein, J.; Calderon, D.; Kestelman, A.J.
2002-01-01
The Chilean Nuclear Energy Commission has decided to produce LEU fuel elements for the RECH-1 research reactor. During December 1998, the Fuel Fabrication Plant delivered the first four fuel elements, called leaders, to the RECH-1 reactor. The set was introduced into the reactor's core, following the normal routine, but performing a special follow-up on their behavior inside and outside the core. In order to measure the burn-up of the leader fuel elements, it was decided to develop a burn-up measurements system to be installed into the RECH-1 reactor pool, and to decline the use of a similar system, which operates in a hot cell. The main reason to build this facility was to have the capability to measure the burn-up of fuel elements without waiting for long decay period. This paper gives a brief description of the facility to measure the burn-up of spent fuel elements installed into the reactor pool, showing the preliminary obtained spectra and briefly discussing them. (author)
International Nuclear Information System (INIS)
2004-03-01
A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)
International Nuclear Information System (INIS)
1979-11-01
The immediate goal of the DOE/AP and L/B and W project is to extend the burnup of light water reactor fuel assemblies beyond present limits to 50,000 MWd/mtU batch average burnup. Fuel management plans and fuel designs are being directed to attain the increased burnup limits. Lead-test assemblies of extended-burnup designs will be manufactured, irradiated in a commercial pressurized water reactor, and examined to support extended-burnup fuel cycles. This report, covering the period from January through June 1979, is the second semiannual progress report for the program. Efforts have included analyses of extended-burnup fuel cycles, developed of both annular fuel pellet and segmented rod designs, and design of a nondestructive post-irradiation examination system
MELCOR Accident Consequence Code System (MACCS)
International Nuclear Information System (INIS)
Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian
1990-02-01
This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems
International Nuclear Information System (INIS)
Takada, Tomoyuki; Yoshiyama, Hiroshi; Miyoshi, Yoshinori; Katakura, Jun-ichi
2003-01-01
Criticality safety evaluation code system JACS was developed by JAERI. Its accuracy evaluation was performed in 1980's. Although the evaluation of JACS was performed for various critical systems, the comparisons with continuous energy Monte Carlo code were not performed because such code was not developed those days. The comparisons are presented in this paper about the heterogeneous and homogeneous system containing U+Pu nitrate solutions. (author)
MCOR - Monte Carlo depletion code for reference LWR calculations
Energy Technology Data Exchange (ETDEWEB)
Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)
2011-04-15
Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally
MCOR - Monte Carlo depletion code for reference LWR calculations
International Nuclear Information System (INIS)
Puente Espel, Federico; Tippayakul, Chanatip; Ivanov, Kostadin; Misu, Stefan
2011-01-01
Research highlights: → Introduction of a reference Monte Carlo based depletion code with extended capabilities. → Verification and validation results for MCOR. → Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation
Pinilla, Samuel; Poveda, Juan; Arguello, Henry
2018-03-01
Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.
Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes
Directory of Open Access Journals (Sweden)
Bih-Chyun Yeh
2016-01-01
Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.
Kumawat, Soma; Ravi Kumar, M.
2016-07-01
Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.
Burnup measurement study and prototype development in HTR-PM
International Nuclear Information System (INIS)
Yan Weihua; Zhang Zhao; Xiao Zhigang; Zhang Liguo
2014-01-01
In a pebble-bed core which employs the multi-pass scheme, it is mandatory to determine the burnup of each pebble after the pebble has been extracted from the core in order to determine whether its design burnup has been reached or whether it has to be reinserted into the core again. The burnup of the fuel pebbles can be determined by measuring the activity of 137 Cs with an HPGe detector because of their good correspondence, which is independent of the irradiation history in the core. Based on experiments and Geant4 simulation, the correction factor between the fuel and calibration source was derived by using the efficiency transfer method. By optimizing spectrum analysis algorithm and parameters, the relative standard deviation of the 137 Cs activity can be still controlled below 3.0% despite of the presence of interfering peaks. On the foundation of the simulation and experiment research, a complete solution for burnup measurement system in HTR-PM is provided. (authors)
Issues for effective implementation of burnup credit
International Nuclear Information System (INIS)
Parks, C.V.; Wagner, J.C.
2001-01-01
In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)
iBEST: a program for burnup history estimation of spent fuels based on ORIGEN-S
Directory of Open Access Journals (Sweden)
Do-Yeon Kim
2015-08-01
Full Text Available In this paper, we describe a computer program, iBEST (inverse Burnup ESTimator, that we developed to accurately estimate the burnup histories of spent nuclear fuels based on sample measurement data. The burnup history parameters include initial uranium enrichment, burnup, cooling time after discharge from reactor, and reactor type. The program uses algebraic equations derived using the simplified burnup chains of major actinides for initial estimations of burnup and uranium enrichment, and it uses the ORIGEN-S code to correct its initial estimations for improved accuracy. In addition, we newly developed a stable bisection method coupled with ORIGEN-S to correct burnup and enrichment values and implemented it in iBEST in order to fully take advantage of the new capabilities of ORIGEN-S for improving accuracy. The iBEST program was tested using several problems for verification and well-known realistic problems with measurement data from spent fuel samples from the Mihama-3 reactor for validation. The test results show that iBEST accurately estimates the burnup history parameters for the test problems and gives an acceptable level of accuracy for the realistic Mihama-3 problems.
iBEST: a program for burnup history estimation of spent fuels based on ORIGEN-S
International Nuclear Information System (INIS)
Kim, Do Yeon; Hong, Ser Gi; Ahn, Gil Hoon
2015-01-01
In this paper, we describe a computer program, iBEST (inverse Burnup ESTimator), that we developed to accurately estimate the burnup histories of spent nuclear fuels based on sample measurement data. The burnup history parameters include initial uranium enrichment, burnup, cooling time after discharge from reactor, and reactor type. The program uses algebraic equations derived using the simplified burnup chains of major actinides for initial estimations of burnup and uranium enrichment, and it uses the ORIGEN-S code to correct its initial estimations for improved accuracy. In addition, we newly developed a stable bisection method coupled with ORIGEN-S to correct burnup and enrichment values and implemented it in iBEST in order to fully take advantage of the new capabilities of ORIGEN-S for improving accuracy. The iBEST program was tested using several problems for verification and well-known realistic problems with measurement data from spent fuel samples from the Mihama-3 reactor for validation. The test results show that iBEST accurately estimates the burnup history parameters for the test problems and gives an acceptable level of accuracy for the realistic Mihama-3 problems
International Nuclear Information System (INIS)
Kim, Jung Do; Gil, Choong Sub; Lee, Jong Tai; Hwang, Won Guk
1992-01-01
A one-group cross section data base of the ORIGEN2 computer code was developed for research reactor applications. For this, ENDF/B-IV and -V data were processed using the NJOY code system into 69-group data. The burnup dependent weighting spectra for KMRR were calculated with the WIMS-KAERI computer code, and then the 69-group data were collapsed to one-group using the spectra. The ORlGEN2-predicted burnup-dependent actinide compositions of KMRR spent fuel using the newly developed data base show a good agreement with the results of detailed multigroup transport calculation. In addition, the burnup characteristics of KMRR spent fuel was analyzed with the new data base. (Author)
Performance Analysis of Optical Code Division Multiplex System
Kaur, Sandeep; Bhatia, Kamaljit Singh
2013-12-01
This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.
RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1
International Nuclear Information System (INIS)
1995-08-01
The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes
Energy Technology Data Exchange (ETDEWEB)
Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1999-12-01
As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)
OPAL- the in-core fuel management code system for WWER reactors
International Nuclear Information System (INIS)
Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.; Vlachovsky, K.
2002-01-01
Fuel management optimization is a complex problem namely for WWER reactors, which at present are utilizing burnable poisons (BP) to great extent. In this paper, first the concept and methodologies of a fuel management system for WWER 440 (NPP Dukovany) and NPP WWER 1000 (NPP Temelin) under development in Skoda JS a.s. are described and followed by some practical applications. The objective of this advanced system is to minimize fuel cost by preserving all safety constraints and margins. Future enhancements of the system will allow is it to perform fuel management optimization in the multi-cycle mode. The general objective functions of the system are the maximization of EOC reactivity, the maximization of discharge burnup, the minimization of fresh fuel inventory / or the minimization of feed enrichment, the minimization of the BP inventory. There are also safety related constraints, in which the minimization of power peaking plays a dominant role. The core part of the system requires meeting the major objective: maximizing the EOC Keff for a given fuel cycle length and consists of four coupled calculation steps. The first is the calculation of a Loading Priority Scheme (LPS). which is used to rank the core positions in terms of assembly Kinf values. In the second step the Haling power distribution is calculated and by using fuel shuffle and/or enrichment splitting algorithms and heuristic rules the core pattern is modified to meet core constraints. In this second step a directive/evolutionary algorithm with expert rules based optimization code is used. The optimal BP assignment is alternatively considered to be a separate third step of the procedure. In the fourth step the core is depleted in normal up to 3D pin wise level using the BP distribution developed in step three and meeting all constraints is checked. One of the options of this optimization system is expert friendly interactive mode (Authors)
RIM formation and its effect on fission gas release in water reactor fuels at high burnup
International Nuclear Information System (INIS)
Viswanadham, C.S.; Sah, D.N.
2005-01-01
Water Reactor Fuels irradiated to burnup of more than 45 MWD/kg were found by several investigators to contain a porous region near the pellet periphery with submicroscopic grain sizes and a local burnup higher than the average fuel burnup. The resonance capture of neutrons in the rim region results in higher plutonium concentrations there, which results in more fissions, more accumulated burnup and more defects in the microstructure. The exact mechanism of the formation of the rim microstructure is still not very clear. This so-called RIM effect results in different properties in the rim region compared to the rest of the fuel pellet. The thermal conductivity of the rim region is significantly degraded, thereby resulting in increases in the fuel center temperature and higher fission gas release. The modelling of the effects of the rim on fuel properties and fission gas release so far has been largely empirical in nature. A threshold burnup is usually identified beyond which the RIM formation starts, and then a growth rate of the rim with burnup is assumed. This paper describes the current understanding of the Rim Effect and its consequences on fission gas release in water reactor fuels. The approach of modelling rim effect in computer code PROFESS is also described. (author)
Modification in the CITATION computer code: change of microscopic cross sections by zone
International Nuclear Information System (INIS)
Yamaguchi, M.; Kosaka, N.
1983-01-01
Some modifications done in the CITATION computer code are presented, aiming to calculate the accumulated burnup for each reactor zone in each step of burnup and allow changing the microscopic cross sections for each zone in accordance to the burnup accumulated after each step of burnup. Some input data were put in the computer code. The alterations were tested and the results were compared with and without modifications. (E.G.) [pt
LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code
Energy Technology Data Exchange (ETDEWEB)
Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.
1985-07-01
Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.
LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code
International Nuclear Information System (INIS)
Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.
1985-01-01
Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs
Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf
2016-11-01
This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.
Fabrication of simulated mid-burnup CANDU fuel in the RFFL
International Nuclear Information System (INIS)
Dimayuga, F.C.
1997-01-01
Prediction of the coefficient of void reactivity for CANDU reactor cores is key to modeling postulated loss-of-coolant scenarios to support safety analyses. To reduce the uncertainty in these predictions, computer codes used to generate the predictions have to be well validated for cores at equilibrium burnup. To this end, a COG-funded project was launched to resume mixed oxide (MOX) fuel fabrication operations in the mothballed Recycle Fuel Fabrication Laboratory (RFFL) at CRL, and produce (U,Pu)O 2 fuel simulating mid-burnup CANDU fuel for physics testing in the ZED-2 reactor. In August 1996, rehabilitation of the RFFL was completed, and MOX operations were resumed in the facility. An up-to-date description of the RFFL, including the upgraded safety systems and process equipment, is presented. An overview of the fabrication campaign to produce 37 MOX fuel bundles for ZED-2 tests is given. The fabrication process used to manufacture the fuel from the starting powders to the finished elements and bundles is summarized. Fabrication data including production throughputs and inspection results is discussed. (author)
Burnup credit validation of SCALE-4 using light water reactor criticals
International Nuclear Information System (INIS)
Bowman, S.M.; Hermann, O.W.; Brady, M.C.
1993-01-01
The ANSI/ANS 8.1 criticality safety standard recommends validation and benchmarking of the calculational methods used in evaluating criticality safety limits for away-from-reactor applications. The lack of critical experiments with burned light-water-reactor (LWR) fuel in racks or in casks necessitates the validation of burnup credit methods by comparison to LWR core criticals. These are relevant benchmarks because they test a methodology's ability to predict spent fuel isotopics and to evaluate the reactivity effects of heterogeneities and strong absorbers. Data are available to perform analyses at precise state points. The US Department of Energy Burnup Credit Program has sponsored analysis of selected reactor core critical configurations from commercial pressurized-water-reactors (PWRs) in order to validate an appropriate analysis methodology. The initial methodology used the SCALE-4 code system to analyze a set of reactor critical configurations from Virginia Power's Surry and North Anna reactors. The methodology has since been revised to simplify both the data requirements and the calculational procedure for the criticality analyst. This revised methodology is validated here by comparison to three reactor critical configurations from Tennessee Valley Authority's Sequoyah Unit 2 Cycle 3 and two from Virginia Power's Surry Unit 1 Cycle 2
Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia
International Nuclear Information System (INIS)
Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto
2016-01-01
Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.
International Nuclear Information System (INIS)
Sanders, T.L.; Lake, W.H.
1989-01-01
It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab
Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes
International Nuclear Information System (INIS)
Baratta, A.J.
1997-01-01
To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together
Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes
Energy Technology Data Exchange (ETDEWEB)
Baratta, A.J.
1997-07-01
To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.
International Nuclear Information System (INIS)
Mayson, R.T.H.; Gunston, K.J.
1999-01-01
Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)
Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.
2002-10-23
This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.
Study of nuclear computer code maintenance and management system
International Nuclear Information System (INIS)
Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo
1989-01-01
Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)
Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
International Nuclear Information System (INIS)
2011-01-01
ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost
Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
Energy Technology Data Exchange (ETDEWEB)
Enercon Services, Inc.
2011-03-14
ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost
Energy Technology Data Exchange (ETDEWEB)
Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-02-01
The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)
International Nuclear Information System (INIS)
Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya
2002-02-01
The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155 Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k ∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)
Non destructive assay of nuclear LEU spent fuels for burnup credit application
International Nuclear Information System (INIS)
Lebrun, A.; Bignan, G.
2001-01-01
Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron
Energy Technology Data Exchange (ETDEWEB)
Noori-Kalkhoran, Omid, E-mail: o_noori@yahoo.com [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Yarizadeh-Beneh, Mehdi [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)
2016-08-15
Highlights: • Calculation of control rod worth in term of burn-up. • Calculation of differential and integral control rod worth. • Developing an external couple. • Modification of thermal-hydraulic profiles in calculations. - Abstract: One of the main problems relating to operation of a nuclear reactor is its safety and controlling system. The most widely used control systems for thermal reactors are neutron absorbent rods. In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 nuclear reactor. External coupling of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of the core in various days. PARCS V2.7 has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. An external coupling algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and control rod worth for different control rod groups have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective Full Power Days (EFPDs) in some steps. Results have been compared with the results of Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR). The results show a good agreement and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.
Code system to compute radiation dose in human phantoms
International Nuclear Information System (INIS)
Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.
1986-01-01
Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods
Windows user-friendly code package development for operation of research reactors
International Nuclear Information System (INIS)
Hoang Anh Tuan
1998-01-01
The content of the project was to developed: 1. MS Windows interface to spectral codes like THERMOS, PEACO-COLLIS, GRACE and burn-up code. 2. MS Windows C-language burn-up diffusion hexagonal lattice code. The overall scope of the project was to develop a PC-based MS Windows code package for operation of Dalat research reactor. Various problems relating to neutronic physics like thermalization, resonance treatment, fast spectral treatment, change of isotopic concentration during burn-up time as well as burn-up distribution in the reactor core are considered in parallel to application of informatics technique. The developing process is a subject of the concept of user-friendly interface between end-users and the code package. High level input features through system of icon, menu, dialog box with regard to Common User Access (CUA) convention and sophisticated graphical output in MS Windows environment was used. The user-computer interface is also enhanced by using both keyboard and mouse, which creates a very natural manner for end-user. (author)
Burnup credit issues in transportation and storage
International Nuclear Information System (INIS)
Brady, M.C.; Sanders, T.L.; Seager, K.D.; Lake, W.H.
1992-01-01
Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the US experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed
Burnup credit issues in transportation and storage
International Nuclear Information System (INIS)
Brady, M.C.; Sanders, T.L.; Seager, K.D.; Lake, W.H.
1993-01-01
Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the U.S. experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed. (author)
Development of the integrated system reliability analysis code MODULE
International Nuclear Information System (INIS)
Han, S.H.; Yoo, K.J.; Kim, T.W.
1987-01-01
The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers
The JAERI code system for evaluation of BWR ECCS performance
International Nuclear Information System (INIS)
Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo
1982-12-01
Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)
Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup
International Nuclear Information System (INIS)
Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu
1991-01-01
We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)
Burn-up TRIGA Mark II benchmark experiment
International Nuclear Information System (INIS)
Persic, A.; Ravnik, M.; Zagar, T.
1998-01-01
Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)
Network coding and its applications to satellite systems
DEFF Research Database (Denmark)
Vieira, Fausto; Roetter, Daniel Enrique Lucani
2015-01-01
Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...
Development of a Burnup Module DECBURN Based on the Krylov Subspace Method
Energy Technology Data Exchange (ETDEWEB)
Cho, J. Y.; Kim, K. S.; Shim, H. J.; Song, J. S
2008-05-15
This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution
Energy Technology Data Exchange (ETDEWEB)
White, J.R.
1980-08-01
A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.
International Nuclear Information System (INIS)
Lanning, D.D.; Beyer, C.E.; Painter, C.L.
1997-12-01
This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs
Energy Technology Data Exchange (ETDEWEB)
Lanning, D.D.; Beyer, C.E.; Painter, C.L.
1997-12-01
This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.
Development of high burnup nuclear fuel technology
International Nuclear Information System (INIS)
Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone
1987-04-01
The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country
Progress in extending burnup of LWR fuel
International Nuclear Information System (INIS)
Freshley, M.D.
1986-04-01
Progress in increasing burnup of LWR fuel has been and continues to be made. Initially, LWR fuels were designed to achieve a burnup of about 33 GWd/tu for PWRs and about 28 GWd/tu for BWRs. Current warranties are about 36 GWd/tu and 31 GWd/tu for PWRs and BWRs, respectively. Present optimum extended burnups (batch average) are typically about 50 GWd/tu and 45 GWd/tu for PWRs and BWRs on 12-month cycles, respectively, and about 10% higher for 18-month cycles. Thus, the goal of research and development programs of the recent past has been to achieve these burnup levels reliably with maximum duty cycle flexibility
Burnup analysis of the power reactor, 2
International Nuclear Information System (INIS)
Ezure, Hideo
1975-09-01
In burnup analysis of JPDR-1 with FLARE, it was found to have problems. The program FLORA was developed for solution of the problems. By their bench mark tests FLORA was found to be useful for three-dimensional thermal-hydro-dynamic analysis of BWRs. It was applied to analysis of the burnup of JPDR-1. The input data and option of FLORA were corrected on referring to the results of gammer probe tests for JPDR-1. The void, source and burnup distributions were calculated each month during the operation. The burnup distribution in three assemblies revealed by a destructive test agrees better with that by FLORA than by FLARE. It was shown that the distortion of power distribution around the control rods by FLORA was smaller and closer to that by the gammer probe tests than by FLARE, and the connector of fuel assemblies and the plugs in the reflector had much influence on the power distribution. (auth.)
ARC Code TI: Optimal Alarm System Design and Implementation
National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...
The PASC-3 code system and the UNIPASC environment
International Nuclear Information System (INIS)
Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.
1991-08-01
A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and its associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified, Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab
Code-modulated interferometric imaging system using phased arrays
Chauhan, Vikas; Greene, Kevin; Floyd, Brian
2016-05-01
Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.
Development of base technology for high burnup PWR fuel improvement Volume 1 and 2
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)
1995-12-31
Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.
Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up
DEFF Research Database (Denmark)
Carlsen, H.
1980-01-01
Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...
Modelling fission gas release at high burnup
International Nuclear Information System (INIS)
Loesoenen, Pekka
1999-01-01
High burn-up phenomena in LWR/HWR UO 2 fuel pellets important for fission gas release were modelled. The degradation of the thermal conductivity of UO 2 was accounted for 1) with a burnup -dependent factor in the phonon term of the corresponding equation and 2) with a correlation describing the increase in the porosity at the pellet rim as a function of local burnup and radial position. The model was tested against IFA-432 and IFA-429 data. It was found out that the degradation of the thermal conductivity in the phonon term is perhaps not a function of the local burnup only, but the irradiation temperature may play an important role, too. The burnup as a function of the pellet radius has to be known to determine the local thermal conductivity. A model for this was picked up from the literature, but a new estimation of a few empirical fitting parameters was performed with hundreds of data points from the OECD/NEA data base and from the literature. The model predicts reliably the radial burnup profile and the fission gas generation across the pellet in typical LWR and HWR fuels. The thermal release and the athermal release from the pellet rim were modelled separately. The model for the rim release is a function of the temperature history and the local burnup. The rim release and the thermal release can occur at the same radial position of the pellets simultaneously, which is accounted for in the calculation of the total release. The model for the rim release in in agreement with the latest experimental findings, but the tuning of the model parameters is yet to be done. However, the fraction of the rim structured fuel and the excessive porosity in the rim structure in isothermal irradiation as a function of the burnup was predicted by using typical model parameters (author) (ml)
Nonterminals and codings in defining variations of OL-systems
DEFF Research Database (Denmark)
Skyum, Sven
1974-01-01
The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems. Fina....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72].......The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems...
ATHENA code manual. Volume 1. Code structure, system models, and solution methods
International Nuclear Information System (INIS)
Carlson, K.E.; Roth, P.A.; Ransom, V.H.
1986-09-01
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation
A code system for ADS transmutation studies
International Nuclear Information System (INIS)
Brolly, A.; Vertes, P.
2001-01-01
An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)
Implementing a mainframe coding/abstracting system.
Paige, L
1992-08-01
In conclusion, the successful implementation of a medical record abstracting system was realized due to the following factors: extensive planning, thorough organization of tasks, controlled implementation, and ongoing controls. While thorough planning and organization will result in an efficient implementation, ongoing controls will ensure continued success and produce high quality results for any medical record system.
Development of realistic thermal hydraulic system analysis code
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, B. D; Kim, K. D.
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others
Development of realistic thermal hydraulic system analysis code
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, B. D; Kim, K. D. [and others
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.
Sequence Coding and Search System for licensee event reports: code listings. Volume 2
International Nuclear Information System (INIS)
Gallaher, R.B.; Guymon, R.H.; Mays, G.T.; Poore, W.P.; Cagle, R.J.; Harrington, K.H.; Johnson, M.P.
1985-04-01
Operating experience data from nuclear power plants are essential for safety and reliability analyses, especially analyses of trends and patterns. The licensee event reports (LERs) that are submitted to the Nuclear Regulatory Commission (NRC) by the nuclear power plant utilities contain much of this data. The NRC's Office for Analysis and Evaluation of Operational Data (AEOD) has developed, under contract with NSIC, a system for codifying the events reported in the LERs. The primary objective of the Sequence Coding and Search System (SCSS) is to reduce the descriptive text of the LERs to coded sequences that are both computer-readable and computer-searchable. This system provides a structured format for detailed coding of component, system, and unit effects as well as personnel errors. The database contains all current LERs submitted by nuclear power plant utilities for events occurring since 1981 and is updated on a continual basis. Volume 2 contains all valid and acceptable codes used for searching and encoding the LER data. This volume contains updated material through amendment 1 to revision 1 of the working version of ORNL/NSIC-223, Vol. 2
Models for fuel rod behaviour at high burnup
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)
2004-12-01
This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be
Hydrogen detection systems leak response codes
International Nuclear Information System (INIS)
Desmas, T.; Kong, N.; Maupre, J.P.; Schindler, P.; Blanc, D.
1990-01-01
A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs
Automatic code generation for distributed robotic systems
International Nuclear Information System (INIS)
Jones, J.P.
1993-01-01
Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system
Source Code Vulnerabilities in IoT Software Systems
Directory of Open Access Journals (Sweden)
Saleh Mohamed Alnaeli
2017-08-01
Full Text Available An empirical study that examines the usage of known vulnerable statements in software systems developed in C/C++ and used for IoT is presented. The study is conducted on 18 open source systems comprised of millions of lines of code and containing thousands of files. Static analysis methods are applied to each system to determine the number of unsafe commands (e.g., strcpy, strcmp, and strlen that are well-known among research communities to cause potential risks and security concerns, thereby decreasing a system’s robustness and quality. These unsafe statements are banned by many companies (e.g., Microsoft. The use of these commands should be avoided from the start when writing code and should be removed from legacy code over time as recommended by new C/C++ language standards. Each system is analyzed and the distribution of the known unsafe commands is presented. Historical trends in the usage of the unsafe commands of 7 of the systems are presented to show how the studied systems evolved over time with respect to the vulnerable code. The results show that the most prevalent unsafe command used for most systems is memcpy, followed by strlen. These results can be used to help train software developers on secure coding practices so that they can write higher quality software systems.
User effects on the transient system code calculations. Final report
International Nuclear Information System (INIS)
Aksan, S.N.; D'Auria, F.
1995-01-01
Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them
SRAC2006; A Comprehensive neutronics calculation code system
奥村 啓介; 久語 輝彦; 金子 邦男; 土橋 敬一郎
2007-01-01
The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five ele...
Grid-code of Croatian power system
International Nuclear Information System (INIS)
Toljan, I.; Mesic, M.; Kalea, M.; Koscak, Z.
2003-01-01
Grid Rules by the Croatian Electricity Utility deal with the control and usage of the Croatian power system's transmission and distribution grid. Furthermore, these rules include obligations and permissions of power grid users and owners, with the aim of a reliable electricity supply.(author)
International Nuclear Information System (INIS)
Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.; Shah, R.V.; Sant, V.L.; Sasibhushan, K.; Parab, A.R.; Alamelu, D.
2010-03-01
Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO 2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148 Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229 Th and enriched 142 Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232 U content in 233 U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)
Development of burnup dependent fuel rod model in COBRA-TF
Yilmaz, Mine Ozdemir
The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN
Effect of burnup history by moderator density on neutron-physical characteristics of WWER-1000 core
International Nuclear Information System (INIS)
Ovdiienko, I.; Kuchin, A.; Khalimonchuk, V.; Ieremenko, M.
2011-01-01
Results of assessment of burnup history effect by moderator density on neutron physical characteristics of WWER-1000 core are presented on example of stationary fuel loading with Russian design fuel assembly TWSA and AER benchmark for Khmelnitsky NPP that was proposed by TUV and SSTC NRC at nineteenth symposium. Assessment was performed by DYN3D code and cross section library sets generated by HELIOS code. Burnup history was taken into account by preparing of numerous cross section sets with different isotopic composition each of which was obtained by burning under different moderator density. For analysis of history effect 20 cross section sets were prepared for each fuel assembly corresponded to each of 20 axial layers of reactor core model for DYN3D code. Four fuel cycles were modeled both for stationary fuel loading with TWSA and AER benchmark for Khmelnitsky NPP to obtain steady value of error due to neglect of burnup history effect. Main attention of study was paid to effect of burnup history by moderator density to axial power distribution. Results of study for AER benchmark were compared with experimental values of axial power distribution for fuel assemblies of first, second, third and fourth year operation. (Authors)
System Data Model (SDM) Source Code
2012-08-23
Harmonization of Plug-and-Play Technology for Modular and Reconfigurable Rapid Response Nanosatellites ," European Space Agency Small Satellite Systems and...Nordenberg, R., “QuadSat/PnP: A Space-Plug-and-play Architecture (SPA) Compliant Nanosatellite ,” Paper No. AIAA-2011-1575, AIAA Infotech@Aerospace, St...AIAA Infotech@Aerospace Conference, Rohnert Park, CA, 7-9 May 2007. 43. McNutt C., Vick R., Whiting H., Lyke J., “Modular Nanosatellites – (Plug
Modification of BINX code for HP9000 system
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. C.; Kim, Y. J.; Kim, Y. G.; Chung, H. T.
1997-12-01
As one of the efforts to construct an integrated computation system, the K-CORE system for LMR core design and analysis, the BINX code which converts format of CCCC standard input/output files has been modified so that it works on HP 9000 workstations. The BINX code was improved to manipulate input/output files in the newer CCCC version IV format and some bugs in the former code were eliminated. These give BINX the compatibility of the input/output files among calculation modules. Hence the cross-section library processing system that can convert and produce standard input/output files satisfying the user`s function requirement has been established in the K-CORE system. (author). 10 refs.
FAST: An advanced code system for fast reactor transient analysis
International Nuclear Information System (INIS)
Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh
2005-01-01
One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems
Energy Technology Data Exchange (ETDEWEB)
Escriba, A.; Munoz-cobo, J. L.; Merino, R.; Melara, J.; Albendea, M.
2013-07-01
In the field of nuclear safety, the analysis of the stability of boiling water reactors is one of the biggest challenges for researchers. LAPUR code that allows to obtain the parameters of stability of the plant (Decay rate and frequency), being one of the programs used by IBERDROLA can be used for these calculations. With the collaboration of the research group TIN of the Polytechnic University of Valencia, a model of loss of conductivity of uranium has joined with the burned LAPUR. This update allows you to play the phenomenon in a more realistic way. This improvement has been validated and verified contrasting results with reference values.
European coding system for tissues and cells: a challenge unmet?
Reynolds, Melvin; Warwick, Ruth M; Poniatowski, Stefan; Trias, Esteve
2010-11-01
The Comité Européen de Normalisation (European Committee for Standardization, CEN) Workshop on Coding of Information and Traceability of Human Tissues and Cells was established by the Expert Working Group of the Directorate General for Health and Consumer Affairs of the European Commission (DG SANCO) to identify requirements concerning the coding of information and the traceability of human tissues and cells, and propose guidelines and recommendations to permit the implementation of the European Coding system required by the European Tissues and Cells Directive 2004/23/EC (ED). The Workshop included over 70 voluntary participants from tissue, blood and eye banks, national ministries for healthcare, transplant organisations, universities and coding organisations; mainly from Europe with a small number of representatives from professionals in Canada, Australia, USA and Japan. The Workshop commenced in April 2007 and held its final meeting in February 2008. The draft Workshop Agreement went through a public comment phase from 15 December 2007 until 15 January 2008 and the endorsement period ran from 9 April 2008 until 2 May 2008. The endorsed CEN Workshop Agreement (CWA) set out the issues regarding a common coding system, qualitatively assessed what the industry felt was required of a coding system, reviewed coding systems that were put forward as potential European coding systems and established a basic specification for a proposed European coding system for human tissues and cells, based on ISBT 128, and which is compatible with existing systems of donation identification, traceability and nomenclatures, indicating how implementation of that system could be approached. The CWA, and the associated Workshop proposals with recommendations, were finally submitted to the European Commission and to the Committee of Member States that assists its management process under article 29 of the Directive 2004/23/EC on May 25 2008. In 2009 the European Commission initiated an
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
Energy Technology Data Exchange (ETDEWEB)
Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
Tritium module for ITER/Tiber system code
International Nuclear Information System (INIS)
Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.
1988-01-01
A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
Progress on China nuclear data processing code system
Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu
2017-09-01
China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.
Adaptive Morse code communication system for severely disabled individuals.
Yang, C H
2000-01-01
Morse code with an easy-to-operate, single switch input system has been shown to be an excellent communication adaptive device. Because maintaining a stable typing rate is not easy for the disabled, the automatic recognition of Morse code is difficult. Therefore, a suitable adaptive automatic recognition method is needed. This paper presents the application of a Least-Mean-Square algorithm to adaptive Morse code recognition for persons with impaired hand coordination and dexterity. Four processes are involved in this adaptive Morse code recognition method: space recognition, tone recognition, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method results in a better recognition rate for the participants tested in comparison to other methods from the literature.
Code conversion for system design and safety analysis of NSSS
Energy Technology Data Exchange (ETDEWEB)
Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-01-01
This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)
International Nuclear Information System (INIS)
Axmann, J.K.
1992-02-01
Research and development activities related to the light water high conversion reactor concept have been conducted at the Paul Scherrer Institut (PSI) in the framework of a joint Swiss/German co-operation, together with the Karlsruhe Nuclear Research Centre, Siemens/KWU and the Technical University of Braunschweig. The present report documents principally the validation of the DITUBS computer code system, developed at the Technical University of Braunschweig for LWHCR physics design calculations. Experimental results from six of the fourteen PROTEUS-LWHCR core configurations investigated in the Phase II programme serve as a bsis for the study. Thus, alternative methods and data-set options within the DITUBS system have been developed and applied for (a) obtaining an independent set of calculated correction factors for various individual effects in the experiments and (b) achieving improvements in C/E (calculation/experiment) values for the measured integral parameters, viz. k ∞ and reaction rate ratios. The solution of numerical benchmark problems - for validation of burnup calculations and fuel-element-geometry treatment - form part of the study, the DITUBS system being finally used to address questions related to technical and economic feasibility for range of LWHCR designs. (author) figs., tabs., 112 refs
Alloy development for high burnup cladding (PWR)
Energy Technology Data Exchange (ETDEWEB)
Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-04-01
An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.
Alloy development for high burnup cladding (PWR)
International Nuclear Information System (INIS)
Hahn, R.; Jeong, Y. H.; Baek, K. H.; Kim, S. J.; Choi, B. K.; Kim, J.M.
1999-04-01
An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs
Energy Technology Data Exchange (ETDEWEB)
Campolina, Daniel de Almeida Magalhaes
2009-07-01
In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)
Simulation of water hammer phenomena using the system code ATHLET
Energy Technology Data Exchange (ETDEWEB)
Bratfisch, Christoph; Koch, Marco K. [Bochum Univ. (Germany). Reactor Simulation and Safety Group
2017-07-15
Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.
Simulation of water hammer phenomena using the system code ATHLET
International Nuclear Information System (INIS)
Bratfisch, Christoph; Koch, Marco K.
2017-01-01
Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.
Development of the point-depletion code DEPTH
Energy Technology Data Exchange (ETDEWEB)
She, Ding [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Wang, Kan, E-mail: wangkan@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Yu, Ganglin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)
2013-05-15
Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code.
Java Source Code Analysis for API Migration to Embedded Systems
Energy Technology Data Exchange (ETDEWEB)
Winter, Victor [Univ. of Nebraska, Omaha, NE (United States); McCoy, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guerrero, Jonathan [Univ. of Nebraska, Omaha, NE (United States); Reinke, Carl Werner [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perry, James Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-02-01
Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered by APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.
OSCAR-4 Code System Application to the SAFARI-1 Reactor
International Nuclear Information System (INIS)
Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin
2008-01-01
The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)
Status of burnup credit implementation in Switzerland
International Nuclear Information System (INIS)
Grimm, P.
1998-01-01
Burnup credit is currently not used for the storage of spent fuel in the reactor pools in Switzerland, but credit is taken for integral burnable absorbers. Interest exists to take credit of burnup in future for the storage in a central away-from-reactor facility presently under construction. For spent fuel transports to foreign reprocessing plants the regulations of the receiving countries must be applied in addition to the Swiss licensing criteria. Burnup credit has been applied by one Swiss PWR utility for such transports in a consistent manner with the licensing practice in the receiving countries. Measurements of reactivity worths of small spent fuel samples in a Swiss zero-power research reactor are at an early stage of planning. (author)
Two-Layer Coding Rate Optimization in Relay-Aided Systems
DEFF Research Database (Denmark)
Sun, Fan
2011-01-01
-layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....
Satellite link protocols design for the CODE system
Fernandez, A.; Vidaller, L.; Miguel, C.; Briones, D.
1989-05-01
The design of satellite link protocols for Very Small Aperture Terminals (VSAT) systems is outlined. The CODE system (Cooperative Olympus Data Experiment) is a VSAT system with two main characteristics: very low bit error rate, and multiple access over FDM channels in the inbound link. The design of the link protocols for this system covers two main aspects: error control procedures and medium access control procedures. In order to analyze both aspects, a profile of the average user of the CODE system is defined in terms of types of traffic and of messages arrival and service rates for every type of traffic. An analysis of the mean time between failures is made, and the average delay and through-put for different access methods are computed, including stability analysis for Aloha-based systems.
Energy Technology Data Exchange (ETDEWEB)
D' Acierno, J.; Hermelee, A.; Fredrickson, C.P.; Van Valkenburg, K.
1979-11-01
The coding methodology for creating facility ID's and energy codes from information existing in EIA data systems currently being mapped into the EEMIS data structure is presented. A comprehensive approach is taken to facilitate implementation of EEMIS. A summary of EIA data sources which will be a part of the final system is presented in a table showing the intersection of 19 EIA data systems with the EEMIS data structure. The methodology for establishing ID codes for EIA sources and the corresponding EEMIS facilities in this table is presented. Detailed energy code translations from EIA source systems to the EEMIS energy codes are provided in order to clarify the transfer of energy data from many EIA systems which use different coding schemes. 28 tables.
Opacity calculations for extreme physical systems: code RACHEL
Drska, Ladislav; Sinor, Milan
1996-08-01
Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.
ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT
International Nuclear Information System (INIS)
A.H. Wells
2004-01-01
The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent 235 U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU)
FURNACE-J, 2-D Diffusion Burnup for Fast Reactors from JAERI Fast-Set
International Nuclear Information System (INIS)
Ikawa, Koji
1984-01-01
1 - Nature of physical problem solved: FURNACEJ is a two-dimensional diffusion-burnup code for use in the detailed burnup analysis of fast reactors. The code is an extension code of the FURNACE. There exists no essential difference between FURNACE and FURNACEJ. However, the latter can deal with JAERI-Fast-Set as its cross section library, while the former is designed to use ABBN set. Additionally, in FURNACEJ, group-dependent and -independent transverse buckling of each region can be computed and punched on cards, if desired. This is prepared for users so as to use them as input data for detailed two-dimensional x-y calculations. 2 - Restrictions on the complexity of the problem: Only r-z geometry is available
International Nuclear Information System (INIS)
Nakamura, Takehiko; Yoshinaga, Makio
2000-11-01
Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)
Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.
2000-10-12
Although significant effort has been dedicated to the study of burnup-credit issues over the past decade, U.S. studies to-date have primarily focused on spent pressurized-water-reactor (PWR) fuel. The current licensing approach taken by the U.S. Department of Energy for burnup credit in transportation seeks approval for PWR fuel only. Burnup credit for boiling-water-reactor (BWR) fuel has not yet been formally sought. Burnup credit for PWR fuel was pursued first because: (1) nearly two-thirds (by mass) of the total discharged commercial spent fuel in the United States is PWR fuel, (2) it can substantially increase the fuel assembly capacity with respect to current designs for PWR storage and transportation casks, and (3) fuel depletion in PWRs is generally less complicated than fuel depletion in BWRs. However, due to international needs, the increased enrichment of modern BWR fuels, and criticality safety issues related to permanent disposal within the United States, more attention has recently focused on spent BWR fuel. Specifically, credit for fuel burnup in the criticality safety analysis for long-term disposal of spent nuclear fuel enables improved design efficiency, which, due to the large mass of fissile material that will be stored in the repository, can have substantial financial benefits. For criticality safety purposes, current PWR storage and transportation canister designs employ flux traps between assemblies. Credit for fuel burnup will eliminate the need for these flux traps, and thus, significantly increase the PWR assembly capacity (for a fixed canister volume). Increases in assembly capacity of approximately one-third are expected. In contrast, current BWR canister designs do not require flux traps for criticality safety, and thus, are already at their maximum capacity in terms of physical storage. Therefore, benefits associated with burnup credit for BWR storage and transportation casks may be limited to increasing the enrichment capacity and
Development of BERMUDA: a radiation transport code system, 1
International Nuclear Information System (INIS)
Suzuki, Tomoo; Hasegawa, Akira; Tanaka, Shun-ichi; Nakashima, Hiroshi
1992-05-01
A radiation transport code system BERMUDA has been developed for one-, two- and three-dimensional geometries. The time-independent transport equation is numerically solved using a direct integration method in a multigroup model, to obtain spatial, angular and energy distributions of neutron, gamma rays or adjoint neutron flux. As to group constants, a library with an any structure of energy groups is capable to be produced from a data base JSSTDL, or by a processing code PROF-GROUCH-G/B, selecting objective nuclear data through a retrieval system EDFSRS. Validity of the present code system has been tested by analyzing the shielding benchmark experiments. The test has shown that accurate results are obtainable with this system especially in deep penetration calculation. Described are the devised calculation method and the results of validity tests. Input data specification, job control languages and output data are also described as a user's manual for the following four neutron transport codes: BERMUDA-1DN : sphere, slab(S 20 ), BERMUDA-2DN : cylinder (S 8 ), BERMUDA-2DN-S16 : cylinder (S 16 ), and BERMUDA-3DN : rectangular parallelpiped (S 8 ). (J.P.N.)
Two-Factor Authentication System based on QR-Codes
Directory of Open Access Journals (Sweden)
Andrey Yunusovich Iskhakov
2014-09-01
Full Text Available The opportunity of two-factor authentication usage in the control systems and access management on the basis of Quick Response codes with one-time passwords is analyzed in the work. The mobile application is proposed to use as a software token.
Adaptive Wavelet Coding Applied in a Wireless Control System
Gama, Felipe O. S.; O. Salazar, Andrés
2017-01-01
Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus Eb/N0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop. PMID:29236048
Coded aperture imaging system for nuclear fuel motion detection
International Nuclear Information System (INIS)
Stalker, K.T.; Kelly, J.G.
1980-01-01
A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented
Adaptive Wavelet Coding Applied in a Wireless Control System
Directory of Open Access Journals (Sweden)
Felipe O. S. Gama
2017-12-01
Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
PCS a code system for generating production cross section libraries
International Nuclear Information System (INIS)
Cox, L.J.
1997-01-01
This document outlines the use of the PCS Code System. It summarizes the execution process for generating FORMAT2000 production cross section files from FORMAT2000 reaction cross section files. It also describes the process of assembling the ASCII versions of the high energy production files made from ENDL and Mark Chadwick's calculations. Descriptions of the function of each code along with its input and output and use are given. This document is under construction. Please submit entries, suggestions, questions, and corrections to (ljc at sign llnl.gov) 3 tabs
Impact on burnup performance of coated particle fuel design in pebble bed reactor with ROX fuel
International Nuclear Information System (INIS)
Ho, Hai Quan; Obara, Toru
2015-01-01
The pebble bed reactor (PBR), a kind of high-temperature gas-cooled reactor (HTGR), is expected to be among the next generation of nuclear reactors as it has excellent passive safety features, as well as online refueling and high thermal efficiency. Rock-like oxide (ROX) fuel has been studied at the Japan Atomic Energy Agency (JAEA) as a new once-through type fuel concept. Rock-like oxide used as fuel in a PBR can be expected to achieve high burnup and improve chemical stabilities. In the once-through fuel concept, the main challenge is to achieve as high a burnup as possible without failure of the spent fuel. The purpose of this study was to investigate the impact on burnup performance of different coated fuel particle (CFP) designs in a PBR with ROX fuel. In the study, the AGR-1 Coated Particle design and Deep-Burn Coated Particle design were used to make the burnup performance comparison. Criticality and core burnup calculations were performed by MCPBR code using the JENDL-4.0 library. Results at equilibrium showed that the two reactors utilizing AGR-1 Coated Particle and Deep-Burn Coated Particle designs could be critical with almost the same multiplication factor k eff . However, the power peaking factor and maximum power per fuel ball in the AGR-1 coated particle design was lower than that of Deep-Burn coated particle design. The AGR-1 design also showed an advantage in fissions per initial fissile atoms (FIFA); the AGR-1 coated particle design produced a higher FIFA than the Deep-Burn coated particle design. These results suggest that the difference in coated particle fuel design can have an effect on the burnup performance in ROX fuel. (author)
Fusion PIC code performance analysis on the Cori KNL system
Energy Technology Data Exchange (ETDEWEB)
Koskela, Tuomas S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Raman, Karthic [INTEL Corp. (United States)
2017-05-25
We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization is shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.
Color image coding based on recurrent iterated function systems
Kim, Kwon; Park, Rae-Hong
1998-02-01
This paper proposes a color image coding method based on recurrent iterated function systems (RIFSs). To encode a set of multispectral images, we apply a RIFS to multiset data consisting of three images. In the proposed method, the mappings not only between blocks within an individual spectral image but also between blocks of different spectral images are performed with contraction constraint. Simulation results show that the fractal coding based on the RIFS is useful for encoding concurrently a set of images by describing the similarity existing between a pair of images. In addition, the proposed color coding method can be applied to subband images and moving image sequences consisting of a set of images having similar gray patterns.
Scaling of Thermal-Hydraulic Phenomena and System Code Assessment
International Nuclear Information System (INIS)
Wolfert, K.
2008-01-01
In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.
Testing geochemical modeling codes using New Zealand hydrothermal systems
International Nuclear Information System (INIS)
Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.
1993-12-01
Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of selected portions of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will: (1) ensure that we are providing adequately for all significant processes occurring in natural systems; (2) determine the adequacy of the mathematical descriptions of the processes; (3) check the adequacy and completeness of thermodynamic data as a function of temperature for solids, aqueous species and gases; and (4) determine the sensitivity of model results to the manner in which the problem is conceptualized by the user and then translated into constraints in the code input. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions. The kinetics of silica precipitation in EQ6 will be tested using field data from silica-lined drain channels carrying hot water away from the Wairakei borefield
Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria
2017-07-01
In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.
International Nuclear Information System (INIS)
Simanullang, Irwan Liapto; Obara, Toru
2017-01-01
Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.
Energy Technology Data Exchange (ETDEWEB)
Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E
2008-10-24
Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.
Benchmark calculation of SCALE-PC 4.3 CSAS6 module and burnup credit criticality analysis
Energy Technology Data Exchange (ETDEWEB)
Shin, Hee Sung; Ro, Seong Gy; Shin, Young Joon; Kim, Ik Soo [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-12-01
Calculation biases of SCALE-PC CSAS6 module for PWR spent fuel, metallized spent fuel and solution of nuclear materials have been determined on the basis of the benchmark to be 0.01100, 0.02650 and 0.00997, respectively. With the aid of the code system, nuclear criticality safety analysis for the spent fuel storage pool has been carried out to determine the minimum burnup of spent fuel required for safe storage. The criticality safety analysis is performed using three types of isotopic composition of spent fuel: ORIGEN2-calculated isotopic compositions; the conservative inventory obtained from the multiplication of ORIGEN2-calculated isotopic compositions by isotopic correction factors; the conservative inventory of only U, Pu and {sup 241}Am. The results show that the minimum burnup for three cases are 990,6190 and 7270 MWd/tU, respectively in the case of 5.0 wt% initial enriched spent fuel. (author). 74 refs., 68 figs., 35 tabs.
WWER-1000 Burnup Credit Benchmark (CB5)
International Nuclear Information System (INIS)
Manolova, M.A.
2002-01-01
In the paper the specification of WWER-1000 Burnup Credit Benchmark first phase (depletion calculations), given. The second phase - criticality calculations for the WWER-1000 fuel pin cell, will be given after the evaluation of the results, obtained at the first phase. The proposed benchmark is a continuation of the WWER benchmark activities in this field (Author)
Optimum burnup of BAEC TRIGA research reactor
International Nuclear Information System (INIS)
Lyric, Zoairia Idris; Mahmood, Mohammad Sayem; Motalab, Mohammad Abdul; Khan, Jahirul Haque
2013-01-01
Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor
Transient behaviour of high burnup fuel
International Nuclear Information System (INIS)
1996-01-01
The main subjects of the meeting were the discussion of regulatory background, integral tests and analysis, plant calculations, separate-effect test and analysis, concerning high burnup phenomena during RIA accidents in reactors, especially LWR, BWR and PWR type reactors. 32 papers were abstracted and indexed individually for the INIS database. (R.P.)
LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes
International Nuclear Information System (INIS)
Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.
1985-01-01
Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs
LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes
Energy Technology Data Exchange (ETDEWEB)
Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.
1985-07-01
Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs.
International Nuclear Information System (INIS)
Sanders, T.L.
1989-01-01
The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks
High burnup rim project. (IV) Threshold burnup of rim structure formation
International Nuclear Information System (INIS)
Sonoda, T.; Matzke, Hj.; Kinoshita, M.
1999-01-01
High burnup extension of LWR fuel is progressing to reduce the amount of total process flow in the nuclear fuel cycle and eventually to reduce the fuel cycle costs. As a result, the local burnup is now exceeding the anticipated range of the UO 2 fuel that was investigated in the great time of the 1960's. A 'new phenomenon', a crystallographic re-structuring, is commonly observed at the rim area of high burnup fuel pellets in LWRs, and also in FBRs to some extent. The objectives of the High Burnup Rim Project (HBRP) are to identify the conditions of the rim structure formation as functions of burnup and temperature, and to investigate physical and chemical properties of fuels following this re-structuring. After the irradiation, the rods were transported to the Institute for Transuranium Elements (ITU), Karlsruhe for Post Irradiation Examinations (PIE). This report shows recent progress of PIE, and discusses threshold burnup and temperature of the rim structure formation (author) (ml)
Distributed magnetic field positioning system using code division multiple access
Prigge, Eric A. (Inventor)
2003-01-01
An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.
An Expert System for the Development of Efficient Parallel Code
Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.
Multiple Description Coding for Closed Loop Systems over Erasure Channels
DEFF Research Database (Denmark)
Østergaard, Jan; Quevedo, Daniel
2013-01-01
) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet......In this paper, we consider robust source coding in closed-loop systems. In particular, we consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network has random delays and erasures on the data-rate limited (digital) forward channel between the encoder (controller...
Improving system modeling accuracy with Monte Carlo codes
International Nuclear Information System (INIS)
Johnson, A.S.
1996-01-01
The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed
Coded aperture material motion detection system for the ACPR
International Nuclear Information System (INIS)
McArthur, D.A.; Kelly, J.G.
1975-01-01
Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages
Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel
2014-10-01
A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.
Simulation of triton burn-up in JET plasmas
Energy Technology Data Exchange (ETDEWEB)
Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.
Channel estimation for physical layer network coding systems
Gao, Feifei; Wang, Gongpu
2014-01-01
This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa
Photovoltaic power systems and the National Electrical Code: Suggested practices
Energy Technology Data Exchange (ETDEWEB)
Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.
1996-12-01
This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.
Photovoltaic Power Systems and the National Electrical Code: Suggested Practices
Energy Technology Data Exchange (ETDEWEB)
None
2002-02-01
This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.
Structure and operation of the ITS code system
International Nuclear Information System (INIS)
Halbleib, J.
1988-01-01
The TIGER series of time-independent coupled electron-photon Monte Carlo transport codes is a group of multimaterial and multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron-photon cascade by combining microscopic photon transport with a macroscopic random walk for electron transport. Major contributors to its evolution are listed. The author and his associates are primarily code users rather than code developers, and have borrowed freely from existing work wherever possible. Nevertheless, their efforts have resulted in various software packages for describing the production and transport of the electron-photon cascade that they found sufficiently useful to warrant dissemination through the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory. The ITS system (Integrated TIGER Series) represents the organization and integration of this combined software, along with much additional capability from previously unreleased work, into a single convenient package of exceptional user friendliness and portability. Emphasis is on simplicity and flexibility of application without sacrificing the rigor or sophistication of the physical model
Neural map formation and sensory coding in the vomeronasal system.
Brignall, Alexandra C; Cloutier, Jean-François
2015-12-01
Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.
東條, 匡志; tojo, masashi
2007-01-01
In this study, a BWR core calculation method is developed. The continuous energy Monte Carlo burn-up calculation code is newly applied to BWR assembly calculations of production level. The applicability of the present new calculation method is verified through the tracking-calculation of commercial BWR.The mechanism and quantitative effects of the error propagations, the spatial discretization and of the temperature distribution in fuel pellet on the Monte Carlo burn-up calculations are clari...
International Nuclear Information System (INIS)
Iqbal, M.; Mehmood, T.; Ayazuddin, S.K.; Salahuddin, A.; Pervez, S.
2001-01-01
Two independent experimental methods have been used for the comparative study of fuel burnup measurement in low enriched uranium, plate type research reactor. In the first method a gamma ray activity ratio method was employed. An experimental setup was established for gamma ray scanning using prior calibrated high purity germanium detector. The computer software KORIGEN gave the theoretical support. In the second method reactivity difference technique was used. At the same location in the same core configuration the fresh and burned fuel element's reactivity worth was estimated. For theoretical estimated curve, group cross-sections were generated using computer code WIMS-D/4, and three dimensional modeling was made by computer code CITATION. The measured burnup of different fuel elements using these methods were found to be in good agreement
A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements
Makmal, T.; Aviv, O.; Gilad, E.
2016-10-01
A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.
Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up
International Nuclear Information System (INIS)
El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.
2004-01-01
Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented
Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel
Energy Technology Data Exchange (ETDEWEB)
Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.
2015-12-15
A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.
Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies
International Nuclear Information System (INIS)
Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.
2012-01-01
In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)
BER performance comparison of optical CDMA systems with/without turbo codes
Kulkarni, Muralidhar; Chauhan, Vijender S.; Dutta, Yashpal; Sinha, Ravindra K.
2002-08-01
In this paper, we have analyzed and simulated the BER performance of a turbo coded optical code-division multiple-access (TC-OCDMA) system. A performance comparison has been made between uncoded OCDMA and TC-OCDMA systems employing various OCDMA address codes (optical orthogonal codes (OOCs), Generalized Multiwavelength Prime codes (GMWPC's), and Generalized Multiwavelength Reed Solomon code (GMWRSC's)). The BER performance of TC-OCDMA systems has been analyzed and simulated by varying the code weight of address code employed by the system. From the simulation results, it is observed that lower weight address codes can be employed for TC-OCDMA systems that can have the equivalent BER performance of uncoded systems employing higher weight address codes for a fixed number of active users.
VACOSS - variable coding seal system for nuclear material control
International Nuclear Information System (INIS)
Kennepohl, K.; Stein, G.
1977-12-01
VACOSS - Variable Coding Seal System - is intended to seal: rooms and containers with nuclear material, nuclear instrumentation and equipment of the operator, instrumentation and equipment at the supervisory authority. It is easy to handle, reusable, transportable and consists of three components: 1. Seal. The light guide in fibre optics with infrared light emitter and receiver serves as lead. The statistical treatment of coded data given in the seal via adapter box guarantees an extremely high degree of access reliability. It is possible to store the data of two undue seal openings together with data concerning time and duration of the opening. 2. The adapter box can be used for input or input and output of data indicating the seal integrity. 3. The simulation programme is located in the computing center of the supervisory authority and permits to determine date and time of opening by decoding the seal memory data. (orig./WB) [de
Security Concerns and Countermeasures in Network Coding Based Communications Systems
DEFF Research Database (Denmark)
Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani
2015-01-01
This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two...... key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....
Nexus: A modular workflow management system for quantum simulation codes
Krogel, Jaron T.
2016-01-01
The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.
Transmission over UWB channels with OFDM system using LDPC coding
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
Hierarchical sparse coding in the sensory system of Caenorhabditis elegans.
Zaslaver, Alon; Liani, Idan; Shtangel, Oshrat; Ginzburg, Shira; Yee, Lisa; Sternberg, Paul W
2015-01-27
Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal expresses a genetically encoded calcium indicator in individual sensory neurons. This library includes the vast majority of the sensory system in C. elegans. Imaging from individual sensory neurons while subjecting the worms to various stimuli allowed us to compile a comprehensive functional map of the sensory system at single neuron resolution. The functional map reveals that despite the dense wiring, chemosensory neurons represent the environment using sparse codes. Moreover, although anatomically closely connected, chemo- and mechano-sensory neurons are functionally segregated. In addition, the code is hierarchical, where few neurons participate in encoding multiple cues, whereas other sensory neurons are stimulus specific. This encoding strategy may have evolved to mitigate the constraints of a compact sensory system.
Status of the development of burnup credit in the Czech Republic
International Nuclear Information System (INIS)
Markova, L.
1998-01-01
In the paper a possible intention of implementing burnup credit (BUC) in Czech spent fuel management systems is discussed. As a part of preparedness for BUC calculations the Nuclear Research Institute (NRI) at Rez has started studying burnup credit for WWER spent fuel. After the Czech Republic had joined the OECD/NEA/NSC Working Group on BUC Criticality Benchmarks a calculational BUC benchmark focused on spent WWER-440 fuel was specified in NRI and proposed the Eastern and Central European research community for the calculation. (author)
New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning
International Nuclear Information System (INIS)
Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.; Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.
2013-01-01
Summary: • Pd will bind lanthanide fission products. • 2 wt% Pd in alloy is expected to allow 20 at% Heavy Metal burnup, 4 wt% Pd possibly 30-40 at% HM burnup. • For recycled fuel with some lanthanide carryover, palladium additive will also prevent premature FCCI. • Novel uranium alloy systems suitable for burning transuranics were identified. • U-Mo-Ti-Zr and U-W-Mo irradiations may perform comparably to U-10Zr, but the real tests needed must include Pu and Np for TRU burning. – Diffusion couples with alloys and Fe or cladding; – Irradiations
Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data
International Nuclear Information System (INIS)
1997-11-01
Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ''fresh fuel'' assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ''Burnup Credit.'' Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ''Actinide-Only Burnup Credit.'' The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly
Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.
2009-04-01
A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.
A Modal Expansion Equilibrium Cycle Perturbation Method for Optimizing High Burnup Fast Reactors
Touran, Nicholas W.
This dissertation develops a simulation tool capable of optimizing advanced nuclear reactors considering the multiobjective nature of their design. An Enhanced Equilibrium Cycle (EEC) method based on the classic equilibrium method is developed to evaluate the response of the equilibrium cycle to changes in the core design. Advances are made in the consideration of burnup-dependent cross sections and dynamic fuel performance (fission gas release, fuel growth, and bond squeeze-out) to allow accuracy in high-burnup reactors such as the Traveling Wave Reactor. EEC is accelerated for design changes near a reference state through a new modal expansion perturbation method that expands arbitrary flux perturbations on a basis of λ-eigenmodes. A code is developed to solve the 3-D, multigroup diffusion equation with an Arnoldi-based solver that determines hundreds of the reference flux harmonics and later uses these harmonics to determine expansion coefficients required to approximate the perturbed flux. The harmonics are only required for the reference state, and many substantial and localized perturbations from this state are shown to be well-approximated with efficient expressions after the reference calculation is performed. The modal expansion method is coupled to EEC to produce the later-in-time response of each design perturbation. Because the code determines the perturbed flux explicitly, a wide variety of core performance metrics may be monitored by working within a recently-developed data management system called the ARMI. Through ARMI, the response of each design perturbation may be evaluated not only for the flux and reactivity, but also for reactivity coefficients, thermal hydraulics parameters, economics, and transient performance. Considering the parameters available, an automated optimization framework is designed and implemented. A non-parametric surrogate model using the Alternating Conditional Expectation (ACE) algorithm is trained with many design
Fuel performance analysis code 'FAIR'
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1994-01-01
For modelling nuclear reactor fuel rod behaviour of water cooled reactors under severe power maneuvering and high burnups, a mechanistic fuel performance analysis code FAIR has been developed. The code incorporates finite element based thermomechanical module, physically based fission gas release module and relevant models for modelling fuel related phenomena, such as, pellet cracking, densification and swelling, radial flux redistribution across the pellet due to the build up of plutonium near the pellet surface, pellet clad mechanical interaction/stress corrosion cracking (PCMI/SSC) failure of sheath etc. The code follows the established principles of fuel rod analysis programmes, such as coupling of thermal and mechanical solutions along with the fission gas release calculations, analysing different axial segments of fuel rod simultaneously, providing means for performing local analysis such as clad ridging analysis etc. The modular nature of the code offers flexibility in affecting modifications easily to the code for modelling MOX fuels and thorium based fuels. For performing analysis of fuel rods subjected to very long power histories within a reasonable amount of time, the code has been parallelised and is commissioned on the ANUPAM parallel processing system developed at Bhabha Atomic Research Centre (BARC). (author). 37 refs
International Nuclear Information System (INIS)
Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.L.; Slobben, J.
1991-06-01
A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified. Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab
System Design Considerations In Bar-Code Laser Scanning
Barkan, Eric; Swartz, Jerome
1984-08-01
The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.
International Nuclear Information System (INIS)
Kovbasenko, Y.
2010-01-01
Implementing new devices and mechanisms, including those developed and manufactured abroad, at enterprises of the Ukrainian power industry makes it necessary to license them in advance by the Ukrainian Regulatory Authority. From time to time, situations occur when these systems or their close analogues have been already used in some countries and have successively passed licensing by the relevant Regulatory Authorities; however, they do not meet the regulatory requirements in force in Ukraine. Preliminary analysis of the regulations in Ukraine concerning nuclear safety of spent nuclear fuel (SNF) management systems shows that some regulatory requirements in force are too conservative in view of current international practice. The extent of conservatism can be reduced, if necessary, only on the base of improving our level of understanding the processes occurring in nuclear dangerous systems and improving our capabilities as regards accuracy, correctness, and reliability in numerical modeling these processes. Such activity is consistent with the state-of-the-art production requirements. This work was intended to demonstrate that the excessive conservatism laid previously into the requirements on nuclear safety in Ukraine due to insufficient development of tools for modeling processes in nuclear fuel can be considerably decreased through using more modern and real modeling fuel systems. If such modeling is performed with the use of state-of-the-art methods, based on more complete understanding the processes in fuel systems, then removal of the excessive conservatism will not reduce the safety of nuclear dangerous systems
Ogawa, K.; Isobe, M.; Nishitani, T.; Murakami, S.; Seki, R.; Nakata, M.; Takada, E.; Kawase, H.; Pu, N.; LHD Experiment Group
2018-03-01
Time-resolved measurement of triton burnup is performed with a scintillating fiber detector system in the deuterium operation of the large helical device. The scintillating fiber detector system is composed of the detector head consisting of 109 scintillating fibers having a diameter of 1 mm and a length of 100 mm embedded in the aluminum substrate, the magnetic registrant photomultiplier tube, and the data acquisition system equipped with 1 GHz sampling rate analogies to digital converter and the field programmable gate array. The discrimination level of 150 mV was set to extract the pulse signal induced by 14 MeV neutrons according to the pulse height spectra obtained in the experiment. The decay time of 14 MeV neutron emission rate after neutral beam is turned off measured by the scintillating fiber detector. The decay time is consistent with the decay time of total neutron emission rate corresponding to the 14 MeV neutrons measured by the neutron flux monitor as expected. Evaluation of the diffusion coefficient is conducted using a simple classical slowing-down model FBURN code. It is found that the diffusion coefficient of triton is evaluated to be less than 0.2 m2 s-1.
SALT [System Analysis Language Translater]: A steady state and dynamic systems code
International Nuclear Information System (INIS)
Berry, G.; Geyer, H.
1983-01-01
SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs
EquiFACS: The Equine Facial Action Coding System.
Directory of Open Access Journals (Sweden)
Jen Wathan
Full Text Available Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats. EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.
Time step length versus efficiency of Monte Carlo burnup calculations
International Nuclear Information System (INIS)
Dufek, Jan; Valtavirta, Ville
2014-01-01
Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy
Electronic health record standards, coding systems, frameworks, and infrastructures
Sinha, Pradeep K; Bendale, Prashant; Mantri, Manisha; Dande, Atreya
2013-01-01
Discover How Electronic Health Records Are Built to Drive the Next Generation of Healthcare Delivery The increased role of IT in the healthcare sector has led to the coining of a new phrase ""health informatics,"" which deals with the use of IT for better healthcare services. Health informatics applications often involve maintaining the health records of individuals, in digital form, which is referred to as an Electronic Health Record (EHR). Building and implementing an EHR infrastructure requires an understanding of healthcare standards, coding systems, and frameworks. This book provides an
DEFF Research Database (Denmark)
Nielsen, Mogens; Rozenberg, Grzegorz; Salomaa, Arto
1974-01-01
Continuing the work begun in Part I of this paper, we consider now variations of nondeterministic OL-systems. The present Part II of the paper contains a systematic classification of the effect of nonterminals, codings, weak codings, nonerasing homomorphisms and homomorphisms for all basic variat...
Burnup credit in the storage of LWR fuel - conceptual considerations
International Nuclear Information System (INIS)
Brown, O.C.; Wimpy, P.D.
1987-01-01
As a natural outgrowth of improved nodal calculation methods and the accessibility of detailed fuel assembly operating data from core monitoring systems, taking credit for burnup in the storage of light water reactor fuel represents a logical alternative to reracking for storing higher enriched fuel. The paper summarizes a number of array reactivity calculations that indicate: (1) taking credit for burnup leads to significantly lower array k/sub eff's/; (2) axial exposure distribution effects on array reactivity increase with exposure and are more significant in BWR than PWR fuel; (3) BWR fuel void history effects on array reactivity can be significant; and (4) an array of all fresh 3.83 wt% enriched PWR fuel is equivalent in array reactivity to a checkerboard array of 20 GWd/tonne U and fresh fuel enriched to 5.1 wt%. One approach to minimizing operator error in the handling of assemblies would be to first select and store exposed fuel in a checkerboard arrangement throughout the array. These cells could then be capped with a lockout device to preclude removal with the grappling machine. Once these assemblies were in place, all other assemblies could be safely stored in any other available cell
A semi-empirical model for the formation and depletion of the high burnup structure in UO2
Pizzocri, D.; Cappia, F.; Luzzi, L.; Pastore, G.; Rondinella, V. V.; Van Uffelen, P.
2017-04-01
In the rim zone of UO2 nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. For this purpose, we performed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Based on these new experimental data, we infer an exponential reduction of the average grain size with local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes.
International Nuclear Information System (INIS)
Dobbe, C.A.; Carlson, E.R.; Marshall, N.H.; Marwil, E.S.; Tolli, J.E.
1990-02-01
An independent quality assurance (QA) and verification of Version 1.5 of the MELCOR Accident Consequence Code System (MACCS) was performed. The QA and verification involved examination of the code and associated documentation for consistent and correct implementation of the models in an error-free FORTRAN computer code. The QA and verification was not intended to determine either the adequacy or appropriateness of the models that are used MACCS 1.5. The reviews uncovered errors which were fixed by the SNL MACCS code development staff prior to the release of MACCS 1.5. Some difficulties related to documentation improvement and code restructuring are also presented. The QA and verification process concluded that Version 1.5 of the MACCS code, within the scope and limitations process concluded that Version 1.5 of the MACCS code, within the scope and limitations of the models implemented in the code is essentially error free and ready for widespread use. 15 refs., 11 tabs
Evaluation of system codes for analyzing naturally circulating gas loop
International Nuclear Information System (INIS)
Lee, Jeong Ik; No, Hee Cheon; Hejzlar, Pavel
2009-01-01
Steady-state natural circulation data obtained in a 7 m-tall experimental loop with carbon dioxide and nitrogen are presented in this paper. The loop was originally designed to encompass operating range of a prototype gas-cooled fast reactor passive decay heat removal system, but the results and conclusions are applicable to any natural circulation loop operating in regimes having buoyancy and acceleration parameters within the ranges validated in this loop. Natural circulation steady-state data are compared to numerical predictions by two system analysis codes: GAMMA and RELAP5-3D. GAMMA is a computational tool for predicting various transients which can potentially occur in a gas-cooled reactor. The code has a capability of analyzing multi-dimensional multi-component mixtures and includes models for friction, heat transfer, chemical reaction, and multi-component molecular diffusion. Natural circulation data with two gases show that the loop operates in the deteriorated turbulent heat transfer (DTHT) regime which exhibits substantially reduced heat transfer coefficients compared to the forced turbulent flow. The GAMMA code with an original heat transfer package predicted conservative results in terms of peak wall temperature. However, the estimated peak location did not successfully match the data. Even though GAMMA's original heat transfer package included mixed-convection regime, which is a part of the DTHT regime, the results showed that the original heat transfer package could not reproduce the data with sufficient accuracy. After implementing a recently developed correlation and corresponding heat transfer regime map into GAMMA to cover the whole range of the DTHT regime, we obtained better agreement with the data. RELAP5-3D results are discussed in parallel.
International Nuclear Information System (INIS)
Feltus, M.A.
1995-01-01
This paper addresses the advantages and disadvantages of using very high fuel burnup, reinsertion, and low leakage designs in advanced fuel cycle light water reactor cores as a technique to reduce vessel fluence, and total volume of spent fuel discharged into the waste management stream. The results demonstrate how to attain practical high burnup core designs using the Penn State Fuel Management Package (PSFMP, i.e., LEOPARD, MCRAC, ADMARC, OPHAL computer codes) (Levine, 1992). The PSFMP was used to scope out fuel management strategies, that can be verified with a direct comparison between the PSFMP and CASMO-3/SIMULATE-3 (Smith, 1989) results. This paper focuses on the practical use of such advanced fuel designs to: (a) achieve very high discharge burnups, (b) produce low leakage at the periphery, (c) have 24 month cycles, and (d) maintain safety margins and peak power levels, based on using the Haling power distribution as a target. Evaluations of practical and optimal extended burnup core designs, using the PSFMP, will show that very high burnup core designs are not only attainable, but are most cost-effective and beneficial to the environment in terms of waste reduction. (author)
Neutron kinetics for system thermal-hydraulic codes
International Nuclear Information System (INIS)
Diamond, D.J.
1996-01-01
There is general agreement that for many light water reactor (LWR) calculations for licensing safety analysis, probabilistic risk assessment, operational support, and training, it is necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model in order to obtain satisfactory results. This need coincides with the fact that in recent years there has been considerable research and development in this field, with modelers taking advantage of the increase in computing power that has become available. This progress has now led to coupling multidimensional neutron kinetics models to the nuclear steam supply system thermal hydraulics. This is not new since some coupled codes have always been available. What is new is that the coupling can now be done with very sophisticated models, and the planning of this coupling and the requisite modeling can take advantage of the experience of many code developers in many countries. The U.S. Nuclear Regulatory Commission and other organizations are in the process of reviewing the state of the art and making recommendations for future development. This paper summarizes one contribution to this review process: a review of the multidimensional neutron kinetics modeling, and ancillary modeling, which would be used in conjunction with system thermal-hydraulic models to perform core dynamics calculations
Development of GUI systems for the MIDAS code
International Nuclear Information System (INIS)
Kim, K.R.; Park, S.H.; Kim, D.H.
2004-01-01
MIDAS is being developed at KAERI based on MELCOR as an integrated severe accident analysis code with existing model modification and new model addition. MIDAS was restructured to avoid the pointer based variable referencing style of MELCOR, and enhanced the memory effectiveness using the dynamic allocation method of Fortran 90. This paper describes recent activities of developing the GUI environments for MIDAS code at KAERI. Up to now, we have developed the four PC-based subsystems, which are IEDIT, IPLOT, SATS and HyperKAMG. IEDIT is an input management system that can read MELCOR input files and display its information in the Window panels. Users can modify each item in the panel and the input file will be modified according to that changes. IPLOT is a simple plotting system that can draw MIDAS plot variables trend graphs. SATS is developed as a severe accident training simulator that can display nuclear plant behavior graphically. Moreover SATS provides several controllable pumps and valves which appeared in the severe accidence. Together with SATS and the online severe accident guidance HyperKAMG, combined properly, severe accident mitigation scenarios could be presented graphically and dramatically without any change of MELCOR inputs. GUI development as a part of a severe accident management program package, MIDAS. (author)
The adequacy of methods used for the approval of high burnup core loading
International Nuclear Information System (INIS)
Sonnenburg, H.G.
2002-01-01
New fuel assembly designs and new core loading strategies are foreseen by most utilities, optimising the use of nuclear fuel in nuclear power plants. Increasing the burn-up to high values above 50 MWd/kg affects the fuel and cladding conditions, which could have safety relevant consequences. It is the task of the safety authorities to assess the impact of these changes with respect to compliance with safety regulations. Usually this assessment is based on code analyses which contain models developed at a time when the burn-up was significantly lower. Because the high burn-up is accompanied with the development of new phenomena like the rim effect on fuel pellets, the codes' models need to be revised for the representation of these new phenomena. The objective of this paper is to present a review of the knowledge base of the fuel phenomena under high-burn-up conditions as seen from safety aspects. The safety relevant fuel rod phenomena will be discussed. It will further provide an assessment of the limitations of the methodologies so far applied in the context of LOCA and RIA transients. The recently started research activities in Germany to improve the methodologies will be presented. (author)
Interval Coded Scoring: a toolbox for interpretable scoring systems
Directory of Open Access Journals (Sweden)
Lieven Billiet
2018-04-01
Full Text Available Over the last decades, clinical decision support systems have been gaining importance. They help clinicians to make effective use of the overload of available information to obtain correct diagnoses and appropriate treatments. However, their power often comes at the cost of a black box model which cannot be interpreted easily. This interpretability is of paramount importance in a medical setting with regard to trust and (legal responsibility. In contrast, existing medical scoring systems are easy to understand and use, but they are often a simplified rule-of-thumb summary of previous medical experience rather than a well-founded system based on available data. Interval Coded Scoring (ICS connects these two approaches, exploiting the power of sparse optimization to derive scoring systems from training data. The presented toolbox interface makes this theory easily applicable to both small and large datasets. It contains two possible problem formulations based on linear programming or elastic net. Both allow to construct a model for a binary classification problem and establish risk profiles that can be used for future diagnosis. All of this requires only a few lines of code. ICS differs from standard machine learning through its model consisting of interpretable main effects and interactions. Furthermore, insertion of expert knowledge is possible because the training can be semi-automatic. This allows end users to make a trade-off between complexity and performance based on cross-validation results and expert knowledge. Additionally, the toolbox offers an accessible way to assess classification performance via accuracy and the ROC curve, whereas the calibration of the risk profile can be evaluated via a calibration curve. Finally, the colour-coded model visualization has particular appeal if one wants to apply ICS manually on new observations, as well as for validation by experts in the specific application domains. The validity and applicability
Modern Nuclear Data Evaluation with the TALYS Code System
Koning, A. J.; Rochman, D.
2012-12-01
This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: "Total" Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.
Modern Nuclear Data Evaluation with the TALYS Code System
International Nuclear Information System (INIS)
Koning, A.J.; Rochman, D.
2012-01-01
This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: “Total” Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.
International Nuclear Information System (INIS)
Ikeda, H.; Kikuchi, T.; Ono, S.
2001-01-01
FPAC (fuel performance analysis code) is a thermal and mechanical design code developed by Nuclear Fuel Industries, Ltd. (NFI). NFI has been utilizing FPAC to design the commercial PWR fuel rods, which are manufactured by NFI, or to analyze fuel rod's irradiation behavior. Japanese PWR utilities are planning to increase the discharged burnup limit of fuel assembly to 55GWd/t. Therefore, NFI has improved FPAC to enable to be used to more accurately estimate fuel rod behavior at high burnup. The integral assessment of improved FPAC has been verified from available data including measured centerline temperatures, PIE data and so on, and they cover burnup up to approximately 90GWd/t. The predicted results obtained from the improved FPAC show good agreement with measured data. (author)
Implications of Sepedi/English code switching for ASR systems
CSIR Research Space (South Africa)
Modipa, TI
2013-12-01
Full Text Available Code switching (the process of switching from one language to another during a conversation) is a common phenomenon in multilingual environments. Where a minority and dominant language coincide, code switching from the minority language...
Analysis of BWR high burnup fuel in LOCA conditions
International Nuclear Information System (INIS)
Garcia Sedano, Pablo; Dey Navarro, Jose Manuel; Gallego Cabezon, Ines; Orive Moreno, Raul
2004-01-01
High Burnup Fuel Behaviour has been growing in importance since middle 80's when pellet microstructure changes (rim effect) and cladding oxidation rates increase were observed. Later on, Cadarache reactivity tests revealed cladding integrity failures below safety limits. These phenomena, occurred at high burnup, stressed the necessity of having a wide experimental data base that would allow to dispose non-extrapolated data of material properties submitted to higher burnups than 40000 MWd/TM and data of new materials at the same time. One of the objectives of the EPRI's Fuel Reliability Program is to establish the bases for the licensing of nuclear fuel to burnup levels beyond the current licensed value of 62 GWd/MTU rod average burnup. The technical bases to support those high burnup levels are being developed. One of the licensing points of concern is the behaviour of the high burnup fuel in LOCA conditions. To respond to this concern a series of LOCA experiments are being performed at Argonne National Laboratory using fuel rods from Limerick NPP at 57 GWd/TM and H.B. Robinson at 67 GWd/MTU. When the ANL tests have been finished, a conservative Peak Cladding Temperature/ Equivalent Cladding Reacted (PCT/ECR) limit will be determine from the residual ductility tests to be applied to the high burnup fuel. This makes necessary to determine the behaviour of the high burnup fuel in LOCA conditions and to determine the available safety margin. In licensing LOCA calculations, corresponding to present core designs and future core designs, the calculated PCT and ECR values as a function of the fuel burnup could be used to determine the relative severity of LOCA for the high burnup fuel. This report presents the LOCA analyses performed by IBERDROLA (Spanish utility), using results from the Cofrentes NPP (BWR-6) LOCA evaluations. (authors)
Criticality implications of extended fuel burnup
International Nuclear Information System (INIS)
Eng, R.
1985-01-01
The advantages (and disadvantages) of extended fuel burnup to the operating nuclear utility are well documented. Niagara Mohawk found that increasing the refueling interval from 12 months to 24 months led to a 60% increase in full power days per refueling outage day. Today's incentives include decreasing spent fuel accumulation, increasing plant capacity factors through longer cycles, reducing uranium ore requirements, reducing radiation exposures of workers during refueling, reduced disposal requirements, reduced number of heat-up and cooldown transients, reduced plant security burden (during refueling outages), and reduced manpower time for regulatory review
Burnup characteristics of binary breeder reactors
International Nuclear Information System (INIS)
Dias, A.F.; Nascimento, J.A. do; Ishiguro, Y.
1983-01-01
Burnup calculations of a binary breeder reactor have been done for two cases of fueling. In one case the U 233 /TH fueled inner core and the Pu/U-fueled outer core have the same number of fuel assemblies. In the other case two outermost rings in the inner core are Pu/U-fueled. The second case is considered for an initial phase of thorim cycle introduction when the supply of U 233 could be limited. Results show an efficient breeding on the thorium cycle in both cases. (Author) [pt
Overview of Particle and Heavy Ion Transport Code System PHITS
Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit
2014-06-01
A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.
Energy Technology Data Exchange (ETDEWEB)
Bjerke, M.A.
1983-02-01
A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible.
Kinetic Monte Carlo Potts Model for Simulating a High Burnup Structure in UO2
International Nuclear Information System (INIS)
Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho
2008-01-01
A Potts model, based on the kinetic Monte Carlo method, was originally developed for magnetic domain evolutions, but it was also proposed as a model for a grain growth in polycrystals due to similarities between Potts domain structures and grain structures. It has modeled various microstructural phenomena such as grain growths, a recrystallization, a sintering, and so on. A high burnup structure (HBS) is observed in the periphery of a high burnup UO 2 fuel. Although its formation mechanism is not clearly understood yet, its characteristics are well recognized: The HBS microstructure consists of very small grains and large bubbles instead of original as-sintered grains. A threshold burnup for the HBS is observed at a local burnup 60-80 Gwd/tM, and the threshold temperature is 1000-1200 .deg. C. Concerning a energy stability, the HBS can be created if the system energy of the HBS is lower than that of the original structure in an irradiated UO 2 . In this paper, a Potts model was implemented for simulating the HBS by calculating system energies, and the simulation results were compared with the HBS characteristics mentioned above
Energy Technology Data Exchange (ETDEWEB)
Pusa, M.; Leppaenen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)
2012-07-01
The Chebyshev Rational Approximation Method (CRAM) has been recently introduced by the authors for solving the burnup equations with excellent results. This method has been shown to be capable of simultaneously solving an entire burnup system with thousands of nuclides both accurately and efficiently. The method was prompted by an analysis of the spectral properties of burnup matrices and it can be characterized as the best rational approximation on the negative real axis. The coefficients of the rational approximation are fixed and have been reported for various approximation orders. In addition to these coefficients, implementing the method only requires a linear solver. This paper describes an efficient method for solving the linear systems associated with the CRAM approximation. The introduced direct method is based on sparse Gaussian elimination where the sparsity pattern of the resulting upper triangular matrix is determined before the numerical elimination phase. The stability of the proposed Gaussian elimination method is discussed based on considering the numerical properties of burnup matrices. Suitable algorithms are presented for computing the symbolic factorization and numerical elimination in order to facilitate the implementation of CRAM and its adoption into routine use. The accuracy and efficiency of the described technique are demonstrated by computing the CRAM approximations for a large test case with over 1600 nuclides. (authors)
Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system
Directory of Open Access Journals (Sweden)
Azura M. S. A.
2017-01-01
Full Text Available This paper presents a realization of Wavelength/Time (W/T Two-Dimensional Modified Double Weight (2-D MDW code for Optical Code Division Multiple Access (OCDMA system based on Spectral Amplitude Coding (SAC approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN and minimizing the Multiple Access Interference (MAI noises. At the permissible BER 10-9, the 2-D MDW (APD had shown minimum effective received power (Psr = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN only received -61 dBm. The results show that 2-D MDW (APD has better performance in achieving same BER with longer optical fiber length and with less received power (Psr. Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.
Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system
Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.
2017-11-01
This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.
Software coding for reliable data communication in a reactor safety system
International Nuclear Information System (INIS)
Maghsoodi, R.
1978-01-01
A software coding method is proposed to improve the communication reliability of a microprocessor based fast-reactor safety system. This method which replaces the conventional coding circuitry, applies a program to code the data which is communicated between the processors via their data memories. The system requirements are studied and the suitable codes are suggested. The problems associated with hardware coders, and the advantages of software coding methods are discussed. The product code which proves a faster coding time over the cyclic code is chosen as the final code. Then the improvement of the communication reliability is derived for a processor and its data memory. The result is used to calculate the reliability improvement of the processing channel as the basic unit for the safety system. (author)
High Burnup Dry Storage Cask Research and Development Project, Final Test Plan
Energy Technology Data Exchange (ETDEWEB)
None
2014-02-27
EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.
Development of multi-physics code systems based on the reactor dynamics code DYN3D
Energy Technology Data Exchange (ETDEWEB)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)
2011-07-15
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
Development of multi-physics code systems based on the reactor dynamics code DYN3D
International Nuclear Information System (INIS)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo
2011-01-01
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey
Uzun, Vassilya; Bilgin, Sami
2016-01-01
For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospi...
Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications
Energy Technology Data Exchange (ETDEWEB)
Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-05-01
This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).
Verification of the CONPAS (CONtainment Performance Analysis System) code package
International Nuclear Information System (INIS)
Kim, See Darl; Ahn, Kwang Il; Song, Yong Man; Choi, Young; Park, Soo Yong; Kim, Dong Ha; Jin, Young Ho.
1997-09-01
CONPAS is a computer code package to integrate the numerical, graphical, and results-oriented aspects of Level 2 probabilistic safety assessment (PSA) for nuclear power plants under a PC window environment automatically. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules: (1) ET Editor, (2) Computer, (3) Text Editor, and (4) Mechanistic Code Plotter. Compared with other existing computer codes for Level 2 PSA, and CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friendly interface. The computational performance of CONPAS has been verified through a Level 2 PSA to a reference plant. The results of the CONPAS code was compared with an existing level 2 PSA code (NUCAP+) and the comparison proves that CONPAS is appropriate for Level 2 PSA. (author). 9 refs., 8 tabs., 14 figs
The APR1400 Core Design by Using APA Code System
International Nuclear Information System (INIS)
Choi, Yu Sun; Koh, Byung Marn
2008-01-01
The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator
HPLWR equilibrium core design with the KARATE code system
Energy Technology Data Exchange (ETDEWEB)
Maraczy, Cs.; Hegyi, Gy.; Hordosy, G.; Temesvari, E. [KFKI Atomic Energy Research Inst., Hungarian Academy of Sciences, Budapest (Hungary)
2011-07-01
The High Performance Light Water Reactor (HPLWR) is the European version of the various supercritical water cooled reactor proposals. The paper presents the activity of KFKI-AEKI in the field of neutronic core design within the framework of the 'HPLWR Phase 2' FP-6 and the Hungarian 'NUKENERG' projects. As the coolant density along the axial direction shows remarkable change, coupled neutronic- thermohydraulic calculations are essential which take into account the heating of moderator in the special water rods of the assemblies. A parametrized diffusion cross section library was prepared for the HPLWR assembly with the MULTICELL neutronic transport code. The parametrized cross sections are used by the KARATE program system, which was verified for supercritical conditions by comparative Monte Carlo calculations. To design the HPLWR equilibrium core preliminary loadings were assessed, which contain insulated assemblies with Gd burnable absorbers. The fuel assemblies have radial and axial enrichment zoning to reduce hot spots. (author)
Biometric iris image acquisition system with wavefront coding technology
Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao
2013-09-01
Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code
Control code for laboratory adaptive optics teaching system
Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael
2017-09-01
By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.
Benchmarking burnup reconstruction methods for dynamically operated research reactors
Energy Technology Data Exchange (ETDEWEB)
Sternat, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Charlton, William S. [Univ. of Nebraska, Lincoln, NE (United States). National Strategic Research Institute; Nichols, Theodore F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2016-03-01
The burnup of an HEU fueled dynamically operated research reactor, the Oak Ridge Research Reactor, was experimentally reconstructed using two different analytic methodologies and a suite of signature isotopes to evaluate techniques for estimating burnup for research reactor fuel. The methods studied include using individual signature isotopes and the complete mass spectrometry spectrum to recover the sample’s burnup. The individual, or sets of, isotopes include ^{148}Nd, ^{137}Cs+^{137}Ba, ^{139}La, and ^{145}Nd+^{146}Nd. The storage documentation from the analyzed fuel material provided two different measures of burnup: burnup percentage and the total power generated from the assembly in MWd. When normalized to conventional units, these two references differed by 7.8% (395.42GWd/MTHM and 426.27GWd/MTHM) in the resulting burnup for the spent fuel element used in the benchmark. Among all methods being evaluated, the results were within 11.3% of either reference burnup. The results were mixed in closeness to both reference burnups; however, consistent results were achieved from all three experimental samples.
Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa
2011-08-01
A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.
CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks
International Nuclear Information System (INIS)
Ikushima, Takeshi
1989-02-01
A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)
Modeling of PWR fuel at extended burnup
International Nuclear Information System (INIS)
Dias, Raphael Mejias
2016-01-01
This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)
ABB PWR fuel design for high burnup
International Nuclear Information System (INIS)
Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.
1998-01-01
Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
International Nuclear Information System (INIS)
Gauld, I.C.
2005-01-01
U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd
Dependence of heavy metal burnup on nuclear data libraries for fast reactors
Ohki, S
2003-01-01
Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...
Finnish contribution to the CB4 burnup credit benchmark
International Nuclear Information System (INIS)
Wasastjerna, F.
2001-01-01
The CB4 phase of the WWER burnup credit benchmark series studies the effect of flat and realistic axial burnup profiles on the multiplication factor of a conceptual WWER cask loaded with spent fuel. The benchmark was calculated at VTT Energy with MCNP4C, using mainly ENDF/B-V1 cross sections. According to the calculation results the effect of the axial homogenization on the k eff estimate is complex. At low burnups the use of a axial profile overestimates k eff but at high burnups the reverse is the case. Ignoring fission products leads to conservative k eff and the effect of axial homogenization on the multiplication factor is similar to a reduction of the burnup (Authors)
Burnup credit applications in a high-capacity truck cask
International Nuclear Information System (INIS)
Boshoven, J.K.
1992-09-01
General Atomics (GA) has designed two legal weight truck (LWT) casks, the GA-4 and GA-9, to carry four pressurized-water-reactor (PWR) and nine boiling-water-reactor (BWR) fuel assemblies, respectively. GA plans to submit applications for certification to the US Nuclear Regulatory Commission (NRC) for the two casks in mid-1993. GA will include burnup credit analysis in the Safety Analysis Report for Packaging (SARP) for the GA-4 Cask. By including burnup credit in the criticality safety analysis for PWR fuels with initial enrichments above 3% U-235, public and occupation risks are reduced and cost savings are realized. The GA approach to burnup credit analysis incorporates the information produced in the US Department of Energy Burnup Credit Program. This paper describes the application of burnup credit to the criticality control design of the GA-4 Cask
International Nuclear Information System (INIS)
Ratnam, Challa; Rao, Vadlamudi Lakshmana; Goud, Sivagouni Lachaa
2006-01-01
In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper
Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni
2006-10-01
In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.
Energy Technology Data Exchange (ETDEWEB)
Ratnam, Challa [Physics Department, New Science College, Ameerpet, Hyderabad (India); Rao, Vadlamudi Lakshmana [Physics Department, New Science College, Ameerpet, Hyderabad (India); Goud, Sivagouni Lachaa [Department of Physics, Osmania University, Hyderabad (India)
2006-10-07
In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.
A study on the nuclear computer codes installation and management system
International Nuclear Information System (INIS)
Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok
1990-12-01
From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)
Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.
2013-07-01
In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.
Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems
DEFF Research Database (Denmark)
Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.
2014-01-01
We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...
Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah
2016-10-01
Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.
Moment Tensor code for the Antelope Environmental Monitoring System
Reyes, J.; Newman, R.; Vernon, F.; van den Hazel, G.
2012-04-01
The time domain seismic moment tensor inversion software package written by Dreger (2003) and updated by Minson & Dreger (2008) has been rewritten for inclusion into the open-source contributed code repository for the Boulder Real Time Technology (BRTT) Antelope Environmental Monitoring System. The new code-base was written natively in the Python language and utilizes the Python interface to Antelope (Lindquist et al., 2008) for data access, Scientific Tools for Python library (Eric Jones et al., 2001) for computation and analysis, and the ObsPy library (Beyreuther et al., 2010) for graphical representation. The new code archives all data products into a Center for Seismic Studies (CSS) 3.0 schema table for easy access and distribution of solutions. Stability of the analysis, verification of results and correlation of solutions with similar methods are discussed in this presentation. Analysis is focused on regional earthquakes recorded by Earthscope's USArray network and event parameters are taken from real time and post-event processed data analysis at the Array Network Facility (ANF). A calibrated velocity model representative of the south-west continental United States is used for the analysis. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J. (2010) ObsPy: A Python Toolbox for Seismology, Seismic Research Letters, 81(3), 530-533. Dreger, D. (2003) TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International Handbook of Earthquake and Engineering Seismology, Volume 81B, p 1627. Eric Jones, Travis Oliphant, Pearu Peterson (2001) SciPy: Open Source Scientific Tools for Python, "http://www.scipy.org/" Lindquist, K.G., Clemesha, A., Newman, R.L. and Vernon, F.L. (2008) The Python Interface to Antelope and Applications. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract G43A-0671 Minson, S. & Dreger, D. (2008) Stable inversions for complete moment tensors. Geophys. J. Int., 174, 585-592 Saikia, C. (1994) Modified frequency
Multilevel LDPC Codes Design for Multimedia Communication CDMA System
Directory of Open Access Journals (Sweden)
Hou Jia
2004-01-01
Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.
International Nuclear Information System (INIS)
Nomura, Yasushi; Okuno, Hiroshi; Miyoshi, Yoshinori
2004-03-01
Firstly, concerning the methods to set burnup for depletion calculation linked with criticality safety evaluation taking burnup credit into consideration, the upper 50 cm averaged burnups approved by regulations in European countries and USA are comparatively evaluated. Secondary, errors produced by different shapes of axial spent fuel burnup distribution assumed for criticality calculation, bias errors associated with depletion calculation compensated by correction factors applied to calculated nuclide isotopic composition, and statistic errors exerted by variation of irradiation history parameters used as input data for depletion calculation, are separately evaluated by performing criticality analyses with the spent fuel transport cask model of OECD/NEA Burnup Credit Criticality Benchmark. As a result, methods are proposed to set equivalent burnups reduced from a given burnup so as to compensate these errors to obtain criticality calculation results on the conservative side. Finally, 'Equivalent Uniform Burnup' and Equivalent Initial Enrichment' which are derived by incorporating these errors synthetically, are described to mention possibility of their common usage irrespective of difference in spent fuel transport cask specification. (author)
Energy Technology Data Exchange (ETDEWEB)
Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)
2001-07-01
Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.
International Nuclear Information System (INIS)
Toubon, H.; Guillou, E.; Cousinou, P.; Barbry, F.; Grouiller, J.P.; Bignan, G.
2001-01-01
Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis
Prototype demonstration of radiation therapy planning code system
International Nuclear Information System (INIS)
Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.
1996-01-01
This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care
Prototype demonstration of radiation therapy planning code system
Energy Technology Data Exchange (ETDEWEB)
Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S. [and others
1996-09-01
This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care.
Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core
International Nuclear Information System (INIS)
Loetsch, T.; Khalimonchuk, V.; Kuchin, A.
2009-01-01
In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)
Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core
International Nuclear Information System (INIS)
Tukiran; Sembiring, Tagor Malem
2000-01-01
Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction
Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey.
Uzun, Vassilya; Bilgin, Sami
2016-01-01
For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospital grounds. These QR code bracelets link to the QR Code Identity website, where detailed information is stored; a smartphone or standalone QR code scanner can be used to scan the code. The design of this system allows authorized personnel (e.g., paramedics, firefighters, or police) to access more detailed patient information than the average smartphone user: emergency service professionals are authorized to access patient medical histories to improve the accuracy of medical treatment. In Istanbul, we tested the self-designed system with 174 participants. To analyze the QR Code Identity Tag system's usability, the participants completed the System Usability Scale questionnaire after using the system.
14 CFR Sec. 1-4 - System of accounts coding.
2010-01-01
...) A fifth digit, appended as a decimal, has been assigned for internal control by the BTS of... different fifth digit code number from that assigned by the BTS may be adopted for internal recordkeeping by... the code number assigned by the BTS is employed in reporting to the BTS on Form 41 Reports. [ER-755...
Analytical and numerical study of radiation effect up to high burnup in power reactor fuels
International Nuclear Information System (INIS)
Lemes, M; Denis, A; Soba, A
2012-01-01
In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)
Design of Short Synchronization Codes for Use in Future GNSS System
Directory of Open Access Journals (Sweden)
Surendran K. Shanmugam
2008-01-01
The modernization efforts include numerous signal structure innovations to ensure better performances over legacy GNSS system. The adoption of secondary short synchronization codes is one among these innovations that play an important role in spectral separation, bit synchronization, and narrowband interference protection. In this paper, we present a short synchronization code design based on the optimization of judiciously selected performance criteria. The new synchronization codes were obtained for lengths up to 30 bits through exhaustive search and are characterized by optimal periodic correlation. More importantly, the presence of better synchronization codes over standardized GPS and Galileo codes corroborates the benefits and the need for short synchronization code design.
Development and verification of a coupled code system RETRAN-MASTER-TORC
International Nuclear Information System (INIS)
Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.
2004-01-01
Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code wi