WorldWideScience

Sample records for system analysis ldrd

  1. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  2. LDRD final report : robust analysis of large-scale combinatorial applications.

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Robert D.; Morrison, Todd (University of Colorado, Denver, CO); Hart, William Eugene; Benavides, Nicolas L. (Santa Clara University, Santa Clara, CA); Greenberg, Harvey J. (University of Colorado, Denver, CO); Watson, Jean-Paul; Phillips, Cynthia Ann

    2007-09-01

    Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

  3. FY2014 LBNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  4. LDRD FY2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, K. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’s success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle

  5. LDRD Annual Report FY2006

    International Nuclear Information System (INIS)

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  6. Final Report for the Virtual Reliability Realization System LDRD

    Energy Technology Data Exchange (ETDEWEB)

    DELLIN, THEODORE A.; HENDERSON, CHRISTOPHER L.; O' TOOLE, EDWARD J.

    2000-12-01

    Current approaches to reliability are not adequate to keep pace with the need for faster, better and cheaper products and systems. This is especially true in high consequence of failure applications. The original proposal for the LDRD was to look at this challenge and see if there was a new paradigm that could make reliability predictions, along with a quantitative estimate of the risk in that prediction, in a way that was faster, better and cheaper. Such an approach would be based on the underlying science models that are the backbone of reliability predictions. The new paradigm would be implemented in two software tools: the Virtual Reliability Realization System (VRRS) and the Reliability Expert System (REX). The three-year LDRD was funded at a reduced level for the first year ($120K vs. $250K) and not renewed. Because of the reduced funding, we concentrated on the initial development of the expertise system. We developed an interactive semiconductor calculation tool needed for reliability analyses. We also were able to generate a basic functional system using Microsoft Siteserver Commerce Edition and Microsoft Sequel Server. The base system has the capability to store Office documents from multiple authors, and has the ability to track and charge for usage. The full outline of the knowledge model has been incorporated as well as examples of various types of content.

  7. 2007 LDRD ANNUAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    French, T

    2008-12-16

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. The LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.

  8. Final report on LDRD project: Simulation/optimization tools for system variability analysis

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Bierbaum; R. F. Billau; J. E. Campbell; K. D. Marx; R. J. Sikorski; B. M. Thompson; S. D. Wix

    1999-10-01

    >This work was conducted during FY98 (Proposal Number 98-0036) and FY99 (Proposal Number 99-0818) under the auspices of the Sandia National Laboratories Laboratory-Directed Research and Development (LDRD) program. Electrical simulation typically treats a single data point in the very large input space of component properties. For electrical simulation to reach its full potential as a design tool, it must be able to address the unavoidable variability and uncertainty in component properties. Component viability is strongly related to the design margin (and reliability) of the end product. During the course of this project, both tools and methodologies were developed to enable analysis of variability in the context of electrical simulation tools. Two avenues to link relevant tools were also developed, and the resultant toolset was applied to a major component.

  9. SRNL LDRD ANNUAL REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    French, T

    2008-12-29

    The Laboratory Director is pleased to have the opportunity to present the 2008 Laboratory Directed Research and Development (LDRD) annual report. This is my first opportunity to do so, and only the second such report that has been issued. As will be obvious, SRNL has built upon the excellent start that was made with the LDRD program last year, and researchers have broken new ground in some important areas. In reviewing the output of this program this year, it is clear that the researchers implemented their ideas with creativity, skill and enthusiasm. It is gratifying to see this level of participation, because the LDRD program remains a key part of meeting SRNL's and DOE's strategic goals, and helps lay a solid scientific foundation for SRNL as the premier applied science laboratory. I also believe that the LDRD program's results this year have demonstrated SRNL's value as the EM Corporate Laboratory, having advanced knowledge in a spectrum of areas, including reduction of the technical risks of cleanup, separations science, packaging and transportation of nuclear materials, and many others. The research in support of Energy Security and National and Homeland Security has been no less notable. SRNL' s researchers have shown again that the nascent LDRD program is a sound investment for DOE that will pay off handsomely for the nation as time goes on.

  10. LDRD 149045 final report distinguishing documents.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A.

    2010-09-01

    This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the Computational Topology CSRF project, and the some of the leveraged work is described here. We proposed a sentence mining technique that exploited both the distribution and the order of parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be able to discover 'call-to-action' framing documents hidden within a corpus of mostly expository documents, even if the documents were all on the same topic and used the same vocabulary. Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis that English follows a dynamical system and the POS are trajectories from one state to another. We analyzed the sequences of POS using support vector machines and the cycles of POS using computational homology. We discovered that the POS were a very weak signal and did not support our hypothesis well. Our original goal appeared to be unobtainable with our original approach. We turned our attention to study an aspect of a more traditional approach to distinguishing documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into mixture-model points. A distance function is used to cluster groups of points to discover relatedness between documents. We performed a geometric and algebraic analysis of the most popular distance functions and made some significant and surprising discoveries, described in a separate technical report.

  11. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  13. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Miner, Nadine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military & Energy Systems Analysis (6114, M/S 1188); Wilson, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects (6921, M/S 1138); Le, Hai D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Kao, Gio K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Networked System Survivability & Assurance (5629, M/S 0671); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Software Systems R& D (9525, M/S 1188); Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Jr., Robert C. [SAIC, Inc., Albuquerque, NM (United States)

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  14. FY 2014 LDRD Annual Report Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Tomchak, Dena [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  15. Integrated computer control system CORBA-based simulator FY98 LDRD project final summary report

    International Nuclear Information System (INIS)

    Bryant, R M; Holloway, F W; Van Arsdall, P J.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control architecture. The simulator project used a three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. This summary report highlights the findings of the team and provides the architectural context of the study. For the last several years LLNL has been developing the Integrated Computer Control System (ICCS), which is an abstract object-oriented software framework for constructing distributed systems. The framework is capable of implementing large event-driven control systems for mission-critical facilities such as the National Ignition Facility (NIF). Tools developed in this project were applied to the NIF example architecture in order to gain experience with a complex system and derive immediate benefits from this LDRD. The ICCS integrates data acquisition and control hardware with a supervisory system, and reduces the amount of new coding and testing necessary by providing prebuilt components that can be reused and extended to accommodate specific additional requirements. The framework integrates control point hardware with a supervisory system by providing the services needed for distributed control such as database persistence, system start-up and configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. The design is interoperable among computers of different kinds and provides plug-in software connections by leveraging a common object request brokering architecture (CORBA) to transparently distribute software objects across the network of computers. Because object broker distribution applied to control systems is relatively new and its inherent performance is roughly threefold less than traditional point

  16. Final report on LDRD project ''proliferation-resistant fuel cycles''

    International Nuclear Information System (INIS)

    Brown, N W; Hassberger, J A.

    1999-01-01

    This report provides a summary of LDRD work completed during 1997 and 1998 to develop the ideas and concepts that lead to the Secure, Transportable, Autonomous Reactor (STAR) program proposals to the DOE Nuclear Energy Research Initiative (NERI). The STAR program consists of a team of three national laboratories (LLNL, ANL, and LANL), three universities, (UC Berkeley, TAMU, and MIT) and the Westinghouse Research Center. Based on the LLNL work and their own efforts on related work this team prepared and integrated a package of twelve proposals that will carry the LDRD work outlined here into the next phase of development. We are proposing to develop a new nuclear system that meets stringent requirements for a high degree of safety and proliferation resistance, and also deals directly with the related nuclear waste and spent fuel management issues

  17. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  18. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  19. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  20. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  1. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  2. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  3. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  4. LDRD FY 2014 Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  5. Selected Examples of LDRD Projects Supporting Test Ban Treaty Verification and Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walter, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-23

    The Laboratory Directed Research and Development (LDRD) Program at the DOE National Laboratories was established to ensure the scientific and technical vitality of these institutions and to enhance the their ability to respond to evolving missions and anticipate national needs. LDRD allows the Laboratory directors to invest a percentage of their total annual budget in cutting-edge research and development projects within their mission areas. We highlight a selected set of LDRD-funded projects, in chronological order, that have helped provide capabilities, people and infrastructure that contributed greatly to our ability to respond to technical challenges in support of test ban treaty verification and nonproliferation.

  6. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  7. A Case Study in Competitive Technical and Market Intelligence Support and Lessons Learned for the uChemLab LDRD Grand Challenge Project; TOPICAL

    International Nuclear Information System (INIS)

    SOUTHWELL, EDWIN T.; GARCIA, MARIE L.; MEYERS, CHARLES E.

    2001-01-01

    The(mu)ChemLab(trademark) Laboratory Directed Research and Development (LDRD) Grand Challenge project began in October 1996 and ended in September 2000. The technical managers of the(mu)ChemLab(trademark) project and the LDRD office, with the support of a consultant, conducted a competitive technical and market demand intelligence analysis of the(mu)ChemLab(trademark). The managers used this knowledge to make project decisions and course adjustments. CTI/MDI positively impacted the project's technology development, uncovered potential technology partnerships, and supported eventual industry partner contacts. CTI/MDI analysis is now seen as due diligence and the(mu)ChemLab(trademark) project is now the model for other Sandia LDRD Grand Challenge undertakings. This document describes the CTI/MDI analysis and captures the more important ''lessons learned'' of this Grand Challenge project, as reported by the project's management team

  8. Neurons to algorithms LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Aimone, James Bradley; Warrender, Christina E.; Trumbo, Derek

    2013-09-01

    Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built infrastructure to discover computational structures in the brain. This consists of a modeling language, a tool that enables model development and simulation in that language, and initial connections with the Neuroinformatics community, a group working toward similar goals. The approach of N2A is to express large complex systems like the brain as populations of a discrete part types that have specific structural relationships with each other, along with internal and structural dynamics. Such an evolving mathematical system may be able to capture the essence of neural processing, and ultimately of thought itself. This final report is a cover for the actual products of the project: the N2A Language Specification, the N2A Application, and a journal paper summarizing our methods.

  9. 2014 SRNL LDRD Annual Report, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Mcwhorter, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element in maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.

  10. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    International Nuclear Information System (INIS)

    Anderson, Robert J.

    2014-01-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  11. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  12. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic and Security Systems Dept.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  13. Small space object imaging : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  14. Idaho National Laboratory LDRD Annual Report FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2013-03-01

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  15. Final report on LDRD project : coupling strategies for multi-physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.

    2007-11-01

    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

  16. Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wilton, Donald R. (University of Houston, Houston, TX); Basilio, Lorena I.; Peters, David William; Capolino, F. (University of Houston, Houston, TX)

    2006-10-01

    In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

  17. THz transceiver characterization : LDRD project 139363 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  18. 2013 SRNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McWhorter, S. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation in National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.

  19. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, Eric C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); von Winckel, Gregory John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardiner, Thomas Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Sean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.

  20. Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.; Gabert, Kasimir Georg; Edgett, Patrick Garrett; Thai, Tan Q.

    2010-09-01

    This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elastic Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.

  1. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  2. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III (; ); Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale (1722 Micro-Total-Analytical Systems); Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  3. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  4. Main group adducts of carbon dioxide and related chemistry (LDRD 149938).

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Brian M. (University of New Mexico, Albuquerque, NM); Kemp, Richard Alan; Stewart, Constantine A.; Dickie, Diane A. (University of New Mexico, Albuquerque, NM)

    2010-11-01

    This late-start LDRD was broadly focused on the synthetic attempts to prepare novel ligands as complexing agents for main group metals for the sequestration of CO{sub 2}. In prior work we have shown that certain main group (p block elements) metals such as tin and zinc, when ligated to phosphinoamido- ligands, can bind CO{sub 2} in a novel fashion. Rather than simple insertion into the metal-nitrogen bonds to form carbamates, we have seen the highly unusual complexation of CO{sub 2} in a mode that is more similar to a chemical 'adduct' rather than complexation schemes that have been observed previously. The overarching goal in this work is to prepare more of these complexes that can (a) sequester (or bind) CO{sub 2} easily in this adduct form, and (b) be stable to chemical or electrochemical reduction designed to convert the CO{sub 2} to useful fuels or fuel precursors. The currently used phosphinoamido- ligands appear at this point to be less-stable than desired under electrochemical reduction conditions. This instability is believed due to the more delicate, reactive nature of the ligand framework system. In order to successfully capture and convert CO{sub 2} to useful organics, this instability must be addressed and solved. Work described in the late-start LDRD was designed to screen a variety of ligand/metal complexes that a priori are believed to be more stable to polar solvents and possible mild hydrolytic conditions than are the phosphinoamido-ligands. Results from ligand syntheses and metal complexation studies are reported.

  5. Nanoporous Silica Templated HeteroEpitaxy: Final LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Koleske, Daniel; Rowen, Adam M.; Williams, John Dalton; Fan, Hongyou; Arrington, Christian Lew

    2006-11-01

    This one-year out-of-the-box LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, and the UV curable epoxy, SU-8. Use of SU-8 as a growth mask represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist patterns and pilot work on using SU-8 as a DUV negative resist, another significant potential result. While the late start nature of this project pushed some of the initial research goals out of the time table, significant progress was made. 3 Acknowledgements This work was performed in part at the Nanoscience @ UNM facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765). Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia LDRD program (Project 99405). 4

  6. Accommodating complexity and human behaviors in decision analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Siirola, John Daniel; Schoenwald, David Alan; Strip, David R.; Hirsch, Gary B.; Bastian, Mark S.; Braithwaite, Karl R.; Homer, Jack [Homer Consulting

    2007-11-01

    This is the final report for a LDRD effort to address human behavior in decision support systems. One sister LDRD effort reports the extension of this work to include actual human choices and additional simulation analyses. Another provides the background for this effort and the programmatic directions for future work. This specific effort considered the feasibility of five aspects of model development required for analysis viability. To avoid the use of classified information, healthcare decisions and the system embedding them became the illustrative example for assessment.

  7. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    Energy Technology Data Exchange (ETDEWEB)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  8. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  9. Interface physics in microporous media : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Knutson, Chad E.; Noble, David R.; Aragon, Alicia R.; Chen, Ken Shuang; Giordano, Nicholas J. (Purdue University, West Lafayette, IN); Brooks, Carlton, F.; Pyrak-Nolte, Laura J. (Purdue University, West Lafayette, IN); Liu, Yihong (Purdue University, West Lafayette, IN)

    2008-09-01

    This document contains a summary of the work performed under the LDRD project entitled 'Interface Physics in Microporous Media'. The presence of fluid-fluid interfaces, which can carry non-zero stresses, distinguishes multiphase flows from more readily understood single-phase flows. In this work the physics active at these interfaces has been examined via a combined experimental and computational approach. One of the major difficulties of examining true microporous systems of the type found in filters, membranes, geologic media, etc. is the geometric uncertainty. To help facilitate the examination of transport at the pore-scale without this complication, a significant effort has been made in the area of fabrication of both two-dimensional and three-dimensional micromodels. Using these micromodels, multiphase flow experiments have been performed for liquid-liquid and liquid-gas systems. Laser scanning confocal microscopy has been utilized to provide high resolution, three-dimensional reconstructions as well as time resolved, two-dimensional reconstructions. Computational work has focused on extending lattice Boltzmann (LB) and finite element methods for probing the interface physics at the pore scale. A new LB technique has been developed that provides over 100x speed up for steady flows in complex geometries. A new LB model has been developed that allows for arbitrary density ratios, which has been a significant obstacle in applying LB to air-water flows. A new reduced order model has been developed and implemented in finite element code for examining non-equilibrium wetting in microchannel systems. These advances will enhance Sandia's ability to quantitatively probe the rich interfacial physics present in microporous systems.

  10. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  11. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  12. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rushdi, Ahmad A. [Univ. of Texas, Austin, TX (United States); Abdelkader, Ahmad [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  13. ParaText : scalable solutions for processing and searching very large document collections : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Crossno, Patricia Joyce; Dunlavy, Daniel M.; Stanton, Eric T.; Shead, Timothy M.

    2010-09-01

    This report is a summary of the accomplishments of the 'Scalable Solutions for Processing and Searching Very Large Document Collections' LDRD, which ran from FY08 through FY10. Our goal was to investigate scalable text analysis; specifically, methods for information retrieval and visualization that could scale to extremely large document collections. Towards that end, we designed, implemented, and demonstrated a scalable framework for text analysis - ParaText - as a major project deliverable. Further, we demonstrated the benefits of using visual analysis in text analysis algorithm development, improved performance of heterogeneous ensemble models in data classification problems, and the advantages of information theoretic methods in user analysis and interpretation in cross language information retrieval. The project involved 5 members of the technical staff and 3 summer interns (including one who worked two summers). It resulted in a total of 14 publications, 3 new software libraries (2 open source and 1 internal to Sandia), several new end-user software applications, and over 20 presentations. Several follow-on projects have already begun or will start in FY11, with additional projects currently in proposal.

  14. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.; McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.; Davis, Chad Edward

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field tests addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.

  15. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  16. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  17. Terahertz spectral signatures :measurement and detection LDRD project 86361 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Brener, Igal; Lee, Mark

    2005-11-01

    LDRD Project 86361 provided support to upgrade the chemical and material spectral signature measurement and detection capabilities of Sandia National Laboratories using the terahertz (THz) portion of the electromagnetic spectrum, which includes frequencies between 0.1 to 10 THz. Under this project, a THz time-domain spectrometer was completed. This instrument measures sample absorption spectra coherently, obtaining both magnitude and phase of the absorption signal, and has shown an operating signal-to-noise ratio of 10{sub 4}. Additionally, various gas cells and a reflectometer were added to an existing high-resolution THz Fourier transform spectrometer, which greatly extend the functionality of this spectrometer. Finally, preliminary efforts to design an integrated THz transceiver based on a quantum cascade laser were begun.

  18. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.; Volk, David; Neerathilingam, Muniasamy; Luxon, Bruce A.; Ansari, G. A. Shakeel

    2009-01-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  19. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Electronic and Nanostructured Materials; Alam, Mary Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetics Characterization Dept.; McIntyre, Sarah K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Electronic and Nanostructured Materials; Volk, David [Univ. of Texas, Galveston, TX (United States). Medical Branch; Neerathilingam, Muniasamy [Univ. of Texas, Galveston, TX (United States). Medical Branch; Luxon, Bruce A. [Univ. of Texas, Galveston, TX (United States). Medical Branch; Ansari, G. A. Shakeel [Univ. of Texas, Galveston, TX (United States). Medical Branch

    2009-10-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  20. Retrospective on the Seniors' Council Tier 1 LDRD portfolio.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, William Parker

    2012-04-01

    This report describes the Tier 1 LDRD portfolio, administered by the Seniors Council between 2003 and 2011. 73 projects were sponsored over the 9 years of the portfolio at a cost of $10.5 million which includes $1.9M of a special effort in directed innovation targeted at climate change and cyber security. Two of these Tier 1 efforts were the seeds for the Grand Challenge LDRDs in Quantum Computing and Next Generation Photovoltaic conversion. A few LDRDs were terminated early when it appeared clear that the research was not going to succeed. A great many more were successful and led to full Tier 2 LDRDs or direct customer sponsorship. Over a dozen patents are in various stages of prosecution from this work, and one project is being submitted for an R and D 100 award.

  1. Behavior-aware decision support systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.; Homer, Jack (Homer Consulting); Chenoweth, Brooke N.; Backus, George A.; Strip, David R.

    2007-11-01

    As Sandia National Laboratories serves its mission to provide support for the security-related interests of the United States, it is faced with considering the behavioral responses that drive problems, mitigate interventions, or lead to unintended consequences. The effort described here expands earlier works in using healthcare simulation to develop behavior-aware decision support systems. This report focuses on using qualitative choice techniques and enhancing two analysis models developed in a sister project.

  2. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J. (Los Alamos National Laboratory); Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  3. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  4. Noncontact surface thermometry for microsystems: LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Mark (Georgia Institute of Technology, Atlanta, GA); Beecham, Thomas (Georgia Institute of Technology, Atlanta, GA); Graham, Samuel (Georgia Institute of Technology, Atlanta, GA); Kearney, Sean Patrick; Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-10-01

    We describe a Laboratory Directed Research and Development (LDRD) effort to develop and apply laser-based thermometry diagnostics for obtaining spatially resolved temperature maps on working microelectromechanical systems (MEMS). The goal of the effort was to cultivate diagnostic approaches that could adequately resolve the extremely fine MEMS device features, required no modifications to MEMS device design, and which did not perturb the delicate operation of these extremely small devices. Two optical diagnostics were used in this study: microscale Raman spectroscopy and microscale thermoreflectance. Both methods use a low-energy, nonperturbing probe laser beam, whose arbitrary wavelength can be selected for a diffraction-limited focus that meets the need for micron-scale spatial resolution. Raman is exploited most frequently, as this technique provides a simple and unambiguous measure of the absolute device temperature for most any MEMS semiconductor or insulator material under steady state operation. Temperatures are obtained from the spectral position and width of readily isolated peaks in the measured Raman spectra with a maximum uncertainty near {+-}10 K and a spatial resolution of about 1 micron. Application of the Raman technique is demonstrated for V-shaped and flexure-style polycrystalline silicon electrothermal actuators, and for a GaN high-electron-mobility transistor. The potential of the Raman technique for simultaneous measurement of temperature and in-plane stress in silicon MEMS is also demonstrated and future Raman-variant diagnostics for ultra spatio-temporal resolution probing are discussed. Microscale thermoreflectance has been developed as a complement for the primary Raman diagnostic. Thermoreflectance exploits the small-but-measurable temperature dependence of surface optical reflectivity for diagnostic purposes. The temperature-dependent reflectance behavior of bulk silicon, SUMMiT-V polycrystalline silicon films and metal surfaces is

  5. Evaluation of Corba for use in distributed control systems

    International Nuclear Information System (INIS)

    Holloway, F.W.; Arsdall, P. van

    1999-01-01

    The Common Object Request Broker Architecture (CORBA)-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about advanced distributed control system architectures. A three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios was used in the LDRD project. This input report describes the first of the three approaches the study of object-oriented distribution tools together with measurements, and predictions of use within the National Ignition Facility (NIF) and some aspects of CORBA which remain to be resolved. For the ICCS, the completeness of suitable functionality, the speed of performance and utilization of machine and network resources, and the developing nature of the commercial CORBA products themselves, presented a certain risk. This LDRD thus evaluated CORBA in general, and a particular implementation, to determine its features, performance, and scaling properties, and to optimize its use within the ICCS. Both UNIX and real-time operating systems were studied

  6. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, W. Philip, Jr.

    2010-11-01

    This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

  7. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    Energy Technology Data Exchange (ETDEWEB)

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  8. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation hardened CMOS devices and circuits - LDRD Project (FY99)

    International Nuclear Information System (INIS)

    Myers, David R.; Jessing, Jeffrey R.; Spahn, Olga B.; Shaneyfelt, Marty R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds

  9. LDRD final report: photonic analog-to-digital converter (ADC) technology; TOPICAL

    International Nuclear Information System (INIS)

    Bowers, M; Deri, B; Haigh, R; Lowry, M; Sargis, P; Stafford, R; Tong, T

    1999-01-01

    We report on an LDRD seed program of novel technology development (started by an FY98 Engineering Tech-base project) that will enable extremely high-fidelity analog-to-digital converters for a variety of national security missions. High speed (l0+ GS/s ), high precision (l0+ bits) ADC technology requires extremely short aperture times ((approx)1ps ) with very low jitter requirements (sub 10fs ). These fundamental requirements, along with other technological barriers, are difficult to realize with electronics: However, we outline here, a way to achieve these timing apertures using a novel multi-wavelength optoelectronic short-pulse optical source. Our approach uses an optoelectronic feedback scheme with high optical Q to produce an optical pulse train with ultra-low jitter ( sub 5fs) and high amplitude stability ( and lt;10(sup 10)). This approach requires low power and can be integrated into an optoelectronic integrated circuit to minimize the size. Under this seed program we have demonstrated that the optical feedback mechanism can be used to generate a high Q resonator. This has reduced the technical risk for further development, making it an attractive candidate for outside funding

  10. LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC.

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevich, Donna D.; Xavier, Patrick Gordon; Brannon, Nathan Gregory; Hart, Brian E.; Hart, Derek H.; Little, Charles Quentin; Oppel, Fred John III; Linebarger, John Michael; Parker, Eric Paul

    2012-01-01

    This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimental study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.

  11. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger

    2011-12-01

    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  12. LDRD HPC4Energy Wrapup Report - LDRD 12-ERD-074

    Energy Technology Data Exchange (ETDEWEB)

    Dube, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grosh, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-23

    High-performance computing and simulation has the potential to optimize production, distribution, and conversion of energy. Although a number of concepts have been discussed, a comprehensive research project to establish and quantify the effectiveness of computing and simulation at scale to core energy problems has not been conducted. We propose to perform the basic research to adapt existing high-performance computing tools and simulation approaches to two selected classes of problems common across the energy sector. The first, applying uncertainty quantification and contingency analysis techniques to energy optimization, allows us to assess the effectiveness of LLNL core competencies to problems such as grid optimization and building-system efficiency. The second, applying adaptive meshing and numerical analysis techniques to physical problems at fine scale, could allow immediate impacts in key areas such as efficient combustion and fracture and spallation. By creating an integrated project team with the necessary expertise, we can efficiently address these issues, delivering both near-term results as well as quantifying developments needed to address future energy challenges.

  13. RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David; Lee, Mark; Hsu, Julia W. P.; Highstrete, Clark

    2009-09-01

    LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

  14. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    International Nuclear Information System (INIS)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-01-01

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy and Environment (E and E) and Chemistry and Material Sciences (C and MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E and E and C and MS Directorates co-sponsored this Laboratory Directed Research and Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US

  15. A Complex Systems Approach to More Resilient Multi-Layered Security Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathanael J. K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bandlow, Alisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nozick, Linda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levin, Drew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whetzel, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    In July 2012, protestors cut through security fences and gained access to the Y-12 National Security Complex. This was believed to be a highly reliable, multi-layered security system. This report documents the results of a Laboratory Directed Research and Development (LDRD) project that created a consistent, robust mathematical framework using complex systems analysis algorithms and techniques to better understand the emergent behavior, vulnerabilities and resiliency of multi-layered security systems subject to budget constraints and competing security priorities. Because there are several dimensions to security system performance and a range of attacks that might occur, the framework is multi-objective for a performance frontier to be estimated. This research explicitly uses probability of intruder interruption given detection (PI) as the primary resilience metric. We demonstrate the utility of this framework with both notional as well as real-world examples of Physical Protection Systems (PPSs) and validate using a well-established force-on-force simulation tool, Umbra.

  16. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  17. Hybrid methods for cybersecurity analysis :

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and

  18. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670

    International Nuclear Information System (INIS)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-01-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting)

  19. Development of an integrated system for estimating human error probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.

  20. Final Report for LDRD Project 02-FS-009 Gigapixel Surveillance Camera

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R E; Bennett, C L

    2010-04-20

    The threats of terrorism and proliferation of weapons of mass destruction add urgency to the development of new techniques for surveillance and intelligence collection. For example, the United States faces a serious and growing threat from adversaries who locate key facilities underground, hide them within other facilities, or otherwise conceal their location and function. Reconnaissance photographs are one of the most important tools for uncovering the capabilities of adversaries. However, current imaging technology provides only infrequent static images of a large area, or occasional video of a small area. We are attempting to add a new dimension to reconnaissance by introducing a capability for large area video surveillance. This capability would enable tracking of all vehicle movements within a very large area. The goal of our project is the development of a gigapixel video surveillance camera for high altitude aircraft or balloon platforms. From very high altitude platforms (20-40 km altitude) it would be possible to track every moving vehicle within an area of roughly 100 km x 100 km, about the size of the San Francisco Bay region, with a gigapixel camera. Reliable tracking of vehicles requires a ground sampling distance (GSD) of 0.5 to 1 m and a framing rate of approximately two frames per second (fps). For a 100 km x 100 km area the corresponding pixel count is 10 gigapixels for a 1-m GSD and 40 gigapixels for a 0.5-m GSD. This is an order of magnitude beyond the 1 gigapixel camera envisioned in our LDRD proposal. We have determined that an instrument of this capacity is feasible.

  1. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  2. Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

    International Nuclear Information System (INIS)

    Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.

    1994-01-01

    One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 x speedup over our starting-point Cray2 simulation code's performance

  3. A complexity science-based framework for global joint operations analysis to support force projection: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Sustainment & Readiness Technologies Dept.

    2015-01-01

    The military is undergoing a significant transformation as it modernizes for the information age and adapts to address an emerging asymmetric threat beyond traditional cold war era adversaries. Techniques such as traditional large-scale, joint services war gaming analysis are no longer adequate to support program evaluation activities and mission planning analysis at the enterprise level because the operating environment is evolving too quickly. New analytical capabilities are necessary to address modernization of the Department of Defense (DoD) enterprise. This presents significant opportunity to Sandia in supporting the nation at this transformational enterprise scale. Although Sandia has significant experience with engineering system of systems (SoS) and Complex Adaptive System of Systems (CASoS), significant fundamental research is required to develop modeling, simulation and analysis capabilities at the enterprise scale. This report documents an enterprise modeling framework which will enable senior level decision makers to better understand their enterprise and required future investments.

  4. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  5. Final report for LDRD project 11-0783 : directed robots for increased military manpower effectiveness.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Wagner, John S.; Xavier, Patrick Gordon; Morrow, James Dan

    2011-09-01

    The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier from harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.

  6. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  7. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  8. Final report LDRD project 105816 : model reduction of large dynamic systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Richard B.; Segalman, Daniel Joseph; Hetmaniuk, Ulrich L. (University of Washington, Seattle, WA); Dohrmann, Clark R.

    2009-10-01

    Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.

  9. Integrated NEMS and optoelectronics for sensor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  10. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  11. Approaches for scalable modeling and emulation of cyber systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.; Rudish, Don W.

    2009-09-01

    The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminary theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.

  12. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  13. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  14. Transportation Energy Pathways LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Barter, Garrett. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reichmuth, David. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Westbrook, Jessica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoshimura, Ann S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Meghan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn Kataoka [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guzman, Katherine Dunphy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Edwards, Donna M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hines, Valerie Ann-Peters [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especially when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and

  15. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for

  16. Advances in radiation modeling in ALEGRA :a final report for LDRD-67120, efficient implicit mulitgroup radiation calculations.

    Energy Technology Data Exchange (ETDEWEB)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J. (University of Michigan, Ann Arbor, MI); McClarren, Ryan (University of Michigan, Ann Arbor, MI); Brunner, Thomas A.; Holloway, James Paul (University of Michigan, Ann Arbor, MI)

    2005-11-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation.

  17. Advances in radiation modeling in ALEGRA: a final report for LDRD-67120, efficient implicit multigroup radiation calculations

    International Nuclear Information System (INIS)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J.; McClarren, Ryan; Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation

  18. Development of a portable preconcentrator/ion mobility spectrometer system for the trace detection of narcotics

    Energy Technology Data Exchange (ETDEWEB)

    Parmeter, J.E.; Custer, C.A.

    1997-08-01

    This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on their characteristics IMS signatures.

  19. Reduced Order Modeling for Prediction and Control of Large-Scale Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikova, Irina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Mathematics; Arunajatesan, Srinivasan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Aerosciences Dept.; Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Aerosciences Dept.; van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Uncertainty Quantification and Optimization Dept.; Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics Dept.

    2014-05-01

    This report describes work performed from June 2012 through May 2014 as a part of a Sandia Early Career Laboratory Directed Research and Development (LDRD) project led by the first author. The objective of the project is to investigate methods for building stable and efficient proper orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a sequence of high-fidelity simulations but having a much lower computational cost. Since they are, by construction, small and fast, ROMs can enable real-time simulations of complex systems for onthe- spot analysis, control and decision-making in the presence of uncertainty. Of particular interest to Sandia is the use of ROMs for the quantification of the compressible captive-carry environment, simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality that many ROM techniques are computationally intractable or lack an a priori stability guarantee for compressible flows. For this reason, this LDRD project focuses on the development of techniques for building provably stable projection-based ROMs. Model reduction approaches based on continuous as well as discrete projection are considered. In the first part of this report, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. The key idea is to apply a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. It is shown that, for many PDE systems including the linearized compressible Euler and linearized compressible Navier-Stokes equations, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Attention is then turned to nonlinear conservation laws. A new transformation and corresponding energy-based inner product for the full nonlinear compressible Navier

  20. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  1. The theory of diversity and redundancy in information system security : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R. (Sandia National Laboratories, Livermore, CA); Torgerson, Mark Dolan; Walker, Andrea Mae; Armstrong, Robert C. (Sandia National Laboratories, Livermore, CA); Allan, Benjamin A. (Sandia National Laboratories, Livermore, CA); Pierson, Lyndon George

    2010-10-01

    The goal of this research was to explore first principles associated with mixing of diverse implementations in a redundant fashion to increase the security and/or reliability of information systems. Inspired by basic results in computer science on the undecidable behavior of programs and by previous work on fault tolerance in hardware and software, we have investigated the problem and solution space for addressing potentially unknown and unknowable vulnerabilities via ensembles of implementations. We have obtained theoretical results on the degree of security and reliability benefits from particular diverse system designs, and mapped promising approaches for generating and measuring diversity. We have also empirically studied some vulnerabilities in common implementations of the Linux operating system and demonstrated the potential for diversity to mitigate these vulnerabilities. Our results provide foundational insights for further research on diversity and redundancy approaches for information systems.

  2. Final Report: Sublinear Algorithms for In-situ and In-transit Data Analysis at Exascale.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pinar, Ali [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seshadhri, C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Thompson, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Salloum, Maher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bhagatwala, Ankit [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.

  3. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  4. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.

  5. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  6. LDRD report nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, D.; Heinstein, M.

    1997-09-01

    The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.

  7. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    International Nuclear Information System (INIS)

    Bowman, P.

    2016-01-01

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has been considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.

  8. Recommended Research Directions for Improving the Validation of Complex Systems Models.

    Energy Technology Data Exchange (ETDEWEB)

    Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finley, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naugle, Asmeret Bier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Improved validation for models of complex systems has been a primary focus over the past year for the Resilience in Complex Systems Research Challenge. This document describes a set of research directions that are the result of distilling those ideas into three categories of research -- epistemic uncertainty, strong tests, and value of information. The content of this document can be used to transmit valuable information to future research activities, update the Resilience in Complex Systems Research Challenge's roadmap, inform the upcoming FY18 Laboratory Directed Research and Development (LDRD) call and research proposals, and facilitate collaborations between Sandia and external organizations. The recommended research directions can provide topics for collaborative research, development of proposals, workshops, and other opportunities.

  9. A Molecular Theory for Gatekeeper Proteins; FINAL

    International Nuclear Information System (INIS)

    FRINK, LAURA J. D.; SALINGER, ANDREW G.

    1999-01-01

    Predicting the behavior of ion channel proteins is important for understanding biological effects of drugs and toxins. These problems involve steady state transport of ions through very small (1-2 atoms wide) pores. FY99 LDRD funding was used to begin investigations of ion channel proteins using a molecular theory approach. Much of our efforts involved establishing the soundness of the approach by direct comparison with grand canonical molecular dynamics simulations of simple model systems. In addition, several dimensional ion channel models have been implemented to demonstrate the viability of the approach, The seed funding provided by this LDRD grant resulted in 50K of DOWOBER funds for FY99, an invitation to submit a full length 0(500K) proposal for consideration to DOWOBER, and start a larger LDRD effort in computational biophysics beginning in FY00

  10. High-Assurance Software: LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hulette, Geoffrey Compton

    2014-06-01

    This report summarizes our work on methods for developing high-assurance digital systems. We present an approach for understanding and evaluating trust issues in digital systems, and for us- ing computer-checked proofs as a means for realizing this approach. We describe the theoretical background for programming with proofs based on the Curry-Howard correspondence, connect- ing the field of logic and proof theory to programs. We then describe a series of case studies, intended to demonstrate how this approach might be adopted in practice. In particular, our stud- ies elucidate some of the challenges that arise with this style of certified programming, including induction principles, generic programming, termination requirements, and reasoning over infinite state spaces.

  11. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  12. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  13. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  14. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  15. Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, R. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Nevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jankovsky, Zachary Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities. iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.

  16. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  17. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  18. Autonomous intelligent assembly systems LDRD 105746 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.

  19. Innovative Measurement Diagnostics for Analysis of Jet Interactions in Rotating Flowfields; TOPICAL

    International Nuclear Information System (INIS)

    AMATUCCI, VINCENT A.; BERESH, STEVEN J.; HENFLING, JOHN F.; ERVEN, ROCKY J.; BOURDON, CHRIS J.

    2002-01-01

    The present document summarizes the experimental efforts of a three-year study funded under the Laboratory Directed Research and Development program of Sandia National Laboratories. The Innovative Diagnostics LDRD project was designed to develop new measurement capabilities to examine the interaction of a propulsive spin jet in a transonic freestream for a model in a wind tunnel. The project motivation was the type of jet/fin interactions commonly occurring during deployment of weapon systems. In particular, the two phenomena of interest were the interaction of the propulsive spin jet with the freestream in the vicinity of the nozzle and the impact of the spin rocket plume and its vortices on the downstream fins. The main thrust of the technical developments was to incorporate small-size, Lagrangian sensors for pressure and roll-rate on a scale model and include data acquisition, transmission, and power circuitry onboard. FY01 was the final year of the three-year LDRD project and the team accomplished much of the project goals including use of micron-scale pressure sensors, an onboard telemetry system for data acquisition and transfer, onboard jet exhaust, and roll-rate measurements. A new wind tunnel model was designed, fabricated, and tested for the program which incorporated the ability to house multiple MEMS-based pressure sensors, interchangeable vehicle fins with pressure instrumentation, an onboard multiple-channel telemetry data package, and a high-pressure jet exhaust simulating a spin rocket motor plume. Experiments were conducted for a variety of MEMS-based pressure sensors to determine performance and sensitivity in order to select pressure transducers for use. The data acquisition and analysis path was most successful by using multiple, 16-channel data processors with telemetry capability to a receiver outside the wind tunnel. The development of the various instrumentation paths led to the fabrication and installation of a new wind tunnel model for

  20. Nuclear Futures Analysis and Scenario Building

    International Nuclear Information System (INIS)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-01-01

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios

  1. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  2. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  3. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  4. System analysis and design

    International Nuclear Information System (INIS)

    Son, Seung Hui

    2004-02-01

    This book deals with information technology and business process, information system architecture, methods of system development, plan on system development like problem analysis and feasibility analysis, cases for system development, comprehension of analysis of users demands, analysis of users demands using traditional analysis, users demands analysis using integrated information system architecture, system design using integrated information system architecture, system implementation, and system maintenance.

  5. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  6. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  7. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  8. Automated visual direction : LDRD 38623 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2005-01-01

    Mobile manipulator systems used by emergency response operators consist of an articulated robot arm, a remotely driven base, a collection of cameras, and a remote communications link. Typically the system is completely teleoperated, with the operator using live video feedback to monitor and assess the environment, plan task activities, and to conduct the operations via remote control input devices. The capabilities of these systems are limited, and operators rarely attempt sophisticated operations such as retrieving and utilizing tools, deploying sensors, or building up world models. This project has focused on methods to utilize this video information to enable monitored autonomous behaviors for the mobile manipulator system, with the goal of improving the overall effectiveness of the human/robot system. Work includes visual servoing, visual targeting, utilization of embedded video in 3-D models, and improved methods of camera utilization and calibration.

  9. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  10. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  11. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  12. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  13. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  14. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  15. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  16. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  17. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  18. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

  19. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  20. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  1. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  2. Systems engineering and analysis

    CERN Document Server

    Blanchard, Benjamin S

    2010-01-01

    For senior-level undergraduate and first and second year graduate systems engineering and related courses. A total life-cycle approach to systems and their analysis. This practical introduction to systems engineering and analysis provides the concepts, methodologies, models, and tools needed to understand and implement a total life-cycle approach to systems and their analysis. The authors focus first on the process of bringing systems into being--beginning with the identification of a need and extending that need through requirements determination, functional analysis and allocation, design synthesis, evaluation, and validation, operation and support, phase-out, and disposal. Next, the authors discuss the improvement of systems currently in being, showing that by employing the iterative process of analysis, evaluation, feedback, and modification, most systems in existence can be improved in their affordability, effectiveness, and stakeholder satisfaction.

  3. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    Science.gov (United States)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  4. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  5. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  6. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  7. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  8. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  9. Development of pair distribution function analysis

    International Nuclear Information System (INIS)

    Vondreele, R.; Billinge, S.; Kwei, G.; Lawson, A.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. It has become more and more evident that structural coherence in the CuO 2 planes of high-T c superconducting materials over some intermediate length scale (nm range) is important to superconductivity. In recent years, the pair distribution function (PDF) analysis of powder diffraction data has been developed for extracting structural information on these length scales. This project sought to expand and develop this technique, use it to analyze neutron powder diffraction data, and apply it to problems. In particular, interest is in the area of high-T c superconductors, although we planned to extend the study to the closely related perovskite ferroelectric materials andother materials where the local structure affects the properties where detailed knowledge of the local and intermediate range structure is important. In addition, we planned to carry out single crystal experiments to look for diffuse scattering. This information augments the information from the PDF

  10. PLACE OF PRODUCTION COSTS SYSTEM ANALYSIS IN SYSTEM ANALYSIS

    Directory of Open Access Journals (Sweden)

    Mariia CHEREDNYCHENKO

    2016-12-01

    Full Text Available Current economic conditions require the development and implementation of an adequate system of production costs, which would ensure a steady profit growth and production volumes in a highly competitive, constantly increasing input prices and tariffs. This management system must be based on an integrated production costs system analysis (PCSA, which would provide all operating costs management subsystems necessary information to design and make better management decisions. It provides a systematic analysis of more opportunities in knowledge, creating conditions of integrity mechanism knowledge object consisting of elements that show intersystem connections, each of which has its own defined and limited objectives, relationship with the environment.

  11. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  12. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  13. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  14. LDRD final report on nanocomposite materials based on hydrocarbon-bridged siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, T.A.; Bates, S.E.; Loy, D.A.; Jamison, G.M.; Emerson, J.A.; Curro, J.G.

    1997-05-01

    Silicones [polydimethylsiloxane (PDMS) polymers] are environmentally safe, nonflammable, weather resistant, thermally stable, low T{sub g} materials which are attractive for general elastomer applications because of their safety and their performance over a wide temperature range. However, PDMS is inherently weak due to its low glass transition temperature (T{sub g}) and lack of stress crystallization. The major goal of this project was to create a family of reinforced elastomers based on silsesquioxane/PDMS networks. Polydimethylsiloxane-based (PDMS) composite materials containing a variety of alkylene-arylene-bridged polysilsesquioxanes were synthesized in order to probe short chain and linkage effects in bimodal polymer networks. Monte Carlo simulations on the alkylene-bridged silsesquioxane/PDMS system predicted that the introduction of the silsesquioxane short chains into the long chain PDMS network would have a significant reinforcing effect on the elastomer. The silsesquioxane-PDMS networks were synthesized and evaluated. Analysis of the mechanical properties of the resulting materials indicated that use of the appropriate silisesquioxane generated materials with greatly enhanced properties. Arylene and activated alkylene systems resulted in materials that showed superior adhesive strength for metal-to-metal adhesion.

  15. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  16. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  17. Development of Transient-Reactor Analysis Code (TRAC) for real-time applications

    International Nuclear Information System (INIS)

    Niederauer, G.F.; Giguere, P.T.; Lime, J.F.; Knight, T.D.; Ashy, O.; Fakory, R.

    1997-01-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Nuclear-plant training simulators employ simplified one-dimensional thermal-hydraulics codes because of the demands to run in real time and with limited computing power. The objective of this project was to investigate the feasibility of using the advanced Transient-Reactor Analysis Code (TRAC) in a simulator to increase the fidelity of a simulator. Many issues need to be addressed to take such a complex code from a batch engineering environment to a real-time environment. Working with simulator vendor, GSE, the authors investigated the technical issues relating to integrating TRAC into a real-time environment. They also modified a nuclear power plant model for simulator purposes and investigated its performance in real time

  18. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  19. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  20. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  1. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  2. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  3. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  4. Wavelet theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  5. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  6. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  7. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  8. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  9. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  10. Bartus Iris biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R.; Grace, W.

    1996-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We won a 1994 R&D 100 Award for inventing the Bartas Iris Verification System. The system has been delivered to a sponsor and is no longer available to us. This technology can verify the identity of a person for purposes of access control, national security, law enforcement, forensics, counter-terrorism, and medical, financial, or scholastic records. The technique is non-invasive, psychologically acceptable, works in real-time, and obtains more biometric data than any other biometric except DNA analysis. This project sought to develop a new, second-generation prototype instrument.

  11. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  12. Laboratory Directed Research and Development Program Assessment for FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States); Barkigia, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Giacalone, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    This report provides an overview of the BNL LDRD program and a summary of the management processes, project peer review, a financial overview, and the relation of the portfolio of LDRD projects to BNL's mission, initiatives, and strategic plan. Also included are a summary of success indicators and a self-assessment.

  13. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  14. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  15. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  16. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  17. Systems analysis of a security alarm system

    International Nuclear Information System (INIS)

    Schiff, A.

    1975-01-01

    When the Lawrence Livermore Laboratory found that its security alarm system was causing more false alarms and maintenance costs than LLL felt was tolerable, a systems analysis was undertaken to determine what should be done about the situation. This report contains an analysis of security alarm systems in general and ends with a review of the existing Security Alarm Control Console (SACC) and recommendations for its improvement, growth and change. (U.S.)

  18. LDRD Final Report: Capabilities for Uncertainty in Predictive Science.

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Eric Todd; Eldred, Michael S; Salinger, Andrew G.; Webster, Clayton G.

    2008-10-01

    Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-ponents promises to help solve many problems of scientific and national interest. Howeverpredictive simulation of such systems is extremely challenging due to the coupling of adiverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure togain computational efficiency. The traditional layering of uncertainty quantification aroundnonlinear solution processes is inverted to allow for heterogeneous uncertainty quantificationmethods to be applied to each component in a coupled system. Moreover this approachallows stochastic dimension reduction techniques to be applied at each coupling interface.The mathematical feasibility of these ideas is investigated in this report, and mathematicalformulations for the resulting stochastically coupled nonlinear systems are developed.3

  19. Applications of the 3-D Deterministic Transport Attila(regsign) for Core Safety Analysis

    International Nuclear Information System (INIS)

    Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.

    2004-01-01

    An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila(reg s ign)) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future

  20. Systems analysis-independent analysis and verification

    Energy Technology Data Exchange (ETDEWEB)

    Badin, J.S.; DiPietro, J.P. [Energetics, Inc., Columbia, MD (United States)

    1995-09-01

    The DOE Hydrogen Program is supporting research, development, and demonstration activities to overcome the barriers to the integration of hydrogen into the Nation`s energy infrastructure. Much work is required to gain acceptance of hydrogen energy system concepts and to develop them for implementation. A systems analysis database has been created that includes a formal documentation of technology characterization profiles and cost and performance information. Through a systematic and quantitative approach, system developers can understand and address important issues and thereby assure effective and timely commercial implementation. This project builds upon and expands the previously developed and tested pathway model and provides the basis for a consistent and objective analysis of all hydrogen energy concepts considered by the DOE Hydrogen Program Manager. This project can greatly accelerate the development of a system by minimizing the risk of costly design evolutions, and by stimulating discussions, feedback, and coordination of key players and allows them to assess the analysis, evaluate the trade-offs, and to address any emerging problem areas. Specific analytical studies will result in the validation of the competitive feasibility of the proposed system and identify system development needs. Systems that are investigated include hydrogen bromine electrolysis, municipal solid waste gasification, electro-farming (biomass gasifier and PEM fuel cell), wind/hydrogen hybrid system for remote sites, home electrolysis and alternate infrastructure options, renewable-based electrolysis to fuel PEM fuel cell vehicle fleet, and geothermal energy used to produce hydrogen. These systems are compared to conventional and benchmark technologies. Interim results and findings are presented. Independent analyses emphasize quality, integrity, objectivity, a long-term perspective, corporate memory, and the merging of technical, economic, operational, and programmatic expertise.

  1. The ALICE analysis train system

    CERN Document Server

    Zimmermann, Markus

    2015-01-01

    In the ALICE experiment hundreds of users are analyzing big datasets on a Grid system. High throughput and short turn-around times are achieved by a centralized system called the LEGO trains. This system combines analysis from different users in so-called analysis trains which are then executed within the same Grid jobs thereby reducing the number of times the data needs to be read from the storage systems. The centralized trains improve the performance, the usability for users and the bookkeeping in comparison to single user analysis. The train system builds upon the already existing ALICE tools, i.e. the analysis framework as well as the Grid submission and monitoring infrastructure. The entry point to the train system is a web interface which is used to configure the analysis and the desired datasets as well as to test and submit the train. Several measures have been implemented to reduce the time a train needs to finish and to increase the CPU efficiency.

  2. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  3. Advanced Nuclear Measurements - Sensitivity Analysis Emerging Safeguards, Problems and Proliferation Risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.

    1999-01-01

    During the past year this component of the Advanced Nuclear Measurements LDRD-DR has focused on emerging safeguards problems and proliferation risk by investigating problems in two domains. The first is related to the analysis, quantification, and characterization of existing inventories of fissile materials, in particular, the minor actinides (MA) formed in the commercial fuel cycle. Understanding material forms and quantities helps identify and define future measurement problems, instrument requirements, and assists in prioritizing safeguards technology development. The second problem (dissertation research) has focused on the development of a theoretical foundation for sensor array anomaly detection. Remote and unattended monitoring or verification of safeguards activities is becoming a necessity due to domestic and international budgetary constraints. However, the ability to assess the trustworthiness of a sensor array has not been investigated. This research is developing an anomaly detection methodology to assess the sensor array

  4. LDRD final report :

    Energy Technology Data Exchange (ETDEWEB)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report a preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.

  5. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuelsthose chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  6. LDRD Final report

    International Nuclear Information System (INIS)

    Stewart, R.E.; Price, D.; Shepherd, R.; White, W.; Walling, R.; More, R.

    1995-01-01

    The goal of this project is to develop a 100-fs pulse length laser capable of heating solid density plasmas to near-kilovolt temperatures before hydrodynamic decompression of the target can take place, and to experimentally determine the properties of these plasmas with it. The authors have successfully developed the laser for this work and measured plasma production and laser absorption with it. This work has demonstrated the capacity to produce solid-density plasmas. Future experiments are described

  7. Noise and vibration analysis system

    International Nuclear Information System (INIS)

    Johnsen, J.R.; Williams, R.L.

    1985-01-01

    The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results

  8. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  9. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  10. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  11. Systems analysis made simple computerbooks

    CERN Document Server

    Antill, Lyn

    1980-01-01

    Systems Analysis: Made Simple Computerbooks introduces the essential elements of information systems analysis and design and teaches basic technical skills required for the tasks involved. The book covers the aspects to the design of an information system; information systems and the organization, including the types of information processing activity and computer-based information systems; the role of the systems analyst; and the human activity system. The text also discusses information modeling, socio-technical design, man-machine interface, and the database design. Software specification

  12. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  13. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  14. Performance analysis of switching systems

    NARCIS (Netherlands)

    Berg, van den R.A.

    2008-01-01

    Performance analysis is an important aspect in the design of dynamic (control) systems. Without a proper analysis of the behavior of a system, it is impossible to guarantee that a certain design satisfies the system’s requirements. For linear time-invariant systems, accurate performance analyses are

  15. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    Science.gov (United States)

    Guariniello, Cesare

    The increasing size and complexity of space systems and space missions pose severe challenges to space systems engineers. When complex systems and Systems-of-Systems are involved, the behavior of the whole entity is not only due to that of the individual systems involved but also to the interactions and dependencies between the systems. Dependencies can be varied and complex, and designers usually do not perform analysis of the impact of dependencies at the level of complex systems, or this analysis involves excessive computational cost, or occurs at a later stage of the design process, after designers have already set detailed requirements, following a bottom-up approach. While classical systems engineering attempts to integrate the perspectives involved across the variety of engineering disciplines and the objectives of multiple stakeholders, there is still a need for more effective tools and methods capable to identify, analyze and quantify properties of the complex system as a whole and to model explicitly the effect of some of the features that characterize complex systems. This research describes the development and usage of Systems Operational Dependency Analysis and Systems Developmental Dependency Analysis, two methods based on parametric models of the behavior of complex systems, one in the operational domain and one in the developmental domain. The parameters of the developed models have intuitive meaning, are usable with subjective and quantitative data alike, and give direct insight into the causes of observed, and possibly emergent, behavior. The approach proposed in this dissertation combines models of one-to-one dependencies among systems and between systems and capabilities, to analyze and evaluate the impact of failures or delays on the outcome of the whole complex system. The analysis accounts for cascading effects, partial operational failures, multiple failures or delays, and partial developmental dependencies. The user of these methods can

  16. FY05 LDRD Final Report A Computational Design Tool for Microdevices and Components in Pathogen Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D

    2006-02-07

    We have developed new algorithms to model complex biological flows in integrated biodetection microdevice components. The proposed work is important because the design strategy for the next-generation Autonomous Pathogen Detection System at LLNL is the microfluidic-based Biobriefcase, being developed under the Chemical and Biological Countermeasures Program in the Homeland Security Organization. This miniaturization strategy introduces a new flow regime to systems where biological flow is already complex and not well understood. Also, design and fabrication of MEMS devices is time-consuming and costly due to the current trial-and-error approach. Furthermore, existing devices, in general, are not optimized. There are several MEMS CAD capabilities currently available, but their computational fluid dynamics modeling capabilities are rudimentary at best. Therefore, we proposed a collaboration to develop computational tools at LLNL which will (1) provide critical understanding of the fundamental flow physics involved in bioMEMS devices, (2) shorten the design and fabrication process, and thus reduce costs, (3) optimize current prototypes and (4) provide a prediction capability for the design of new, more advanced microfluidic systems. Computational expertise was provided by Comp-CASC and UC Davis-DAS. The simulation work was supported by key experiments for guidance and validation at UC Berkeley-BioE.

  17. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  18. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  19. Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    2009-01-01

    This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method

  20. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  1. Tools for characterizing biomembranes : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Stevens, Mark; Holland, Gregory P.; McIntyre, Sarah K.

    2007-10-01

    A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.

  2. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    Science.gov (United States)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  3. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  4. Tensor analysis methods for activity characterization in spatiotemporal data

    Energy Technology Data Exchange (ETDEWEB)

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  5. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  6. Space elevator systems level analysis

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. It involves new, untried technologies in most of its subsystems. Thus the successful construction of the SE requires a significant amount of development, This in turn implies a high level of risk for the SE. This paper will present a systems level analysis of the SE by subdividing its components into their subsystems to determine their level of technological maturity. such a high-risk endeavor is to follow a disciplined approach to the challenges. A systems level analysis informs this process and is the guide to where resources should be applied in the development processes. It is an efficient path that, if followed, minimizes the overall risk of the system's development. systems level analysis is that the overall system is divided naturally into its subsystems, and those subsystems are further subdivided as appropriate for the analysis. By dealing with the complex system in layers, the parameter space of decisions is kept manageable. Moreover, A rational way to manage One key aspect of a resources are not expended capriciously; rather, resources are put toward the biggest challenges and most promising solutions. This overall graded approach is a proven road to success. The analysis includes topics such as nanotube technology, deployment scenario, power beaming technology, ground-based hardware and operations, ribbon maintenance and repair and climber technology.

  7. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    D.W. Markman

    2001-01-01

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  8. On-stream analysis systems

    International Nuclear Information System (INIS)

    Howarth, W.J.; Watt, J.S.

    1982-01-01

    An outline of some commercially available on-stream analysis systems in given. Systems based on x-ray tube/crystal spectrometers, scintillation detectors, proportional detectors and solid-state detectors are discussed

  9. Systemic Analysis Approaches for Air Transportation

    Science.gov (United States)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  10. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  11. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  12. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  13. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  14. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  15. Fiscal system analysis - contractual systems

    International Nuclear Information System (INIS)

    Kaiser, M.J.

    2006-01-01

    Production sharing contracts are one of the most popular forms of contractual system used in petroleum agreements around the world, but the manner in which the fiscal terms and contract parameters impact system measures is complicated and not well understood. The purpose of this paper is to quantify the influence of private and market uncertainty in contractual fiscal systems. A meta-modelling approach is employed that couples the results of a simulation model with regression analysis to construct numerical functionals that quantify the fiscal regime. Relationships are derived that specify how the present value, rate of return, and take statistics vary as a function of the system parameters. The deepwater Girassol field development in Angola is taken as a case study. (author)

  16. Overview of NASA Langley's Systems Analysis Capabilities

    Science.gov (United States)

    Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom

    2006-01-01

    The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.

  17. Systemic design methodologies for electrical energy systems analysis, synthesis and management

    CERN Document Server

    Roboam, Xavier

    2012-01-01

    This book proposes systemic design methodologies applied to electrical energy systems, in particular analysis and system management, modeling and sizing tools. It includes 8 chapters: after an introduction to the systemic approach (history, basics & fundamental issues, index terms) for designing energy systems, this book presents two different graphical formalisms especially dedicated to multidisciplinary devices modeling, synthesis and analysis: Bond Graph and COG/EMR. Other systemic analysis approaches for quality and stability of systems, as well as for safety and robustness analysis tools are also proposed. One chapter is dedicated to energy management and another is focused on Monte Carlo algorithms for electrical systems and networks sizing. The aim of this book is to summarize design methodologies based in particular on a systemic viewpoint, by considering the system as a whole. These methods and tools are proposed by the most important French research laboratories, which have many scientific partn...

  18. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  19. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  20. Rietveld analysis system RIETAN (translation)

    International Nuclear Information System (INIS)

    Izumi, Fujio

    1991-09-01

    This is the manual of the RIETAN system (a Rietveld analysis program) which is originally written in Japanese by Fujio Izumi. The manual consists of two parts. Part I is a general description of the fundamental concepts and methods of the RIETAN system. Part II is the user's manual of the RIETAN which mainly describes in detail how to create user's data sets, procedures of Rietveld analysis and how to read the results of analysis. (author)

  1. Computerized ECT data analysis system

    International Nuclear Information System (INIS)

    Miyake, Y.; Fukui, S.; Iwahashi, Y.; Matsumoto, M.; Koyama, K.

    1988-01-01

    For the analytical method of the eddy current testing (ECT) of steam generator tubes in nuclear power plants, the authors have developed the computerized ECT data analysis system using a large-scale computer with a high-resolution color graphic display. This system can store acquired ECT data up to 15 steam generators, and ECT data can be analyzed immediately on the monitor in dialogue communication with a computer. Analyzed results of ECT data are stored and registered in the data base. This system enables an analyst to perform sorting and collecting of data under various conditions and obtain the results automatically, and also to make a plan of tube repair works. This system has completed the test run, and has been used for data analysis at the annual inspection of domestic plants. This paper describes an outline, features and examples of the computerized eddy current data analysis system for steam generator tubes in PWR nuclear power plants

  2. Transfer function analysis of radiographic imaging systems

    International Nuclear Information System (INIS)

    Metz, C.E.; Doi, K.

    1979-01-01

    The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)

  3. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  4. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  5. Sensitivity analysis in multi-parameter probabilistic systems

    International Nuclear Information System (INIS)

    Walker, J.R.

    1987-01-01

    Probabilistic methods involving the use of multi-parameter Monte Carlo analysis can be applied to a wide range of engineering systems. The output from the Monte Carlo analysis is a probabilistic estimate of the system consequence, which can vary spatially and temporally. Sensitivity analysis aims to examine how the output consequence is influenced by the input parameter values. Sensitivity analysis provides the necessary information so that the engineering properties of the system can be optimized. This report details a package of sensitivity analysis techniques that together form an integrated methodology for the sensitivity analysis of probabilistic systems. The techniques have known confidence limits and can be applied to a wide range of engineering problems. The sensitivity analysis methodology is illustrated by performing the sensitivity analysis of the MCROC rock microcracking model

  6. Pressurized water reactor system model for control system design and analysis

    International Nuclear Information System (INIS)

    Cooper, K.F.; Cain, J.T.

    1975-01-01

    Satisfactory operation of present generation Pressurized Water Reactor (PWR) Nuclear Power systems requires that several independent and interactive control systems be designed. Since it is not practical to use an actual PWR system as a design tool, a mathematical model of the system must be developed as a design and analysis tool. The model presented has been developed to be used as an aid in applying optimal control theory to design and implement new control systems for PWR plants. To be applicable, the model developed must represent the PWR system in its normal operating range. For safety analysis the operating conditions of the system are usually abnormal and, therefore, the system modeling requirements are different from those for control system design and analysis

  7. Systems Studies Department FY 78 activity report. Volume 2. Systems analysis

    International Nuclear Information System (INIS)

    Gold, T.S.

    1979-02-01

    The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures

  8. LDRD final report on intelligent polymers for nanodevice performance control

    Energy Technology Data Exchange (ETDEWEB)

    JAMISON,GREGORY M.; LOY,DOUGLAS A.; WHEELER,DAVID R.; SAUNDERS,RANDALL S.L; SHELNUTT,JOHN A.; CARR,MARTIN J.; SHALTOUT,RAAFAT M.

    2000-01-01

    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  9. Critical Education for Systemic Change: A World-Systems Analysis Perspective

    Science.gov (United States)

    Griffiths, Tom G.

    2015-01-01

    This paper both draws on, and seeks to apply, world-systems analysis to a broad, critical education project that builds mass schooling's potential contribution to the process of world-systemic change. In short, this is done by first setting out the world-systems analysis account of the current state, and period of transition, of the capitalist…

  10. Analysis of a Braking System on the Basis of Structured Analysis Methods

    OpenAIRE

    Ben Salem J.; Lakhoua M.N.; El Amraoui L.

    2016-01-01

    In this paper, we present the general context of the research in the domain of analysis and modeling of mechatronic systems. In fact, we present à bibliographic review on some works of research about the systemic analysis of mechatronic systems. To better understand its characteristics, we start with an introduction about mechatronic systems and various fields related to these systems, after we present a few analysis and design methods applied to mechatronic systems. Finally, we apply the two...

  11. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  12. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 2, Data Analysis-The Methods describes the methods for carrying out data analysis within the systems development life-cycle and demonstrates how the results of fact gathering can be used to produce and verify the analysis deliverables. A number of alternative methods of analysis other than normalization are suggested. Comprised of seven chapters, this book shows the tasks to be carried out in the logical order of progression-preparation, collection, analysis of the existing system (which comprises the tasks of synthesis, verification, an

  13. Power System Analysis

    Science.gov (United States)

    Taniguchi, Haruhito

    Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.

  14. Digraph Matrix Analysis: A new approach to systems interaction analysis

    International Nuclear Information System (INIS)

    Sacks, I.J.; Alesso, H.P.; Ashmore, B.C.

    1985-01-01

    The term Systems Interaction was introduced by the Nuclear Regulatory Commission to identify interdependency of safety and support systems. Digraph Matrix Analysis was developed to allow the determination of these interdependencies. The main features of DMA are: the reliability model is traced directly from system schematics, all components of front line and support systems are included in a single integrated model, and the model is processed automatically with no heuristic culling applied. The recent application of DMA to the Indian Point-3 systems interaction analysis resulted in the discovery of several significant deeply hidden systems interactions

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  18. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  20. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  1. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  2. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  3. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  4. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  5. Sparing analysis for FGD systems

    International Nuclear Information System (INIS)

    Dene, C.E.; Weiss, J.; Twombly, M.A.; Witt, J.

    1992-01-01

    With the passage of federal clean air legislation, utilities will be evaluating the capability of various flue gas desulfurization (FGD) system design configurations and operating scenarios to meet sulfur dioxide (SO 2 ) removal goals. The primary goal in reviewing these alternatives will be to optimize SO 2 removal capability in relation to power production costs. The Electric Power Research institute (EPRI) and its contractor, ARINC Research Corporation, have developed an automated FGD Analysis System that can evaluate competing FGD design alternatives in terms of their SO 2 removal capability and operating costs. The FGD Analysis System can be used to evaluate different design configurations for new systems or to calculate the effect of changes in component reliability for existing FGD systems. The system is based on the EPRI UNIRAM methodology and evaluates the impact of alternative FGD component configurations on the expected unit emission rates. The user interactively enters FGD design data, unit SO 2 generation-level data, and FGD chemical additive-level data for the design configuration to be evaluated. The system then calculates expected SO 2 removal capability and operating cost data for operation of the design configuration over a user specified time period. This paper provides a brief description of the FGD Analysis System and presents sample results for three typical design configurations with different redundancy levels

  6. Model reduction of systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  7. Probabilistic sensitivity analysis of biochemical reaction systems.

    Science.gov (United States)

    Zhang, Hong-Xuan; Dempsey, William P; Goutsias, John

    2009-09-07

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical.

  8. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  9. An expert image analysis system for chromosome analysis application

    International Nuclear Information System (INIS)

    Wu, Q.; Suetens, P.; Oosterlinck, A.; Van den Berghe, H.

    1987-01-01

    This paper reports a recent study on applying a knowledge-based system approach as a new attempt to solve the problem of chromosome classification. A theoretical framework of an expert image analysis system is proposed, based on such a study. In this scheme, chromosome classification can be carried out under a hypothesize-and-verify paradigm, by integrating a rule-based component, in which the expertise of chromosome karyotyping is formulated with an existing image analysis system which uses conventional pattern recognition techniques. Results from the existing system can be used to bring in hypotheses, and with the rule-based verification and modification procedures, improvement of the classification performance can be excepted

  10. Systems-Dynamic Analysis for Neighborhood Study

    Science.gov (United States)

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  11. Safety analysis of reactor's cooling system

    International Nuclear Information System (INIS)

    1999-01-01

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  12. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  13. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments

    International Nuclear Information System (INIS)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin; Metzroth, Kyle; Catalyurek, Umit; Denning, Richard; Hakobyan, Aram; Dunagan, Sean C.

    2008-01-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other

  14. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    Science.gov (United States)

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  16. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  17. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  18. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  19. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  20. Computer system for environmental sample analysis and data storage and analysis

    International Nuclear Information System (INIS)

    Brauer, F.P.; Fager, J.E.

    1976-01-01

    A mini-computer based environmental sample analysis and data storage system has been developed. The system is used for analytical data acquisition, computation, storage of analytical results, and tabulation of selected or derived results for data analysis, interpretation and reporting. This paper discussed the structure, performance and applications of the system

  1. FPGAs in High Perfomance Computing: Results from Two LDRD Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith D; Ulmer, Craig D.; Thompson, David; Hemmert, Karl Scott

    2006-11-01

    Field programmable gate arrays (FPGAs) have been used as alternative computational de-vices for over a decade; however, they have not been used for traditional scientific com-puting due to their perceived lack of floating-point performance. In recent years, there hasbeen a surge of interest in alternatives to traditional microprocessors for high performancecomputing. Sandia National Labs began two projects to determine whether FPGAs wouldbe a suitable alternative to microprocessors for high performance scientific computing and,if so, how they should be integrated into the system. We present results that indicate thatFPGAs could have a significant impact on future systems. FPGAs have thepotentialtohave order of magnitude levels of performance wins on several key algorithms; however,there are serious questions as to whether the system integration challenge can be met. Fur-thermore, there remain challenges in FPGA programming and system level reliability whenusing FPGA devices.4 AcknowledgmentArun Rodrigues provided valuable support and assistance in the use of the Structural Sim-ulation Toolkit within an FPGA context. Curtis Janssen and Steve Plimpton provided valu-able insights into the workings of two Sandia applications (MPQC and LAMMPS, respec-tively).5

  2. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  3. Network-based collaborative research environment LDRD final report

    Energy Technology Data Exchange (ETDEWEB)

    Davies, B.R.; McDonald, M.J.

    1997-09-01

    The Virtual Collaborative Environment (VCE) and Distributed Collaborative Workbench (DCW) are new technologies that make it possible for diverse users to synthesize and share mechatronic, sensor, and information resources. Using these technologies, university researchers, manufacturers, design firms, and others can directly access and reconfigure systems located throughout the world. The architecture for implementing VCE and DCW has been developed based on the proposed National Information Infrastructure or Information Highway and a tool kit of Sandia-developed software. Further enhancements to the VCE and DCW technologies will facilitate access to other mechatronic resources. This report describes characteristics of VCE and DCW and also includes background information about the evolution of these technologies.

  4. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  5. Systems analysis department annual progress report 1986

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Vestergaard, N.K.

    1987-02-01

    The report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1986. The activities may be classified as energy systems analysis and risk and reliability analysis. The report includes a list of staff members. (author)

  6. Fault tree analysis for reactor systems

    International Nuclear Information System (INIS)

    Crosetti, P.A.

    1971-01-01

    Reliability analysis is playing an increasingly important role in quantitative assessment of system performance for assuring nuclear safety, improving plant performance and plant life, and reducing plant operating costs. The complexity of today's nuclear plants warrant the use of techniques which will provide a comprehensive evaluation of systems in their total context. In particular, fault tree analysis with probability evaluation can play a key role in assuring nuclear safety, in improving plant performance and plant life, and in reducing plant operating costs. The technique provides an all inclusive, versatile mathematical tool for analyzing complex systems. Its application can include a complete plant as well as any of the systems and subsystems. Fault tree analysis provides an objective basis for analyzing system design, performing trade-off studies, analyzing common mode failures, demonstrating compliance with AEC requirements, and justifying system changes or additions. The logic of the approach makes it readily understandable and, therefore, it serves as an effective visibility tool for both engineering and management. (U.S.)

  7. Goal-oriented failure analysis - a systems analysis approach to hazard identification

    International Nuclear Information System (INIS)

    Reeves, A.B.; Davies, J.; Foster, J.; Wells, G.L.

    1990-01-01

    Goal-Oriented Failure Analysis, GOFA, is a methodology which is being developed to identify and analyse the potential failure modes of a hazardous plant or process. The technique will adopt a structured top-down approach, with a particular failure goal being systematically analysed. A systems analysis approach is used, with the analysis being organised around a systems diagram of the plant or process under study. GOFA will also use checklists to supplement the analysis -these checklists will be prepared in advance of a group session and will help to guide the analysis and avoid unnecessary time being spent on identifying obvious failure modes or failing to identify certain hazards or failures. GOFA is being developed with the aim of providing a hazard identification methodology which is more efficient and stimulating than the conventional approach to HAZOP. The top-down approach should ensure that the analysis is more focused and the use of a systems diagram will help to pull the analysis together at an early stage whilst also helping to structure the sessions in a more stimulating way than the conventional techniques. GOFA will be, essentially, an extension of the HAZOP methodology. GOFA is currently being computerised using a knowledge-based systems approach for implementation. The Goldworks II expert systems development tool is being used. (author)

  8. System based practice: a concept analysis

    Directory of Open Access Journals (Sweden)

    SHAHRAM YAZDANI

    2016-04-01

    Full Text Available Introduction: Systems-Based Practice (SBP is one of the six competencies introduced by the ACGME for physicians to provide high quality of care and also the most challenging of them in performance, training, and evaluation of medical students. This concept analysis clarifies the concept of SBP by identifying its components to make it possible to differentiate it from other similar concepts. For proper training of SBP and to ensure these competencies in physicians, it is necessary to have an operational definition, and SBP’s components must be precisely defined in order to provide valid and reliable assessment tools. Methods: Walker & Avant’s approach to concept analysis was performed in eight stages: choosing a concept, determining the purpose of analysis, identifying all uses of the concept, defining attributes, identifying a model case, identifying borderline, related, and contrary cases, identifying antecedents and consequences, and defining empirical referents. Results: Based on the analysis undertaken, the attributes of SBP includes knowledge of the system, balanced decision between patients’ need and system goals, effective role playing in interprofessional health care team, system level of health advocacy, and acting for system improvement. System thinking and a functional system are antecedents and system goals are consequences. A case model, as well as border, and contrary cases of SBP, has been introduced. Conclusion: The identification of SBP attributes in this study contributes to the body of knowledge in SBP and reduces the ambiguity of this concept to make it possible for applying it in training of different medical specialties. Also, it would be possible to develop and use more precise tools to evaluate SBP competency by using empirical referents of the analysis.

  9. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1981-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  10. Integrated tools for control-system analysis

    Science.gov (United States)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  11. Marketing analysis support system; Marketing bunseki shien system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    Fuji Electric Co., Ltd., in collaboration with Shitashion Japan and Arthur Andersen Ltd., developed a 'marketing analysis support system' which integrally analyzes evaluation factors of various dimensions explaining consumers' purchasing behaviors and which supports business for the efficient operation of product development and demand prediction. This system breaks down products into each evaluation factor from psychological and physical viewpoints, and carries out various kinds of multivariate analysis, thereby making it easy to understand visually, for example, what evaluation factors decide relative positional relations between evaluation factors or between products as well as the position of a product in the whole. Further, more precise marketing analysis and prediction become possible by visually grasping blank areas of products, extent of competition, distribution of products, composition of product series, etc. (translated by NEDO)

  12. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  13. Total Analysis System for Ship Structural Strength

    OpenAIRE

    Takuya, Yoneya; Hiroyuki, Kobayashi; Abdul M., Rahim; Yoshimichi, Sasaki; Masaki, Irisawa; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center; Singapore Office; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center

    2001-01-01

    This paper outlines a total analysis system for ship hull structures, which integrates a wide variety of analysis functions to realise practical applications of rational methods for assessing ship structural strength. It is based on direct calculation of wave-induced loads as well as three-dimensional structural analysis of an entire-ship or hold structure. Three major analysis functions of the total system are ship motion and wave load analysis, ship structural analysis and statistical analy...

  14. Limitations of systemic accident analysis methods

    Directory of Open Access Journals (Sweden)

    Casandra Venera BALAN

    2016-12-01

    Full Text Available In terms of system theory, the description of complex accidents is not limited to the analysis of the sequence of events / individual conditions, but highlights nonlinear functional characteristics and frames human or technical performance in relation to normal functioning of the system, in safety conditions. Thus, the research of the system entities as a whole is no longer an abstraction of a concrete situation, but an exceeding of the theoretical limits set by analysis based on linear methods. Despite the issues outlined above, the hypothesis that there isn’t a complete method for accident analysis is supported by the nonlinearity of the considered function or restrictions, imposing a broad vision of the elements introduced in the analysis, so it can identify elements corresponding to nominal parameters or trigger factors.

  15. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  16. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  17. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000; FINAL

    International Nuclear Information System (INIS)

    Fisher, Darrell R; Hughes, Pamela J; Pearson, Erik W

    2001-01-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, (a) a director's statement, (b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, (c) a five-year project funding table, and (d) project summaries for each LDRD project

  18. Systems analysis and the computer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, A S

    1983-08-01

    The words systems analysis are used in at least two senses. Whilst the general nature of the topic is well understood in the or community, the nature of the term as used by computer scientists is less familiar. In this paper, the nature of systems analysis as it relates to computer-based systems is examined from the point of view that the computer system is an automaton embedded in a human system, and some facets of this are explored. It is concluded that or analysts and computer analysts have things to learn from each other and that this ought to be reflected in their education. The important role played by change in the design of systems is also highlighted, and it is concluded that, whilst the application of techniques developed in the artificial intelligence field have considerable relevance to constructing automata able to adapt to change in the environment, study of the human factors affecting the overall systems within which the automata are embedded has an even more important role. 19 references.

  19. Systems Analysis Department. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.; Olsson, C. (eds.)

    2004-04-01

    This report describes the work of the Systems Analysis Department at Risoe National Laboratory during 2003. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning UNEP Centre, Safety, Reliability and Human Factors, and Technology Scenarios. The report includes summary statistics and list of staff members. (au)

  20. Quality prediction and mistake proofing: An LDRD final report

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.J.

    1998-03-01

    Sandia National Laboratories is responsible for assuring that the US nuclear deterrent remains credible and that the one in a billion disaster of unintended nuclear detonation never occurs. Letting mistake-generated defects into the stockpile would undermine its mission. The current era of shrinking stockpiles is shrinking Sandia`s opportunities to discover and correct mistakes and fine tune processes over long production runs. In response, Sandia has chosen to develop and use a science-based, life cycle systems engineering practices that, in part, require understanding the design to manufacturing issues in enough detail to tune processes and eliminate mistakes before ever making a part. Defect prevention is a key area of concern that currently lacks sufficient theoretical understanding. This report is the result of a scoping study in the application of best-practice quality techniques that could address Sandia`s stockpile mission. The study provides detail on sources and control of mistakes, poka-yoke or mistake-proofing techniques, the Toyota Production system, and design theory in relation to manufacturing quality prediction. Scoping experiments are described and areas for future research are identified.

  1. Systems Analysis Department annual report 2003

    DEFF Research Database (Denmark)

    2004-01-01

    This report describes the work of the Systems Analysis Department at Risø National Laboratory during 2003. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning – UNEP Centre, Safety,Reliability and Human Factors, and Technology...... Scenarios. The report includes summary statistics and list of staff members....

  2. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  3. Mechatronic Systems Analysis, Design and Implementation

    CERN Document Server

    Boukas, El-Kébir

    2012-01-01

    This book deals with the analysis, the design and the implementation of the mechatronic systems. Classical and modern tools are developed for the analysis and the design for such systems. Robust control, H-Infinity and guaranteed cost control theory are also used for analysis and design of mechatronic systems. Different controller such as state feedback, static output feedback and dynamic output feedback controllers are used to stabilize mechatronic systems. Heuristic algorithms are provided to solve the design of the classical controller such as PID, phase lead, phase lag and phase lead-lag controllers while linear matrix inequalities (LMI) algorithms are provided for finding solutions to the state feedback, static output feedback and dynamic output feedback controllers. The theory presented in the different chapters of the volume is applied to numerical examples to show the usefulness of the theoretical results. Some case studies are also provided to show how the developed concepts apply for real system. Em...

  4. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  5. Peer-to-peer architectures for exascale computing : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Vorobeychik, Yevgeniy; Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.; Rudish, Donald W.

    2010-09-01

    The goal of this research was to investigate the potential for employing dynamic, decentralized software architectures to achieve reliability in future high-performance computing platforms. These architectures, inspired by peer-to-peer networks such as botnets that already scale to millions of unreliable nodes, hold promise for enabling scientific applications to run usefully on next-generation exascale platforms ({approx} 10{sup 18} operations per second). Traditional parallel programming techniques suffer rapid deterioration of performance scaling with growing platform size, as the work of coping with increasingly frequent failures dominates over useful computation. Our studies suggest that new architectures, in which failures are treated as ubiquitous and their effects are considered as simply another controllable source of error in a scientific computation, can remove such obstacles to exascale computing for certain applications. We have developed a simulation framework, as well as a preliminary implementation in a large-scale emulation environment, for exploration of these 'fault-oblivious computing' approaches. High-performance computing (HPC) faces a fundamental problem of increasing total component failure rates due to increasing system sizes, which threaten to degrade system reliability to an unusable level by the time the exascale range is reached ({approx} 10{sup 18} operations per second, requiring of order millions of processors). As computer scientists seek a way to scale system software for next-generation exascale machines, it is worth considering peer-to-peer (P2P) architectures that are already capable of supporting 10{sup 6}-10{sup 7} unreliable nodes. Exascale platforms will require a different way of looking at systems and software because the machine will likely not be available in its entirety for a meaningful execution time. Realistic estimates of failure rates range from a few times per day to more than once per hour for these

  6. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  7. Application of functional analysis techniques to supervisory systems

    International Nuclear Information System (INIS)

    Lambert, Manuel; Riera, Bernard; Martel, Gregory

    1999-01-01

    The aim of this paper is to apply firstly two interesting functional analysis techniques for the design of supervisory systems for complex processes, and secondly to discuss the strength and the weaknesses of each of them. Two functional analysis techniques have been applied, SADT (Structured Analysis and Design Technique) and FAST (Functional Analysis System Technique) on a process, an example of a Water Supply Process Control (WSPC) system. These techniques allow a functional description of industrial processes. The paper briefly discusses the functions of a supervisory system and some advantages of the application of functional analysis for the design of a 'human' centered supervisory system. Then the basic principles of the two techniques applied on the WSPC system are presented. Finally, the different results obtained from the two techniques are discussed

  8. Overview of the land analysis system (LAS)

    Science.gov (United States)

    Quirk, Bruce K.; Olseson, Lyndon R.

    1987-01-01

    The Land Analysis System (LAS) is a fully integrated digital analysis system designed to support remote sensing, image processing, and geographic information systems research. LAS is being developed through a cooperative effort between the National Aeronautics and Space Administration Goddard Space Flight Center and the U. S. Geological Survey Earth Resources Observation Systems (EROS) Data Center. LAS has over 275 analysis modules capable to performing input and output, radiometric correction, geometric registration, signal processing, logical operations, data transformation, classification, spatial analysis, nominal filtering, conversion between raster and vector data types, and display manipulation of image and ancillary data. LAS is currently implant using the Transportable Applications Executive (TAE). While TAE was designed primarily to be transportable, it still provides the necessary components for a standard user interface, terminal handling, input and output services, display management, and intersystem communications. With TAE the analyst uses the same interface to the processing modules regardless of the host computer or operating system. LAS was originally implemented at EROS on a Digital Equipment Corporation computer system under the Virtual Memorial System operating system with DeAnza displays and is presently being converted to run on a Gould Power Node and Sun workstation under the Berkeley System Distribution UNIX operating system.

  9. Systems Analysis Department. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N J; Jensen, E; Larsen, H; Skipper, S [eds.

    2002-04-01

    This report describes the work of the Systems Analysis Department at Risoe National Laboratory during 2001. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning - UNEP Centre, Safety, Reliability and Human Factors, and Technology Scenarios. The report includes summary statistics and lists of publications, committees and staff members. (au)

  10. System Analysis Department. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N J; Jensen, E; Larsen, H; Skipper, S [eds.

    2002-04-01

    This report describes the work of the Systems Analysis Department at Risoe National Laboratory during 2001. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning - UNEP Centre, Safety, Reliability and Human Factors, and Technology Scenarios. The report includes summary statistics and lists of publications, committees and staff members. (au)

  11. Systems Analysis Department. Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N J; Jensen, E; Larsen, H; Olsson, C

    2001-05-01

    This report describes the work of the Systems Analysis Department at Risoe National Laboratory during 2000. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning - UNEP Centre, Safety, Reliability and Human Factors, and Technology Scenarios. The report includes summary statistics and lists of publications, committees and staff members. (au)

  12. Business System Planning Project, Alternatives Analysis

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    The CHG Chief Information Officer (CIO) requested a study of alternatives to the current business system computing environment. This Business Systems Planning (BSP) Project Alternatives Analysis document presents an analysis of the current Project Controls, Work Management, and Business Management systems environment and alternative solutions that support the business functions. The project team has collected requirements and priorities from stakeholders in each business area and documented them in the BSP System Requirements Specification (SRS), RPP-6297. The alternatives analysis process identifies and measures possible solutions in each of the business process areas against the requirements as documented in the SRS. The team gathered input from both internal and external sources to identify and grade the possible solutions. This document captures the results of that activity and recommends a suite of software products. This study was to select the best product based on how well the product met the requirements, not to determine the platform or hardware environment that would be used. Additional analysis documentation can be found in BSP project files

  13. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  14. Systems Analysis and Design: Know Your Audience

    Science.gov (United States)

    Reinicke, Bryan A.

    2012-01-01

    Systems analysis and design (SAD) classes are required in both Information Systems and Accounting programs, but these audiences have very different needs for these skills. This article will review the requirements for SAD within each of these disciplines and compare and contrast the different requirements for teaching systems analysis and design…

  15. Dynamic analysis of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Wilson, J.R.; Rasmuson, D.M.; Tingey, F.H.

    1978-01-01

    The assessment of the safeguards/adversary system poses a unique challenge as evolving technology affects the capabilities of both. The method discussed meets this challenge using a flexible analysis which can be updated by system personnel. The automatically constructed event tree provides a rapid overview analysis for initial assessment, evaluation of changes, cost/benefit study and inspection and audit

  16. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  17. System Analysis and Risk Assessment system (SARA) Version 4.0

    International Nuclear Information System (INIS)

    Sattison, M.B.; Russell, K.D.; Skinner, N.L.

    1992-01-01

    This NUREG is the tutorial for the System Analysis and Risk Assessment System (SARA) Version 4.0, a microcomputer-based system used to analyze the safety issues of a family [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. A series of lessons are provided that walk the user through some basic steps common to most analyses performed with SARA. The example problems presented in the lessons build on one another, and in combination, lead the user through all aspects of SARA sensitivity analysis

  18. FY08 LDRD Final Report Regional Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    parameterizations or coarser spatial resolution. Further, LLNL has now built a capability in state-of-the-science mesoscale climate modeling that complements that which it has in global climate simulation, providing potential sponsors with an end-to-end simulation and analysis program.

  19. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  20. Common cause failure analysis methodology for complex systems

    International Nuclear Information System (INIS)

    Wagner, D.P.; Cate, C.L.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complex system reliability analysis. This paper extends existing methods of computer aided common cause failure analysis by allowing analysis of the complex systems often encountered in practice. The methods presented here aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  1. Application of structured analysis to a telerobotic system

    Science.gov (United States)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  2. Scenario development, qualitative causal analysis and system dynamics

    Directory of Open Access Journals (Sweden)

    Michael H. Ruge

    2009-02-01

    Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.

  3. International physical protection self-assessment tool for chemical facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  4. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1976-01-01

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK) [de

  5. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    eobe

    2016-01-01

    Jan 1, 2016 ... Tree Analysis (FTA), Dependence Diagram Analysis. (DDA) and Markov Analysis (MA) are the most widely-used methods of probabilistic safety and reliability analysis for airborne system [1]. Fault trees analysis is a backward failure searching ..... [4] Christopher Dabrowski and Fern Hunt Markov Chain.

  6. System for the analysis of plant chromosomes

    International Nuclear Information System (INIS)

    Medina Martin, D.; Peraza Gonzalez, L.H.

    1996-01-01

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  7. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  8. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  9. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  10. Systems Analysis Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    This report describes the work of the Systems Analysis Department at Risø National Laboratory during 1999. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning - UNEP Centre, Safety,Realiability and Human Factors, and Technology...

  11. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)

    2008-11-15

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

  12. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    International Nuclear Information System (INIS)

    Phuc Do Van; Barros, Anne; Berenguer, Christophe

    2008-01-01

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies

  13. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  14. Analysis of costs-benefits tradeoffs of complex security systems

    International Nuclear Information System (INIS)

    Hicks, M.J.

    1996-01-01

    Essential to a systems approach to design of security systems is an analysis of the cost effectiveness of alternative designs. While the concept of analysis of costs and benefits is straightforward, implementation can be at the least tedious and, for complex designs and alternatives, can become nearly intractable without the help of structured analysis tools. PACAIT--Performance and Cost Analysis Integrated Tools--is a prototype tool. The performance side of the analysis collates and reduces data from ASSESS, and existing DOE PC-based security systems performance analysis tool. The costs side of the analysis uses ACE, an existing DOD PC-based costs analysis tool. Costs are reported over the full life-cycle of the system, that is, the costs to procure, operate, maintain and retire the system and all of its components. Results are collected in Microsoft reg-sign Excel workbooks and are readily available to analysts and decision makers in both tabular and graphical formats and at both the system and path-element levels

  15. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  16. System analysis: Developing tools for the future

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  17. Session 6: Dynamic Modeling and Systems Analysis

    Science.gov (United States)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  18. System Analysis and Risk Assessment (SARA) system

    International Nuclear Information System (INIS)

    Krantz, E.A.; Russell, K.D.; Stewart, H.D.; Van Siclen, V.S.

    1986-01-01

    Utilization of Probabilistic Risk Assessment (PRA) related information in the day-to-day operation of plant systems has, in the past, been impracticable due to the size of the computers needed to run PRA codes. This paper discusses a microcomputer-based database system which can greatly enhance the capability of operators or regulators to incorporate PRA methodologies into their routine decision making. This system is called the System Analysis and Risk Assessment (SARA) system. SARA was developed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory to facilitate the study of frequency and consequence analyses of accident sequences from a large number of light water reactors (LWRs) in this country. This information is being amassed by several studies sponsored by the United States Nuclear Regulatory Commission (USNRC). To meet the need of portability and accessibility, and to perform the variety of calculations necessary, it was felt that a microcomputer-based system would be most suitable

  19. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  20. Optimization strategies for complex engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, M.S.

    1998-02-01

    LDRD research activities have focused on increasing the robustness and efficiency of optimization studies for computationally complex engineering problems. Engineering applications can be characterized by extreme computational expense, lack of gradient information, discrete parameters, non-converging simulations, and nonsmooth, multimodal, and discontinuous response variations. Guided by these challenges, the LDRD research activities have developed application-specific techniques, fundamental optimization algorithms, multilevel hybrid and sequential approximate optimization strategies, parallel processing approaches, and automatic differentiation and adjoint augmentation methods. This report surveys these activities and summarizes the key findings and recommendations.

  1. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  2. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  3. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  4. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  5. Sail GTS ground system analysis: Avionics system engineering

    Science.gov (United States)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  6. Analysis and design of energy systems

    International Nuclear Information System (INIS)

    Bajura, R.A.; Marston, C.H.; Tstsaronis, G.

    1989-01-01

    The 1980s saw growing public awareness of environmental issues. Events such as an unusually hot and dry summer in parts of the world, contamination of community drinking water supplies by leakage from abandoned waste disposal sites, and the discovery of a hole in the ozone layer in the upper stratosphere over Antarctica made headlines in the popular press. The long-range impact of these events on the environment or on human health is still being debated by the scientific and technical communities. In the interim, however, it is prudent to mitigate any possible environmental problems by continuing to develop high-efficiency energy utilization systems that are also cost effective and environmentally sound. High-efficiency fossil energy systems have a number of environmental benefits: carbon dioxide production is reduced and this, in turn, reduces the potential environmental insult which may occur during resource extraction or shipping. Thermodynamic analysis coupled with economic analysis is a useful tool to identify practical, high-efficiency systems. The Symposium on the Analysis and Design of Energy Systems is intended to provide a forum to present both advances in analytical techniques for this type of system and case studies applying these techniques

  7. A Hybrid System for Subjectivity Analysis

    Directory of Open Access Journals (Sweden)

    Samir Rustamov

    2018-01-01

    Full Text Available We suggested different structured hybrid systems for the sentence-level subjectivity analysis based on three supervised machine learning algorithms, namely, Hidden Markov Model, Fuzzy Control System, and Adaptive Neuro-Fuzzy Inference System. The suggested feature extraction algorithm in our experiment computes a feature vector using statistical textual terms frequencies in a training dataset not having the use of any lexical knowledge except tokenization. Taking into consideration this fact, the above-mentioned methods may be employed in other languages as these methods do not utilize the morphological, syntactical, and lexical analysis in the classification problems.

  8. Posbist fault tree analysis of coherent systems

    International Nuclear Information System (INIS)

    Huang, H.-Z.; Tong Xin; Zuo, Ming J.

    2004-01-01

    When the failure probability of a system is extremely small or necessary statistical data from the system is scarce, it is very difficult or impossible to evaluate its reliability and safety with conventional fault tree analysis (FTA) techniques. New techniques are needed to predict and diagnose such a system's failures and evaluate its reliability and safety. In this paper, we first provide a concise overview of FTA. Then, based on the posbist reliability theory, event failure behavior is characterized in the context of possibility measures and the structure function of the posbist fault tree of a coherent system is defined. In addition, we define the AND operator and the OR operator based on the minimal cut of a posbist fault tree. Finally, a model of posbist fault tree analysis (posbist FTA) of coherent systems is presented. The use of the model for quantitative analysis is demonstrated with a real-life safety system

  9. Internal event analysis of Laguna Verde Unit 1 Nuclear Power Plant. System Analysis

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis of Laguna Verde Unit 1 Nuclear Power Plant , CNSNS-TR-004, in five volumes. The reports are organized as follows: CNSNS-TR-004 Volume 1: Introduction and Methodology. CNSNS-TR-004 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR-004 Volume 3: System Analysis. CNSNS-TR-004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR-004 Volume 5: Appendices A, B and C. This volume presents the results of the system analysis for the Laguna Verde Unit 1 Nuclear Power Plant. The system analysis involved the development of logical models for all the systems included in the accident sequence event tree headings, and for all the support systems required to operate the front line systems. For the Internal Event analysis for Laguna Verde, 16 front line systems and 5 support systems were included. Detailed fault trees were developed for most of the important systems. Simplified fault trees focusing on major faults were constructed for those systems that can be adequately represent,ed using this kind of modeling. For those systems where fault tree models were not constructed, actual data were used to represent the dominant failures of the systems. The main failures included in the fault trees are hardware failures, test and maintenance unavailabilities, common cause failures, and human errors. The SETS and TEMAC codes were used to perform the qualitative and quantitative fault tree analyses. (Author)

  10. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  11. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  12. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.; Denton, M.M.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day

  13. Neutron structural biology

    International Nuclear Information System (INIS)

    Schoenborn, B.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories

  14. Extending and automating a Systems-Theoretic hazard analysis for requirements generation and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John (Massachusetts Institute of Technology)

    2012-05-01

    Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.

  15. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images

    Science.gov (United States)

    Lingley-Papadopoulos, Colleen A.; Loew, Murray H.; Zara, Jason M.

    2009-07-01

    Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.

  16. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.

    Science.gov (United States)

    Lingley-Papadopoulos, Colleen A; Loew, Murray H; Zara, Jason M

    2009-01-01

    Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.

  17. The Changeable Block Distance System Analysis

    Science.gov (United States)

    Lewiński, Andrzej; Toruń, Andrzej

    The paper treats about efficiency analysis in Changeable Block Distance (CBD) System connected with wireless positioning and control of train. The analysis is based on modeling of typical ERTMS line and comparison with actual and future traffic. The calculations are related to assumed parameters of railway traffic corresponding to real time - table of distance Psary - Góra Włodowska from CMK line equipped in classic, ETCS Level 1 and ETCS with CBD systems.

  18. Structured Performance Analysis for Component Based Systems

    OpenAIRE

    Salmi , N.; Moreaux , Patrice; Ioualalen , M.

    2012-01-01

    International audience; The Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed...

  19. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  20. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle, Book 3: Activity Analysis - The Deliverables provides a comprehensive coverage of the deliverables of activity analysis. The book also details purpose of each deliverable in the context of the next tasks in the systems development cycle (SDC). The text first covers the concept of deliverables and the benefits of making deliverables visible. In the second chapter, the book introduces the main concepts and diagrammatic techniques of activity analysis. The third chapter deals with the important classes or categories of concept, while the fourth

  1. Systems analysis - independent analysis and verification

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, J.P.; Skolnik, E.G.; Badin, J.S. [Energetics, Inc., Columbia, MD (United States)

    1996-10-01

    The Hydrogen Program of the U.S. Department of Energy (DOE) funds a portfolio of activities ranging from conceptual research to pilot plant testing. The long-term research projects support DOE`s goal of a sustainable, domestically based energy system, and the development activities are focused on hydrogen-based energy systems that can be commercially viable in the near-term. Energetics develops analytic products that enable the Hydrogen Program Manager to assess the potential for near- and long-term R&D activities to satisfy DOE and energy market criteria. This work is based on a pathway analysis methodology. The authors consider an energy component (e.g., hydrogen production from biomass gasification, hybrid hydrogen internal combustion engine (ICE) vehicle) within a complete energy system. The work involves close interaction with the principal investigators to ensure accurate representation of the component technology. Comparisons are made with the current cost and performance of fossil-based and alternative renewable energy systems, and sensitivity analyses are conducted to determine the effect of changes in cost and performance parameters on the projects` viability.

  2. Kronecker Algebra-based Deadlock Analysis for Railway Systems

    Directory of Open Access Journals (Sweden)

    Robert Mittermayr

    2012-09-01

    Full Text Available Deadlock analysis for railway systems differs in several aspects from deadlock analysis in computer science. While the problem of deadlock analysis for standard computer systems is well-understood, multi-threaded embedded computer systems pose new challenges. A novel approach in this area can easily be applied to deadlock analysis in the domain of railway systems. The approach is based on Kronecker algebra. A lazy implementation of the matrix operations even allows analysing exponentially sized systems in a very efficient manner. The running time of the algorithm does not depend on the problem size but on the size of the solution. While other approaches suffer from the fact that additional constraints make the problem and its solution harder, our approach delivers its results faster if constraints are added. In addition, our approach is complete and sound for railway systems, i.e., it generates neither false positives nor false negatives.

  3. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  4. Analysis and comparison of transportation security systems

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1976-05-01

    The role of modeling in the analysis of transportation security systems is described. Various modeling approaches are outlined. The conflict model developed in Sandia Laboratories' Transportation Mode Analysis for the NRC Special Safeguards Study is used to demonstrate the capability of models to determine system sensitivities and compare alternatives

  5. Control system design and analysis using the INteractive Controls Analysis (INCA) program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.

  6. RAMS (Risk Analysis - Modular System) methodology

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Strenge, D.L.; Buck, J.W. [and others

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  7. Analysis and design of nuclear energy information systems

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Sriyana; Arief Tris Yuliyanto; Wiku Lulus Widodo

    2015-01-01

    Management of research reports and activities of the Center for Nuclear Energy System Assessment (PKSEN), either in the form of documents and the results of other activities, are important part of the series of activities PKSEN mission achievement. Management of good documents will facilitate the provision of improved inputs or use the maximum results. But over the past few years, there are still some problem in the management of research reports and activities performed by PKSEN. The purpose of this study is to analyze and design flow layout of the Nuclear Energy Information System to facilitate the implementation of the Nuclear Energy Information System. In addition to be used as a research management system and PKSEN activities, it can also be used as information media for the community. Nuclear Energy Information System package is expected to be ''one gate systems for PKSEN information. The research methodology used are: (i) analysis of organizational systems, (ii) the analysis and design of information systems; (iii) the analysis and design of software systems; (iv) the analysis and design of database systems. The results of this study are: had identified and resources throughout the organization PKSEN activation, had analyzed the application of SIEN using SWOT analysis, had identified several types of devices required, had been compiled hierarchy of SIEN, had determined that the database system used is a centralized database system and had elections MySQL as DBMS. The result is a basic design of the Nuclear Energy Information System) which will used as a research and activities management system of PKSEN and also can be used as a medium of information for the community. (author)

  8. Inelastic analysis methods for piping systems

    International Nuclear Information System (INIS)

    Boyle, J.T.; Spence, J.

    1980-01-01

    The analysis of pipework systems which operate in an environment where local inelastic strains are evident is one of the most demanding problems facing the stress analyst in the nuclear field. The spatial complexity of even the most modest system makes a detailed analysis using finite element techniques beyond the scope of current computer technology. For this reason the emphasis has been on simplified methods. It is the aim of this paper to provide a reasonably complete, state-of-the-art review of inelastic pipework analysis methods and to attempt to highlight areas where reliable information is lacking and further work is needed. (orig.)

  9. Structural and stress analysis of nuclear piping systems

    International Nuclear Information System (INIS)

    Hata, Hiromichi

    1982-01-01

    The design of the strength of piping system is important in plant design, and its outline on the example of PWRs is reported. The standards and guides concerning the design of the strength of piping system are shown. The design condition for the strength of piping system is determined by considering the requirements in the normal operation of plants and for the safety design of plants, and the loads in normal operation, testing, credible accident and natural environment are explained. The methods of analysis for piping system are related to the transient phenomena of fluid, piping structure and local heat conduction, and linear static analysis, linear time response analysis, nonlinear time response analysis, thermal stress analysis and fluid transient phenomenon analysis are carried out. In the aseismatic design of piping system, it is desirable to avoid the vibration together with a building supporting it, and as a rule, to make it into rigid structure. The piping system is classified into high temperature and low temperature pipings. The formulas for calculating stress and the allowable condition, the points to which attention must be paid in the design of piping strength and the matters to be investigated hereafter are described. (Kako, I.)

  10. Investigation on method of elasto-plastic analysis for piping system (benchmark analysis)

    International Nuclear Information System (INIS)

    Kabaya, Takuro; Kojima, Nobuyuki; Arai, Masashi

    2015-01-01

    This paper provides method of an elasto-plastic analysis for practical seismic design of nuclear piping system. JSME started up the task to establish method of an elasto-plastic analysis for nuclear piping system. The benchmark analyses have been performed in the task to investigate on method of an elasto-plastic analysis. And our company has participated in the benchmark analyses. As a result, we have settled on the method which simulates the result of piping exciting test accurately. Therefore the recommended method of an elasto-plastic analysis is shown as follows; 1) An elasto-plastic analysis is composed of dynamic analysis of piping system modeled by using beam elements and static analysis of deformed elbow modeled by using shell elements. 2) Bi-linear is applied as an elasto-plastic property. Yield point is standardized yield point multiplied by 1.2 times, and second gradient is 1/100 young's modulus. Kinematic hardening is used as a hardening rule. 3) The fatigue life is evaluated on strain ranges obtained by elasto-plastic analysis, by using the rain flow method and the fatigue curve of previous studies. (author)

  11. AnalyzeThis: An Analysis Workflow-Aware Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyogi [ORNL; Kim, Youngjae [ORNL; Vazhkudai, Sudharshan S [ORNL; Tiwari, Devesh [ORNL; Anwar, Ali [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Ramakrishnan, Lavanya [Lawrence Berkeley National Laboratory (LBNL)

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  12. Build up of Radioactive Krypton and Xenon Analysis System

    International Nuclear Information System (INIS)

    Lee, D. K.; Choi, C. S.; Chung, K. H.; Lee, W.; Cho, Y. H.; Lee, C. W.

    2008-03-01

    The objective of this project is to build up an analysis system to measure the activity of the atmospheric radioactive krypton and xenon in Korea. The work scopes of the project include the purchase and the installation of the analysis system to measure the activity of the radioactive krypton and xenon in air, and the establishment of the operation capability of the system through the training of the operator. The system consists of two air sampling systems, and one radioactivity analysis system, which incorporates the enrichment system, the gas chromatography to purify a mixture gas, and the gas proportional counter to count the activity of pure krypton and xenon gas. As planned originally, the establishment of the analysis system has been completed. At present, one air sampler is successfully being operated at a specific site of the South Korea to measure the background radioactivities of Kr-85 and Xe-133 in air. The other air sampler is being reserved at the KAERI in the Daejeon for a emergency like the second nuclear test of the North Korea. During the normal time, the reserved air sampler will be used to collect the air sample for the performance test of the analysis system and the cross analysis for the calibration of the system. The radioactivity analysis system has been installed at the KAERI, and is being used to measure the activity of Kr-85 and Xe-133 in the air sample from a domestic site

  13. LHCb Online Log Analysis and Maintenance System

    CERN Document Server

    Garnier, J-C

    2011-01-01

    History has shown, many times computer logs are the only information an administrator may have for an incident, which could be caused either by a malfunction or an attack. Due to the huge amount of logs that are produced from large-scale IT infrastructures, such as LHCb Online, critical information may be overlooked or simply be drowned in a sea of other messages. This clearly demonstrates the need for an automatic system for long-term maintenance and real time analysis of the logs. We have constructed a low cost, fault tolerant centralized logging system which is able to do in-depth analysis and cross-correlation of every log. This system is capable of handling O(10000) different log sources and numerous formats, while trying to keep the overhead as low as possible. It provides log gathering and management, Offline analysis and online analysis. We call Offline analysis the procedure of analyzing old logs for critical information, while Online analysis refer to the procedure of early alerting and reacting. ...

  14. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  15. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  16. A Concept Analysis of Systems Thinking.

    Science.gov (United States)

    Stalter, Ann M; Phillips, Janet M; Ruggiero, Jeanne S; Scardaville, Debra L; Merriam, Deborah; Dolansky, Mary A; Goldschmidt, Karen A; Wiggs, Carol M; Winegardner, Sherri

    2017-10-01

    This concept analysis, written by the National Quality and Safety Education for Nurses (QSEN) RN-BSN Task Force, defines systems thinking in relation to healthcare delivery. A review of the literature was conducted using five databases with the keywords "systems thinking" as well as "nursing education," "nursing curriculum," "online," "capstone," "practicum," "RN-BSN/RN to BSN," "healthcare organizations," "hospitals," and "clinical agencies." Only articles that focused on systems thinking in health care were used. The authors identified defining attributes, antecedents, consequences, and empirical referents of systems thinking. Systems thinking was defined as a process applied to individuals, teams, and organizations to impact cause and effect where solutions to complex problems are accomplished through collaborative effort according to personal ability with respect to improving components and the greater whole. Four primary attributes characterized systems thinking: dynamic system, holistic perspective, pattern identification, and transformation. Using the platform provided in this concept analysis, interprofessional practice has the ability to embrace planned efforts to improve critically needed quality and safety initiatives across patients' lifespans and all healthcare settings. © 2016 Wiley Periodicals, Inc.

  17. Development of cost-benefit analysis system

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Mishima, Tetsuya; Yuyama, Tomonori; Suzuki, Atsushi

    2001-01-01

    In order to promote the FDR development, it is necessary to see various benefits brought by introduction of FBR from multiple perspectives and have a good grasp of such benefits quantitatively and an adequate R and D investment scale which corresponds with them. In this study, the structured prototype in the previous study was improved to be able to perform cost-benefit analysis. An example of improvement made in the system is addition of subroutine used for comparison between new energy and benefits brought by introduction of FBR with special emphasis on addition of logic for analyzing externality about the new energy. Other improvement examples are modification of the Conventional Year Expense Ratio method of power generation cost to Average Durable Year Cost method, addition of database function and turning input data into database, and reviewing idea on cost by the type of waste material and price of uranium. The cost-benefit analysis system was also restructured utilizing Microsoft ACCESS so that it should have a data base function. As the result of the improvement mentioned above, we expect that the improved cost-benefit analysis system will have higher generality than the system before; therefore, great deal of benefits brought by application of the system in the future is expected. (author)

  18. EBT data acquisition and analysis system

    International Nuclear Information System (INIS)

    Burris, R.D.; Greenwood, D.E.; Stanton, J.S.; Geoffroy, K.A.

    1980-10-01

    This document describes the design and implementation of a data acquisition and analysis system for the EBT fusion experiment. The system includes data acquisition on five computers, automatic transmission of that data to a large, central data base, and a powerful data retrieval system. The system is flexible and easy to use, and it provides a fully documented record of the experiments

  19. System for the analysis of cohort mortality data

    International Nuclear Information System (INIS)

    McLain, R.; Frome, E.L.

    1986-01-01

    A system is developed for the analysis of cohort mortality data. This Mortality Analysis System (MAS) is designed as a research tool in epidemiologic studies. The system allows a researcher to investigate the effect of one or more factors on the mortality of a study cohort. Variables can be categorized as factors to allow for stratification in the analysis. DATA steps and PROC MATRIX are incorporated in the system to produce the output. Person-years, observed deaths, and expected deaths are calculated and cross-classified by the levels of the factors. The resulting data set can be used to compute the standardized mortality ratios (SMR) for each stratum level. Poisson regression models can then be used for further statistical analysis

  20. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  1. Measurement system analysis for one-sided tolerance

    Directory of Open Access Journals (Sweden)

    Szemik Kamil

    2017-01-01

    Full Text Available Measurement system analysis is carried out in order to determine if a capability to perform measurements in terms of product and process control is sufficient, indicating that the type I and the type II appraisal errors probability are acceptable. Statistical analyses for measurement system evaluation presented in the literature and the industrial manuals are not applicable for all complex and unusual applications. Therefore, the purpose of this study was to develop a robust statistical analysis method for measurement system variability analysis, in terms of product control scenario applied to one-sided tolerance. In the hereby presented study, the authors presented the theoretical principles of statistical techniques for measurement variations evaluation. Subsequently, the formula of gauge repeatability and reproducibility in terms of lower specification limit was proposed. The research hypothesis was tested using the statistical analysis.

  2. Essentials of Systems Analysis and Design

    DEFF Research Database (Denmark)

    Kotzab, Herbert

    2010-01-01

    Book review of: Essentials of Systems Analysis and Design: An international version / Joseph V. Valacich, Joey F. George and Jeffrey A. Hoffer. ( Pearson Education Int., 4th edition, 2009. 464 pages. ISBN: 978-0-13-506984-4; 0-13-506984-X)......Book review of: Essentials of Systems Analysis and Design: An international version / Joseph V. Valacich, Joey F. George and Jeffrey A. Hoffer. ( Pearson Education Int., 4th edition, 2009. 464 pages. ISBN: 978-0-13-506984-4; 0-13-506984-X)...

  3. Systems Analysis Department. Annual Progress Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Olsson, Charlotte; Loevborg, Leif [eds.

    2000-03-01

    This report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1999. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning-UNEP Centre, Safety, Reliability and Human Factors, and Technology Scenarios. The report includes summary statistics and lists of publications, committees and staff members. (au)

  4. Systems Analysis department. Annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Olsson, Charlotte; Petersen, Kurt E

    1998-03-01

    The report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1997. The department is undertaking research within Energy systems Analysis, Integrated Energy, Environment and Development Planning - UNEP Centre, Industrial Safety and Reliability and Man/Machine Interaction. The report includes lists of publications lectures, committees and staff members. (au) 110 refs.

  5. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  6. Guideliness for system modeling: fault tree [analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard.

  7. Guideliness for system modeling: fault tree [analysis

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard

  8. Systems Analysis Department annual progress report 1998

    DEFF Research Database (Denmark)

    1999-01-01

    The report describes the work of the Systems Analysis Department at Risø National Laboratory during 1998. The department undertakes research within Energy Systems Analysis, Integrated Energy, Environment and Development Planning - UNEP Centre, IndustrialSafety and Reliability, Man/Machine Interac....../Machine Interaction, and Technology Scenarios. The report includes lists of publications, lectures, committees and staff members....

  9. Verification and Performance Analysis for Embedded Systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2009-01-01

    This talk provides a thorough tutorial of the UPPAAL tool suite for, modeling, simulation, verification, optimal scheduling, synthesis, testing and performance analysis of embedded and real-time systems.......This talk provides a thorough tutorial of the UPPAAL tool suite for, modeling, simulation, verification, optimal scheduling, synthesis, testing and performance analysis of embedded and real-time systems....

  10. Systems Analysis Department annual progress report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Olsson, Charlotte; Loevborg, Leif [eds.

    1999-03-01

    The report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1998. The department undertakes research within Energy Systems Analysis, Integrated Energy, Environment and Development Planning - UNEP Centre, Industrial Safety and Reliability, Man/Machine Interaction and Technology Scenarios. The report includes lists of publications, lectures, committees and staff members. (au) 111 refs.

  11. Environmental systems analysis of wastewater management

    International Nuclear Information System (INIS)

    Kaerrman, Erik

    2000-01-01

    The history of wastewater management tells us that efforts have been made at solving only one problem at the time; sanitation during the first half of the 20th Century followed by eutrophication of lakes and sea and, for the past ten years, recycling of nutrients. After the 'Brundtland Report', 1987, a reversal of the debate occurred where water management was discussed in a more holistic manner than before. The concept sustainable development became widely accepted and was put into practice. This thesis suggests a framework for evaluating the sustainability of wastewater systems, which contains the use of criteria and system analytical evaluation methods matching each criterion. The main categories of criteria are identified as: Health and Hygiene, Social and Cultural, Environmental, Economic and Functional and Technical. The usability of different concepts of Environmental Systems Analysis for evaluating environmental criteria of wastewater systems is also investigated. These studies show that a substance-flow model combined with evaluation methods from Life Cycle Assessment (LCA), sometimes complemented with Exergy Analysis or Analysis of Primary Energy, is a beneficial approach for evaluating environmental impacts and the usage of resources. The substance-flow model ORWARE (ORganic WAste REsearch) combined with LCA was used to compare four systems structures for the management of household wastewater and solid organic waste, namely Conventional System, Irrigation of Energy Forests, Liquid Composting and Urine Separation. This study shows a potential for further development of the three alternative systems. The comparative study also included some development of system analytical methods. This thesis shows how the contribution from oxidation of ammonia should be included in the eutrophication impact category. Furthermore, a method is given for prioritization of the most relevant impacts from wastewater management by using normalisation of these impacts in

  12. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out b...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses.......This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...

  13. Stress analysis program system for nuclear vessel: STANSAS

    International Nuclear Information System (INIS)

    Okamoto, Asao; Michikami, Shinsuke

    1979-01-01

    IHI has developed a computer system of stress analysis and evaluation for nuclear vessels: STANSAS (STress ANalysis System for Axi-symmetric Structure). The system consists of more than twenty independent programs divided into the following six parts. 1. Programs for opening design by code rule. 2. Calculation model generating programs. 3. Load defining programs. 4. Structural analysis programs. 5. Load data/calculation results plotting programs. 6. Stress evaluation programs. Each program is connected with its pre- or post-processor through three data-bases which enable automatic data transfer. The user can make his choice of structural analysis programs in accordance with the problem to be solved. The interface to STANSAS can be easily installed in generalized structural analysis programs such as NASTRAN and MARC. For almost all tables and figures in the stress report, STANSAS has the function to print or plot out. The complicated procedures of ''Design by Analysis'' for pressure vessels have been well standardized by STANSAS. The system will give a high degree of efficiency and confidence to the design work. (author)

  14. Design and analysis for piping systems

    International Nuclear Information System (INIS)

    Sterkel, H.-P.; Cutrim, J.H.C.

    1981-01-01

    The procedure and the typical techniques that are used in NUCLEN for the design and the calculation of the piping of Nuclear Plants. The classification system are generically described and the analysis techniques which are used for the design and verification of the piping systems, i.e. pressure design for the dimensioning of the wallthicknesses, temperature and dead weight analysis together with determination of support points, are shown. The techniques of dynamic design and analyses are described for earthquake and pressure impulse loadings. (Author) [pt

  15. The analysis phase in development of knowledge-based systems

    International Nuclear Information System (INIS)

    Brooking, A.G.

    1986-01-01

    Over the past twenty years computer scientists have realized that, in order to produce reliable software that is easily modifiable, a proven methodology is required. Unlike conventional systems there is little knowledge of the life cycle of these knowledge-based systems. However, if the life cycle of conventional systems, it is not unreasonable to assume that analysis will come first. With respect to the analysis task there is an enormous difference in types of analysis. Conventional systems analysis is predominately concerned with what happens within the system. Typically, procedures will be noted in the way they relate to each other, the way data moves and changes within the system. There is often an example, on paper or machine, that can be observed

  16. Primary system boron dilution analysis

    International Nuclear Information System (INIS)

    Crump, R.J.; Naretto, C.J.; Borgen, R.A.; Rockhold, H.C.

    1978-01-01

    The results are presented for an analysis conducted to determine the potential paths through which nonborated water or water with insufficient boron concentration might enter the LOFT primary coolant piping system or reactor vessel to cause dilution of the borated primary coolant water. No attempt was made in the course of this analysis to identify possible design modifications nor to suggest changes in administrative procedures or controls

  17. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  18. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  19. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Yen, R.H.; Wang, J.H.; Hsu, H.Y.; Hsia, C.J.; Yen, C.W.; Chang, J.M.

    2011-01-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling

  20. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  1. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  2. An Artificial Intelligence-Based Environment Quality Analysis System

    OpenAIRE

    Oprea , Mihaela; Iliadis , Lazaros

    2011-01-01

    Part 20: Informatics and Intelligent Systems Applications for Quality of Life information Services (ISQLIS) Workshop; International audience; The paper describes an environment quality analysis system based on a combination of some artificial intelligence techniques, artificial neural networks and rule-based expert systems. Two case studies of the system use are discussed: air pollution analysis and flood forecasting with their impact on the environment and on the population health. The syste...

  3. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  4. An Evaluation Methodology for Protocol Analysis Systems

    Science.gov (United States)

    2007-03-01

    Main Memory Requirement NS: Needham-Schroeder NSL: Needham-Schroeder-Lowe OCaml : Objective Caml POSIX: Portable Operating System...methodology is needed. A. PROTOCOL ANALYSIS FIELD As with any field, there is a specialized language used within the protocol analysis community. Figure...ProVerif requires that Objective Caml ( OCaml ) be installed on the system, OCaml version 3.09.3 was installed. C. WINDOWS CONFIGURATION OS

  5. MAS: Malware Analysis System Based on Hardware-Assisted Virtualization Technology

    Science.gov (United States)

    Kim, Taehyoung; Kim, Inhyuk; Min, Changwoo; Eom, Young Ik

    There are many analysis techniques in order to analyze malicious codes. However, recently malicious codes often evade detection using stealthy obfuscation techniques, and attack computing systems. We propose an enhanced dynamic binary instrumentation using hardware-assisted virtualization technology. As a machine-level analyzer, our system can be isolated from almost the whole threats of malware, and provides single step analysis environment. Proposed system also supports rapid system call analysis environment. We implement our malware analysis system (referred as MAS) on the KVM hypervisor with Intel VT-x virtualization support. Our experiments with benchmarks show that the proposed system provides efficient analysis environment with low overhead.

  6. The ASDEX integrated data analysis system AIDA

    International Nuclear Information System (INIS)

    Grassie, K.; Gruber, O.; Kardaun, O.; Kaufmann, M.; Lackner, K.; Martin, P.; Mast, K.F.; McCarthy, P.J.; Mertens, V.; Pohl, D.; Rang, U.; Wunderlich, R.

    1989-11-01

    Since about two years, the ASDEX integrated data analysis system (AIDA), which combines the database (DABA) and the statistical analysis system (SAS), is successfully in operation. Besides a considerable, but meaningful, reduction of the 'raw' shot data, it offers the advantage of carefully selected and precisely defined datasets, which are easily accessible for informative tabular data overviews (DABA), and multi-shot analysis (SAS). Even rather complicated, statistical analyses can be performed efficiently within this system. In this report, we want to summarise AIDA's main features, give some details on its set-up and on the physical models which have been used for the derivation of the processed data. We also give short introduction how to use DABA and SAS. (orig.)

  7. Advances in analysis and control of timedelayed dynamical systems

    CERN Document Server

    Sun, Jianqiao

    2013-01-01

    Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy

  8. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    Science.gov (United States)

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  9. Benefit analysis of proposed information systems

    OpenAIRE

    Besore, Mark H.

    1991-01-01

    Approved for public release; distribution is unlimited This thesis reviewed two different approaches to benefit analysis, benefit comparison and user satisfaction, that could be applied to the evaluation of proposed information systems which are under consideration for acquisition by the federal government. Currently the General Services Administration only recommends that present value analysis methods be used in the analysis of alternatives even though the GSA specifies...

  10. Affordances of agricultural systems analysis tools

    NARCIS (Netherlands)

    Ditzler, Lenora; Klerkx, Laurens; Chan-Dentoni, Jacqueline; Posthumus, Helena; Krupnik, Timothy J.; Ridaura, Santiago López; Andersson, Jens A.; Baudron, Frédéric; Groot, Jeroen C.J.

    2018-01-01

    The increasingly complex challenges facing agricultural systems require problem-solving processes and systems analysis (SA) tools that engage multiple actors across disciplines. In this article, we employ the theory of affordances to unravel what tools may furnish users, and how those affordances

  11. Stability and Hopf bifurcation analysis of a new system

    International Nuclear Information System (INIS)

    Huang Kuifei; Yang Qigui

    2009-01-01

    In this paper, a new chaotic system is introduced. The system contains special cases as the modified Lorenz system and conjugate Chen system. Some subtle characteristics of stability and Hopf bifurcation of the new chaotic system are thoroughly investigated by rigorous mathematical analysis and symbolic computations. Meanwhile, some numerical simulations for justifying the theoretical analysis are also presented.

  12. Fault tree analysis on BWR core spray system

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1982-06-01

    Fault Trees which describe the failure modes for the Core Spray System function in the Browns Ferry Nuclear Plant (BWR 1065MWe) were developed qualitatively and quantitatively. The unavailability for the Core Spray System was estimated to be 1.2 x 10 - 3 /demand. It was found that the miscalibration of four reactor pressure sensors or the failure to open of the two inboard valves (FCV 75-25 and 75-53) could reduce system reliability significantly. It was recommended that the pressure sensors would be calibrated independently. The introduction of the redundant inboard valves could improve the system reliability. Thus this analysis method was verified useful for system analysis. The detailed test and maintenance manual and the informations on the control logic circuits of each active component are necessary for further analysis. (author)

  13. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  14. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  15. Systems Engineering Analysis for Office Space Management

    Science.gov (United States)

    2017-09-01

    ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT by James E. Abellana September 2017 Thesis Advisor: Diana Angelis Second Reader: Walter E. Owen...Master’s thesis 4. TITLE AND SUBTITLE SYSTEMS ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) James E. Abellana 7...of the systems engineering method, this thesis develops a multicriteria decision-making framework applicable to space allocation decisions for

  16. System analysis for radwaste management

    International Nuclear Information System (INIS)

    Lennemann, W.L.

    1987-01-01

    The most logical approach to evaluating radioactive waste management processes and their options is to consider radioactive waste management, handling, and disposal as a complete and complex system from the waste arisings to their disposition. The principal elements that should be considered or taken into account when making a decision involving one or more components of a radwaste management system essentially concern radiation doses or detriments- both radiological and industrial safety and both capital investments and operating costs. This paper discusses the system analysis of the low- and medium-level radioactive waste management

  17. Formal Modeling and Analysis of Timed Systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Niebert, Peter

    This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts of ...... systems, discrete time systems, timed languages, and real-time operating systems....... of two invited talks were carefully selected from 36 submissions during two rounds of reviewing and improvement. All current aspects of formal method for modeling and analyzing timed systems are addressed; among the timed systems dealt with are timed automata, timed Petri nets, max-plus algebras, real-time......This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts...

  18. Rewriting Modulo SMT and Open System Analysis

    Science.gov (United States)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar

    2014-01-01

    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.

  19. Application of four different football match analysis systems

    DEFF Research Database (Denmark)

    Randers, Morten B; Mujika, Inigo; Hewitt, Adam

    2010-01-01

    Using a video-based time-motion analysis system, a semi-automatic multiple-camera system, and two commercially available GPS systems (GPS-1; 5 Hz and GPS-2; 1 Hz), we compared activity pattern and fatigue development in the same football match. Twenty football players competing in the Spanish...... a football game and can be used to study game-induced fatigue. Rather large between-system differences were present in the determination of the absolute distances covered, meaning that any comparisons of results between different match analysis systems should be done with caution....

  20. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  1. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  2. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  3. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  4. Efficiency analysis system of material management

    Directory of Open Access Journals (Sweden)

    Bogusław Śliwczyński

    2012-12-01

    Full Text Available Background: Significant scope of enterprise's efficiency management is improving of material management process both the strategic and operational level. The complexity of material flow processes can lead to a threat such as distraction and disintegration of analysis focusing on many different factors influenced on effective sourcing and procurement management, transport and warehousing processes, inventory management, working capital and cash flow management. Material and methods: The presented article focuses on multidimensional and multi-criteria analysis of material management efficiency that is considered as decision support system. Authors have presented results of the research regarding ineffective material management confirm insufficient analytical supporting in various decisions of procurement operations. Results and conclusions: Based on research results authors presented in the article model of efficiency analysis system of material management.

  5. Cost and performance analysis of physical security systems

    International Nuclear Information System (INIS)

    Hicks, M.J.; Yates, D.; Jago, W.H.; Phillips, A.W.

    1998-04-01

    Analysis of cost and performance of physical security systems can be a complex, multi-dimensional problem. There are a number of point tools that address various aspects of cost and performance analysis. Increased interest in cost tradeoffs of physical security alternatives has motivated development of an architecture called Cost and Performance Analysis (CPA), which takes a top-down approach to aligning cost and performance metrics. CPA incorporates results generated by existing physical security system performance analysis tools, and utilizes an existing cost analysis tool. The objective of this architecture is to offer comprehensive visualization of complex data to security analysts and decision-makers

  6. A Thermorisk framework for the analysis of energy systems by combining risk and exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, G.; Colombo, E.; Zio, E.

    2016-01-01

    Highlights: • An exergy based analysis for improving efficiency and safety of energy systems is presented. • The relation between thermodynamic parameters and the safety characteristics is identified. • Possible modifications in the process are indicated to improve the safety of the system. - Abstract: The impact of energy production, transformation and use on the environmental resources encourage to understand the mechanisms of resource degradation and to develop proper analyses to reduce the impact of the energy systems on the environment. At the technical level, most attempts for reducing the environmental impact of energy systems focus on the improvement of process efficiency. One way toward an integrated approach is that of adopting exergy analysis for assessing efficiency and test improving design and operation solutions. The paper presents an exergy based analysis for improving efficiency and safety of energy systems, named Thermorisk analysis. The purpose of the Thermorisk analysis is to supply information to control, and eventually reduce, the risk of the systems (i.e. risk of accidents) by acting on the thermodynamic parameters and safety characteristics in the same frame. The proper combination of exergy and risk analysis allows monitoring the effects of efficiency improvement on the safety of the systems analyzed. A case study is presented, showing the potential of the analysis to identify the relation between the exergy efficiency and the risk of the system analyzed, and the contribution of inefficiencies on the safety of the process. Possible modifications in the process are indicated to improve the safety of the system.

  7. Intrinsic Uncertainties in Modeling Complex Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  8. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  9. Best-estimate analysis development for BWR systems

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Kalra, S.P.; Beckner, W.D.

    1986-01-01

    The Full Integral Simulation Test (FIST) Program is a three pronged approach to the development of best-estimate analysis capability for BWR systems. An experimental program in the FIST BWR system simulator facility extends the LOCA data base and adds operational transients data. An analytical method development program with the BWR-TRAC computer program extends the modeling of BWR specific components and major interfacing systems, and improves numerical techniques to reduce computer running time. A method qualification program tests TRAC-B against experiments run in the FIST facility and extends the results to reactor system applications. With the completion and integration of these three activities, the objective of a best-estimate analysis capability has been achieved. (author)

  10. Magnetic Signature Analysis & Validation System

    National Research Council Canada - National Science Library

    Vliet, Scott

    2001-01-01

    The Magnetic Signature Analysis and Validation (MAGSAV) System is a mobile platform that is used to measure, record, and analyze the perturbations to the earth's ambient magnetic field caused by object such as armored vehicles...

  11. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  12. An Experimental Metagenome Data Management and AnalysisSystem

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Korzeniewski, Frank; Palaniappan, Krishna; Szeto, Ernest; Ivanova, Natalia N.; Kyrpides, Nikos C.; Hugenholtz, Philip

    2006-03-01

    The application of shotgun sequencing to environmental samples has revealed a new universe of microbial community genomes (metagenomes) involving previously uncultured organisms. Metagenome analysis, which is expected to provide a comprehensive picture of the gene functions and metabolic capacity of microbial community, needs to be conducted in the context of a comprehensive data management and analysis system. We present in this paper IMG/M, an experimental metagenome data management and analysis system that is based on the Integrated Microbial Genomes (IMG) system. IMG/M provides tools and viewers for analyzing both metagenomes and isolate genomes individually or in a comparative context.

  13. Digital PIV (DPIV) Software Analysis System

    Science.gov (United States)

    Blackshire, James L.

    1997-01-01

    A software package was developed to provide a Digital PIV (DPIV) capability for NASA LaRC. The system provides an automated image capture, test correlation, and autocorrelation analysis capability for the Kodak Megaplus 1.4 digital camera system for PIV measurements. The package includes three separate programs that, when used together with the PIV data validation algorithm, constitutes a complete DPIV analysis capability. The programs are run on an IBM PC/AT host computer running either Microsoft Windows 3.1 or Windows 95 using a 'quickwin' format that allows simple user interface and output capabilities to the windows environment.

  14. Zero risk fuel fabrication: a systems analysis

    International Nuclear Information System (INIS)

    1979-01-01

    Zero risk is a concept used to ensure that system requirements are developed through a systems approach such that the choice(s) among alternatives represents the balanced viewpoints of performance, achievability and risk. Requirements to ensure characteristics such as stringent accountability, low personnel exposure and etc. are needed to guide the development of component and subsystems for future LMFBR fuel supply systems. To establish a consistent and objective set of requirements, RF and M-TMC has initiated a systems requirements analysis activity. This activity pivots on judgement and experience provided by a Task Force representing industrial companies engaged in fuel fabrication in licensed facilities. The Task Force members are listed in Appendix A. Input developed by this group is presented as a starting point for the systems requirements analysis

  15. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  16. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  17. Data Processing and Analysis Systems for JT-60U

    International Nuclear Information System (INIS)

    Matsuda, T.; Totsuka, T.; Tsugita, T.; Oshima, T.; Sakata, S.; Sato, M.; Iwasaki, K.

    2002-01-01

    The JT-60U data processing system is a large computer complex gradually modernized by utilizing progressive computer and network technology. A main computer using state-of-the-art CMOS technology can handle ∼550 MB of data per discharge. A gigabit ethernet switch with FDDI ports has been introduced to cope with the increase of handling data. Workstation systems with VMEbus serial highway drivers for CAMAC have been developed and used to replace many minicomputer systems. VMEbus-based fast data acquisition systems have also been developed to enlarge and replace a minicomputer system for mass data.The JT-60U data analysis system is composed of a JT-60U database server and a JT-60U analysis server, which are distributed UNIX servers. The experimental database is stored in the 1TB RAID disk of the JT-60U database server and is composed of ZENKEI and diagnostic databases. Various data analysis tools are available on the JT-60U analysis server. For the remote collaboration, technical features of the data analysis system have been applied to the computer system to access JT-60U data via the Internet. Remote participation in JT-60U experiments has been successfully conducted since 1996

  18. Geometry in the large and hyperbolic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Hasslacher, B.; Mainieri, R.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.

  19. Design of Simple Instrumentation System for the Quality Analysis of Milk (Casein Analysis

    Directory of Open Access Journals (Sweden)

    V. G. Sangam

    2010-08-01

    Full Text Available This paper describes the design of a simple instrumentation system for the analysis of casein concentration in the milk. Casein is one of the major constituent of milk and its concentration describes the quality of the milk. Normally casein is analyzed by conventional analytical methods or by using Spectrophotometric methods. Here an attempt has been made to develop a simple portable system using optical instrumentation technique. The objective of the developed system is the real time analysis of the casein concentration of the milk at the field. The system involves UV light source, UV filter, cuvette, photo detector, display unit, data Acquisition Card (DAC as peripheral with USB port. Appropriate program has been developed in visual studio 6 and turbo C. Repeated number of real time analysis was carried out for different samples of milk; the results obtained are in excellent agreement with the amount determined by standard conventional methods with an accuracy of ±1.5 %, and the response time is within 100 seconds. This system can be used in the field for the quality analysis of milk as an independent unit and can also be interfaced to PC with USB port. The system has good accuracy, less response time and low cost.

  20. Fast Computation and Assessment Methods in Power System Analysis

    Science.gov (United States)

    Nagata, Masaki

    Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.

  1. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  2. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  3. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  4. Phased mission analysis of maintained systems: a study in reliability risk analysis

    International Nuclear Information System (INIS)

    Terpstra, K.

    1984-01-01

    The present study develops a general theory that treats the probability of occurrence of each branch of an event tree and that takes correctly into account the dependencies between systems; incorporates within the general theory the solution of the problem of phased mission analysis. It also includes the general model components, that may or may not be repairable, with general lifetime and repairtime distribution, i.e. in the model repairable systems should be taken into account. Finally a computer program is developed that is based on this general theory, i.e. a computer program that is able to perform fully the probabilistic calculations of a risk analysis and that can handle in a correct way phased mission analysis of repairable systems. The theory is applied to a boiling water reactor accident. (Auth.)

  5. Classifier-Guided Sampling for Complex Energy System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, Peter B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of o bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.

  6. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  7. Real-time systems design and analysis

    CERN Document Server

    Laplante, Phillip A

    2004-01-01

    "Real-Time Systems Design and Analysis, Third Edition is essential for students and practicing software engineers who want improved designs, faster computation, and ultimate cost savings. Chapters discuss hardware considerations and software requirements, software systems design, the software production process, performance estimation and optimization, and engineering considerations."--Jacket.

  8. Vehicle Systems Analysis Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Vehicle Systems Analysis Technical Team (VSATT) is to evaluate the performance and interactions of proposed advanced automotive powertrain components and subsystems, in a vehicle systems context, to inform ongoing research and development activities and maximize the potential for fuel efficiency improvements and emission reduction.

  9. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  10. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  11. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  12. RAMI analysis of the ITER LFS CTS system

    DEFF Research Database (Denmark)

    Infante, V.; Henriques, E.; Gonçalves, B.

    2017-01-01

    with the methodology pursued. The Functional Analysis, developed both at system and sub-system level, are the major inputs for the RAMI analysis. A systematic approach has been used, and significant design assumptions have been made due to the lack of knowledge and definition inherent to preliminary design stages...

  13. System analysis procedures for conducting PSA of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Jeong, Won Dae; Kim, Tae Un; Kim, Kil You; Han, Sang Hoon; Chang, Seung Chul; Sung, Tae Yong; Yang, Jun Eon; Kang, Dae Il; Park, Jin Hee; Hwang, Mi Jeong; Jin, Young Ho.

    1997-03-01

    This document, the Probabilistic Safety Assessment(PSA) procedures guide for system analysis, is intended to provide the guidelines to analyze the target of system consistently and technically in the performance of PSA for nuclear power plants(NPPs). The guide has been prepared in accordance with the procedures and techniques for fault tree analysis(FTA) used in system analysis. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis(ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. After the construction of fault tree is completed, system unavailability is calculated with the CUT module of KIRAP, and the qualitative and quantitative analysis is performed through the process as above stated. As above mentioned, the procedures for system analysis is based on PSA procedures and methods which has been applied to the safety assessments of constructing NPPs in the country. Accordingly, the method of FTA stated in this procedures guide will be applicable to PSA for the NPPs to be constructed in the future. (author). 6 tabs., 11 figs., 7 refs

  14. System analysis procedures for conducting PSA of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Jeong, Won Dae; Kim, Tae Un; Kim, Kil You; Han, Sang Hoon; Chang, Seung Chul; Sung, Tae Yong; Yang, Jun Eon; Kang, Dae Il; Park, Jin Hee; Hwang, Mi Jeong; Jin, Young Ho

    1997-03-01

    This document, the Probabilistic Safety Assessment(PSA) procedures guide for system analysis, is intended to provide the guidelines to analyze the target of system consistently and technically in the performance of PSA for nuclear power plants(NPPs). The guide has been prepared in accordance with the procedures and techniques for fault tree analysis(FTA) used in system analysis. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis(ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. After the construction of fault tree is completed, system unavailability is calculated with the CUT module of KIRAP, and the qualitative and quantitative analysis is performed through the process as above stated. As above mentioned, the procedures for system analysis is based on PSA procedures and methods which has been applied to the safety assessments of constructing NPPs in the country. Accordingly, the method of FTA stated in this procedures guide will be applicable to PSA for the NPPs to be constructed in the future. (author). 6 tabs., 11 figs., 7 refs.

  15. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  16. Content Analysis in Systems Engineering Acquisition Activities

    Science.gov (United States)

    2016-04-30

    Acquisition Activities Karen Holness, Assistant Professor, NPS Update on the Department of the Navy Systems Engineering Career Competency Model Clifford...systems engineering toolkit . Having a common analysis tool that is easy to use would support the feedback of observed system performance trends from the

  17. Contextual-Analysis for Infrastructure Awareness Systems

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurelien; Alt, Florian

    Infrastructures are persistent socio-technical systems used to deliver different kinds of services. Researchers have looked into how awareness of infrastructures in the areas of sustainability [6, 10] and software appropriation [11] can be provided. However, designing infrastructure-aware systems...... has specific requirements, which are often ignored. In this paper we explore the challenges when developing infrastructure awareness systems based on contextual analysis, and propose guidelines for enhancing the design process....

  18. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  19. LOFT PSMG Speed Control System frequency response analysis

    International Nuclear Information System (INIS)

    Hansen, H.R.

    1977-01-01

    An analysis was done to gain insight into the shape of the open loop frequency response of the PSMG Speed Control System. The results of the analysis were used as a guide to groom the proportional band and reset time settings of the 2 mode controller in the speed control system. The analysis shows that when an actuator with a timing of 90 degrees per 60 seconds is installed in the system the proportional band and reset time should be 316% and 1 minute. Whereas when grooming the system a proportional band and reset time of 150% and 1.5 minutes were found to be appropriate. The closeness of the settings show that even though a linear model was used to describe the non-linear PSMG Speed Control System, it was accurate enough to be used as a guide to groom the proportional band and reset time settings

  20. Source-system windowing for speech analysis

    NARCIS (Netherlands)

    Yegnanarayana, B.; Satyanarayana Murthy, P.; Eggen, J.H.

    1993-01-01

    In this paper we propose a speech-analysis method to bring out characteristics of the vocal tract system in short segments which are much less than a pitch period. The method performs windowing in the source and system components of the speech signal and recombines them to obtain a signal reflecting

  1. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    Science.gov (United States)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  2. Precision Attitude Determination System (PADS) system design and analysis: Single-axis gimbal star tracker

    Science.gov (United States)

    1974-01-01

    The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.

  3. Analysis of chaos in high-dimensional wind power system.

    Science.gov (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  4. Failure Propagation Modeling and Analysis via System Interfaces

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Safety-critical systems must be shown to be acceptably safe to deploy and use in their operational environment. One of the key concerns of developing safety-critical systems is to understand how the system behaves in the presence of failures, regardless of whether that failure is triggered by the external environment or caused by internal errors. Safety assessment at the early stages of system development involves analysis of potential failures and their consequences. Increasingly, for complex systems, model-based safety assessment is becoming more widely used. In this paper we propose an approach for safety analysis based on system interface models. By extending interaction models on the system interface level with failure modes as well as relevant portions of the physical system to be controlled, automated support could be provided for much of the failure analysis. We focus on fault modeling and on how to compute minimal cut sets. Particularly, we explore state space reconstruction strategy and bounded searching technique to reduce the number of states that need to be analyzed, which remarkably improves the efficiency of cut sets searching algorithm.

  5. Probabilistic structural analysis methods for select space propulsion system components

    Science.gov (United States)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  6. Expert systems for assisting the analysis of hazards

    International Nuclear Information System (INIS)

    Evrard, J.M.; Martinez, J.M.; Souchet, Y.

    1990-01-01

    The advantage of applying expert systems in the analysis of safety in the operation of nuclear power plants is discussed. Expert systems apply a method based on a common representation of nuclear power plants. The main steps of the method are summarized. The applications given concern in the following fields: the analysis of hazards in the electric power supplies of a gas-graphite power plant; the evaluation of the availability of safety procedures in a PWR power plant; the search for the sources of leakage in a PWR power plant. The analysis shows that expert systems are a powerful tool in the study of safety of nuclear power plants [fr

  7. Integrated dynamic modeling and management system mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  8. Integrated dynamic modeling and management system mission analysis

    International Nuclear Information System (INIS)

    Lee, A.K.

    1994-01-01

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied

  9. Development of HANARO Activation Analysis System and Utilization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Cho, H. J. (and others)

    2007-06-15

    1. Establishment of evaluation system using a data for a neutron activation analysis : Improvement of NAA measurement system and its identification, Development of combined data evaluation code of NAA/PGAA, International technical cooperation project 2. Development of technique for a industrial application of high precision gamma nuclide spectroscopic analysis : Analytical quality control, Development of industrial application techniques and its identification 3. Industrial application research for a prompt gamma-ray activation analysis : Improvement of Compton suppression counting system (PGAA), Development of applied technology using a PGAA system 4. Establishment of NAA user supporting system and KOLAS management : Development and validation of KOLAS/ISO accreditation testing and identification method, Cooperation researches for a industrial application, Establishment of integrated user analytical supporting system, Accomplishment of sample irradiation facility.

  10. Development of HANARO Activation Analysis System and Utilization Technology

    International Nuclear Information System (INIS)

    Chung, Y. S.; Moon, J. H.; Cho, H. J.

    2007-06-01

    1. Establishment of evaluation system using a data for a neutron activation analysis : Improvement of NAA measurement system and its identification, Development of combined data evaluation code of NAA/PGAA, International technical cooperation project 2. Development of technique for a industrial application of high precision gamma nuclide spectroscopic analysis : Analytical quality control, Development of industrial application techniques and its identification 3. Industrial application research for a prompt gamma-ray activation analysis : Improvement of Compton suppression counting system (PGAA), Development of applied technology using a PGAA system 4. Establishment of NAA user supporting system and KOLAS management : Development and validation of KOLAS/ISO accreditation testing and identification method, Cooperation researches for a industrial application, Establishment of integrated user analytical supporting system, Accomplishment of sample irradiation facility

  11. LDRD final report on "Pumping up CO2 and conversion into useful molecules" (LDRD 105932).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Stewart, Constantine A.; Dickie, Diane A. (University of New Mexico, Albuquerque, NM)

    2009-11-01

    Group 12 metal cyclam complexes and their derivatives as well as (octyl){sub 2}Sn(OMe){sub 2} were examined as potential catalysts for the production of dimethyl carbonate (DMC) using CO{sub 2} and methanol. The zinc cyclams will readily take up carbon dioxide and methanol at room temperature and atmospheric pressure to give the metal methyl carbonate. The tin exhibited an improvement in DMC yields. Studies involving the reaction of bis-phosphino- and (phosphino)(silyl)-amido group 2 and 12 complexes with CO{sub 2} and CS{sub 2} were performed. Notable results include formation of phosphino-substituted isocyanates, fixation of three moles of CO{sub 2} in an unprecedented [N(CO{sub 2}){sub 3}]{sup 3-} anion, and rapid splitting of CS{sub 2} by main group elements under extremely mild conditions. Similar investigations of divalent group 14 silyl amides led to room temperature splitting of CO{sub 2} into CO and metal oxide clusters, and the formation of isocyanates and carbodiimides.

  12. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  13. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  14. Signals and transforms in linear systems analysis

    CERN Document Server

    Wasylkiwskyj, Wasyl

    2013-01-01

    Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7.  The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...

  15. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  16. Portable system for auscultation and lung sound analysis.

    Science.gov (United States)

    Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li

    2014-01-01

    A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases.

  17. Teaching Case: Analysis of an Electronic Voting System

    Science.gov (United States)

    Thompson, Nik; Toohey, Danny

    2014-01-01

    This teaching case discusses the analysis of an electronic voting system. The development of the case was motivated by research into information security and management, but as it includes procedural aspects, organizational structure and personnel, it is a suitable basis for all aspects of systems analysis, planning and design tasks. The material…

  18. The twilight of the training analysis system.

    Science.gov (United States)

    Kernberg, Otto F

    2014-04-01

    This paper briefly reviews challenges to psychoanalysis at this time, including those derived from both external, societal origins and internal psychoanalytic problems. It focuses attention on serious conflicts around psychoanalytic education, and refers to the training analysis system as a central problem determining fundamental constraints on present-day psychoanalytic education. These constraints are examined in some detail, and the general advantages and disadvantages of the training analysis system are outlined. The effects of all these dynamics on the administrative organization of the American Psychoanalytic Association are explored, and a proposal for a fundamental reorganization of our educational system to resolve the correspondent problems is outlined.

  19. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    ...), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear applications, although there is an emphasis placed on the analysis of nuclear systems...

  20. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  1. Application of System Dynamics Methodology in Population Analysis

    Directory of Open Access Journals (Sweden)

    August Turina

    2009-09-01

    Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.

  2. Availability Analysis of the Ventilation Stack CAM Interlock System

    CERN Document Server

    Young, J

    2000-01-01

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability.

  3. Wireless multimedia communication systems design, analysis, and implementation

    CERN Document Server

    Rao, KR; Bakmaz, Bojan M

    2014-01-01

    Rapid progress in software, hardware, mobile networks, and the potential of interactive media poses many questions for researchers, manufacturers, and operators of wireless multimedia communication systems. Wireless Multimedia Communication Systems: Design, Analysis, and Implementation strives to answer those questions by not only covering the underlying concepts involved in the design, analysis, and implementation of wireless multimedia communication systems, but also by tackling advanced topics such as mobility management, security components, and smart grids.Offering an accessible treatment

  4. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  5. Introduction of thermal-hydraulic analysis code and system analysis code for HTGR

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1984-01-01

    Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)

  6. Composable Analytic Systems for next-generation intelligence analysis

    Science.gov (United States)

    DiBona, Phil; Llinas, James; Barry, Kevin

    2015-05-01

    Lockheed Martin Advanced Technology Laboratories (LM ATL) is collaborating with Professor James Llinas, Ph.D., of the Center for Multisource Information Fusion at the University at Buffalo (State of NY), researching concepts for a mixed-initiative associate system for intelligence analysts to facilitate reduced analysis and decision times while proactively discovering and presenting relevant information based on the analyst's needs, current tasks and cognitive state. Today's exploitation and analysis systems have largely been designed for a specific sensor, data type, and operational context, leading to difficulty in directly supporting the analyst's evolving tasking and work product development preferences across complex Operational Environments. Our interactions with analysts illuminate the need to impact the information fusion, exploitation, and analysis capabilities in a variety of ways, including understanding data options, algorithm composition, hypothesis validation, and work product development. Composable Analytic Systems, an analyst-driven system that increases flexibility and capability to effectively utilize Multi-INT fusion and analytics tailored to the analyst's mission needs, holds promise to addresses the current and future intelligence analysis needs, as US forces engage threats in contested and denied environments.

  7. Distortion Analysis Toolkit—A Software Tool for Easy Analysis of Nonlinear Audio Systems

    Directory of Open Access Journals (Sweden)

    Jyri Pakarinen

    2010-01-01

    Full Text Available Several audio effects devices deliberately add nonlinear distortion to the processed signal in order to create a desired sound. When creating virtual analog models of nonlinearly distorting devices, it would be very useful to carefully analyze the type of distortion, so that the model could be made as realistic as possible. While traditional system analysis tools such as the frequency response give detailed information on the operation of linear and time-invariant systems, they are less useful for analyzing nonlinear devices. Furthermore, although there do exist separate algorithms for nonlinear distortion analysis, there is currently no unified, easy-to-use tool for rapid analysis of distorting audio systems. This paper offers a remedy by introducing a new software tool for easy analysis of distorting effects. A comparison between a well-known guitar tube amplifier and two commercial software simulations is presented as a case study. This freely available software is written in Matlab language, but the analysis tool can also run as a standalone program, so the user does not need to have Matlab installed in order to perform the analysis.

  8. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    Science.gov (United States)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  9. Modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, Vidyadhar G

    2011-01-01

    Based on the author's more than 25 years of teaching experience, Modeling and Analysis of Stochastic Systems, Second Edition covers the most important classes of stochastic processes used in the modeling of diverse systems, from supply chains and inventory systems to genetics and biological systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. Along with reorganizing the material, this edition revises and adds new exercises and examples. New to the second edi

  10. Report on analysis of HERBE system

    International Nuclear Information System (INIS)

    1989-07-01

    The objective of this report is the choice of HERBE system configuration and detailed analysis of neutronic characteristics of the chosen configuration. The system is planned to be built at the RB reactor. Neutronic parameters were calculated by computer code VESNA based on transmission probability method using 44 group nuclear data for 28 nuclides. In the first phase, it has been proposed to achieve HERBE system by using fuel elements existing at the RB reactor. It is suggested to build new hybrid system in the RB reactor using new fuel elements that would be produced

  11. Integrated systems analysis of the PIUS reactor

    International Nuclear Information System (INIS)

    Fullwood, F.; Kroeger, P.; Higgins, J.

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects ampersand Criticality Analysis (FMECA) and Hazards ampersand Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions

  12. Integrated systems analysis of the PIUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, F.; Kroeger, P.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  13. Issues and scenarios for nuclear waste management systems analysis

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1980-11-01

    The Planning and Analysis Branch of the Department of Energy's Nuclear Waste Management Programs is developing a new systems integration program. The Pacific Northwest Laboratory was requested to perform a brief scoping analysis of what scenarios, questions, and issues should be addressed by the systems integration program. This document reports on that scoping analysis

  14. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  15. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  16. The verification of neutron activation analysis support system (cooperative research)

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sawahata, Hiroyuki; Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Onizawa, Kouji [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k{sub 0} method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k{sub 0} method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  17. Automatic measurement system for light element isotope analysis

    International Nuclear Information System (INIS)

    Satake, Hiroshi; Ikegami, Kouichi.

    1990-01-01

    The automatic measurement system for the light element isotope analysis was developed by installing the specially designed inlet system which was controlled by a computer. The microcomputer system contains specific interface boards for the inlet system and the mass spectrometer, Micromass 602 E. All the components of the inlet and the computer system installed are easily available in Japan. Ten samples can be automatically measured as a maximum of. About 160 minutes are required for 10 measurements of δ 18 O values of CO 2 . Thus four samples can be measured per an hour using this system, while usually three samples for an hour using the manual operation. The automatized analysis system clearly has an advantage over the conventional method. This paper describes the details of this automated system, such as apparatuses used, the control procedure and the correction for reliable measurement. (author)

  18. Cost and performance analysis of physical security systems

    International Nuclear Information System (INIS)

    Hicks, M.J.; Yates, D.; Jago, W.H.

    1997-01-01

    CPA - Cost and Performance Analysis - is a prototype integration of existing PC-based cost and performance analysis tools: ACEIT (Automated Cost Estimating Integrated Tools) and ASSESS (Analytic System and Software for Evaluating Safeguards and Security). ACE is an existing DOD PC-based tool that supports cost analysis over the full life cycle of a system; that is, the cost to procure, operate, maintain and retire the system and all of its components. ASSESS is an existing DOE PC-based tool for analysis of performance of physical protection systems. Through CPA, the cost and performance data are collected into Excel workbooks, making the data readily available to analysts and decision makers in both tabular and graphical formats and at both the system and subsystem levels. The structure of the cost spreadsheets incorporates an activity-based approach to cost estimation. Activity-based costing (ABC) is an accounting philosophy used by industry to trace direct and indirect costs to the products or services of a business unit. By tracing costs through security sensors and procedures and then mapping the contributions of the various sensors and procedures to system effectiveness, the CPA architecture can provide security managers with information critical for both operational and strategic decisions. The architecture, features and applications of the CPA prototype are presented. 5 refs., 3 figs

  19. Hybrid Real-time Zero-day Malware Analysis and Reporting System

    OpenAIRE

    Ratinder Kaur; Maninder Singh

    2016-01-01

    To understand completely the malicious intents of a zero-day malware there is really no automated way. There is no single best approach for malware analysis so it demands to combine existing static, dynamic and manual malware analysis techniques in a single unit. In this paper a hybrid real-time analysis and reporting system is presented. The proposed system integrates various malware analysis tools and utilities in a component-based architecture. The system automatica...

  20. Scientific & Intelligence Exascale Visualization Analysis System

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-14

    SIEVAS provides an immersive visualization framework for connecting multiple systems in real time for data science. SIEVAS provides the ability to connect multiple COTS and GOTS products in a seamless fashion for data fusion, data analysis, and viewing. It provides this capability by using a combination of micro services, real time messaging, and web service compliant back-end system.

  1. Distribution system modeling and analysis

    CERN Document Server

    Kersting, William H

    2001-01-01

    For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...

  2. Disability Evaluation Systems Analysis and Research Annual Report 2015

    Science.gov (United States)

    2016-03-21

    Army and Air Force had higher percentages of reserve component disability evaluations, likely due to the inclusion of National Guard service members...Annual Report 2015 Disability Evaluation Systems Analysis and Research Prepared by Accession Medical Standards Analysis and Research Activity...Preventive Medicine Branch Walter Reed Army Institute of Research Silver Spring, Maryland Disability Evaluation Systems Analysis and Research

  3. Disability Evaluation System Analysis and Research Annual Report 2015

    Science.gov (United States)

    2016-03-11

    Inclusion of laboratory and diagnostic information on the medical condition or injury that precipitated the disability evaluation in each service’s...Annual Report 2015 Disability Evaluation Systems Analysis and Research Prepared by Accession Medical Standards Analysis and Research Activity...Preventive Medicine Branch Walter Reed Army Institute of Research Silver Spring, Maryland Disability Evaluation Systems Analysis and Research

  4. Response Time Analysis of Distributed Web Systems Using QPNs

    Directory of Open Access Journals (Sweden)

    Tomasz Rak

    2015-01-01

    Full Text Available A performance model is used for studying distributed Web systems. Performance evaluation is done by obtaining load test measurements. Queueing Petri Nets formalism supports modeling and performance analysis of distributed World Wide Web environments. The proposed distributed Web systems modeling and design methodology have been applied in the evaluation of several system architectures under different external loads. Furthermore, performance analysis is done to determine the system response time.

  5. Project development and commercialization of on-line analysis systems

    International Nuclear Information System (INIS)

    Watt, J.S.

    1997-01-01

    A project team first in the Australian Atomic Energy Commission (AAEC) and since 1982 in CSIRO has developed many on-line analysis systems for the mineral and energy industries. The development of these projects has followed a common pattern of laboratory R and D, field trials, commercialisation and technology transfer. This successful pattern is illustrated using examples of the development of systems for the on-line analysis of mineral slurries, for determination of the ash content of coal on conveyors, and for determination of the flow rates of oil, water and gas in pipelines. The first two systems are licensed to Australian companies, Amdel Ltd and Mineral Control Instrumentation Ltd. Both systems are used by industry worldwide, and are the market leaders for radioisotope gauges in their application field. The third system, the multiphase flow meter, was licensed in 1997 to Kvaerner FSSL Ltd of Aberdeen. This meter has even greater potential than the other two systems for economic benefit from its used and for numbers of installations. The on-line analysis systems have been developed to increase the productivity of the Australian mineral and energy industries, and to provide economic benefit to Australia. The economic benefit sought is predominantly improved process control based on use of the instrument, rather than from its sale. Sales of instruments are significant, however, with about A$80 million from the analysis systems and their derivatives since the 1970s. Some of the issues associated with the development of the on-line analysis system are outlined

  6. Smart Extraction and Analysis System for Clinical Research.

    Science.gov (United States)

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  7. Failure mode and effects analysis of software-based automation systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Helminen, A.

    2002-08-01

    Failure mode and effects analysis (FMEA) is one of the well-known analysis methods having an established position in the traditional reliability analysis. The purpose of FMEA is to identify possible failure modes of the system components, evaluate their influences on system behaviour and propose proper countermeasures to suppress these effects. The generic nature of FMEA has enabled its wide use in various branches of industry reaching from business management to the design of spaceships. The popularity and diverse use of the analysis method has led to multiple interpretations, practices and standards presenting the same analysis method. FMEA is well understood at the systems and hardware levels, where the potential failure modes usually are known and the task is to analyse their effects on system behaviour. Nowadays, more and more system functions are realised on software level, which has aroused the urge to apply the FMEA methodology also on software based systems. Software failure modes generally are unknown - 'software modules do not fail, they only display incorrect behaviour' - and depend on dynamic behaviour of the application. These facts set special requirements on the FMEA of software based systems and make it difficult to realise. In this report the failure mode and effects analysis is studied for the use of reliability analysis of software-based systems. More precisely, the target system of FMEA is defined to be a safety-critical software-based automation application in a nuclear power plant, implemented on an industrial automation system platform. Through a literature study the report tries to clarify the intriguing questions related to the practical use of software failure mode and effects analysis. The study is a part of the research project 'Programmable Automation System Safety Integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002). In the project various safety assessment methods and tools for

  8. Acoustic analysis of a piping system

    International Nuclear Information System (INIS)

    Misra, A.S.; Vijay, D.K.

    1996-01-01

    Acoustic pulsations in the Darlington Nuclear Generating Station, a 881 MW CANDU, primary heat transport piping system caused fuel bundle failures under short term operations. The problem was successfully analyzed using the steady-state acoustic analysis capability of the ABAQUS program. This paper describes in general, modelling of low amplitude acoustic pulsations in a liquid filled piping system using ABAQUS. The paper gives techniques for estimating the acoustic medium properties--bulk modulus, fluid density and acoustic damping--and modelling fluid-structure interactions at orifices and elbows. The formulations and techniques developed are benchmarked against the experiments given in 3 cited references. The benchmark analysis shows that the ABAQUS results are in excellent agreement with the experiments

  9. Wavelet transforms as solutions of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, G.

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.

  10. Competition analysis on the operating system market using principal component analysis

    Directory of Open Access Journals (Sweden)

    Brătucu, G.

    2011-01-01

    Full Text Available Operating system market has evolved greatly. The largest software producer in the world, Microsoft, dominates the operating systems segment. With three operating systems: Windows XP, Windows Vista and Windows 7 the company held a market share of 87.54% in January 2011. Over time, open source operating systems have begun to penetrate the market very strongly affecting other manufacturers. Companies such as Apple Inc. and Google Inc. penetrated the operating system market. This paper aims to compare the best-selling operating systems on the market in terms of defining characteristics. To this purpose the principal components analysis method was used.

  11. Systems Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    chain costs, sustainability metrics, and financial analyses within an optimization framework. NREL's , Handbook of Clean Energy Systems (2015) Retail Infrastructure Costs Comparison for Hydrogen and Electricity Heimiller, and Jenny Melius (2012) Infrastructure Analysis Tools: A Focus on Cash Flow Analysis, Hydrogen

  12. Residual energy applications program systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Yngve, P.W.

    1980-10-01

    Current DOE plans call for building an Energy Applied Systems Test (EAST) Facility at the Savannah River Plant in close proximity to the 140 to 150/sup 0/F waste heat from one of several operating nuclear reactors. The waste water flow from each reactor, approximately 165,000 gpm, provides a unique opportunity to test the performance and operating characteristics of large-scale waste heat power generation and heat pump system concepts. This report provides a preliminary description of the potential end-use market, parametric data on heat pump and the power generation system technology, a preliminary listing of EAST Facility requirements, and an example of an integrated industrial park utilizing the technology to maximize economic pay back. The parametric heat pump analysis concluded that dual-fluid Rankine cycle heat pumps with capacities as high as 400 x 10/sup 6/ Btu/h, can utilize large sources of low temperature residual heat to provide 300/sup 0/F saturatd steam for an industrial park. The before tax return on investment for this concept is 36.2%. The analysis also concluded that smaller modular heat pumps could fulfill the same objective while sacrificing only a moderate rate of return. The parametric power generation analysis concluded that multi-pressure Rankine cycle systems not only are superior to single pressure systems, but can also be developed for large systems (approx. = 17 MW/sub e/). This same technology is applicable to smaller systems at the sacrifice of higher investment per unit output.

  13. Graphical analysis of power systems for mobile robotics

    Science.gov (United States)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with

  14. Fault Correspondence Analysis in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    WANG, C.

    2015-02-01

    Full Text Available Wide area measurement system (WAMS mainly serves for the requirement of time synchronization in complex electric power systems. The analysis and control of power system mostly depends on the measurement of state variables, and WAMS provides the basis for dynamic monitoring of power system by these measurements, which can also satisfy the demands of observable, controllable, real-time analysis and decision, self-adaptive etc. requested by smart grid. In this paper, based on the principles of fault correspondence analysis, by calculating row characteristic which represents nodal electrical information and column characteristic which represents acquisition time information, we will conduct intensive research on fault detection. The research results indicate that the fault location is determined by the first dimensional variable, and the occurrence time of fault is determined by the second dimensional variable. The research in this paper will contribute to the development of future smart grid.

  15. Systems engineering and analysis of electro-optical and infrared systems

    CERN Document Server

    Arrasmith, William Wolfgang

    2015-01-01

    Introduction to Electro-optic and Infrared (EO/IR) Systems Engineering?Radiation in the Visible and Infrared Parts of the Electromagnetic SpectrumRadiation SourcesThe Effect of the Atmosphere on Optical PropagationBasic OpticsOptical ModulationThe Detection of Optical RadiationNoise in the Optical Detection ProcessTechnical Performance Measures and Metrics of Optical DetectorsModern Detectors and their Measures of PerformanceThe Effects of Cooling on Optical Detector NoiseSignal and Image ProcessingElectro-Optic and Infrared Systems AnalysisLaser Imaging Systems?Spectral Imaging?LIDAR and LADA

  16. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  17. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation

    CERN Document Server

    Petráš, Ivo

    2011-01-01

    "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...

  18. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  19. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    Failure analysis of a flight control system proposed for Air Force Institute of Technology (AFIT) Unmanned Aerial Vehicle (UAV) was studied using Markov Analysis (MA). It was perceived that understanding of the number of failure states and the probability of being in those state are of paramount importance in order to ...

  20. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr