WorldWideScience

Sample records for synthetic tlr4 agonist

  1. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the......-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans....... of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions......, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN...

  2. A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2 - A GLURP-MSP3 fusion protein malaria vaccine candidate

    Lousada-Dietrich, Susana; Jogdand, Prajakta S; Jepsen, Søren

    2011-01-01

    ) agonists in CB6F1 mice to identify an improved formulation of GMZ2 suitable for further human clinical studies. GMZ2 formulated in an oil-in-water emulsion plus the synthetic TLR4 agonist GLA elicits the highest (a) vaccine-specific IgG2a and total IgG titers, (b) parasite-specific IFA titers, (c) levels...... of Type 1 cytokine responses (IFN-¿), and (d) number of long-lived-plasma cells (LLPC) secreting antibodies against both the GMZ2 fusion and its two components. Thus, GLA helps to elicit a vaccine-specific Type 1 antibody profile together with high levels of LLPC, both of which are thought to be essential...

  3. A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation.

    Jason D Marshall

    Full Text Available The best-characterized Toll-like receptor 4 (TLR4 ligands are lipopolysaccharide (LPS and its chemically modified and detoxified variant, monophosphoryl lipid A (MPL. Although both molecules are active for human TLR4, they demonstrate a potency preference for mouse TLR4 based on data from transfected cell lines and primary cells of both species. After a high throughput screening process of small molecule libraries, we have discovered a new class of TLR4 agonist with a species preference profile differing from MPL. Products of the 4-component Ugi synthesis reaction were demonstrated to potently trigger human TLR4-transfected HEK cells but not mouse TLR4, although inclusion of the human MD2 with mTLR4 was able to partially recover activity. Co-expression of CD14 was not required for optimal activity of Ugi compounds on transfected cells, as it is for LPS. The species preference profile for the panel of Ugi compounds was found to be strongly active for human and cynomolgus monkey primary cells, with reduced but still substantial activity for most Ugi compounds on guinea pig cells. Mouse, rat, rabbit, ferret, and cotton rat cells displayed little or no activity when exposed to Ugi compounds. However, engineering the human versions of TLR4 and MD2 to be expressed in mTLR4/MD2 deficient mice allowed for robust activity by Ugi compounds both in vitro and in vivo. These findings extend the range of compounds available for development as agonists of TLR4 and identify novel molecules which reverse the TLR4 triggering preference of MPL for mouse TLR4 over human TLR4. Such compounds may be amenable to formulation as more potent human-specific TLR4L-based adjuvants than typical MPL-based adjuvants.

  4. Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells

    Schneider, Laura P.; Schoonderwoerd, Antoinet J.; Moutaftsi, Magdalini; Howard, Randall F.; Reed, Steven G.; de Jong, Esther C.; Teunissen, Marcel B. M.

    2012-01-01

    The natural TLR4 agonist lipopolysaccharide (LPS) has notable adjuvant activity. However, it is not useful as a vaccine adjuvant due to its toxicity. Glucopyranosyl lipid A (GLA) is a synthetic derivative of the lipid A tail of LPS with limited cytotoxicity, but strong potential to induce immune

  5. Innate Immune Responses to TLR2 and TLR4 Agonists Differ between Baboons, Chimpanzees and Humans

    Brinkworth, Jessica F.; Pechenkina, Ekaterina A.; Silver, Jack; Goyert, Sanna M.

    2012-01-01

    Background African catarrhine primates differ in bacterial disease susceptibility. Methods Human, chimpanzee, and baboon blood was stimulated with TLR-detected bacterial agonists and cytokine/chemokine induction assessed by real-time pcr. Results Humans and chimpanzees shared similar cytokine/chemokine responses, while baboon cytokine/chemokine induction differed. Generally, responses were agonist-independent. Conclusions These primates tend to generate species rather than agonist–specific responses to bacterial agonists. PMID:22978822

  6. Innate immune receptors in human airway smooth muscle cells: activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 agonists.

    Anne Månsson Kvarnhammar

    Full Text Available BACKGROUND: Pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs, NOD-like receptors (NLRs and RIG-I-like receptors (RLRs, recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs. METHODS: Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state. RESULTS: HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C, LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C, down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated β2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5. CONCLUSION: Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations.

  7. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A.

    Perenlei Enkhbaatar

    Full Text Available Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS and monophosphoryl lipid A (MPLA.Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old and six healthy adult female sheep (~3 years old, was mixed with 30 μL of PBS, LPS (1μg/mL or MPLA (10μg/mL and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified.11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold upregulated by LPS and MPLA in both species.The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators.

  8. The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer

    Gu J

    2015-08-01

    Full Text Available Junsheng Gu, Ranran Sun, Shen Shen, Zujiang Yu Department of Infectious Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China Objective: This study was designed to explore the influence of Toll-like receptor 4 (TLR4 agonist lipopolysaccharides (LPS on liver cancer cell and the feasibility to perform liver cancer adjuvant therapy. Methods: Human liver cancer cell lines HepG2, H7402, and PLC/PRF/5 were taken as models, and the expression of TLRs mRNA was detected by real time-polymerase chain reaction method semiquantitatively. WST-1 method was used to detect the influence of LPS on the proliferation ability of liver cancer cells; propidium iodide (PI single staining and Annexin V/PI double staining were used to test the influence of LPS on the cell cycle and apoptosis, respectively, on human liver cancer cell line H7402. Fluorescent quantitative polymerase chain reaction and Western blot method were used to determine the change of expression of Cyclin D1. Results: The results demonstrated that most TLRs were expressed in liver cancer cells; stimulating TLR4 by LPS could upregulate TLR4 mRNA and the protein level, activate NF-κB signaling pathway downstream of TLR4, and mediate the generation of inflammatory factors IL-6, IL-8, and TNF-α; LPS was found to be able to strengthen the proliferation ability of liver cancer cells, especially H7402 cells; the expression of Cyclin D1 rose and H7402 cells were promoted to transit from G1 stage to S stage under the stimulation of LPS, but cell apoptosis was not affected. It was also found that LPS was able to activate signal transducer and activator of transcription -3 (STAT3 signaling pathway in H7402 cells and meanwhile significantly increase the initiation activity of STAT3; proliferation promoting effect of LPS to liver cancer cells remarkably lowered once STAT3 was blocked or inhibited. Conclusion: Thus, TLR4 agonist LPS is proved to be able to

  9. The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer.

    Gu, Junsheng; Sun, Ranran; Shen, Shen; Yu, Zujiang

    2015-01-01

    This study was designed to explore the influence of Toll-like receptor 4 (TLR4) agonist lipopolysaccharides (LPS) on liver cancer cell and the feasibility to perform liver cancer adjuvant therapy. Human liver cancer cell lines HepG2, H7402, and PLC/PRF/5 were taken as models, and the expression of TLRs mRNA was detected by real time-polymerase chain reaction method semiquantitatively. WST-1 method was used to detect the influence of LPS on the proliferation ability of liver cancer cells; propidium iodide (PI) single staining and Annexin V/PI double staining were used to test the influence of LPS on the cell cycle and apoptosis, respectively, on human liver cancer cell line H7402. Fluorescent quantitative polymerase chain reaction and Western blot method were used to determine the change of expression of Cyclin D1. The results demonstrated that most TLRs were expressed in liver cancer cells; stimulating TLR4 by LPS could upregulate TLR4 mRNA and the protein level, activate NF-κB signaling pathway downstream of TLR4, and mediate the generation of inflammatory factors IL-6, IL-8, and TNF-α; LPS was found to be able to strengthen the proliferation ability of liver cancer cells, especially H7402 cells; the expression of Cyclin D1 rose and H7402 cells were promoted to transit from G1 stage to S stage under the stimulation of LPS, but cell apoptosis was not affected. It was also found that LPS was able to activate signal transducer and activator of transcription -3 (STAT3) signaling pathway in H7402 cells and meanwhile significantly increase the initiation activity of STAT3; proliferation promoting effect of LPS to liver cancer cells remarkably lowered once STAT3 was blocked or inhibited. Thus, TLR4 agonist LPS is proved to be able to induce liver cancer cells to express inflammation factors and mediate liver cancer cell proliferation and generation of multidrug resistance by activating the cyclooxygenase-2/prostaglandin signal axis as well as the STAT3 pathway.

  10. Should a Toll-like receptor 4 (TLR-4 agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers

    Mai CW

    2013-11-01

    Full Text Available Chun Wai Mai, Yew Beng Kang, Mallikarjuna Rao PichikaDepartment of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, MalaysiaAbstract: Toll-like receptor 4 (TLR-4 is well known for its host innate immunity. Despite the fact that TLR-4 activation confers antitumor responses; emerging evidence suggests that TLR-4 is associated with tumor development and progression. It is now clear that overactivation of TLR-4, through various immune mediators, may cause immune response dysfunction, resulting in tumorigenesis. Different cancers could have different extents of TLR-4 involvement during tumorigenesis or tumor progression. In this review, we focus on infection- and inflammation-related TLR-4 activation in noncancer and cancer cells, as well as on the current evidence about the role of TLR-4 in ten of the most common cancers, viz, head and neck cancer, lung cancer, gastrointestinal cancer, liver cancer, pancreatic cancer, skin cancer, breast cancer, ovarian cancer, cervical cancer, and prostate cancer.Keywords: drug design, cancer treatment, myeloid differentiation factor 2, MD-2, tumor progression, pathogen-associated molecular patterns, PAMPs

  11. Nonbilayer Phospholipid Arrangements Are Toll-Like Receptor-2/6 and TLR-4 Agonists and Trigger Inflammation in a Mouse Model Resembling Human Lupus

    Carlos Wong-Baeza

    2015-01-01

    Full Text Available Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser extent, TLR-2/TLR-6-dependent signaling in TLR-expressing human embryonic kidney (HEK cells and bone marrow-derived macrophages. Mice with the lupus-like disease had increased serum concentrations of proinflammatory cytokines, C3a and C5a; they also had more TLR-4-expressing splenocytes, a higher expression of genes associated with TRIF-dependent TLR-4-signaling and complement activation, and a lower expression of apoptosis-related genes, compared to healthy mice. The percentage of NKT and the percentage and activation of dendritic and B2 cells were also increased. Thus, TLR-4 and TLR-2/TLR-6 activation by nonbilayer phospholipid arrangements triggers an inflammatory response that could contribute to autoantibody production and the generation of a lupus-like disease in mice.

  12. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immuniza...

  13. TLR4 and Insulin Resistance

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  14. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells.

    Coelho-Dos-Reis, Jordana G; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-07-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8+ T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44+CD62L−NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  16. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  17. Biomarker Development for TLR4 Agonists

    Persing, David H

    2004-01-01

    .... To monitor the effectiveness of immunoprophylaxis in human trials, it may become necessary to develop surrogate biomarkers of protection since experimental challenge endpoints are not readily available...

  18. TLR-4 polymorphisms and leukocyte TLR-4 expression in febrile UTI and renal scarring.

    Bayram, Meral Torun; Soylu, Alper; Ateş, Halil; Kızıldağ, Sefa; Kavukçu, Salih

    2013-09-01

    In this study, we aimed to determine the relation of TLR-4 Asp299Gly and Thr399Ile polymorphisms and monocyte/neutrophil TLR-4 expression to febrile urinary tract infection (UTI) and renal scar development in children. The study was performed in children with a history of febrile UTI. Patients with and without renal scarring were classified as group 1 and group 2, respectively, while the control cases in our previous study were used as the control group (group 3). All three groups were compared for the rate of TLR-4 Asp299Gly and Thr399Ile polymorphisms, and for basal and lipopolysaccharide-stimulated monocyte/neutrophil TLR-4 expression levels. There were 168 patients (86 in group 1, 82 in group 2) and 120 control cases. Monocyte/neutrophil TLR-4 expression levels were similar in groups 1 and 2. However, both groups had lower TLR-4 expression than group 3. The rate of TLR-4 Asp299Gly polymorphism was not different in all groups. TLR-4 Thr399Ile polymorphism was higher in groups 1 and 2 than in group 3 (14.0, 12.2, and 2.0 %, respectively), while group 1 and group 2 were not different. Furthermore, monocyte TLR-4 expression level was lower in those having TLR-4 Thr399Ile polymorphism than in those without this polymorphism. Patients with febrile UTI had more frequent TLR-4 Thr399Ile polymorphism and lower monocyte/neutrophil TLR-4 expression. These findings indicate that children carrying TLR-4 Thr399Ile polymorphism and/or having low level of monocyte/neutrophil TLR-4 expression have a tendency to develop febrile UTI. However, we could not show the association of TLR-4 polymorphisms and of TLR-4 expression level to renal scarring.

  19. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4.

    Yang, Jinju; Qin, Nannan; Zhang, Hongwei; Yang, Rui; Xiang, Benqiong; Wei, Qun

    2016-04-19

    Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug.

  20. Rationally Designed TLR4 Ligands for Vaccine Adjuvant Discovery

    Kelsey A. Gregg

    2017-05-01

    Full Text Available Adjuvant properties of bacterial cell wall components like MPLA (monophosphoryl lipid A are well described and have gained FDA approval for use in vaccines such as Cervarix. MPLA is the product of chemically modified lipooligosaccharide (LOS, altered to diminish toxic proinflammatory effects while retaining adequate immunogenicity. Despite the virtually unlimited number of potential sources among bacterial strains, the number of useable compounds within this promising class of adjuvants are few. We have developed bacterial enzymatic combinatorial chemistry (BECC as a method to generate rationally designed, functionally diverse lipid A. BECC removes endogenous or introduces exogenous lipid A-modifying enzymes to bacteria, effectively reprogramming the lipid A biosynthetic pathway. In this study, BECC is applied within an avirulent strain of Yersinia pestis to develop structurally distinct LOS molecules that elicit differential Toll-like receptor 4 (TLR4 activation. Using reporter cell lines that measure NF-κB activation, BECC-derived molecules were screened for the ability to induce a lower proinflammatory response than Escherichia coli LOS. Their structures exhibit varied, dose-dependent, TLR4-driven NF-κB activation with both human and mouse TLR4 complexes. Additional cytokine secretion screening identified molecules that induce levels of tumor necrosis factor alpha (TNF-α and interleukin-8 (IL-8 comparable to the levels induced by phosphorylated hexa-acyl disaccharide (PHAD. The lead candidates demonstrated potent immunostimulation in mouse splenocytes, human primary blood mononuclear cells (PBMCs, and human monocyte-derived dendritic cells (DCs. This newly described system allows directed programming of lipid A synthesis and has the potential to generate a diverse array of TLR4 agonist candidates.

  1. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  2. Suppression of atherosclerosis by synthetic REV-ERB agonist

    Sitaula, Sadichha [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Billon, Cyrielle [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States); Kamenecka, Theodore M.; Solt, Laura A. [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Burris, Thomas P., E-mail: burristp@slu.edu [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States)

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  3. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.

    Seung Jin Lee

    Full Text Available Toll-like receptor 4 (TLR4 is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA, a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.

  4. Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina

    Chang, Justine; Jain, Sumita; Carl, David J.; Paolella, Louis; Darveau, Richard P.; Gravett, Michael G.; Waldorf, Kristina M. Adams

    2010-01-01

    OBJECTIVES Microbial-specific factors are likely critical in determining whether bacteria trigger preterm labor. Structural variations in lipopolysaccharide (LPS), a component of gram-negative bacteria, can determine whether LPS has an inflammatory (agonist) or anti-inflammatory (antagonist) effect through Toll-like receptor 4 (TLR4). Our objective was to determine whether amniochorion can discriminate between LPS variants in a nonhuman primate model. We also cloned Macaca nemestrina TLR4 and MD-2 and compared this complex functionally to the human homologue to establish whether nonhuman primates could be used to study TLR4 signaling in preterm birth. STUDY DESIGN Amniochorion explants from M. nemestrina were stimulated with a panel of LPS variants for 24 hours. Supernatants were analyzed for IL-1β, TNF-α, IL-6, IL-8 and prostaglandins E2 and F2α. Tissue expression of TLR1, 2, 4, 6, MyD88 and NF-kB was studied by RT-PCR. M. nemestrina TLR4 and MD2 genes were cloned and compared with their human counterparts in a recombinant TLR4 signaling system to determine LPS sensitivity. RESULTS LPS variants differentially stimulated cytokines and prostaglandins, which was not related to transcriptional changes of TLR4 or other TLRs. Nearly all elements of LPS binding and TLR4 leucine-rich repeats were conserved between humans and M. nemestrina. TLR4/MD-2 signaling complexes from both species were equally sensitive to LPS variants. CONCLUSIONS LPS variants elicit a hierarchical inflammatory response within amniochorion that may contribute to preterm birth. LPS sensitivity is similar between M. nemestrina and humans, validating M. nemestrina as an appropriate model to study TLR4 signaling in preterm birth. PMID:20619890

  5. TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis

    Nikolay N. Kuzmich

    2017-10-01

    Full Text Available Toll-Like Receptor 4 (TLR4 signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.

  6. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine.

    Liu, Zheng; Guo, Jun

    2017-11-27

    NKT cells are CD1d-restricted, glycolipid antigen-reactive, immunoregulatory T lymphocytes that can serve as a bridge between the innate and adaptive immunities. NKT cells have a wide range of therapeutic application in autoimmunity, transplant biology, infectious disease, cancer, and vaccinology. Rather than triggering "danger signal" and eliciting an innate immune response, αGalCer-based NKT-cell agonist act via a unique mechanism, recruiting NKT cells which play a T helper-like role even without peptide as Th epitope. Importantly, the non-polymorphism of CD1d render glycolipid a universal helper epitope, offering the potential to simplify the vaccine construct capable of eliciting consistent immune response in different individuals. This review details recent advances in the design of synthetic vaccines using NKT-cell agonist as adjuvant, highlighting the role of organic synthesis and conjugation technique to enhance the immunological actives and to simplify the vaccine constructs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging.

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Garduño, Jose de Jesus; Galeana, Joaquin Joya; Li, Jinqi; Zamarripa, Frank; Lancaster, Jack L; Mohan, Sumathy; Hussey, Sophie; Musi, Nicolas

    2015-02-01

    Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables.

    Erridge, Clett

    2011-06-01

    Stimulants of the innate immune receptors Toll-like receptor (TLR)-2 and TLR4 have been shown to promote insulin resistance and atherosclerosis in animal models of these diseases. As minimally processed vegetables (MPV) can contain a relatively large bacterial load compared to other foodstuffs, we aimed to quantify the abundance of stimulants of TLR2 and TLR4 in MPV using a transfection-based bioassay calibrated with Escherichia coli LPS and the synthetic lipopeptide Pam(3)CSK(4). Of 5 classes of MPV and 3 classes of related vegetable products considered to be likely to contain a high microbial load, diced onion and bean sprouts contained the highest levels of stimulants of TLR2 (up to 18.5 μg Pam(3)CSK(4)-equivalents per g) and TLR4 (up to 11.4 μg LPS-equivalents per g). By contrast, the majority of fresh whole vegetables examined reproducibly contained minimal or undetectable levels of TLR2- or TLR4-stimulants. The accumulation of TLR-stimulants in MPVs correlated well with growth of enterobacterial spoilage organisms. In conclusion, the modern trend towards eating minimally processed vegetables rather than whole foods is likely to be associated with increased oral exposure to stimulants of TLR2 and TLR4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Structure and biological activity of endogenous and synthetic agonists of GPR119

    Tyurenkov, I. N.; Ozerov, A. A.; Kurkin, D. V.; Logvinova, E. O.; Bakulin, D. A.; Volotova, E. V.; Borodin, D. D.

    2018-02-01

    A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules. The bibliography includes 104 references.

  10. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  11. Trial Watch: Toll-like receptor agonists for cancer therapy.

    Vacchelli, Erika; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-08-01

    Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology , we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.

  12. Toll-like receptor-4 (TLR-4) expression on polymorphonuclear ...

    To establish a foundation for further researches on the improvement of polymorphonuclear neutrophil leukocytes (PMN) functions in dairy cow during perinatal period, the counting of PMN, as well as the mRNA and protein expression of toll-like receptor-4 (TLR-4) on PMN was studied during this critical period.

  13. Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors.

    Mirjam E Belderbos

    Full Text Available Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP or soluble CD14 (sCD14. The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection.

  14. Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis

    2012-01-01

    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690

  15. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  16. Genetic variation at Exon2 of TLR4 gene and its association with ...

    This study was conducted to analyze the polymorphisms of chicken Toll-like receptors 4(TLR4) gene and aimed to provide a theoretical foundation for a further research on correlation between chicken TLR4 gene and disease resistance. Genetic variations at exon 2 of TLR4 gene in 14 chicken breeds and the red jungle ...

  17. Role of TLR4 gene polymorphisms in the colorectal cancer risk ...

    Saniya Nissar

    2016-05-26

    May 26, 2016 ... This is an open access article under the CC BY-NC-ND license ... eliminate infectious pathogens and cancer debris [5–7]. The TLR4 gene is .... evidence of involvement of TLR4 gene in driving CRC and this. TLR4 may serve ...

  18. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells

    Haijian Sun

    2017-07-01

    Full Text Available Background /Aims: Accumulating evidence indicates that endothelial inflammation is one of the critical determinants in pathogenesis of atherosclerotic cardiovascular disease. Our previous studies had demonstrated that Vaccariae prevented high glucose or oxidative stress-triggered endothelial dysfunction in vitro. Very little is known about the potential effects of hypaphorine from Vaccariae seed on inflammatory response in endothelial cells. Methods: In the present study, we evaluated the anti-inflammatory effects of Vaccariae hypaphorine (VH on lipopolysaccharide (LPS-challenged endothelial EA.hy926 cells. The inflammatory cytokines including tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, monocyte chemoattractant protein 1 (MCP-1 and vascular cellular adhesion molecule-1 (VCAM-1 were measured by real-time PCR (RT-PCR. The expressions of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, toll-like receptor 4 (TLR4, peroxisome proliferator-activated receptor γ (PPARγ were detected by Western blotting or immunofluorescence. Results: We showed that LPS stimulated the expressions of TNF-α, IL-1β, MCP-1, VCAM-1 and TLR4, but attenuated the phosphorylation of AMPK and ACC as well as PPARγ protein levels, which were reversed by VH pretreatment. Moreover, we observed that LPS-upregulated TLR4 protein expressions were inhibited by PPARγ agonist pioglitazone, and the downregulated PPARγ expressions in response to LPS were partially restored by knockdown of TLR4. The negative regulation loop between TLR4 and PPARγ response to LPS was modulated by AMPK agonist AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine or A769662. Conclusions: Taken together, our results suggested that VH ameliorated LPS-induced inflammatory cytokines production in endothelial cells via inhibition of TLR4 and activation of PPARγ, dependent on AMPK signalling pathway.

  19. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth

    Haricharan, Svasti; Brown, Powel

    2015-01-01

    This study fundamentally alters our understanding of how TLR4 drives breast cancer. Although TLR4 was previously considered a tumor promoter, we demonstrate a complex, TP53-dependent role for TLR4 in regulating tumor growth. TP53 is a tumor suppressor commonly inactivated across cancer types. In TP53 wild-type cancer cells, TLR4 activation causes secretion of IFN-γ into the microenvironment, resulting in induction of p21 and inhibition of cell growth. Conversely, TLR4 activation in TP53 mutan...

  20. Small Interference RNA Targeting TLR4 Gene Effectively Attenuates Pulmonary Inflammation in a Rat Model

    Feixiang Wu

    2012-01-01

    Full Text Available Objective. The present study was to investigate the feasibility of adenovirus-mediated small interference RNA (siRNA targeting Toll-like receptor 4 (TLR4 gene in ameliorating lipopolysaccharide- (LPS- induced acute lung injury (ALI. Methods. In vitro, alveolar macrophages (AMs were treated with Ad-siTLR4 and Ad-EFGP, respectively, for 12 h, 24 h, and 48 h, and then with LPS (100 ng/mL for 2 h, and the function and expression of TLR4 were evaluated. In vivo, rats received intratracheal injection of 300 μL of normal saline (control group, 300 μL of Ad-EGFP (Ad-EGFP group, or 300 μL of Ad-siTLR4 (Ad-siTLR4 group and then were intravenously treated with LPS (50 mg/kg to induce ALI. Results. Ad-siTLR4 treatment significantly reduced TLR4 expression and production of proinflammatory cytokines following LPS treatment both in vitro and in vivo. Significant alleviation of tissue edema, microvascular protein leakage, and neutrophil infiltration was observed in the AdsiTLR4-treated animals. Conclusion. TLR4 plays a critical role in LPS-induced ALI, and transfection of Ad-siTLR4 can effectively downregulate TLR4 expression in vitro and in vivo, accompanied by alleviation of LPS-induced lung injury. These findings suggest that TLR4 may serve as a potential target in the treatment of ALI and RNA interfering targeting TLR4 expression represents a therapeutic strategy.

  1. Single administration of ultra-low-dose lipopolysaccharide in rat early pregnancy induces TLR4 activation in the placenta contributing to preeclampsia.

    Pingping Xue

    Full Text Available Balanced immune responses are essential for the maintenance of successful pregnancy. Aberrant responses of immune system during pregnancy increase the risk of preeclampsia. Toll-like receptor 4 (TLR4 plays a crucial role in the activation of immune system at the maternal-fetal interface. This study aimed to generate a rat model of preeclampsia by lipopolysaccharide (LPS, a TLR4 agonist administration on gestational day (GD 5 as rats are subjected to placentation immediately after implantation between GDs 4 and 5, and to assess the contribution of TLR4 signaling to the development of preeclampsia. Single administration of 0.5 μg/kg LPS significantly increased blood pressure of pregnant rats since GD 6 (systolic blood pressure, 124.89 ± 1.79 mmHg versus 119.02 ± 1.80 mmHg, P < 0.05 and urinary protein level since GD 9 (2.02 ± 0.29 mg versus 1.11 ± 0.18 mg, P < 0.01, but barely affected blood pressure or proteinuria of virgin rats compared with those of saline-treated pregnant rats. This was accompanied with adverse pregnancy outcomes including fetal growth restriction. The expression of TLR4 and NF-κB p65 were both increased in the placenta but not the kidney from LPS-treated pregnant rats, with deficient trophoblast invasion and spiral artery remodeling. Furthermore, the levels of inflammatory cytokines were elevated systemically and locally in the placenta from pregnant rats treated with LPS. TLR4 signaling in the placenta was activated, to which that in the placenta of humans with preeclampsia changed similarly. In conclusion, LPS administration to pregnant rats in early pregnancy could elicit TLR4-mediated immune response at the maternal-fetal interface contributing to poor early placentation that may culminate in the preeclampsia-like syndrome.

  2. The Structural Basis for Endotoxin-induced Allosteric Regulation of the Toll-like Receptor 4 (TLR4) Innate Immune Receptor*

    Paramo, Teresa; Piggot, Thomas J.; Bryant, Clare E.; Bond, Peter J.

    2013-01-01

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The “clamshell-like” motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the “molecular switch” in endotoxic signaling. PMID:24178299

  3. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor.

    Paramo, Teresa; Piggot, Thomas J; Bryant, Clare E; Bond, Peter J

    2013-12-20

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The "clamshell-like" motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the "molecular switch" in endotoxic signaling.

  4. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    Lu, Ying [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Liu, Jin; Liu, Yang; Qin, Yaru [Beijing Institute of Radiation Medicine, Beijing (China); Luo, Qun [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Wang, Quanli, E-mail: 13691110351@163.com [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Duan, Haifeng, E-mail: duanhf0720@163.com [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed that TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.

  5. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke

    Dorscheid Delbert R

    2007-11-01

    Full Text Available Abstract The toll-like receptors (TLRs are a key component of host defense in the respiratory epithelium. Cigarette smoking is associated with increased susceptibility to infection, while COPD is characterised by bacterial colonisation and infective exacerbations. We found reduced TLR4 gene expression in the nasal epithelium of smokers compared with non-smoking controls, while TLR2 expression was unchanged. Severe COPD was associated with reduced TLR4 expression compared to less severe disease, with good correlation between nasal and tracheal expression. We went on to examine the effect of potential modulators of TLR4 expression in respiratory epithelium pertinent to airways disease. Using an airway epithelial cell line, we found a dose-dependent downregulation in TLR4 mRNA and protein expression by stimulation with cigarette smoke extracts. Treatment with the corticosteroids fluticasone and dexamethasone resulted in a dose-dependent reduction in TLR4 mRNA and protein. The functional significance of this effect was demonstrated by impaired IL-8 and HBD2 induction in response to LPS. Stimulation with salmeterol (10-6 M caused upregulation of TLR4 membrane protein presentation with no upregulation of mRNA, suggesting a post-translational effect. The effect of dexamethasone and salmeterol in combination was additive, with downregulation of TLR4 gene expression, and no change in membrane receptor expression. Modulation of TLR4 in respiratory epithelium may have important implications for airway inflammation and infection in response to inhaled pathogens.

  6. Evidence for a developmental role for TLR4 in learning and memory.

    Eitan Okun

    Full Text Available Toll-like receptors (TLRs play essential roles in innate immunity and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain where they mediate responses to infection, stress and injury. Very little is known about the roles of TLRs in cognition. To test the hypothesis that TLR4 has a role in hippocampus-dependent spatial learning and memory, we used mice deficient for TLR4 and mice receiving chronic TLR4 antagonist infusion to the lateral ventricles in the brain. We found that developmental TLR4 deficiency enhances spatial reference memory acquisition and memory retention, impairs contextual fear-learning and enhances motor functions, traits that were correlated with CREB up-regulation in the hippocampus. TLR4 antagonist infusion into the cerebral ventricles of adult mice did not affect cognitive behavior, but instead affected anxiety responses. Our findings indicate a developmental role for TLR4 in shaping spatial reference memory, and fear learning and memory. Moreover, we show that central TLR4 inhibition using a TLR4 antagonist has no discernible physiological role in regulating spatial and contextual hippocampus-dependent cognitive behavior.

  7. TLR4 links podocytes with the innate immune system to mediate glomerular injury

    Banas, Miriam C; Banas, Bernhard; Hudkins, Kelly L

    2008-01-01

    profile of chemokines. In conclusion, it was demonstrated that TLR4 is constitutively expressed by podocytes and is upregulated in MPGN, where it may mediate glomerular injury by modulating expression of chemokines; therefore, TLR4 may link podocytes with the innate immune system to mediate MPGN triggered...... by the deposition of immune complexes....

  8. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.

    Haricharan, Svasti; Brown, Powel

    2015-06-23

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.

  9. TLR3 and TLR4 expression in healthy and diseased human endometrium

    Kimmig Rainer

    2008-09-01

    Full Text Available Abstract Background Toll-like receptors (TLRs play an essential role in the innate immune system by initiating and directing immune response to pathogens. TLRs are expressed in the human endometrium and their regulation might be crucial for the pathogenesis of endometrial diseases. Methods TLR3 and TLR4 expression was investigated during the menstrual cycle and in postmenopausal endometrium considering peritoneal endometriosis, hyperplasia, and endometrial adenocarcinoma specimens (grade 1 to 3. The expression studies applied quantitative RT-PCR and immunolabelling of both proteins. Results TLR3 and TLR4 proteins were mostly localised to the glandular and luminal epithelium. In addition, TLR4 was present on endometrial dendritic cells, monocytes and macrophages. TLR3 and TLR4 mRNA levels did not show significant changes during the menstrual cycle. In patients with peritoneal endometriosis, TLR3 and TLR4 mRNA expression decreased significantly in proliferative diseased endometrium compared to controls. Interestingly, ectopic endometriotic lesions showed a significant increase of TLR3 und TLR4 mRNA expression compared to corresponding eutopic tissues, indicating a local gain of TLR expression. Endometrial hyperplasia and adenocarcinoma revealed significantly reduced receptor levels when compared with postmenopausal controls. The lowest TLR expression levels were determined in poor differentiated carcinoma (grade 3. Conclusion Our data suggest an involvement of TLR3 and TLR4 in endometrial diseases as demonstrated by altered expression levels in endometriosis and endometrial cancer.

  10. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea.

    Hassan Alizadeh

    Full Text Available Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK, a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (P< 0.05 CXCL2 production in Chinese hamster corneas 3 and 7 days after infection, which coincided with increased inflammatory cells in the corneas. Results suggest that pathogenic species of Acanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.

  11. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer.

    Liu, Li; Li, Yu H; Niu, Yin B; Sun, Yang; Guo, Zhen J; Li, Qian; Li, Chen; Feng, Juan; Cao, Shou S; Mei, Qi B

    2010-10-01

    Evidence strongly supported a link between inflammation and cancer. Patients with colitis have high risk for development of colon cancer. Nuclear factor-kappa B (NF-κB), partially induced by lipopolysaccharide (LPS) binding to Toll-like receptor (TLR) 4, is a vital molecule in supervising the transformation of colitis to colon cancer. It could be a good strategy to prevent colitis carcinogenesis for targeting LPS/TLR4/NF-κB pathway. In the present study, we obtained an oligogalactan composed of five galacturonic acids from apple pectin and evaluated its protective efficacy on intestinal toxicities and carcinogenesis in a mouse model of colitis-associated colon cancer induced by 1,2-dimethylhydrazine and dextran sodium sulfate (DSS). The apple oligogalactan (AOG) was highly effective against intestinal toxicities and carcinogenesis and decreased the elevated levels of TLR4 and tumor necrosis factor-α (TNF-α) induced by inflammation in vivo in this model system. In vitro studies, AOG alone only slightly increased the levels of protein expression and messenger RNA of TLR4, phosphorylation of IκBα and production of TNF-α in HT-29 cells. However, AOG significantly decreased the elevation of all the biomarkers induced by LPS when it was combined with LPS. The effect of AOG may be related to membrane internalization and redistribution of TLR4 from cell membrane to cytoplasm. AOG is active against inflammation and carcinogenesis through targeting LPS/TLR4/NF-κB pathway. Both AOG and LPS are agonists of TLR4 for sharing the same ligand but AOG has a much lower intrinsic activity than that of LPS. AOG may be useful for treatment of colitis and prevention of carcinogenesis in the clinics.

  12. Role of TLR4 gene polymorphisms in the colorectal cancer risk ...

    Role of TLR4 gene polymorphisms in the colorectal cancer risk modulation in ethnic Kashmiri population – A case–control study. Saniya Nissar, Aga Syed Sameer, Roohi Rasool, Qurteeba Qadri, Nissar A. Chowdri, Fouzia Rashid ...

  13. A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins.

    Ryan, Anthony

    2011-06-01

    Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H\\/HeN and C3H\\/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H\\/HeJ mice and failed to induce a subsequent Th cell response. TLR4(-\\/-) and Myd88(-\\/-), but not TRIF(-\\/-) mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.

  14. TLR4 Expression Is Associated with Left Ventricular Dysfunction in Patients Undergoing Coronary Artery Bypass Surgery.

    Orna Avlas

    Full Text Available Toll-like receptor 4 (TLR4 is an innate immune receptor expressed in immune cells and the heart. Activation of the immune system following myocardial ischemia causes the release of proinflammatory mediators that may negatively influence heart function.The aim of this study is to determine whether TLR4 is activated in peripheral monocytes and heart tissue taken from patients with varying degrees of myocardial dysfunction caused by coronary artery diseases and scheduled for coronary artery bypass graft (CABG surgery before 12 months following operation.Patients (n = 44 undergoing CABG surgery having left ventricular ejection fraction ≤ 45% ('reduced EF', n = 20 were compared to patients with preserved EF >45% ('preserved EF' group, n = 24. 'Reduced EF' patients exhibited increased TLR4 expression in monocytes (2.78±0.49 vs. 1.76±0.07 rMFI, p = 0.03. Plasma levels of C-reactive protein, microRNA miR-320a, brain natriuretic peptide (pro BNP and NADPH oxidase (NOX4 were also significantly different between the 'preserved EF' and 'reduced EF'groups. Elevated TLR4 gene expression levels in the right auricle correlated with those of EF (p<0.008, NOX4 (p<0.008 and miR320, (p<0.04. In contrast, no differences were observed in peripheral monocyte TLR2 expression. After CABG surgery, monocyte TLR4 expression decreased in all patients, reaching statistical significance in the 'reduced EF' group.TLR4 is activated in peripheral monocytes and heart tissue obtained from patients with ischemic heart disease and reduced left ventricular function. Coronary revascularization decreases TLR4 expression. We therefore propose that TLR4 plays a pathogenic role and may serve as an additional marker of ischemic myocardial dysfunction.

  15. LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway

    Qianran Yin

    2017-12-01

    Full Text Available Background/Aims: Lipopolysaccharide (LPS is a potent activator of vascular smooth muscle cells (VSMCs proliferation, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4 and Ras-related C3 botulinum toxin substrate 1 (Rac1 expression using small interfering RNA (siRNA in order to investigate the effects and possible mechanisms of LPS-induced VSMCs proliferation. Methods: VSMCs proliferation was monitored by 5-ethynyl-2’-deoxyuridine staining, and Rac1 activity was measured via Glutathione S-transferase pull-down assay. mRNAs encoding proliferating cell nuclear antigen (PCNA, smooth muscle 22α (SM22α, myosin heavy chain (MYH and transient receptor potential channel 1 (TRPC1 were detected by qRT-PCR. The expression of total Akt, p-Akt (308, p-Akt (473, SM22α, MYH and TRPC1 protein was analysed by Western blot. Results: Treatment with TLR4 siRNA (siTLR4 or Rac1 siRNA (siRac1 significantly decreased LPS-induced VSMCs proliferation. Moreover, LPS-induced activation of Rac1 through TLR4 was observed. Western blot analysis revealed that transfection with siTLR4 or siRac1 inhibited LPS-induced Akt phosphorylation. We discovered that LPS stimulated VSMCs proliferation via phenotypic modulation and that this effect was partially inhibited by pre-treatment with siTLR4 or siRac1. Further, TLR4 and Rac1 are involved in LPS-induced activation of TRPC1. Conclusion: This study suggests that LPS exerts an effect on VSMCs proliferation and that the TLR4/Rac1/Akt signalling pathway mediates this effect.

  16. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages.

    Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan

    2014-11-01

    The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Significance of TLR4/MyD88 expression in breast cancer

    Chen, Xiangjin; Zhao, Feng; Zhang, Huihao; Zhu, Youzhi; Wu, Kunlin; Tan, Guozheng

    2015-01-01

    Objective: To investigate the expression of TLR4/MyD88 in breast cancer, and explore the relationship between their expression and breast cancer tumor growth and invasion. Methods: We examined the protein expression of TLR4 and MyD88 in 60 cases of histologically confirmed breast cancer. The relationship of their protein expressions with clinical features including age at diagnosis, tumor size and stage, lymph node metastasis and distant metastasis were analyzed. Results: The IHC results showed that TLR4 and MyD88 were expressed in 63.3% (38/60) and 58.3% (35/60) of malignant breast tumors respectively. TLR4 expression in breast cancer were significantly higher than in fibroadenoma (n = 4, 20.0%) and adjacent normal tissues (n = 2, 10.0%) (P fibroadenoma (n = 4, 20.0%) and adjacent normal tissue (n = 3, 15.0%) (P fibroadenoma and adjacent normal tissues (P < 0.05). The protein expressions of TLR4 and MyD88 were also significantly associated with poor clinical features (P < 0.05). Conclusion: TLR4 and MyD88 expression might be associated with breast cancer growth and regional and distant metastases. PMID:26261595

  18. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages

    Rahman Irfan

    2009-05-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are present on monocytes and alveolar macrophages that form the first line of defense against inhaled particles. The importance of those cells in the pathophysiology of chronic obstructive pulmonary disease (COPD has well been documented. Cigarette smoke contains high concentration of oxidants which can stimulate immune cells to produce reactive oxygen species, cytokines and chemokines. Methods In this study, we evaluated the effects of cigarette smoke medium (CSM on TLR4 expression and interleukin (IL-8 production by human macrophages investigating the involvement of ROS. Results and Discussion TLR4 surface expression was downregulated on short term exposure (1 h of CSM. The downregulation could be explained by internalization of the TLR4 and the upregulation by an increase in TLR4 mRNA. IL-8 mRNA and protein were also increased by CSM. CSM stimulation increased intracellular ROS-production and decreased glutathione (GSH levels. The modulation of TLR4 mRNA and surface receptors expression, IRAK activation, IκB-α degradation, IL-8 mRNA and protein, GSH depletion and ROS production were all prevented by antioxidants such as N-acetyl-L-cysteine (NAC. Conclusion TLR4 may be involved in the pathogenesis of lung emphysema and oxidative stress and seems to be a crucial contributor in lung inflammation.

  19. S100A9 interaction with TLR4 promotes tumor growth.

    Eva Källberg

    Full Text Available By breeding TRAMP mice with S100A9 knock-out (S100A9(-/- animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b(+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68(+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9(-/- and TLR4(-/-, but not in RAGE(-/- animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b(+ cells. Lastly, treatment of mice with a small molecule (ABR-215050 that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies.

  20. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

    Qian-Wen Wang

    Full Text Available Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

  1. Pharmacological Characterization of 30 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin Derived Agonists, Synthetic Agonists, and the Endogenous Agouti-Related Protein (AGRP) Antagonist

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L.; Litherland, Sally A.; Haskell-Luevano, Carrie

    2010-01-01

    The melanocortin-4 receptor (MC4R) is a G-protein coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic bio marker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and non-obese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [α-, β, γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow

  2. Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist.

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L; Litherland, Sally A; Haskell-Luevano, Carrie

    2010-06-08

    The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface

  3. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TLR4 activates NF-κB in human ovarian granulosa tumor cells

    Woods, Dori C.; White, Yvonne A.R.; Dau, Caroline; Johnson, A.L.

    2011-01-01

    Highlights: → TLR4 is expressed in human ovarian granulosa tumor cells. → Acting through TLR4, LPS and HSP60 induce a NFκB signaling cascade in human ovarian granulosa tumor cells. → NFκB activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.

  5. The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis1

    Jilling, Tamas; Simon, Dyan; Lu, Jing; Meng, Fan Jing; Li, Dan; Schy, Robert; Thomson, Richard B.; Soliman, Antoine; Arditi, Moshe; Caplan, Michael S.

    2009-01-01

    Bacteria are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC), but it is unknown whether their interaction with the epithelium can participate in the initiation of mucosal injury or they can act only following translocation across a damaged intestinal barrier. Our aims were to determine whether bacteria and intestinal epithelial TLR4 play roles in a well-established neonatal rat model and a novel neonatal murine model of NEC. Neonatal rats, C57BL/6J, C3HeB/FeJ (TLR4 wild type), and C3H/HeJ (TLR4 mutant) mice were delivered by Cesarean section and were subjected to formula feeding and cold asphyxia stress or were delivered naturally and were mother-fed. NEC incidence was evaluated by histological scoring, and gene expression was quantified using quantitative real-time PCR from cDNA generated from intestinal total RNA or from RNA obtained by laser capture microdissection. Spontaneous feeding catheter colonization or supplementation of cultured bacterial isolates to formula increased the incidence of experimental NEC. During the first 72 h of life, i.e., the time frame of NEC development in this model, intestinal TLR4 mRNA gradually decreases in mother-fed but increases in formula feeding and cold asphyxia stress, correlating with induced inducible NO synthase. TLR4, inducible NO synthase, and inflammatory cytokine induction occurred in the intestinal epithelium but not in the submucosa. NEC incidence was diminished in C3H/HeJ mice, compared with C3HeB/FeJ mice. In summary, bacteria and TLR4 play significant roles in experimental NEC, likely via an interaction of intraluminal bacteria and aberrantly overexpressed TLR4 in enterocytes. PMID:16920968

  6. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway.

    Gao, Hui; Wang, Jianrong

    2016-02-01

    Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway.

  7. Increased TLR4 expression in murine placentas after oral infection with periodontal pathogens

    Arce, R.M.; Barros, S.P.; Wacker, B.; Peters, B.; Moss, K.; Offenbacher, S.

    2009-01-01

    Maternal periodontitis has emerged as a putative risk factor for preterm births in humans. The periodontitis-associated dental biofilm is thought to serve as an important source of oral bacteria and related virulence factors that hematogenously disseminate and affect the fetoplacental unit; however the underlying biological mechanisms are yet to be fully elucidated. This study hypothesized that an oral infection with the human periodontal pathogens Campylobacter rectus and Porphyromonas gingivalis is able to induce fetal growth restriction, placental inflammation and enhance Toll-like receptors type 4 (TLR4) expression in a murine pregnancy model. Female Balb/C mice (n=40) were orally infected with C. rectus and/or P. gingivalis over a 16-week period and mated once per week. Pregnant mice were sacrificed at embryonic day (E) 16.5 and placentas were collected and analyzed for TLR4 mRNA levels and qualitative protein expression by real time PCR and immunofluorescence. TLR4 mRNA expression was found to be increased in C. rectus-infected group (1.98±0.886 fold difference, Pperiodontal pathogens. The TLR4 pathway has been implicated in the pathogenesis of preterm births; therefore the abnormal regulation of placental TLR4 may give new insights into how maternal periodontitis and periodontal pathogens might be linked to placental inflammation and preterm birth pathogenesis. PMID:19101032

  8. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage.

    Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo

    2011-06-01

    Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. S100A9 Interaction with TLR4 Promotes Tumor Growth

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  10. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Adeline M Hajjar

    Full Text Available Although lipopolysaccharide (LPS stimulation through the Toll-like receptor (TLR-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  11. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  12. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen.

    Donadei, Agnese; Gallorini, Simona; Berti, Francesco; O'Hagan, Derek T; Adamo, Roberto; Baudner, Barbara C

    2015-05-04

    The potential benefits of skin delivery of vaccines derive from the presence of a densely connected network of antigen presenting cells in the skin layer, most significantly represented by Langerhans cells and dermal dendritic cells. Targeting these cells by adjuvant conjugated to an antigen should result in enhanced immunogenicity of a vaccine. Since one of the most widely used adjuvants is an insoluble salt of aluminum (aluminum hydroxide) that cannot be used for skin delivery due to reactogenicity, we focused our attention on agonists of receptors present on skin dendritic cells, including the Dectin-1 receptor. β-(1-3)-glucans, which are the most abundant components of the fungal surface, are known to activate the innate immune response by interaction with the C-type lectin-like Dectin-1 receptor. In this work we identified by rational design a well-defined synthetic β-(1-3)-glucan hexasaccharide as a Dectin-1 agonist and chemically conjugated it to the genetically detoxified diphtheria toxin (CRM197) protein antigen, as a means to increase the binding to Dectin-1 receptor and to target to skin dendritic cells. We demonstrated that the in vitro activation of the receptor was significantly impacted by the presentation of the glucan on the protein carrier. In vivo results in mice showed that the conjugation of the synthetic β-(1-3)-glucan when delivered intradermally resulted in higher antibody titers in comparison to intramuscular (i.m.) immunization and was not different from subcutaneous (s.c.) delivery. These findings suggest that weak receptor binders can be turned into more potent agonists by the multivalent presentation of many ligands covalently conjugated to the protein core. Moreover, this approach is particularly valuable to increase the immunogenicity of antigens administered via skin delivery.

  13. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  14. DMPD: LPS, TLR4 and infectious disease diversity. [Dynamic Macrophage Pathway CSML Database

    Full Text Available Nat Rev Microbiol. 2005 Jan;3(1):36-46. (.png) (.svg) (.html) (.csml) Show LPS, TLR4 and infectious disease... (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file w

  15. Cloning and SNP screening of TLR4 gene and the association ...

    huis

    Human models, in particular, suggest TLR4 to be a candidate gene .... Rapid amplification of cDNA ends (RACE) was performed with a BD SMART™ RACE cDNA .... content (PIC) were calculated with software of POPGENE (Ver. 1.31).

  16. An unusual dimeric structure and assembly for TLR4 regulator RP105-MD-1

    Yoon, Sung-il; Hong, Minsun; Wilson, Ian A [Scripps

    2011-11-16

    RP105-MD-1 modulates the TLR4-MD-2-mediated, innate immune response against bacterial lipopolysaccharide (LPS). The crystal structure of the bovine 1:1 RP105-MD-1 complex bound to a putative endogenous lipid at 2.9 Å resolution shares a similar overall architecture to its homolog TLR4-MD-2 but assembles into an unusual 2:2 homodimer that differs from any other known TLR-ligand assembly. The homodimer is assembled in a head-to-head orientation that juxtaposes the N-terminal leucine-rich repeats (LRRs) of the two RP105 chains, rather than the usual tail-to-tail configuration of C-terminal LRRs in ligand-activated TLR dimers, such as TLR1-TRL2, TLR2-TLR6, TLR3-TLR3 and TLR4-TLR4. Another unusual interaction is mediated by an RP105-specific asparagine-linked glycan, which wedges MD-1 into the co-receptor binding concavity on RP105. This unique mode of assembly represents a new paradigm for TLR complexes and suggests a molecular mechanism for regulating LPS responses.

  17. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  18. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  19. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice.

    Rabindra N Bhattacharjee

    Full Text Available BACKGROUND: Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC-/- mice display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of TLR4 in telomerase deficient mTERC-/- mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+, mTERC+/- and mTERC-/- mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFalpha and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC-/- mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-kappaB binding to its promoter by down-regulating ATF-3 in mTERC-/- macrophages. CONCLUSIONS/SIGNIFICANCE: Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-kappaB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.

  20. TLR4 endogenous ligand MRP8/14 level in enthesitis-related arthritis and its association with disease activity and TLR4 expression.

    Rahman, Mujeeb T; Myles, Arpita; Gaur, Priyanka; Misra, Ramnath; Aggarwal, Amita

    2014-02-01

    Enthesitis-related arthritis (ERA) is an inflammatory disease of childhood that lacks autoantibodies. Overexpression of surface-expressed Toll-like receptors (TLRs) has been found in ERA. Myeloid-related proteins (MRPs) 8 and 14 are calcium binding proteins that act as an endogenous ligand of TLR4. MRP8/14 levels are elevated in patients with systemic-onset arthritis. Thus we studied the role of MRP8/14 in ERA. The study enrolled patients with ERA. Plasma and SF levels of MRP8/14 were measured by ELISA and TLR4 expression on peripheral blood and SF monocytes was measured by two-colour flow cytometry. Control plasma samples were collected from 48 blood bank donors. Of the 69 patients, 67 were male, with a mean age of 15.2 (s.d. 2.7) years and a disease duration of 5 (s.d. 3) years. Median plasma levels of MRP8/14 were higher in patients (10 862.3 ng/ml) than controls (4426.1 ng/ml, P < 0.0001). Patients with active disease (11 669.5 ng/ml) had higher levels as compared with inactive disease (4421.8 ng/ml, P < 0.0001). Plasma MRP8/14 levels decreased on follow-up after 3 months only in patients who responded to treatment (P = 0.012). MRP8/14 levels were negatively correlated with the frequency of CD14(+)TLR4(+) cells (r = -0.372, P = 0.02). MRP8/14 levels were higher in SF as compared with plasma (15 858.45 ng/ml, P = 0.024). The frequency of CD14(+)TLR4(+) cells was higher in SF as compared with peripheral blood. MRP8/14 levels are increased in the plasma of ERA patients and are higher in those with active disease and the levels decrease in patients who respond to treatment, suggesting that it may be a good biomarker during follow-up.

  1. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  2. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles.

    Shang, Shuai; Zhong, Huaming; Wu, Xiaoyang; Wei, Qinguo; Zhang, Huanxin; Chen, Jun; Chen, Yao; Tang, Xuexi; Zhang, Honghai

    2018-04-01

    Toll-like receptors (TLRs) encoded by the TLR multigene family play an important role in initial pathogen recognition in vertebrates. Among the TLRs, TLR2 and TLR4 may be of particular importance to reptiles. In order to study the evolutionary patterns and structural characteristics of TLRs, we explored the available genomes of several representative members of reptiles. 25 TLR2 genes and 19 TLR4 genes from reptiles were obtained in this study. Phylogenetic results showed that the TLR2 gene duplication occurred in several species. Evolutionary analysis by at least two methods identified 30 and 13 common positively selected codons in TLR2 and TLR4, respectively. Most positively selected sites of TLR2 and TLR4 were located in the Leucine-rich repeat (LRRs). Branch model analysis showed that TLR2 genes were under different evolutionary forces in reptiles, while the TLR4 genes showed no significant selection pressure. The different evolutionary adaptation of TLR2 and TLR4 among the reptiles might be due to their different function in recognizing bacteria. Overall, we explored the structure and evolution of TLR2 and TLR4 genes in reptiles for the first time. Our study revealed valuable information regarding TLR2 and TLR4 in reptiles, and provided novel insights into the conservation concern of natural populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  4. PARTICIPATION OF TLR4 IN ENGULFMENT OF ESCHERICHIA COLI BY HUMAN BLOOD NEUTROPHILS IN PRESENCE OF LIPOPOLYSACCHARIDES

    S. V. Zubova

    2012-01-01

    Full Text Available Abstract. TLR4 is a key player in signaling system of host cells. Possible role of TLR4 is actively discussed, e.g. its significance for phagocytosis. A capacity of neutrophils to engulf FITC-labeled E. coli bacteria upon activation with LPS of different origin was studied in presence of anti-TLR4 Mab’s (HTA125 clone. It was shown that, in whole blood, TLR4 does not play any essential role in engulfment of bacteria by the neutrophils. Phagocytic activity of neutrophils in blood increases increased after their priming with E. coli endotoxins. LPS from Rb. сapsulatus did not affect phagocytosis. In presence of endotoxins, the degree of TLR4 involvement in neutrophil phagocytosis depends on LPS structure.

  5. TLR4 Asp299Gly polymorphism may be protective against chronic periodontitis.

    Sellers, R M; Payne, J B; Yu, F; LeVan, T D; Walker, C; Mikuls, T R

    2016-04-01

    Periodontitis results from interplay between genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in the coding region of the toll-like receptor 4 gene (TLR4) may be associated with periodontitis, although previous studies have been inconclusive. Moreover, the interaction between environmental factors, such as cigarette smoking (a major risk factor for periodontitis), and Porphyromonas gingivalis (a major periodontal pathogen) with the TLR4 coding region Asp299Gly SNP (rs4986790; a SNP associated with lipopolysaccharide-mediated inflammatory responses in periodontitis), have been largely ignored in previous reports. Therefore, the objective of this study was to examine the association between TLR4 Asp299Gly (rs4986790) with alveolar bone height loss (ABHL) and periodontitis, accounting for interactions between this SNP with smoking and P. gingivalis prevalence. The CD14/-260 SNP (rs2569190) served as a control, as a recent meta-analysis suggested no relationship between this SNP and periodontitis. This multicenter study included 617 participants who had rheumatoid arthritis or osteoarthritis. This report presents a secondary outcome from the primary case-control study examining the relationship of periodontitis with established rheumatoid arthritis. The Centers for Disease Control/American Academy of Periodontology case definitions of periodontitis were used for this analysis. Participants received a full-mouth clinical periodontal examination and panoramic radiograph. Percentage ABHL was measured on posterior teeth. The TLR4 Asp299Gly and CD14/-260 SNPs were selected a priori and genotypes were determined using the ImmunoChip array (Illumina(®) ). Minor allele frequencies and associations with periodontitis and ABHL did not differ according to rheumatoid arthritis vs. osteoarthritis status; therefore, data from these two groups were pooled. The presence of P. gingivalis was detected in subgingival plaque by PCR. Multivariate ordinal

  6. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation

    Herzmann, Nicole; Salamon, Achim [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany); Fiedler, Tomas [Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany)

    2017-01-01

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.

  7. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro.

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-09-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

  8. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  9. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses.

    Timothy Gatheral

    Full Text Available Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.

  10. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Association Between Antibiotic Exposure, Bronchiolitis, and TLR4 (rs1927911) Polymorphisms in Childhood Asthma

    Lee, Eun; Kwon, Ji-Won; Kim, Hyo-Bin; Yu, Ho-Sung; Kang, Mi-Jin; Hong, Kyungmo; Yang, Song I; Jung, Young Ho; Lee, Seung-Hwa; Choi, Kil Young; Shin, Hye Lim; Hong, Seo Ah; Kim, Hyung Young; Seo, Ju-Hee; Kim, Byoung-Ju; Lee, So Yeon; Song, Dae Jin; Kim, Woo-Kyung; Jang, Gwang Cheon; Shim, Jung Yeon

    2015-01-01

    Purpose The complex interplay between environmental and genetic factors plays an important role in the development of asthma. Several studies have yielded conflicting results regarding the 2 asthma-related risk factors: antibiotic usage during infancy and/or a history of bronchiolitis during early life and the development of asthma. In addition to these risk factors, we also explored the effects of Toll-like receptor 4 (TLR4) polymorphism on the development of childhood asthma. Methods This cross-sectional study involved 7,389 middle school students who were from 8 areas of Seoul, Korea, and completed the International Study of Asthma and Allergies in Childhood questionnaire. The TLR4 polymorphism rs1927911 was genotyped in 1,395 middle school students from two areas using the TaqMan assay. Results Bronchiolitis in the first 2 years of life, antibiotic exposure during the first year of life, and parental history of asthma were independent risk factors for the development of asthma. When combined, antibiotic use and a history of bronchiolitis increased the risk of asthma (adjusted odds ratio [aOR]: 4.64, 95% confidence interval [CI]: 3.09-6.97, P value for interaction=0.02). In subjects with CC genotype of TLR4, antibiotic exposure and a history of bronchiolitis during infancy, the risk of asthma was increased, compared to subjects without these risk factors (aOR: 5.72, 95% CI: 1.74-18.87). Conclusions Early-life antibiotic exposures and a history of bronchiolitis are risk factors for asthma in young adolescents. Polymorphisms of TLR4 modified the influence of these environmental factors. Reducing antibiotic exposure and preventing bronchiolitis during infancy may prevent the development of asthma, especially in genetically susceptible subjects. PMID:25729624

  12. Clinical characteristics and frequency of TLR4 polymorphisms in Brazilian patients with ankylosing spondylitis

    Natalia Pereira Machado

    Full Text Available ABSTRACT Objectives: Innate immunity is involved in the physiopathology of ankylosing spondylitis (AS, with the participation of Gram-negative bacteria, modulation of human leukocyte antigen (HLA B27 and the involvement of pattern recognition receptors, such as Toll-like receptors (TLRs. The aim of this study was to investigate the clinical characteristics and frequency of TLR4 polymorphisms (Asp299Gly and Thr 399Ile in a cohort of Brazilian patients with AS. Methods: A cross-sectional study was carried out involving 200 patients with a diagnosis of AS and a healthy control group of 200 individuals. Disease activity, severity and functional capacity were measured. The study of TLR4 polymorphisms was performed using the restriction fragment length polymorphism method. HLA-B27 was analyzed by conventional polymerase chain reaction. The IBM SPSS Statistics 20 program was used for the statistical analysis, with p-values less than 0.05 considered significant. Results: Mean age and disease duration were 43.1 ± 12.7 and 16.6 ± 9.2 years, respectively. The sample was predominantly male (71% and non-Caucasian (52%. A total of 66% of the group of patients were positive for HLA-B27. The sample of patients was characterized by moderate functional impairment and a high degree of disease activity. No significant association was found between the two TLR4 polymorphisms and susceptibility to AS. Conclusions: TLR4 polymorphisms 399 and 299 were not more frequent in patients with AS in comparison to the health controls and none of the clinical variables were associated with these polymorphisms.

  13. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  14. Electroacupuncture Improved Hippocampal Neurogenesis following Traumatic Brain Injury in Mice through Inhibition of TLR4 Signaling Pathway

    Yuqin Ye

    2017-01-01

    Full Text Available The protective role of electroacupuncture (EA treatment in diverse neurological diseases such as ischemic stroke is well acknowledged. However, whether and how EA act on hippocampal neurogenesis following traumatic brain injury (TBI remains poorly understood. This study aims to investigate the effect of EA on hippocampal neurogenesis and neurological functions, as well as its underlying association with toll-like receptor 4 (TLR4 signaling in TBI mice. BrdU/NeuN immunofluorescence was performed to label newborn neurons in the hippocampus after EA treatment. Water maze test and neurological severity score were used to evaluate neurological function posttrauma. The hippocampal level of TLR4 and downstream molecules and inflammatory cytokines were, respectively, detected by Western blot and enzyme-linked immunosorbent assay. EA enhanced hippocampal neurogenesis and inhibited TLR4 expression at 21, 28, and 35 days after TBI, but the beneficial effects of EA on posttraumatic neurogenesis and neurological functions were attenuated by lipopolysaccharide-induced TLR4 activation. In addition, EA exerted an inhibitory effect on both TLR4/Myd88/NF-κB and TLR4/TRIF/NF-κB pathways, as well as the inflammatory cytokine expression in the hippocampus following TBI. In conclusion, EA promoted hippocampal neurogenesis and neurological recovery through inhibition of TLR4 signaling pathway posttrauma, which may be a potential approach to improve the outcome of TBI.

  15. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury

    Ellis, Amanda; Grace, Peter M.; Wieseler, Julie; Favret, Jacob; Springer, Kendra; Skarda, Bryce; Hutchinson, Mark R.; Falci, Scott; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2016-01-01

    Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10 mg/kg/day morphine beginning 24 hr after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury. PMID:27519154

  16. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways

    Lena Seifert

    2015-12-01

    Full Text Available Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1–/– mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.

  17. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways.

    Seifert, Lena; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Werba, Gregor; Pansari, Mridul; Pergamo, Matthew; Ochi, Atsuo; Torres-Hernandez, Alejandro; Levie, Elliot; Tippens, Daniel; Greco, Stephanie H; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Eisenthal, Andrew; van Heerden, Eliza; Avanzi, Antonina; Barilla, Rocky; Zambirinis, Constantinos P; Rendon, Mauricio; Daley, Donnele; Pachter, H Leon; Hajdu, Cristina; Miller, George

    2015-12-01

    Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  19. Mycobacterial Phenolic Glycolipids Selectively Disable TRIF-Dependent TLR4 Signaling in Macrophages

    Reid Oldenburg

    2018-01-01

    Full Text Available Phenolic glycolipids (PGLs are cell wall components of a subset of pathogenic mycobacteria, with immunomodulatory properties. Here, we show that in addition, PGLs exert antibactericidal activity by limiting the production of nitric oxide synthase (iNOS in mycobacteria-infected macrophages. PGL-mediated downregulation of iNOS was complement receptor 3-dependent and comparably induced by bacterial and purified PGLs. Using Mycobacterium leprae PGL-1 as a model, we found that PGLs dampen the toll-like receptor (TLR4 signaling pathway, with macrophage exposure to PGLs leading to significant reduction in TIR-domain-containing adapter-inducing interferon-β (TRIF protein level. PGL-driven decrease in TRIF operated posttranscriptionally and independently of Src-family tyrosine kinases, lysosomal and proteasomal degradation. It resulted in the defective production of TRIF-dependent IFN-β and CXCL10 in TLR4-stimulated macrophages, in addition to iNOS. Our results unravel a mechanism by which PGLs hijack both the bactericidal and inflammatory responses of host macrophages. Moreover, they identify TRIF as a critical node in the crosstalk between CR3 and TLR4.

  20. Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R.; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A.; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana

    2012-01-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI. PMID:22677551

  1. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage

    Lin Sen

    2012-03-01

    Full Text Available Abstract Background Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH-induced neurological deficits; however, the signaling pathways are not apparent by which the upstream cellular events trigger innate immune and inflammatory responses that contribute to neurological impairments. Toll-like receptor 4 (TLR4 plays a role in inflammatory damage caused by brain disorders. Methods In this study, we investigate the role of TLR4 signaling in ICH-induced inflammation. In the ICH model, a significant upregulation of TLR4 expression in reactive microglia has been demonstrated using real-time RT-PCR. Activation of microglia was detected by immunohistochemistry, cytokines were measured by ELISA, MyD88, TRIF and NF-κB were measured by Western blot and EMSA, animal behavior was evaluated by animal behavioristics. Results Compared to WT mice, TLR4−/− mice had restrained ICH-induced brain damage showing in reduced cerebral edema and lower neurological deficit scores. Quantification of cytokines including IL-6, TNF-α and IL-1β and assessment of macrophage infiltration in perihematoma tissues from TLR4−/−, MyD88−/− and TRIF−/− mice showed attenuated inflammatory damage after ICH. TLR4−/− mice also exhibited reduced MyD88 and TRIF expression which was accompanied by decreased NF-κB activity. This suggests that after ICH both MyD88 and TRIF pathways might be involved in TLR4-mediated inflammatory injury possibly via NF-κB activation. Exogenous hemin administration significantly increased TLR4 expression and microglial activation in cultures and also exacerbated brain injury in WT mice but not in TLR4−/− mice. Anti-TLR4 antibody administration suppressed hemin-induced microglial activation in cultures and in the mice model of ICH. Conclusions Our findings suggest that heme potentiates microglial activation via TLR4, in turn inducing NF-κB activation via the MyD88/TRIF signaling pathway, and ultimately

  2. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    Lee, Jae-Won, E-mail: maestro97@hanmail.net; Kim, Sun Chul, E-mail: linefe99@hanmail.net; Ko, Yoon Sook, E-mail: rainboweyes@hanmail.net; Lee, Hee Young, E-mail: cell1023@hanmail.net; Cho, Eunjung, E-mail: icdej@naver.com; Kim, Myung-Gyu, E-mail: gyu219@hanmail.net; Jo, Sang-Kyung, E-mail: sang-kyung@korea.ac.kr; Cho, Won Yong, E-mail: wonyong@korea.ac.kr; Kim, Hyoung Kyu, E-mail: hyoung@korea.ac.kr

    2014-02-07

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.

  3. Genetic Variability as a Regulator of TLR4 and NOD Signaling in Response to Bacterial Driven DNA Damage Response (DDR and Inflammation: Focus on the Gastrointestinal (GI Tract

    Evagelia Spanou

    2017-05-01

    Full Text Available The fundamental role of human Toll-like receptors (TLRs and NOD-like receptors (NLRs, the two most studied pathogen recognition receptors (PRRs, is the protection against pathogens and excessive tissue injury. Recent evidence supports the association between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune, and malignant diseases. PRRs also interfere with several cellular processes, such as cell growth, apoptosis, cell proliferation, differentiation, autophagy, angiogenesis, cell motility and migration, and DNA repair mechanisms. We briefly review the impact of TLR4 and NOD1/NOD2 and their genetic variability in the process of inflammation, tumorigenesis and DNA repair, focusing in the gastrointestinal tract. We also review the available data on new therapeutic strategies utilizing TLR/NLR agonists and antagonists for cancer, allergic diseases, viral infections and vaccine development against both infectious diseases and cancer.

  4. Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning.

    An, Gary C; Faeder, James R

    2009-01-01

    Intracellular signaling/synthetic pathways are being increasingly extensively characterized. However, while these pathways can be displayed in static diagrams, in reality they exist with a degree of dynamic complexity that is responsible for heterogeneous cellular behavior. Multiple parallel pathways exist and interact concurrently, limiting the ability to integrate the various identified mechanisms into a cohesive whole. Computational methods have been suggested as a means of concatenating this knowledge to aid in the understanding of overall system dynamics. Since the eventual goal of biomedical research is the identification and development of therapeutic modalities, computational representation must have sufficient detail to facilitate this 'engineering' process. Adding to the challenge, this type of representation must occur in a perpetual state of incomplete knowledge. We present a modeling approach to address this challenge that is both detailed and qualitative. This approach is termed 'dynamic knowledge representation,' and is intended to be an integrated component of the iterative cycle of scientific discovery. BioNetGen (BNG), a software platform for modeling intracellular signaling pathways, was used to model the toll-like receptor 4 (TLR-4) signal transduction cascade. The informational basis of the model was a series of reference papers on modulation of (TLR-4) signaling, and some specific primary research papers to aid in the characterization of specific mechanistic steps in the pathway. This model was detailed with respect to the components of the pathway represented, but qualitative with respect to the specific reaction coefficients utilized to execute the reactions. Responsiveness to simulated lipopolysaccharide (LPS) administration was measured by tumor necrosis factor (TNF) production. Simulation runs included evaluation of initial dose-dependent response to LPS administration at 10, 100, 1000 and 10,000, and a subsequent examination of

  5. Dexmedetomidine Inhibits Inflammatory Reaction in Lung Tissues of Septic Rats by Suppressing TLR4/NF-κB Pathway

    Yuqing Wu

    2013-01-01

    and 20 μg/kg significantly decreased mortality and pulmonary inflammation of septic rats, as well as suppressed CLP-induced elevation of TNF-α and IL-6 and inhibited TLR4/MyD88 expression and NF-κB activation. These results suggest that dexmedetomidine may decrease mortality and inhibit inflammatory reaction in lung tissues of septic rats by suppressing TLR4/MyD88/NF-κB pathway.

  6. Role of TLR4 in the Modulation of Central Amygdala GABA Transmission by CRF Following Restraint Stress.

    Varodayan, F P; Khom, S; Patel, R R; Steinman, M Q; Hedges, D M; Oleata, C S; Homanics, G E; Roberto, M; Bajo, M

    2018-01-04

    Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) following restraint stress. Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraint stress (1 h per day for 3 consecutive days). After 1 h recovery from the final stress session, whole-cell patch-clamp electrophysiology was used to investigate the effects of CRF (200 nM) on CeA GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs). TLR4 does not regulate baseline GABAergic transmission in the CeA of naive and stress-treated animals. However, CRF significantly increased the mean sIPSC frequencies (indicating enhanced GABA release) across all genotypes and stress treatments, except for the Tlr4 KO rats that experienced repeated restraint stress. Overall, our results suggest a limited role for TLR4 in CRF's modulation of CeA GABAergic synapses in naïve and single stress rats, though TLR4-deficient rats that experienced repeated psychological stress exhibit a blunted CRF cellular response. TLR4 has a limited role in CRF's activation of the CeA under basal conditions, but interacts with the CRF system to regulate GABAergic synapse function in animals that experience repeated psychological stress. © The Author(s) 2018. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  7. Model-Based Discovery of Synthetic Agonists for the Zn2+-Sensing G-Protein-Coupled Receptor 39 (GPR39) Reveals Novel Biological Functions

    Frimurer, Thomas M.; Mende, Franziska; Graae, Anne-Sofie

    2017-01-01

    binding to other receptors with similar binding pockets to select iterative series of mini-libraries. These libraries were cherry-picked from all com. available synthetic compds. A total of only 520 compds. were tested in vitro, making this method broadly applicable for tool compd. development. The compds....... of the initial library were inactive when tested alone, but lead compds. were identified using Zn2 as an allosteric enhancer. Highly selective, highly potent Zn2-independent GPR39 agonists were found in subsequent mini-libraries. These agonists identified GPR39 as a novel regulator of gastric somatostatin...

  8. TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacterium nucleatum in vivo.

    Yin-Ping Jia

    Full Text Available Toll-like receptors (TLRs 2 and 4 play critical roles in intestinal inflammation caused by Fusobacterium nucleatum (F. nucleatum infection, but the role of TLR2/TLR4 in regulation of proinflammatory cytokines remains unknown. In this study, through microarray analysis and qRT-PCR, we showed that TLR2/TLR4 are involved in the F. nucleatum-induced inflammatory signaling pathway in Caco-2 cells, C57BL/6 mice and human clinical specimens. In TLR2-/- and TLR4-/- mice, F. nucleatum infection resulted in increased colonization of the bacteria and production of the proinflammatory cytokines IL-8, IL-1β and TNF-α. In addition, the ratio of Foxp3+ CD4+ T cells in the total CD4+ T cells in TLR2-/- and TLR4-/- mice was less than that in wild-type mice, and the ratio in hybrid mice was more than that in knockout mice, which suggested that TLR2/TLR4 mediated the number of Tregs. Furthermore, it was observed that inflammatory cytokine levels were reduced in TLR2-/- mice after Treg transfer. Thus, these data indicate that TLR2/TLR4 regulate F. nucleatum-induced inflammatory cytokines through Tregs in vivo.

  9. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis.

    Antoine Soliman

    Full Text Available Necrotizing enterocolitis (NEC is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF, bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line. PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.

  10. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle.

    Panigrahi, Manjit; Sharma, Arjava; Bhushan, Bharat

    2014-01-01

    Crossbred cattle are more prone to mastitis in comparison to indigenous cattle. Toll-like receptor 4 (TLR4) recognizes pathogen ligands, for example, lipopolysaccharide (LPS) endotoxin from Escherichia coli and mediates signaling to initiate innate and adaptive immune responses. Mutations in TLR4 can compromise the host immune response to certain pathogens, so it may be a potential candidate for marker assisted selection to enhance mastitis resistance in dairy cattle. Hence, in this study role of bovine TLR4 gene in mastitis resistance was investigated by association as well as expression profiling analysis in crossbred cattle. The animals were divided into mastitis affected and unaffected groups on the basis of history of animals and California Mastitis Test (CMT). PCR-SSCP and Sequence analysis revealed three genotypes of coreceptor binding region 1 (CRBR1) fragment of TLR4 gene namely AA, AB, and BB in both groups of cattle. The logistic regression model did not show any significant effect of these genotypes on the occurrence of clinical mastitis. Moreover, in vitro challenge of peripheral blood mononuclear cells (PBMCs) with LPS failed to show any association of the genotypes with TLR4 gene expression. In a nutshell, in the present study enough evidence was not found for association of the SNP variants of CRBR1 fragment of TLR4 gene with mastitis susceptibility in crossbred cattle.

  11. Coxiella burnetii lipopolysaccharide blocks p38α-MAPK activation through the disruption of TLR-2 and TLR-4 association

    Filippo eConti

    2015-01-01

    Full Text Available To survive in macrophages, Coxiella burnetii hijacks the activation pathway of macrophages. Recently, we have demonstrated that C. burnetii, via its lipopolysaccharide (LPS, avoids the activation of p38α-MAPK through an antagonistic engagement of Toll-like receptor (TLR-4. We investigated the fine-tuned mechanism leading to the absence of activation of the p38α-MAPK despite TLR-4 engagement. In macrophages challenged with Escherichia coli LPS or with the LPS from the avirulent variants of C. burnetii, TLR-4 and TLR-2 co-immunoprecipitated. This association was absent in cells challenged by the LPS of pathogenic C. burnetii. The disruption makes TLRs unable to signal during the recognition of the LPS of pathogenic C. burnetii. The disruption of TLR-2 and TLR-4 was induced by the re-organization of the macrophage cytoskeleton by C. burnetii LPS. Interestingly, blocking the actin cytoskeleton re-organization relieved the disruption of the association TLR-2/TLR-4 by pathogenic C. burnetii and rescued the p38α-MAPK activation by C. burnetii. We elucidated an unexpected mechanism allowing pathogenic C. burnetii to avoid activating macrophages by the disruption of the TLR-2 and TLR-4 association.

  12. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    Wang Jun

    2012-10-01

    Full Text Available Abstract Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4 antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB, which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1, compared with transforming growth factor-β1 (TGF-β1. Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial

  13. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of

  14. Association of gene variants in TLR4 and IL-6 genes with Perthes disease

    Srzentić Sanja

    2014-01-01

    Full Text Available Introduction. Perthes disease is idiopathic avascular osteonecrosis of the hip in children, with unknown etiology. Inflammation is present during development of Perthes disease and it is known that this process influences bone remodeling. Objective. Since genetic studies related to inflammation have not been performed in Perthes disease so far, the aim of this study was to analyze the association of frequencies of genetic variants of immune response genes, toll-like receptor 4 (TLR4 and interleukin-6 (IL-6, with this disease. Methods. The study cohort consisted of 37 patients with Perthes disease and 50 healthy controls. Polymorphisms of well described inflammatory mediators: TLR4 (Asp299Gly, Thr399Ile and IL-6 (G-174C, G- 597A were determined by polymerase chain reaction restriction fragment length polymorphism method. Results. IL-6 G-174C and G-597A polymorphisms were in complete linkage disequilibrium. A statistically significant increase of heterozygote subjects for IL-6 G-174C/G-597A was found in controls in comparison to Perthes patient group (p=0.047, OR=2.49, 95% CI=1.00-6.21. Also, the patient group for IL-6 G-174C/G- 597A polymorphisms was not in Hardy-Weinberg equilibrium. No statistically significant differences were found between patient and control groups for TLR4 analyzed polymorphisms. A stratified analysis by the age at disease onset also did not reveal any significant difference for all analyzed polymorphisms. Conclusion. Our study revealed that heterozygote subjects for the IL-6 G-174C/G-597A polymorphisms were significantly overrepresented in the control group than in the Perthes patient group. Consequently, we concluded that children who are heterozygous for these polymorphisms have a lower chance of developing Perthes disease than carriers of both homozygote genotypes. [Projekat Ministarstva nauke Republike Srbije, br. III41004

  15. TLR-2 and TLR-4 expression in monocytes of newborns with late-onset sepsis,

    Ana C.C. Redondo

    2014-09-01

    Full Text Available Objetivos: Analisar a expressão dos TLR-2 e TLR-4 em monócitos de recém-nascidos com sepse tardia. Métodos: Trata-se de um estudo prospectivo com 27 recém-nascidos a termo entre 8 e 29 dias de vida com diagnóstico clínico e laboratorial de sepse tardia dos quais dez (37% apresentaram cultura positiva. As citocinas foram determinadas por teste de CBA em sangue periférico enquanto que a expressão e MFI (mediana de intensidade de fluorescência dos TLR-2 e TLR-4 foi determinado por imunofenotipagem em monócitos de sangue periférico total através de análise pelo citômetro de fluxo BD FACSDiva. O grupo usado para comparação foi de adultos saudáveis. Resultados: Microrganismos foram identificados em 37% dos pacientes e estes juntamente com os pacientes com sepse clínica tiveram níveis elevados de citocinas pró-inflamatórias (IL-8, IL-6, IL-1β e de citocina anti-inflamatória (IL-10 corroborando o processo inflamatório/infeccioso. No monócito, a frequência de expressão do TLR-4 foi mais elevada (p = 0,01. Conclusões: Este estudo analisou a resposta imune inata no recém-nascido com sepse. Recémnascidos sépticos que dependem quase exclusivamente do sistema imune inato apresentaram pouca resposta in vivo na ativação de monócitos o que sugere uma resposta imune deficiente e maior susceptibilidade à infecção.

  16. TLR-4 and CD14 Genotypes and Soluble CD14: Could They Predispose to Coronary Atherosclerosis?

    Maria Kalliopi Konstantinidou

    2016-03-01

    Full Text Available Background: Inflammatory mechanisms are key to the pathogenesis of atherosclerosis. Functional polymorphisms of TLR-4, Asp299Gly and Thr399Ile, CD14 promoter area C260T polymorphism and plasma levels of soluble CD14 are studied in subjects with Coronary Artery Disease (CAD. Methods: DNA was obtained from 100 human paraffin-embedded aortic specimens, from cadavers with known coronary atheromatosis (Group A and 100 blood samples from patients with CAD, as detected by cardiac Multi-Detector-row-Computed-Tomography (MDCT (Group B. Our control group consisted of 100 healthy individuals (Group C. Genotyping was performed by Restriction Fragment Length Polymorphism-Polymerase Chain Reaction (RFLP-PCR. Plasma levels of sCD14 were measured with ELISA. Results: For TLR-4 Asp299Gly and Thr399Ile polymorphisms, no statistically significant differences were observed. Regarding the C260T polymorphism, frequencies of T allele were significantly higher in the control group compared to the case group (p = 0.05. The Odds Ratio (OR showed statistically significant association of TT genotype with healthy individuals (OR 0.25, 95% Confidence Interval CI 0.10–0.62, p = 0.0017. Plasma levels of sCD14 in patients with CAD (mean value = 1.35 μg/mL were reduced when compared to reference value. Conclusions: The studied polymorphisms ofTLR-4 showed no association with CAD. Conversely, the functional polymorphism of CD14 has a statistically significant difference in expression between healthy and affected by CAD individuals.

  17. Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts.

    Yang, Xiaohua; Haghiac, Maricela; Glazebrook, Patricia; Minium, Judi; Catalano, Patrick M; Hauguel-de Mouzon, Sylvie

    2015-09-01

    What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)? Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways. The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis. Trophoblast cells isolated from 14 normal term human placentas were incubated with long chain fatty acids (FA) of different carbon length and degree of saturation. The expression and secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-alpha (TNF-α) were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Antibodies against TLR4 ligand binding domain, downstream signaling and anti-p65 NFkB-inhibitor were used to characterize the pathways of FA action. General approach used primary human term trophoblast cell culture. Methods and end-points used real-time quantitative PCR, cytokine measurements, immunohistochemistry, western blots. The long chain saturated fatty acids, stearic and palmitic (PA), stimulated the synthesis as well as the release of TNF-α, IL-6 and IL-8 by trophoblast cells (2- to 6-fold, P acids did not modify cytokine expression significantly. Palmitate-induced inflammatory effects were mediated via TLR4 activation, NF-kB phosphorylation and nuclear translocation. TNF-α protein level was close to the limit of detection in the culture medium even when cells were cultured with PA. These mechanisms open the way to a better understanding of how changes in maternal lipid homeostasis may regulate placental inflammatory status. X.Y. was recipient of fellowship award from West China Second University Hospital, Sichuan University (NIH HD 22965-19). The authors have nothing

  18. Andrographolide Suppress Tumor Growth by Inhibiting TLR4/NF-κB Signaling Activation in Insulinoma

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma. PMID:24719558

  19. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    Anna Martirosyan

    Full Text Available Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+ T and CD8(+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  20. The effects of Ostertagia occidentalis somatic antigens on ovine TLR2 and TLR4 expression

    Hassan BORJI

    2015-10-01

    Full Text Available Background: Recognition of helminth-derived pathogen associated molecular patterns (PAMPs by pattern recognition receptors (PRRs, including toll like recep­tors (TLRs is the first step towards initiating anti–helminth immune re­sponses.Methods: Using somatic antigens of Ostertagia occidentalis, an important abomasal parasite of ruminants, the expression of ovine TLR2 and TLR4 in peripheral blood mononuclear cells (PBMCs was analyzed by real-time quatitative reverse-transcrip­tion polymerase chain reaction (qRT-PCR. Somatic antigens of O. occidentalis were prepared to stimulate ovine PBMCs in a time and dose dependent manner.Results: A high expression of TLR2 and TLR4 was observed in PBMCs cultured with somatic antigens of the parasites specially when PBMCs were cultured with 100 µg/ml of somatic antigens and incubated for 2h. Up-regulation of TLR2 expres­sion was more pronounced and evident in our study.Conclsusion: Somatic antigens of O. occidentalis have immunostimulatory and domi­nant role on peripheral immune cells. This study provide for the first time evidence of induction of TLRs in ovine PBMCs by somatic antigen of O. occidentalis

  1. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP.

    Zhuowei Li

    Full Text Available Ozone exposure is associated with exacerbation of reactive airways disease. We have previously reported that the damage-associated molecular pattern, hyaluronan, is required for the complete biological response to ambient ozone and that hyaluronan fragments signal through toll-like receptor 4 (TLR4. In this study, we further investigated the role of TLR4 adaptors in ozone-induced airway hyperresponsiveness (AHR and the direct response to hyaluronan fragments (HA. Using a murine model of AHR, C57BL/6J, TLR4-/-, MyD88-/-, and TIRAP-/- mice were characterized for AHR after exposure to either ozone (1 ppm × 3 h or HA fragments. Animals were characterized for AHR with methacholine challenge, cellular inflammation, lung injury, and production of pro-inflammatory cytokines. Ozone-exposed C57BL/6J mice developed cellular inflammation, lung injury, pro-inflammatory cytokines, and AHR, while mice deficient in TLR4, MyD88 or TIRAP demonstrated both reduced AHR and reduced levels of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, IL-6 and KC. The level of hyaluronan was increased after inhalation of ozone in each strain of mice. Direct challenge of mice to hyaluronan resulted in AHR in C57BL/6J mice, but not in TLR4-/-, MyD88-/-, or TIRAP-/- mice. HA-induced cytokine production in wild-type mice was significantly reduced in TLR4-/-, MyD88-/-, or TIRAP-/- mice. In conclusion, our findings support that ozone-induced airway hyperresponsiveness is dependent on the HA-TLR4-MyD88-TIRAP signaling pathway.

  2. Toll-like receptor 4 (TLR4) impairs nitric oxide contributing to Angiotensin II-induced cavernosal dysfunction.

    Nunes, Kenia P; Bomfim, Gisele F; Toque, Haroldo A; Szasz, Theodora; Clinton Webb, R

    2017-12-15

    Angiotensin II (AngII), a corpus cavernosum (CC) constrictor peptide, modulates Toll like receptor (TLR) expression, a key element of the innate immune system, contributing to impaired vascular function in pathological conditions. However, it is unknown whether TLR4 is involved in AngII-induced erectile dysfunction. In this study, we investigated whether TLR4 plays a role in cavernosal dysfunction caused by AngII upregulation. Cavernosal smooth muscle cells (CSMC) from C57/BL6 mice were treated with AngII (0.1μM) or bacterial LPS (50ng/ml) for 12-24h and TLR4 expression was assessed. Mice were infused with AngII (90ng/min, 28days) and treated with anti-TLR4 antibody (0.1mg/daily, i.p.) for the last 14days of the treatment. CC tissue was used for functional studies and for Western blotting. Nitric Oxide Synthase (NOS) activity was measured by conversion of [ 3 H]-l-arginine to [ 3 H]-l-citrulline, systemic TNF-α levels by ELISA, and reactive oxygen species (ROS) by immunofluorescence. We report upregulation of TLR4 in CSMC following AngII or LPS stimulation. In AngII-infused mice, chronic treatment with anti-TLR4 antibody (28±2.1%) attenuates adrenergic CC contraction, which also ameliorates nitrergic (68.90±0.21 vs. 51.07±0.63, 8Hz, AngII-infused mice treated vs. non-treated). Decreased endothelial NOS expression, reduced NOS activity, and augmented levels of TNF-α, and ROS were found following AngII-infusion. These alterations were prevented, or at least decreased by anti-TLR4 antibody treatment. Inhibition of TLR4 ameliorates AngII-impaired cavernosal relaxation, decreases TNF-α levels, and restores NO bioavailability, demonstrating that TLR4 partly mediates AngII-induced cavernosal dysfunction. Copyright © 2017. Published by Elsevier Inc.

  3. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I.

    Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu

    2016-12-01

    To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all Pmyositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. In situ TLR2 and TLR4 expression in a murine model of mycetoma caused by Nocardia brasiliensis.

    Millán-Chiu, Blanca Edith; Hernández-Hernández, Francisca; Pérez-Torres, Armando; Méndez-Tovar, Luis Javier; López-Martínez, Rubén

    2011-04-01

    Actinomycetoma caused by Nocardia brasiliensis is a common disease in tropical regions. This ailment is characterized by a localized chronic inflammation that mainly affects the lower limbs. Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, inducing the production of proinflammatory mediators. The role of TLRs in the immune response against N. brasiliensis is unknown. The aim of this work was to locate and quantify in a murine model the expression of TLR2 and TLR4 in the infection site using reverse transcription-PCR and immunohistochemistry. The results showed that TLR2 expression increased in the infected tissue, whereas TLR4 expression decreased. The presence of TLR2 and TLR4 was demonstrated in different cell populations throughout the chronic infectious process. In the early stages of this process, TLR2 was expressed in neutrophils and macrophages in direct contact with the inoculum, whereas TLR4 was observed in mast cells. In the advanced stages of the infection, TLR2 was expressed in foam cells and fibroblasts and was likely associated with bacterial containment, while TLR4 was downregulated, probably resulting in an imbalance between the host immune response and the bacterial load that favoured chronic disease. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Clinical Effects of Synthetic Cannabinoid Receptor Agonists Compared with Marijuana in Emergency Department Patients with Acute Drug Overdose.

    Zaurova, Milana; Hoffman, Robert S; Vlahov, David; Manini, Alex F

    2016-12-01

    Synthetic cannabinoid receptor agonists (SCRAs) are heterogeneous compounds originally intended as probes of the endogenous cannabinoid system or as potential therapeutic agents. We assessed the clinical toxicity associated with recent SCRA use in a large cohort of drug overdose patients. This subgroup analysis of a large (n = 3739) drug overdose cohort study involved consecutive ED patients at two urban teaching hospitals collected between 2009 and 2013. Clinical characteristics of patients with the exposure to SCRAs (SRCA subgroup) were compared with those from patients who smoked traditional cannabinoids (marijuana subgroup). Data included demographics, exposure details, vital signs, mental status, and basic chemistries gathered as part of routine clinical care. Study outcomes included altered mental status and cardiotoxicity. Eighty-seven patients reported exposure to any cannabinoid, of whom 17 reported SCRAs (17 cases, 70 controls, mean age 38.9 years, 77 % males, 31 % Hispanic). There were no significant differences between SRCA and marijuana with respect to demographics (age, gender, and race/ethnicity), exposure history (suicidality, misuse, and intent), vital signs, or serum chemistries. Mental status varied between SRCA and marijuana, with agitation significantly more likely in SCRA subgroup (OR = 3.8, CI = 1.2-11.9). Cardiotoxicity was more pronounced in the SCRA subgroup with dysrhythmia significantly more likely (OR = 9.2, CI = 1.0-108). In the first clinical study comparing the adverse effects of SCRA overdose vs. marijuana controls in an ED population, we found that SCRA overdoses had significantly pronounced neurotoxicity and cardiotoxicity compared with marijuana.

  6. Immunogenicity investigations of lipidoid structures in vitro and in silico: Modulating lipidoid-mediated TLR4 activation by nanoparticle design

    de Groot, Anne Marit; Thanki, Kaushik; Gangloff, Monique

    2018-01-01

    , we showed that encapsulation of siRNA in lipid-polymer hybrid nanoparticles (LPNs), based on poly(DL-lactic-co-glycolic acid) (PLGA) and cationic lipid-like materials (lipidoids), remarkably enhances intracellular delivery of siRNA as compared to siRNA delivery with LPNs modified...... acid lipid particles, which was the reference formulation for siRNA delivery, proved to activate TLR4. However, by combining lipidoids with PLGA into LPNs, TLR4 activation was abrogated. Thus, lipidoid-mediated TLR4 activation during siRNA delivery may be modulated via optimization of the formulation......Therapeutics based on small interfering RNA (siRNA) have promising potential as antiviral and anti-inflammatory agents. To deliver siRNA across cell membranes to reach the RNA interference pathway in the cytosol of target cells, non-viral nanoparticulate delivery approaches are explored. Recently...

  7. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility.

    Noreen, Mamoona; Arshad, Muhammad

    2015-06-01

    Toll like receptors (TLRs) play a crucial role in regulation of innate as well as adaptive immunity. TLRs recognize a distinct but limited repertoire of conserved microbial products. Ligand binding to TLRs activates the signaling cascade and results in activation of multiple inflammatory genes. Variation in this immune response is under genetic control. Polymorphisms in genes associated with inflammatory pathway especially influence the outcome of diseases. TLR2 makes heterodimer with TLR1 or TLR6 and recognizes a wide variety of microbial ligands. In this review, we summarize studies of polymorphisms in genes encoding TLR1, TLR2, TLR4, TLR6, and most polymorphic adaptor protein, Mal/TIRAP, revealing their effect on susceptibility to diseases.

  8. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  9. [Effect of resveratrol on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment].

    Lv, Jia-Shu; Jiang, Xue-Wei; Zhang, Yan; Zhen, Lei

    2017-02-01

    Through a study of the molecular mechanism of the effect of resveratrol(RSV) on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment, the therapeutic effect and molecular mechanism of resveratrol on periodontitis in patients with diabetes mellitus was investigated. Gingival epithelial cells were cultured in vitro; according to the way of action, the cultured cells were divided into control group, high glucose group(HG) and HG+RSV group. The mRNA expression of TLR4 was detected by PCR; The third generation of gingival epithelial cells were pre-treated with or without RSV for 24 h under high glucose conditions, and subsequently treated with LPS at 100 ng/mL for 2 h. ELISA was used to detect the secretion of IL-1 beta, IL-6, IL-8 and TNF- alpha; the activation of TLR4 downstream signaling molecules NF-κB p65, p38 MAPK, and STAT3 was determined by Western blot. SPSS17.0 software package was used for statistical analysis. RSV could reverse the increase of TLR4 level in gingival epithelial cells in high glucose medium.LPS markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in GECs cultured in high glucose medium, which was partly blocked in the presence of RSV. Furthermore, Western blot results showed that RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. RSV reduces inflammatory cytokine secretion in gingival epithelial cells, through negative regulation of TLR4 signaling pathway.

  10. TLR4-dependent internalization of CX3CR1 aggravates sepsis-induced immunoparalysis.

    Ge, Xin-Yu; Fang, Shang-Ping; Zhou, Miao; Luo, Jing; Wei, Juan; Wen, Xue-Ping; Yan, Xiao-Di; Zou, Zui

    2016-01-01

    Sepsis, the most severe manifestation of infection, poses a major challenge to health-care systems around the world. Limited ability to clean and remove the pathogen renders difficulty in septic patients to recover from the phase of immunoparalysis. The present study found the vital role of CX3CR1 internalization on sepsis-induced immunoparalysis. A mouse model with cecal ligation and puncture (CLP) and cell model with lipopolysaccharides (LPS) were employed to explore the relationship between CX3CR1 internalization and septic immunoparalysis. Immunoparalysis model in mice was established 4 days after CLP with significantly decreased proinflammatory cytokines. Flow cytometry analysis found a decreased surface expression of CX3CR1 during immunoparalysis, which was associated with reduced mRNA level and increased internalization of CX3CR1. G-protein coupled receptor kinase 2 (GRK2) and β-arrestin2 were significantly increased during septic immunoparalysis and involved in the internalization of CX3CR1. TLR4 -/- or TLR4 inhibitor-treated macrophages exhibited an inhibited expression of GRK2 and β-arrestin2, along with reduced internalization of CX3CR1. Moreover, the knockdown of GRK2 and β-arrestin2 inhibited the internalization of CX3CR1 and led to a higher response on the second hit, which was associated with an increased activation of NF-κB. The critical association between internalization of CX3CR1 and immunosuppression in sepsis may provide a novel reference for clinical therapeutics.

  11. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. DMPD: The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17449723 The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. Sh...Show The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. PubmedID 17449723 Title The Tro...ll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. Authors Sheedy F

  13. Interactions of Notch1 and TLR4 signaling pathways in DRG neurons of in vivo and in vitro models of diabetic neuropathy.

    Chen, Tianhua; Li, Hao; Yin, Yiting; Zhang, Yuanpin; Liu, Zhen; Liu, Huaxiang

    2017-11-02

    Understanding the interactions between Notch1 and toll-like receptor 4 (TLR4) signaling pathways in the development of diabetic peripheral neuropathy may lead to interpretation of the mechanisms and novel approaches for preventing diabetic neuropathic pain. In the present study, the interactions between Notch1 and TLR4 signaling pathways were investigated by using dorsal root ganglion (DRG) from diabetic neuropathic pain rats and cultured DRG neurons under high glucose challenge. The results showed that high glucose induced not only Notch1 mRNA, HES1 mRNA, and TLR4 mRNA expression, but also Notch1 intracellular domain (NICD1) and TLR4 protein expression in DRG neurons. The proportion of NICD1-immunoreactive (IR) and TLR4-IR neurons in DRG cultures was also increased after high glucose challenge. The above alterations could be partially reversed by inhibition of either Notch1 or TLR4 signaling pathway. Inhibition of either Notch1 or TLR4 signaling pathway could improve mechanical allodynia and thermal hyperalgesia thresholds. Inhibition of Notch1 or TLR4 signaling also decreased tumor necrosis factor-α (TNF-α) levels in DRG from diabetic neuropathic rats. These data imply that the interaction between Notch1 and TLR4 signaling pathways is one of the important mechanisms in the development or progression of diabetic neuropathy.

  14. THREE-DIMENSIONAL MAPPING OF DIFFERENTIAL AMINO ACIDS OF HUMAN, MURINE, CANINE AND EQUINE TLR4/MD-2 RECEPTOR COMPLEXES CONFERRING ENDOTOXIC ACTIVATION BY LIPID A, ANTAGONISM BY ERITORAN AND SPECIES-DEPENDENT ACTIVITIES OF LIPID IVA IN THE MAMMALIAN LPS SENSOR SYSTEM

    Thomas Scior

    2013-05-01

    Full Text Available A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures of hitherto known Toll-like receptor 4 (TLR4 and myeloid differentiation factor 2 (MD-2 complexes were aligned and their differential side chain patterns studied. If required due to the lack of the corresponding X-ray crystallographic data, three-dimensional models of TLR4/MD-2/ligand complexes were generated using mono and dimeric crystal structures as templates and in silico docking of the prototypic ligands lipid A, lipid IVA and Eritoran. All differential amino acids were mapped to pinpoint species dependency on an atomic scale, i.e. the possible concert of mechanistically relevant side chains. In its most abstract and general form the three-dimensional (3D- models devise a triangular interface or “wedge” where molecular interactions between TLR4, MD-2 and ligand itself take place. This study identifies two areas in the wedge related to either agonism or antagonism reflecting why ligands like lipid IVA can possess a species dependent dual activity. Lipid IVA represents an imperfect (underacylated and backbone-flipped, low affinity ligand of mammalian TLR4/MD-2 complexes. Its specific but weak antagonistic activity in the human system is in particular due to the loss of phosphate attraction in the wedge-shaped region conferred by nonhomologous residue changes when compared to crystal and modeled structures of the corresponding murine and equine TLR4/MD-2 complexes. The counter-TLR4/MD-2 unit was also taken into account since agonist-mediated dimerization in a defined m-shaped complex composed of two TLR4/MD-2/agonist subunits triggers intracellular

  15. Up-regulation of TLR2 and TLR4 in high mobility group Box1-stimulated macrophages in pulpitis patients

    Mahmoudi, Javad; Sabermarouf, Babak; Baradaran, Behzad; Sadat-Hatamnezhad, Leila; Shotorbani, Siamak Sandoghchian

    2017-01-01

    Objective(s): High Mobility Group Box1 (HMGB1) is a nonhistone, DNA-binding protein that serves a crucial role in regulating gene transcription and is involved in a variety of proinflammatory, extracellular activities. The aim of this study was to explore whether HMGB1 stimulation can up-regulate the expression of Toll-like Receptor 2 (TLR2) and Toll-like Receptor 4 (TLR4) on macrophages from pulpitis and to clarify the subsequent events involving Th17 cells and Th17 cell-associated cytokine changes. Materials and Methods: Having prepared dental pulp tissues of pulpitis and healthy controls, macrophage were isolated and cultured. Macrophages were thereafter stimulated by HMGB1 time course. RT-QPCR, flowcytometer, immunofluorescence, Western blotting, and ELISA techniques were used in the present research. Results: Our results showed that the expression of TLR2 and TLR4 on macrophages stimulated with HMGB1 increased in pulpitis compared with controls (macrophages without HMGB1 stimulation) with a statistical significance (Ppulpitis increased, and NF-kB, the downstream target of TLR2 and TLR4, also showed a marked elevation after macrophages’ stimulation by HMGB1. Conclusion: The evidence from the present study suggests that the enhanced TLR2 and TLR4 pathways and Th17 cell polarization may be due to HMGB1 stimulation in pulpitis. PMID:28293399

  16. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders.

    Pascual, María; Montesinos, Jorge; Montagud-Romero, Sandra; Forteza, Jerónimo; Rodríguez-Arias, Marta; Miñarro, José; Guerri, Consuelo

    2017-07-24

    Inflammation during brain development participates in the pathogenesis of early brain injury and cognitive dysfunctions. Prenatal ethanol exposure affects the developing brain and causes neural impairment, cognitive and behavioral effects, collectively known as fetal alcohol spectrum disorders (FASD). Our previous studies demonstrate that ethanol activates the innate immune response and TLR4 receptor and causes neuroinflammation, brain damage, and cognitive defects in the developmental brain stage of adolescents. We hypothesize that by activating the TLR4 response, maternal alcohol consumption during pregnancy triggers the release of cytokines and chemokines in both the maternal sera and brains of fetuses/offspring, which impairs brain ontogeny and causes cognitive dysfunction. WT and TLR4-KO female mice treated with or without 10% ethanol in the drinking water during gestation and lactation were used. Cytokine/chemokine levels were determined by ELISA in the amniotic fluid, maternal serum, and cerebral cortex, as well as in the offspring cerebral cortex. Microglial and neuronal markers (evaluated by western blotting), myelin proteins (immunohistochemical and western blotting) and synaptic parameters (western blotting and electron microscopy) were assessed in the cortices of the WT and TLR4-KO pups on PND 0, 20, and 66. Behavioral tests (elevated plus maze and passive avoidance) were performed in the WT and TLR4-KO mice on PND 66 exposed or not to ethanol. We show that alcohol intake during gestation and lactation increases the levels of several cytokines/chemokines (IL-1β, IL-17, MIP-1α, and fractalkine) in the maternal sera, amniotic fluid, and brains of fetuses and offspring. The upregulation of cytokines/chemokines is associated with an increase in activated microglia markers (CD11b and MHC-II), and with a reduction in some synaptic (synaptotagmin, synapsin IIa) and myelin (MBP, PLP) proteins in the brains of offspring on days 0, 20, and 66 (long-term effects

  17. Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways.

    Young Woo Han

    2014-09-01

    Full Text Available Japanese encephalitis (JE is major emerging neurologic disease caused by JE virus. To date, the impact of TLR molecules on JE progression has not been addressed. Here, we determined whether each TLR modulates JE, using several TLR-deficient mouse strains (TLR2, TLR3, TLR4, TLR7, TLR9. Surprisingly, among the tested TLR-deficient mice there were contrasting results in TLR3(-/- and TLR4(-/- mice, i.e. TLR3(-/- mice were highly susceptible to JE, whereas TLR4(-/- mice showed enhanced resistance to JE. TLR3 ablation induced severe CNS inflammation characterized by early infiltration of inflammatory CD11b(+Ly-6Chigh monocytes along with profoundly increased viral burden, proinflammatory cytokine/chemokine expression as well as BBB permeability. In contrast, TLR4(-/- mice showed mild CNS inflammation manifested by reduced viral burden, leukocyte infiltration and proinflammatory cytokine expression. Interestingly, TLR4 ablation provided potent in vivo systemic type I IFN innate response, as well as ex vivo type I IFN production associated with strong induction of antiviral PRRs (RIG-I, MDA5, transcription factors (IRF-3, IRF-7, and IFN-dependent (PKR, Oas1, Mx and independent ISGs (ISG49, ISG54, ISG56 by alternative activation of IRF3 and NF-κB in myeloid-derived DCs and macrophages, as compared to TLR3(-/- myeloid-derived cells which were more permissive to viral replication through impaired type I IFN innate response. TLR4 ablation also appeared to mount an enhanced type I IFN innate and humoral, CD4(+ and CD8(+ T cell responses, which were mediated by altered immune cell populations (increased number of plasmacytoid DCs and NK cells, reduced CD11b(+Ly-6C(high monocytes and CD4(+Foxp3(+ Treg number in lymphoid tissue. Thus, potent type I IFN innate and adaptive immune responses in the absence of TLR4 were closely coupled with reduced JE lethality. Collectively, these results suggest that a balanced triggering of TLR signal array by viral components

  18. Polymorphisms in the Tlr4 and Tlr5 Gene Are Significantly Associated with Inflammatory Bowel Disease in German Shepherd Dogs

    Kathrani, Aarti; House, Arthur; Catchpole, Brian; Murphy, Angela; German, Alex; Werling, Dirk; Allenspach, Karin

    2010-01-01

    Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease. PMID:21203467

  19. Polymorphisms in the TLR4 and TLR5 gene are significantly associated with inflammatory bowel disease in German shepherd dogs.

    Kathrani, Aarti; House, Arthur; Catchpole, Brian; Murphy, Angela; German, Alex; Werling, Dirk; Allenspach, Karin

    2010-12-23

    Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease.

  20. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

    Weng, Hui; Deng, Yunhua; Xie, Yuyan; Liu, Hongbo; Gong, Feili

    2013-01-01

    High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors

  1. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  2. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  3. TLR4 accessory molecule RP105 (CD180 regulates monocyte-driven arteriogenesis in a murine hind limb ischemia model.

    Antonius J N M Bastiaansen

    Full Text Available AIMS: We investigated the role of the TLR4-accessory molecule RP105 (CD180 in post-ischemic neovascularization, i.e. arteriogenesis and angiogenesis. TLR4-mediated activation of pro-inflammatory Ly6Chi monocytes is crucial for effective neovascularization. Immunohistochemical analyses revealed that RP105+ monocytes are present in the perivascular space of remodeling collateral arterioles. As RP105 inhibits TLR4 signaling, we hypothesized that RP105 deficiency would lead to an unrestrained TLR4-mediated inflammatory response and hence to enhanced blood flow recovery after ischemia. METHODS AND RESULTS: RP105-/- and wild type (WT mice were subjected to hind limb ischemia and blood flow recovery was followed by Laser Doppler Perfusion Imaging. Surprisingly, we found that blood flow recovery was severely impaired in RP105-/- mice. Immunohistochemistry showed that arteriogenesis was reduced in these mice compared to the WT. However, both in vivo and ex vivo analyses showed that circulatory pro-arteriogenic Ly6Chi monocytes were more readily activated in RP105-/- mice. FACS analyses showed that Ly6Chi monocytes became activated and migrated to the affected muscle tissues in WT mice following induction of hind limb ischemia. Although Ly6Chi monocytes were readily activated in RP105-/- mice, migration into the ischemic tissues was hampered and instead, Ly6Chi monocytes accumulated in their storage compartments, bone marrow and spleen, in RP105-/- mice. CONCLUSIONS: RP105 deficiency results in an unrestrained inflammatory response and monocyte over-activation, most likely due to the lack of TLR4 regulation. Inappropriate, premature systemic activation of pro-inflammatory Ly6Chi monocytes results in reduced infiltration of Ly6Chi monocytes in ischemic tissues and in impaired blood flow recovery.

  4. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.

    Liu, Zhong-wei; Wang, Jun-kui; Qiu, Chuan; Guan, Gong-chang; Liu, Xin-hong; Li, Shang-jian; Deng, Zheng-rong

    2015-03-01

    Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg(-1)·d(-1), po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.

  5. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice.

    Diego C Reino

    Full Text Available Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI and multiple organ dysfunction syndrome (MODS. Since Toll-like receptors (TLR act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD lung permeability and myeloperoxidase (MPO levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.

  6. TLR4 Gene Expression and Pro-Inflammatory Cytokines in Alzheimer's Disease and in Response to Hippocampal Deafferentation in Rodents.

    Miron, Justin; Picard, Cynthia; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes

    2018-01-01

    One important aspect in Alzheimer's disease pathology is the presence of chronic inflammation. Considering its role as a key receptor in the microglial innate immune system, TLR4 was shown to regulate the binding and phagocytosis of amyloid plaques by microglia in several mouse models of amyloidosis, as well as the production of pro-inflammatory cytokines. To our knowledge, TLR4 and its association with cytokines have not been thoroughly examined in the brains of subjects affected with Alzheimer's disease. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in postmortem human brains, we observed increased expression for the TLR4 and TNF genes (p = 0.001 and p = 0.025, respectively), as well as a trend for higher IL6 gene expression in the frontal cortex of AD subjects when compared to age-matched controls. Similarly, using a mouse model of hippocampal deafferentation without amyloidosis, (i.e., the entorhinal cortex lesioned mouse), we observed significant increases in the expression of both the Tlr4 (p = 0.0367 and p = 0.0193 compared to sham-lesioned mice or to the contralateral side, respectively) and Il1b (p = 0.0055 and p = 0.0066 compared to sham-lesioned mice or to the contralateral side, respectively) genes in the deafferentation phase, but not during the ensuing reinnervation process. In conclusion, we suggest that the modulation of cytokines by TLR4 is differentially regulated whether by the presence of amyloid plaques or by the ongoing deafferentation process.

  7. Ginkgolide B Suppresses TLR4-Mediated Inflammatory Response by Inhibiting the Phosphorylation of JAK2/STAT3 and p38 MAPK in High Glucose-Treated HUVECs

    Kun Chen

    2017-01-01

    Full Text Available Aim. Ginkgolide B is a Ginkgo biloba leaf extract that has been identified as a natural platelet-activating factor receptor (PAFR antagonist. We investigated the effect of ginkgolide B on high glucose-induced TLR4 activation in human umbilical vein endothelial cells (HUVECs. Methods. Protein expression was analyzed by immunoblotting. Small-interfering RNA (siRNA was used to knock down PAFR and TLR4 expression. Results. Ginkgolide B suppressed the expression of TLR4 and MyD88 that was induced by high glucose. Ginkgolide B also reduced the levels of platelet endothelial cell adhesion molecule-1, interleukin-6, and monocyte chemotactic protein 1. Further, we examined the association between PAFR and TLR4 by coimmunoprecipitation. The result showed that high glucose treatment caused the binding of PAFR and TLR4, whereas ginkgolide B abolished this binding. The functional analysis indicated that PAFR siRNA treatment reduced TLR4 expression, and TLR4 siRNA treatment decreased PAFR expression in high glucose-treated HUVECs, further supporting the coimmunoprecipitation data. Ginkgolide B inhibited the phosphorylation of Janus kinase 2 (JAK2/signal transducer and activator of transcription 3 (STAT3 and p38 mitogen-activated protein kinase (MAPK. Conclusion. Ginkgolide B exerted protective effects by inhibiting the TLR4-mediated inflammatory response in high glucose-treated endothelial cells. The mechanism of action of ginkgolide B might be associated with inhibition of the JAK2/STAT3 and p38 MAPK phosphorylation.

  8. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis.

    Subir Karmakar

    Full Text Available NKT cells play an important role in autoimmune diseases, tumor surveillance, and infectious diseases, providing in most cases protection against infection. NKT cells are reactive to CD1d presented glycolipid antigens. They can modulate immune responses by promoting the secretion of type 1, type 2, or immune regulatory cytokines. Pathogen-derived signals to dendritic cells mediated via Toll like Receptors (TLR can be modulated by activated invariant Natural Killer T (iNKT cells. The terminal β-(1-4-galactose residues of glycans can modulate host responsiveness in a T helper type-1 direction via IFN-γ and TLRs. We have attempted to develop a defined immunotherapeutic, based on the cooperative action of a TLR ligand and iNKT cell using a mouse model of visceral leishmaniasis. We evaluated the anti-Leishmania immune responses and the protective efficacy of the β-(1-4-galactose terminal NKT cell ligand glycosphingophospholipid (GSPL antigen of L. donovani parasites. Our results suggest that TLR4 can function as an upstream sensor for GSPL and provoke intracellular inflammatory signaling necessary for parasite killing. Treatment with GSPL was able to induce a strong effective T cell response that contributed to effective control of acute parasite burden and led to undetectable parasite persistence in the infected animals. These studies for the first time demonstrate the interactions between a TLR ligand and iNKT cell activation in visceral leishmaniasis immunotherapeutic.

  9. Imidacloprid induced histomorphological changes and expression of TLR-4 and TNFα in lung.

    Pandit, Arif Ahmad; Choudhary, Shanti; Ramneek; Singh, Baljit; Sethi, R S

    2016-07-01

    The imidacloprid is used worldwide as a pesticide and has been linked with endocrine disturbances and reduced pulmonary function. However, effects of imidacloprid alone or in combination with microbial molecules on lungs are not fully understood. Because the pulmonary effects of interactions of endotoxins with imidacloprid are unknown, we designed a study to investigate that in a mouse model. Mice (N=14) were given imidacloprid orally @ 1/20(th) of LD50 dissolved in corn oil for 30days. After the treatments, six animals from each group were challenged with E. coli lipopolysaccharide (LPS) @ 80μg/animal via intranasal route and remaining animals were challenged with normal saline solution @ 80μl/animal via same route. Imidacloprid in combination with LPS led to significant increase in total cell and neutrophil counts in BAL and peripheral blood. Semi-quantitative histopathology revealed lung injury in imidacloprid treatment group and injury was more marked in animal receiving both imidacloprid and LPS. There was no change (pimidacloprid alone or in combination with LPS. The data show that imidacloprid alone or in combination with LPS resulted changes in lung morphology without altering the expression of TLR-4 and TNF-α. Furthermore, pre-treatment with imidacloprid didn't affect response to LPS. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  11. Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy

    Xiubao Ren

    2017-04-01

    Full Text Available Currently, the effect of inflammation on tumorigenesis and progression has been widely noted. As a member of pattern recognition receptors, toll-like receptor 4 (TLR4 plays a pivotal role in tumor immune microenvironment and has been increasingly investigated. In the present study, we evaluated TLR4 expression and its association with programmed cell death ligand 1 (PD-L1 in non-small cell lung cancer (NSCLC tissues and assessed the predicting value of TLR4 on postoperative outcome. A total of 126 NSCLC patients receiving complete pulmonary resection and systematic lymph node dissection between April 2008 and August 2014 were enrolled. All the patients had integrated clinicopathological records and follow-up data. TLR4 and PD-L1 expression on NSCLC samples were determined by immunohistochemistry, and serum soluble TLR4 (sTLR4 levels were measured by enzyme-linked immunosorbent assay. Results showed that TLR4 expression level in cancer tissue was significantly higher than that in para-cancer tissue. Elevated TLR4 expression was significantly associated with histological type (adenocarcinoma higher than squamous cell carcinoma, P = 0.041, increased clinical TNM stage (P < 0.001, and presence of lymphatic invasion (P < 0.001. Besides, TLR4 expression level in cancer samples was inversely correlated with serum sTLR4 level in patients with early-stage NSCLC (r = −0.485, P = 0.003. TLR4 expression level was also positively correlated with the PD-L1 expression level (r = 0.545, P < 0.0001. Multivariate analysis showed that expression level of TLR4 was an independent prognostic factor and TLR4 overexpression indicated a poor overall survival and disease-free survival. Taken together, we conclude that expression of TLR4 in lung cancer is associated with PD-L1 and could predict the outcome of patients with NSCLC receiving pulmonary resection for cancer.

  12. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    Bonin, Camila P., E-mail: mila_bonin@yahoo.com.br [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900 (Brazil); Baccarin, Raquel Y.A., E-mail: baccarin@usp.br [Department of Clinics, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-900 (Brazil); Nostell, Katarina, E-mail: katarina.nostell@slu.se [Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07 Uppsala (Sweden); Nahum, Laila A., E-mail: laila@nahum.com.br [Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002 (Brazil); Faculdade Infórium de Tecnologia, Belo Horizonte 30130-180 (Brazil); Fossum, Caroline, E-mail: caroline.fossum@bvf.slu.se [Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, BMC, Box 588, SE 751 23 Uppsala (Sweden); Camargo, Maristela M. de, E-mail: mmcamar@usp.br [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900 (Brazil)

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.

  13. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  14. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury

    2014-01-01

    Background Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI. Methods Neurological function, brain water content and cytokine levels were tested in TLR4-/- mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation. Results The protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4-/- mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and

  15. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  16. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages

    Kirill V. Korneev

    2018-02-01

    Full Text Available Toll-like receptor 4 (TLR4 initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS, the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  17. Altered Expression of TLR2 and TLR4 on Peripheral CD14+ Blood Monocytes in Children with Urinary Tract Infection.

    Karananou, Panagiota; Fleva, Alexandra; Tramma, Despoina; Alataki, Anastasia; Pavlitou-Tsiontsi, Aikaterini; Emporiadou-Peticopoulou, Maria; Papadopoulou-Alataki, Efimia

    2016-01-01

    Urinary tract infection (UTI) is the second most common bacterial infection, after otitis media, in infants and children. The mechanisms of disease susceptibility and the role of immunity in the pathogenesis of UTI in children have been evaluated. In recent years, Toll-Like Receptors (TLRs) have been recognized as specific components of the innate immune system constituting important mediators in host immune recognition. The aim of the present study was to determine ΤLR2 and TLR4 expression during the acute phase of UTI in infants and children by measuring the CD14/TLR2 and CD14/TLR4 expression on monocytes. We also attempted to compare the TLRs expression with the immunological status of the patients to healthy children. The study group consisted of 60 children (36 females and 24 males) and the control group included 60 age-matched pediatric subjects (27 females and 33 males). In our study, no antibody deficiency was found either in the children with UTI or in healthy subjects. There might be a connection between low IgA, IgG, and IgG subclasses serum levels and UTI as there was a statistically significant difference between patients and healthy children. A higher expression of CD14/TLR2 was revealed in patients (90,07%) compared to controls (85,48%) as well as CD14/TLR4 in patients (90,53%) compared to controls (87,25%) (statistically significant difference, p UTIs' pathogenesis in children.

  18. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  19. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. [Fisetin alleviates hypoxia/reoxygenation injury in rat hepatocytes via modulation of TLR4/NF-κB signaling pathway].

    Pu, Junliang; Wan, Lei; Zheng, Daofeng; Wei, Xufu; Wu, Zhongjun; Tang, Chengyong

    2017-07-01

    Objective To investigate the protective effect of fisetin (FIS) against hypoxia/reoxygenation (H/R) injury in rat hepatocytes and its mechanism. Methods H/R injury model of BRL-3A cells was established and the cells were pretreated with FIS. Survival rate was detected by CCK-8 assay. Cell apoptosis was measured by flow cytometry. The levels of ALT and AST were determined by microplate assay. The production of TNF-α and IL-1β were detected by ELISA. The mRNA and protein levels of TLR4 and NF-κBp65 were analyzed by quantitative real-time PCR and Western blotting, respectively. Results After subjected to H/R, cell survival rate decreased and the apoptosis level increased. The levels of ALT and AST in cell supernatant were elevated, so were the production of TNF-α and IL-1β. FIS pretreatment increased the cell survival rate and inhibited apoptosis. The levels of ALT, AST and the production of TNF-α and IL-1β were reduced significantly. Moreover, FIS inhibited the increasing expression levels of TLR4 and NF-κBp65 induced by H/R. Conclusion FIS alleviates the hepatocyte injury induced by H/R via modulation of TLR4/NF-κB signaling pathway.

  1. Can the TLR-4-Mediated Signaling Pathway Be “A Key Inflammatory Promoter for Sporadic TAA”?

    Giovanni Ruvolo

    2014-01-01

    Full Text Available Thoracic aorta shows with advancing age various changes and a progressive deterioration in structure and function. As a result, vascular remodeling (VR and medial degeneration (MD occur as pathological entities responsible principally for the sporadic TAA onset. Little is known about their genetic, molecular, and cellular mechanisms. Recent evidence is proposing the strong role of a chronic immune/inflammatory process in their evocation and progression. Thus, we evaluated the potential role of Toll like receptor- (TLR- 4-mediated signaling pathway and its polymorphisms in sporadic TAA. Genetic, immunohistochemical, and biochemical analyses were assessed. Interestingly, the rs4986790 TLR4 polymorphism confers a higher susceptibility for sporadic TAA (OR=14.4, P=0.0008 and it represents, together with rs1799752 ACE, rs3918242 MMP-9, and rs2285053 MMP-2 SNPs, an independent sporadic TAA risk factor. In consistency with these data, a significant association was observed between their combined risk genotype and sporadic TAA. Cases bearing this risk genotype showed higher systemic inflammatory mediator levels, significant inflammatory/immune infiltrate, a typical MD phenotype, lower telomere length, and positive correlations with histopatological abnormalities, hypertension, smoking, and ageing. Thus, TLR4 pathway should seem to have a key role in sporadic TAA. It might represent a potential useful tool for preventing and monitoring sporadic TAA and developing personalized treatments.

  2. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  3. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages.

    Korneev, Kirill V; Kondakova, Anna N; Sviriaeva, Ekaterina N; Mitkin, Nikita A; Palmigiano, Angelo; Kruglov, Andrey A; Telegin, Georgy B; Drutskaya, Marina S; Sturiale, Luisa; Garozzo, Domenico; Nedospasov, Sergei A; Knirel, Yuriy A; Kuprash, Dmitry V

    2018-01-01

    Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni , the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  4. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB 1 Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB 2 Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB 2 Rs (hCB 2 Rs). The affinity of cannabinoids for hCB 2 Rs was determined by competition binding studies employing CHO-hCB 2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB 2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB 2 Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB 2 Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ 9 -tetrahydrocannabinol (Δ 9 -THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB 2 R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB 2 Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB 2 Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB 1 and CB 2 Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2

  5. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  6. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling.

    de Almeida Chuffa, Luiz Gustavo; de Moura Ferreira, Grazielle; Lupi, Luiz Antonio; da Silva Nunes, Iseu; Fávaro, Wagner José

    2018-01-17

    Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC. Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses. Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response. Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin

  7. β2-glycoprotein I, lipopolysaccharide and endothelial TLR4: three players in the two hit theory for anti-phospholipid-mediated thrombosis.

    Raschi, Elena; Chighizola, Cecilia B; Grossi, Claudia; Ronda, Nicoletta; Gatti, Rita; Meroni, Pier Luigi; Borghi, M Orietta

    2014-12-01

    The thrombogenic effect of β2-glycoprotein I (β2GPI)-dependent anti-phospholipid antibodies (aPL) in animal models was found to be LPS dependent. Since β2GPI behaves as LPS scavenger, LPS/β2GPI complex was suggested to account for in vitro cell activation through LPS/TLR4 involvement being LPS the actual bridge ligand between β2GPI and TLR4 at least in monocytes/macrophages. However, no definite information is available on the interaction among β2GPI, LPS and endothelial TLR4 in spite of the main role of endothelial cells (EC) in clotting. To analyse at the endothelial level the need of LPS, we investigated the in vitro interaction of β2GPI with endothelial TLR4 and we assessed the role of LPS in such an interaction. To do this, we evaluated the direct binding and internalization of β2GPI by confocal microscopy in living TLR4-MD2 transfected CHO cells (CHO/TLR4-MD2) and β2GPI binding to CHO/TLR4-MD2 cells and human umbilical cord vein EC (HUVEC) by flow cytometry and cell-ELISA using anti-β2GPI monoclonal antibodies in the absence or presence of various concentrations of exogenous LPS. To further investigate the role of TLR4, we performed anti-β2GPI antibody binding and adhesion molecule up-regulation in TLR4-silenced HUVEC. Confocal microscopy studies show that β2GPI does interact with TLR4 at the cell membrane and is internalized in cytoplasmic granules in CHO/TLR4-MD2 cells. β2GPI binding to CHO/TLR4-MD2 cells and HUVEC is also confirmed by flow cytometry and cell-ELISA, respectively. The interaction between β2GPI and TLR4 is confirmed by the reduction of anti-β2GPI antibody binding and by the up-regulation of E-selectin or ICAM-1 by TLR4 silencing in HUVEC. β2GPI binding is not affected by LPS at concentrations comparable to those found in both β2GPI and antibody preparations. Only higher amount of LPS that can activate EC and up-regulate TLR4 expression are found to increase the binding. Our findings demonstrate that β2GPI interacts

  8. New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists

    Rüdiger Hardeland

    2009-06-01

    Full Text Available Rüdiger HardelandJohann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, GermanyAbstract: Hypnotic effects of melatonin and melatoninergic drugs are mediated via MT1 and MT2 receptors, especially those in the circadian pacemaker, the suprachiasmatic nucleus, which acts on the hypothalamic sleep switch. Therefore, they differ fundamentally from GABAergic hypnotics. Melatoninergic agonists primarily favor sleep initiation and reset the circadian clock to phases allowing persistent sleep, as required in circadian rhythm sleep disorders. A major obstacle for the use of melatonin to support sleep maintenance in primary insomnia results from its short half-life in the circulation. Solutions to this problem have been sought by developing prolonged-release formulations of the natural hormone, or melatoninergic drugs of longer half-life, such as ramelteon, tasimelteon and agomelatine. With all these drugs, improvements of sleep are statistically demonstrable, but remain limited, especially in primary chronic insomnia, so that GABAergic drugs may be indicated. Melatoninergic agonists do not cause next-day hangover and withdrawal effects, or dependence. They do not induce behavioral changes, as sometimes observed with z-drugs. Despite otherwise good tolerability, the use of melatoninergic drugs in children, adolescents, and during pregnancy has been a matter of concern, and should be avoided in autoimmune diseases and Parkinsonism. Problems and limits of melatoninergic hypnotics are compared.Keywords: agomelatine, hypnotics, melatonin, prolonged-release, ramelteon, tasimelteon

  9. The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies.

    Panayiotis D Ziakas

    Full Text Available BACKGROUND: Toll-like receptor 4 plays a role in pathogen recognition, and common polymorphisms may alter host susceptibility to infectious diseases. PURPOSE: To review the association of two common polymorphisms (TLR4 896A>G and TLR4 1196C>T with infectious diseases. DATA SOURCES: We searched PubMed and EMBASE up to March 2013 for pertinent literature in English, and complemented search with references lists of eligible studies. STUDY SELECTION: We included all studies that: reported an infectious outcome; had a case-control design and reported the TLR4 896A>G and/or TLR4 1196C>T genotype frequencies; 59 studies fulfilled these criteria and were analyzed. DATA EXTRACTION: Two authors independently extracted study data. DATA SYNTHESIS: The generalized odds ratio metric (ORG was used to quantify the impact of TLR4 variants on disease susceptibility. A meta-analysis was undertaken for outcomes reported in >1 study. Eleven of 37 distinct outcomes were significant. TLR4 896 A>G increased risk for all parasitic infections (ORG 1.59; 95%CI 1.05-2.42, malaria (1.31; 95%CI 1.04-1.66, brucellosis (2.66; 95%CI 1.66-4.27, cutaneous leishmaniasis (7.22; 95%CI 1.91-27.29, neurocysticercosis (4.39; 95%CI 2.53-7.61, Streptococcus pyogenes tonsillar disease (2.93; 95%CI 1.24-6.93 , typhoid fever (2.51; 95%CI 1.18-5.34 and adult urinary tract infections (1.98; 95%CI 1.04-3.98, but was protective for leprosy (0.36; 95%CI 0.22-0.60. TLR4 1196 C>T effects were similar to TLR4 896 A>G for brucellosis, cutaneous leishmaniasis, leprosy, typhoid fever and S. pyogenes tonsillar disease, and was protective for bacterial vaginosis in pregnancy (0.55; 95%CI 0.31-0.98 and Haemophilus influenzae tonsillar disease (0.42; 95%CI 0.17-1.00. The majority of significant associations were among predominantly Asian populations and significant associations were rare among European populations. CONCLUSIONS: Depending on the type of infection and population, TLR4 polymorphisms are

  10. Boxb mediate BALB/c mice corneal inflammation through a TLR4/MyD88-dependent signaling pathway in Aspergillus fumigatus keratitis

    Min Liu

    2018-04-01

    Full Text Available AIM: To investigate whether high-mobility group box 1 (HMGB1 Boxb exacerbates BALB/c mice corneal immune responses and inflammatory through the Toll-like receptor 4 (TLR4/myeloid differentiation primary response 88 (MyD88-dependent signaling pathway in Aspergillus fumigatus (A. fumigatus keratitis. METHODS: The mice corneas were pretreated with phosphate buffer saline (PBS, Boxb before A. fumigatus infection. The abdominal cavity extracted macrophages were pretreated with PBS, Boxb, TLR4 inhibitor (CLI-095, Dimethyl sulfoxide (DMSO separately before A. fumigatus hyphae stimulation. HMGB1 was detected in normal and infected mice corneas and macrophages by real-time reverse transcriptase polymerase chain reaction (RT-PCR, the TLR4, MyD88, interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α were detected by Western blot and PCR. RESULTS: In BALB/c mice corneas, the expressions of TLR4, HMGB1, IL-1β, TNF-α were increased after A. fumigatus infection. While pretreatment with Boxb significantly increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α compared with PBS control after infection. In BALB/c mice abdominal cavity extracted macrophages, pretreatment with Boxb increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α, while pretreatment with CLI-095 and Boxb significantly decreased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α. CONCLUSION: In A. fumigatus keratitis, Boxb play a pro-inflammatory role in corneal anti-fungi immune response through the HMGB1-TLR4-MyD88 signal pathway.

  11. Prolonged triglyceride storage in macrophages: pHo trumps pO2 and TLR4.

    Lu, Mingfang; Kho, Terry; Munford, Robert S

    2014-08-01

    Lipid-laden macrophages contribute to pathologies as diverse as atherosclerosis and tuberculosis. Three common stimuli are known to promote macrophage lipid storage: low tissue oxygen tension (pO2), low extracellular pH (pHo), and exposure to agonists such as bacterial LPS. Noting that cells responding to low pO2 or agonistic bacterial molecules often decrease pHo by secreting lactic and other carboxylic acids, we studied how pHo influences the stimulation of triacylglycerol (TAG) storage by low pO2 and LPS. We found that TAG retention after incubation for 48-72 h was inversely related to pHo when primary macrophages were cultured in 21% oxygen, 4% oxygen, or with LPS at either oxygen concentration. Maintaining pHo at ~7.4 was sufficient to prevent the increase in prolonged TAG storage induced by either low pO2 or LPS. The strong influence of pHo on TAG retention may explain why lipid-laden macrophages are found in some tissue environments and not in others. It is also possible that other long-term cellular changes currently attributed to low pO2 or bacterial agonists may be promoted, at least in part, by the decrease in pHo that these stimuli induce.

  12. The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane.

    Tanimura, Natsuko; Saitoh, Shin-Ichiroh; Ohto, Umeharu; Akashi-Takamura, Sachiko; Fujimoto, Yukari; Fukase, Koichi; Shimizu, Toshiyuki; Miyake, Kensuke

    2014-06-01

    TLR4/MD-2 senses lipid A, activating the MyD88-signaling pathway on the plasma membrane and the TRIF-signaling pathway after CD14-mediated TLR4/MD-2 internalization into endosomes. Monophosphoryl lipid A (MPL), a detoxified derivative of lipid A, is weaker than lipid A in activating the MyD88-dependent pathway. Little is known, however, about mechanisms underlying the attenuated activation of MyD88-dependent pathways. We here show that MPL was impaired in induction of CD14-dependent TLR4/MD-2 dimerization compared with lipid A. Impaired TLR4/MD-2 dimerization decreased CD14-mediated TNFα production. In contrast, MPL was comparable to lipid A in CD14-independent MyD88-dependent TNFα production and TRIF-dependent responses including cell surface CD86 up-regulation and IFNβ induction. Although CD86 up-regulation is dependent on TRIF signaling, it was induced by TLR4/MD-2 at the plasma membrane. These results revealed that the attenuated MPL responses were due to CD14-initiated responses at the plasma membrane, but not just to responses initiated by MyD88, that is, MPL was specifically unable to induce CD14-dependent TLR4/MD-2 dimerization that selectively enhances MyD88-mediated responses at the plasma membrane. © The Japanese Society for Immunology. 2013. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Single-nucleotide polymorphisms in Toll-like receptor (TLR)-2, TLR4 and heat shock protein 70 genes and susceptibility to scrub typhus.

    Janardhanan, Jeshina; Joseph Martin, Sherry; Astrup, Elisabeth; Veeramanikandan, R; Aukrust, Pål; Abraham, Ooriapadickal C; Varghese, George M

    2013-11-01

    Scrub typhus is a highly prevalent bacterial infection in India and South Asia that is caused by Orientia tsutsugamushi. The innate immune response to infections is modulated by Toll-like receptors (TLRs) and heat shock proteins (HSPs). This study was done to assess the prevalence and possible association of TLR and HSP polymorphisms in scrub typhus. TLR4 Asp299Gly, TLR4 Thr399Ile, TLR2 Arg753Gln and HSP70-2 A1267G are single-nucleotide polymorphisms (SNPs) that may modulate their activities, and these SNPs were assessed in 137 scrub typhus patients and 134 controls by PCR restriction fragment length polymorphism. We found that the two TLR4 mutations, TLR4 D299G and TLR4T399I, were present in 19.5% and 22% of the study population, respectively, and was in significant linkage disequilibrium with a D' of 0.8. The TLR2 mutation was found to be rare, whereas the HSP A>G mutation was very common (77.5%). Compared with the controls, the prevalence of heterozygous genotype of the TLR4D299G SNP, but not any of the other SNPs, was significantly higher among scrub typhus patients. Further studies using a larger sample size and more candidate genes may better enable in determining the role of these associations in susceptibility and severity of scrub typhus.

  14. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling.

    Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2011-02-28

    Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.

  15. TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes.

    Paul F McKay

    Full Text Available The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4 stimulator glucopyranosyl lipid adjuvant (GLA-AF or the TLR7/8 agonist resiquimod (R848 (alone and in combination via the intradermal (ID, intranasal (IN or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID or R848 alone (IN. Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID, responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID. Specific IgG responses were measured at a distal mucosal site (vaginal, although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models.

  16. Tissue Factor and Toll Like Receptor (TLR)4 in Hyperglycemia-Hyperinsulinemia: Effects in Healthy Subjects, and Type 1 and Type 2 Diabetes Mellitus

    Singh, Anamika; Boden, Guenther; Rao, A. Koneti

    2015-01-01

    SUMMARY Background Diabetes mellitus (DM) patients have increased cardiovascular events. Blood tissue factor-procoagulant activity (TF-PCA), the initiating mechanism for blood coagulation, is elevated in DM. We have shown that hyperglycemia (HG), hyperinsulinemia (HI) and combined HG+HI (induced using 24 hr infusion clamps) increases TF-PCA in healthy and T2DM subjects, but not in T1DM subjects. The mechanisms for this are unknown. DM patients have elevated plasma lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 ligand. We postulated that TLR4 plays a role in modulating TF levels. Objectives and Methods We studied the effect of HG+HI on TLR4 and TF-PCA in vivo during 24 hr HG+HI infusion clamps in healthy subjects, and T1DM and T2DM subjects, and in vitro in blood. Results In vivo, in healthy subjects, 24 hr HG + HI infusion increased TLR4 6-fold, which correlated with TF-PCA (r= 0.91, p<0.0001). T2DM patients showed smaller increases in both. In T1DM subjects, TLR4 declined (50%, p<0.05) and correlated with TF-PCA (r=0.55; p<0.05). In vitro, HG (200 mg/dl added glucose) and HI (1-100 nM added insulin) increased TF-PCA in healthy subjects (~2-fold, 2-4 hr). Insulin inhibited by ~30% LPS-induced increase in TF-PCA and high glucose reversed it. TLR4 levels paralleled TF-PCA (r=0.71, p<0.0001); HG and HI increased TLR4 and insulin inhibited LPS-induced TLR4 increase. Conclusions This is first evidence that even in healthy subjects, HG of short duration increases TLR4 and TF-PCA, key players in inflammation and thrombosis. TLR4-TF interplay is strikingly different in non-diabetic, T1DM and T2DM subjects. PMID:25653143

  17. Synthetic

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  18. Total glucosides of paeony attenuated functional maturation of dendritic cells via blocking TLR4/5 signaling in vivo.

    Zhou, Zhou; Lin, Jinpiao; Huo, Rongfen; Huang, Wenkang; Zhang, Jian; Wang, Li; Sun, Yue; Shen, Baihua; Li, Ningli

    2012-11-01

    It is well known that dendritic cells (DCs) play a critical role in the initiation and development of an immune response. Inhibitory effect on DC maturation alters immune-mediated inflammatory reaction in vivo. Total glucosides of paeony (TGP) are active compounds extracted from the roots of Paeonia lactiflora and have been widely used to ameliorate inflammation in therapy for autoimmune diseases. However, whether TGP act on DC maturation remains unknown. In this study, we investigated the effect of TGP on DC maturation in ovalbumin (OVA) immunized mice. Ear inflammation was inhibited by TGP (150 mgkg(-1), i.p.×11 days) obviously. The antigen presenting capacity of DC derived from TGP-treated mice was arrested. Meanwhile, OVA specific T cell proliferation was inhibited. In addition, we found that maturation of DCs was decreased by TGP treatment. Furthermore, OVA specific T cell proliferation was rescued by the adoptive transfer of mature DCs (mDCs) into TGP treated OVA-challenged mice. The research on the mechanism showed that TGP significantly inhibited activation of TLR4/5 singling. All these results demonstrated that TGP inhibited DC maturation and function by selectively blocking TLR4/5 activation in vivo, which in turn leads to reduce immune-mediated inflammation in vivo, adding a novel mechanism and therapeutic target of TGP for inflammatory and autoimmune disease treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Taurine Attenuates Hepatic Inflammation in Chronic Alcohol-Fed Rats Through Inhibition of TLR4/MyD88 Signaling.

    Lin, Chao-Jen; Chiu, Chun-Ching; Chen, Yi-Chen; Chen, Mu-Lin; Hsu, Tsai-Ching; Tzang, Bor-Show

    2015-12-01

    Accumulating evidence indicates that overconsumption of ethanol contributes in many ways to the pathogenesis of hepatic injury. Although studies indicate that taurine decreases lipogenesis, oxidative stress, and inflammatory cytokines, the protective effect of taurine against alcohol-induced liver injury is still unclear. To clarify the precise signaling involved in the beneficial effect of taurine on alcohol-induced liver injury, rats were randomly divided into four treatment groups: (1) control (Ctl), (2) alcohol (Alc), (3) Alc+taurine (Tau), and (4) Alc+silymarin (Sil). The Tau and Sil groups had lower lymphocyte infiltration and significantly lower TLR-4/MyD88 and IκB/NFκB compared to the Alc group. The inducible nitric oxide synthase (iNOS), C-reactive protein (CRP), tumor necrosis factors (TNF)-α, interleukin (IL)-6, and IL-1β were also significantly lower in the Tau and Sil groups than in the Alc group. The experimental results indicated that hepatoprotection against alcohol-induced inflammation may be mediated by decreased TLR-4/MyD88 signaling.

  20. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  1. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  2. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4

    Semeraro, Fabrizio; Ammollo, Concetta T.; Morrissey, James H.; Dale, George L.; Friese, Paul; Esmon, Naomi L.

    2011-01-01

    The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process. PMID:21673343

  3. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    Zheng, Wenwen; Zheng, Xuexing [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Liu, Shue [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Ouyang, Hongsheng [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Levitt, Roy C.; Candiotti, Keith A. [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Hao, Shuanglin, E-mail: shao@med.miami.edu [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.

  4. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  5. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  6. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  7. Splenectomy following MCAO inhibits the TLR4-NF-κB signaling pathway and protects the brain from neurodegeneration in rats.

    Belinga, Victor Fabrice; Wu, Guan-Jin; Yan, Fu-Ling; Limbenga, Erica Audrey

    2016-04-15

    The Toll-like receptor 4(TLR4)/nuclear factor kappa B NF-κB inflammatory pathway contributes to secondary inflammation in many diseases including stroke. Moreover, the neuroprotective effect of splenectomy in stroke is supported by a vast body of experimental evidence. Nevertheless, the underlying mechanism(s) by which splenectomy enhance neuroprotection in stroke is still poorly understood. Our study aimed to investigate whether post-ischemic splenectomy modulate the TLR4/NF-κB inflammatory pathway in stroke. Immunohistochemistry was used to evaluate the levels of TLR4 and NF-κB expression in brain areas (parietal lobe, hippocampus and striatum) of rats that underwent: MCAO-splenectomy surgery (MS ); MCAO surgery without splenectomy (MCAO control or MC); Sham MCAO and splenectomy surgery (sham control group or SC group respectively. Apoptosis in these areas was assessed by TUNEL detection technique. The levels of TLR4 and NF-κB expression were significantly reduced in splenectomized rats relative to the MS group (Psplenectomy in ischemic stroke. Our results suggest that such an effect might be due to the inhibition of theTLR4/NF-κB inflammatory pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Polymorphisms in NFKB1 and TLR4 and Interaction with Dietary and Life Style Factors in Relation to Colorectal Cancer in a Danish Prospective Case-Cohort Study

    Kopp, Tine Iskov; Andersen, Vibeke; Tjoøneland, Anne

    2015-01-01

    Maintenance of a balance between commensal bacteria and the mucosal immune system is crucial and intestinal dysbiosis may be a key event in the pathogenesis of colorectal cancer (CRC). The toll-like receptor 4 (TLR4) is an important pattern-recognition receptor that regulates inflammation...... and barrier function in the gut by a mechanism that involves activation of the nuclear factor-kappa B (NF-kappa B) transcription factor. Dietary and life style factors may impact these functions. We therefore used a Danish prospective case-cohort study of 1010 CRC cases and 1829 randomly selected participants...... from the Danish Diet, Cancer and Health cohort to investigate three polymorphisms in NFKB1 and TLR4 and their possible interactions with diet and life style factors in relation to risk of CRC. Homozygous carriage of the variant allele of the TLR4/rs5030728 polymorphism was associated with increased...

  9. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    Lee, Guan-Lin [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Wu, Jing-Yiing [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Yeh, Chang-Ching [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Kuo, Cheng-Chin, E-mail: kuocc@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2016-05-13

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  10. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse

    Irina Balan

    2018-04-01

    Full Text Available Alcoholism initiates with episodes of excessive alcohol drinking, known as binge drinking, which is one form of excessive drinking (NIAAA Newsletter, 2004 that is related to impulsivity and anxiety (Ducci et al., 2007; Edenberg et al., 2004 and is also predictive of smoking status. The predisposition of non-alcohol exposed subjects to initiate binge drinking is controlled by neuroimmune signaling that includes an innately activated neuronal Toll-like receptor 4 (TLR4 signal. This signal also regulates cognitive impulsivity, a heritable trait that defines drug abuse initiation. However, the mechanism of signal activation, its function in dopaminergic (TH+ neurons within the reward circuitry implicated in drug-seeking behavior [viz. the ventral tegmental area (VTA], and its contribution to nicotine co-abuse are still poorly understood. We report that the γ-aminobutyric acidA receptor (GABAAR α2 subunit activates the TLR4 signal in neurons, culminating in the activation (phosphorylation/nuclear translocation of cyclic AMP response element binding (CREB but not NF-kB transcription factors and the upregulation of corticotropin-releasing factor (CRF and tyrosine hydroxylase (TH. The signal is activated through α2/TLR4 interaction, as evidenced by co-immunoprecipitation, and it is present in the VTA from drug-untreated alcohol-preferring P rats. VTA infusion of neurotropic herpes simplex virus (HSV vectors for α2 (pHSVsiLA2 or TLR4 (pHSVsiTLR4 but not scrambled (pHSVsiNC siRNA inhibits signal activation and both binge alcohol drinking and nicotine sensitization, suggesting that the α2-activated TLR4 signal contributes to the regulation of both alcohol and nicotine abuse.

  11. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    Lee, Guan-Lin; Wu, Jing-Yiing; Yeh, Chang-Ching; Kuo, Cheng-Chin

    2016-01-01

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  12. Antitumor Activity of Portulaca Oleracea L. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling.

    Zhao, Rui; Zhang, Tao; Ma, Baoling; Li, Xing

    2017-01-01

    Abstarct We have previously shown that Portulaca oleracea L. polysaccharide (POL-P3b) possesses the ability to inhibit cervical cancer cell growth in vitro and in vivo. In this study, we explored how toll-like receptor 4 (TLR4) signaling correlated with the antitumor mechanism of POL-P3b. Western blotting was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using enzyme-linked immunosorbent assay (ELISA) kits. The effects of POL-P3b on the proliferation and apoptosis in HeLa cells were determined by WST-8 assay and Hoechst 33342/propidium iodide (PI) assay. Our results demonstrated that lipopolysaccharide (LPS) binding to TLR4 on tumor cells could enhance HeLa cell proliferation and increase the expression of TLR4 and the downstream molecules. Treating HeLa cells with POL-P3b could decrease the proliferation of HeLa cells, and upregulate Bax level and downregulate Bcl-2 level in a concentration-dependent manner. In addition, POL-P3b inhibited the protein expression levels of TLR4, MyD88, TRAF6, Activator Protein-1 (AP-1) and nuclear factor-κB (NF-κB) subunit P65 in HeLa cells. Furthermore, POL-P3b also reduced the production of cytokine/chemokine. Taken together, the present work suggested the antitumor mechanism of POL-P3b by downregulating TLR4 downstream signaling pathway and inducing cell apoptosis. Our results may provide direct evidence to suggest that POL-P3b should be considered as a potent nutrient supplement for oncotherapy.

  13. TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens

    Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.

    2015-01-01

    SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  14. Positive Correlation between Enhanced Expression of TLR4/MyD88/NF-κB with Insulin Resistance in Placentae of Gestational Diabetes Mellitus.

    Hui Feng

    Full Text Available Insulin resistance (IR is a critical factor of the pathophysiology of Gestational diabetes mellitus (GDM. Studies on key organs involved in IR, such as livers and adipose tissues, showed that Toll-like receptor 4 (TLR4 can regulate insulin sensitivity. As a maternal-fetal interface with multi-functions, placentae could contribute to the development of IR for GDM. Thus, we investigated the expressions of TLR4/Myeloid Differentiation factor 88 (MyD88/Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB in term placentae from 33 GDM women and 36 healthy pregnant women with normal glucose tolerance, evaluated local and systemic IR and furthermore identified the association between placental TLR4 and IR. TLR4 protein was expressed in various cells of term placenta, particularly in syncytiotrophoblast of villi. Compared with normal pregnancy, the expression of TLR4/MyD88/NF-kB pathway increased in the placenta of GDM (p<0.05, and these differences were more pronounced in the maternal section of the placenta and the syncytiotrophoblast of villi. In addition, more severe IR was observed in the placenta of GDM patients than the control group, evidenced with higher pIRS-1(ser312 (p<0.001 and lower IRS-1 (p<0.05 as well as pAkt proteins (p<0.01. The expression of TLR4 in placentae is positively correlated with local IR (pIRS-1: r = 0.76, p <0.001 and pAkt: r = -0.47, p <0.001 and maternal fasting (r = 0.42, p <0.01, one-hour (r = 0.52, p <0.01 and two-hour glucose (r = 0.54, p <0.01 at OGTT. We found an that enhanced expression of the TLR4-MyD88-NF-kB pathway occurs in GDM placentae, which positively correlates with heightened local IR in placentae and higher maternal hyperglycemia. The TLR4/MyD88/NF-kB pathway may play a potential role in the development of IR in placentae of GDM.

  15. The toll-like receptor 4 (TLR4) variant rs2149356 and risk of gout in European and polynesian sample sets

    Rasheed, Humaira; McKinney, Cushla; Stamp, Lisa K.; Dalbeth, Nicola; Topless, Ruth K.; Day, Richard; Kannangara, Diluk; Williams, Kenneth; Smith, Malcolm; Janssen, Matthijs; Jansen, Tim L.; Joosten, Leo A.; Radstake, Timothy R.; Riches, Philip L.; Tausche, Anne Kathrin; Lioté, Frederic; Lu, Leo; Stahl, Eli A.; Choi, Hyon K.; So, Alexander; Merriman, Tony R.

    2016-01-01

    Deposition of crystallized monosodium urate (MSU) in joints as a result of hyperuricemia is a central risk factor for gout. However other factors must exist that control the progression from hyperuricaemia to gout. A previous genetic association study has implicated the tolllike receptor 4 (TLR4)

  16. Neuroanatomical characterization of the cellular and axonal architecture of subcortical band heterotopia in the BXD29-Tlr4lps-2J/J mouse cortex.

    Ramos, Raddy L; Toia, Alyssa R; Pasternack, Daniel M; Dotzler, Timothy P; Cuoco, Joshua A; Esposito, Anthony W; Le, Megan M; Parker, Alexander K; Goodman, Jeffrey H; Sarkisian, Matthew R

    2016-11-19

    Subcortical band heterotopia (SBH) are malformations of the human cerebral cortex typically associated with epilepsy and cognitive delay/disability. Rodent models of SBH have demonstrated strong face validity as they are accompanied by both cognitive deficits and spontaneous seizures or reduced seizure threshold. BXD29-Tlr4 lps-2J /J recombinant inbred mice display striking bilateral SBH, partial callosal agenesis, morphological changes in subcortical structures of the auditory pathway, and display sensory deficits in behavioral tests (Rosen et al., 2013; Truong et al., 2013, 2015). Surprisingly, these mice show no cognitive deficits and have a higher seizure threshold to chemi-convulsive treatment (Gabel et al., 2013) making them different than other rodent SBH models described previously. In the present report, we perform a detailed characterization of the cellular and axonal constituents of SBH in BXD29-Tlr4 lps-2J /J mice and demonstrate that various types of interneurons and glia as well as cortical and subcortical projections are found in SBH. In addition, the length of neuronal cilia was reduced in SBH compared to neurons in the overlying and adjacent normotopic cortex. Finally, we describe additional and novel malformations of the hippocampus and neocortex present in BXD29-Tlr4 lps-2J /J mice. Together, our findings in BXD29-Tlr4 lps-2J /J mice are discussed in the context of the known neuroanatomy and phenotype of other SBH rodent models. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Immunity to endotoxin and Asp299Gly polymorphism of TLR-4 in adult patients with early and late onset of asthma

    Yu. A. Bisyuk

    2015-06-01

    Full Text Available Aim. The gene polymorphism of Asp299Gly TLR-4 may be associated with the risk of asthma development. Methods and results. The gene polymorphism of TLR-4 (Asp299Gly receptor has been researched in 262 early-onset and in 69 late-onset asthma patients. The state of anti-endotoxin immunity was assessed by determination of specific antibodies to the endotoxin of A, M, G classes and sCD14 by ELISA. The polymorphism was analyzed by the allele-specific polymerase chain reaction with electrophoretic detection. It was estimated that the risk of early-onset asthma in the population of Crimea is associated with genotypes AG and GG (Asp299Gly of TLR-4. There were increased levels of anti-endotoxin IgM and decreased of sIgA in patients with late-onset asthma and AA genotype as compared to other genotypes. Conclusion. The gene polymorphism of Asp299Gly TLR-4 is associated with the risk of early-onset asthma development in Crimea population.

  18. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  19. Customized laboratory TLR4 and TLR2 detection method from peripheral human blood for early detection of doxorubicin-induced cardiotoxicity.

    Pop-Moldovan, A L; Trofenciuc, N-M; Dărăbanţiu, D A; Precup, C; Branea, H; Christodorescu, R; Puşchiţă, M

    2017-05-01

    Cancer treatments can have significant cardiovascular adverse effects that can cause cardiomyopathy and heart failure with reduced survival benefit and considerable decrease in the use of antineoplastic therapy. The purpose of this study is to assess the role of TLR2 and TLR4 gene expression as an early marker for the risk of doxorubicin-induced cardiomyopathy in correlation with early diastolic dysfunction in patients treated with doxorubicin. Our study included 25 consecutive patients who received treatment with doxorubicin for hematological malignancies (leukemia, lymphomas or multiple myeloma), aged 18-65 years, with a survival probability>6 months and with left ventricular ejection fraction>50%. Exclusion criteria consisted of the following: previous anthracycline therapy, previous radiotherapy, history of heart failure or chronic renal failure, atrial fibrillation, and pregnancy. In all patients, in fasting state, a blood sample was drawn for the assessment of TLR2 and TLR4 gene expression. Gene expression was assessed by quantitative reverse transcription PCR (qRT-PCR) using blood collection, RNA isolation, cDNA reverse transcription, qRT-PCR and quantification of the relative expression. At enrollment, all patients were evaluated clinically; an ECG and an echocardiography were performed. The average amount of gene expression units was 0.113 for TLR4 (range 0.059-0.753) and 0.218 for TLR2 (range 0.046-0.269). The mean mRNA extracted quantity was 113 571 ng/μl. As for the diastolic function parameters, criteria for diastolic dysfunction were present after 6 months in 16 patients (64%). In these patients, the mean values for TLR4 were 0.1198625 and for TLR2 were 0.16454 gene expression units. As for the diastolic function parameters, criteria for diastolic dysfunction were present after 6 months in 16 patients (64%). In these patients, the mean value for TLR2 was 0.30±0.19 and for TLR4 was 0.15±0.04. The corresponding values for the patients who did not

  20. Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS

    Reddy, Sukka Santosh [Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Chauhan, Parul [Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Maurya, Preeti [Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Saini, Deepika [Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Yadav, Prem Prakash, E-mail: pp_yadav@cdri.res.in [Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Barthwal, Manoj Kumar, E-mail: manojbarthwal@cdri.res.in [Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India)

    2016-10-15

    Withanolides possess diverse biological and pharmacological activity but their immunomodulatory function is less realized. Hence, coagulin-L, a withanolide isolated from Withania coagulans Dunal has been studied for such an effect in human and murine cells, and mice model. Coagulin-L (1, 3, 10 μM) exhibited immunomodulatory effect by suppressing TLR4 induced immune mediators such as cytokines (GMCSF, IFNα, IFNγ, IL-1α, IL-1Rα, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p40/p70), IL-13, IL-15, IL-17), chemokines (IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10, KC, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, eotaxin/CCL11), growth factors (FGF-basic, VEGF), nitric oxide and intracellular superoxide. Mechanistically, coagulin-L abrogated LPS induced total and mitochondrial ROS generation, NOX2, NOX4 mRNA expression, IRAK and MAPK (p38, JNK, ERK) activation. Coagulin-L also attenuated IκBα degradation, which prevented NFκB downstream iNOS expression and pro-inflammatory cytokine release. Furthermore, coagulin-L (10, 25, 50 mg/kg, p.o.), undermined the LPS (10 mg/kg, i.p.) induced endotoxemia response in mice as evinced from diminished cytokine release, nitric oxide, aortic p38 MAPK activation and endothelial tissue impairment besides suppressing NOX2 and NOX4 expression in liver and aorta. Moreover, coagulin-L also alleviated the ROS mediated oxidative damage which was assessed through protein carbonyl, lipid hydroperoxide, 8-isoprostane and 8-hydroxy-2-deoxyguanosine quantification. To extend, coagulin-L also suppressed carrageenan-induced paw edema and thioglycollate-induced peritonitis in mice. Therefore, coagulin-L can be of therapeutic importance in pathological conditions induced by oxidative damage. - Highlights: • Coagulin-L demonstrates immunomodulatory effects in vivo and in vitro by modulating ROS. • Coagulin-L modulates TH1/TH2/TH17 immunokines. • Coagulin-L exerts immunomodulatory effect by regulating TLR4-IRAK- ROS

  1. Microglia Induce Neurotoxic IL-17+ γδ T Cells Dependent on TLR2, TLR4, and TLR9 Activation.

    Katja Derkow

    Full Text Available Interleukin-17 (IL-17 acts as a key regulator in central nervous system (CNS inflammation. γδ T cells are an important innate source of IL-17. Both IL-17+ γδ T cells and microglia, the major resident immune cells of the brain, are involved in various CNS disorders such as multiple sclerosis and stroke. Also, activation of Toll-like receptor (TLR signaling pathways contributes to CNS damage. However, the mechanisms underlying the regulation and interaction of these cellular and molecular components remain unclear.In this study, we investigated the crosstalk between γδ T cells and microglia activated by TLRs in the context of neuronal damage. To this end, co-cultures of IL-17+ γδ T cells, neurons, and microglia were analyzed by immunocytochemistry, flow cytometry, ELISA and multiplex immunoassays.We report here that IL-17+ γδ T cells but not naïve γδ T cells induce a dose- and time-dependent decrease of neuronal viability in vitro. While direct stimulation of γδ T cells with various TLR ligands did not result in up-regulation of CD69, CD25, or in IL-17 secretion, supernatants of microglia stimulated by ligands specific for TLR2, TLR4, TLR7, or TLR9 induced activation of γδ T cells through IL-1β and IL-23, as indicated by up-regulation of CD69 and CD25 and by secretion of vast amounts of IL-17. This effect was dependent on the TLR adaptor myeloid differentiation primary response gene 88 (MyD88 expressed by both γδ T cells and microglia, but did not require the expression of TLRs by γδ T cells. Similarly to cytokine-primed IL-17+ γδ T cells, IL-17+ γδ T cells induced by supernatants derived from TLR-activated microglia also caused neurotoxicity in vitro. While these neurotoxic effects required stimulation of TLR2, TLR4, or TLR9 in microglia, neuronal injury mediated by bone marrow-derived macrophages did not require TLR signaling. Neurotoxicity mediated by IL-17+ γδ T cells required a direct cell-cell contact between T

  2. Wogonin improves histological and functional outcomes, and reduces activation of TLR4/NF-κB signaling after experimental traumatic brain injury.

    Chien-Cheng Chen

    Full Text Available Traumatic brain injury (TBI initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4- and nuclear factor kappa B (NF-κB-related signaling pathways in mice following TBI.Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg(-1 or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg(-1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2.Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.

  3. Effect of the Total Extract of Averrhoacarambola (Oxalidaceae Root on the Expression Levels of TLR4 and NF-κB in Streptozotocin-Induced Diabetic Mice

    Xiaohui Xu

    2015-07-01

    Full Text Available Background: Averrhoacarambola L., which is a folk medicine used in diabetes mellitus (DM in ancient China, has been reported to have anti-diabetic efficacy. Aims: The aim of this study was to evaluate the hypoglycemic effect of the extract of Averrhoacarambola L. root (EACR on the regulation of the Toll-like receptor 4 (TLR4-Nuclear-factor kappa B (NF-κB pathway in B pathway in streptozotocin (STZ-induced diabetic mice. Methods: the mice were injected with STZ (120 mg/kg body weight via a tail vein. After 72 h, the mice with FBG = 11.1 mmol/L were confirmed as having diabetes. Subsequently, the mice were treated intragastrically with EACR (300, 600, 1200 mg/kg body weight/d and metformin (320 mg/kg body weight/d for 14 days. Results: As a result the serum fasting blood glucose (FBG, interleukin-6 (IL-6 and tumor necrosis factor-a (TNF-a levels were decreased following EACR administration. Immunohistochemical analysis revealed that the pancreatic tissue expression levels of TLR4 and NF-κB were downregulated after EACR administration. EACR suppressed pancreatic mRNA expression level of TLR4 and blocked the downstream NF-κB pathway in the pancreas. According to Western blot analysis EACR suppressed pancreatic TLR4 and NF-κB protein expression levels. Histopathological examination of the pancreas showed that STZ-induced pancreas lesions were alleviated by the EACR treatment. Conclusion: These findings suggest that the modulation of the IL-6 and TNF-a inflammatory cytokines and the suppression of the TLR4-NF-κB pathway are most likely involved in the anti-hyperglycemic effect of EACR in STZ-induced diabetic mice.

  4. RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways

    Jun Yang

    2015-07-01

    Full Text Available Background: Myocardial apoptosis is heavily implicated in the myocardial damage caused by ischemia-reperfusion (I/R. Toll-like receptor 4 (TLR4 is a potent inducer of these apoptotic cascades. In contrast, the radioprotective 105 kDa protein (RP105 is a specific negative regulator of TLR4 signaling pathways. However, the precise mechanisms by which RP105 inhibits myocardium apoptosis via TLR4-associated pathways during I/R is not fully understood. Methods: We utilized a rat model of myocardial ischemic reperfusion injury (MIRI. Animals were pre-treated with Ad-EGFP adenovirus, Ad-EGFP-RP105 adenovirus, saline, or nothing (sham. After three days, rats underwent a 30min left anterior descending coronary artery occlusion and a 4h reperfusion. Mycardial tissue was assessed by immunohistochemistry, TUNEL-staining, Western blot, quantitative RT-PCR, and a morphometric assay. Results: RP105 overexpression resulted in a reduction in infarct size, fewer TUNEL-positive cardiomyocytes, and a reduction in mitochondrial-associated apoptosis cascade activity. Further, RP105 overexpression repressed I/R-induced myocardial injury by attenuating myocardial apoptosis. This was mediated by inhibiting TLR4 activation and the phosphorylation of P38MAPK and the downstream transcription factor AP-1. Conclusion: RP105 overexpression leads to the de-activation of TLR4, P38MAPK, and AP-1 signaling pathways, and subsequently represses apoptotic cascades and ensuing damage of myocardial ischemic reperfusion. These findings may become the basis of a novel therapeutic approach for reducing of cardiac damage caused by MIRI.

  5. mTOR inhibition in macrophages of asymptomatic HIV+ persons reverses the decrease in TLR4-mediated TNFα release through prolongation of MAPK pathway activation1

    Li, Xin; Han, Xinbing; Llano, Juliana; Bole, Medhavi; Zhou, Xiuqin; Swan, Katharine; Anandaiah, Asha; Nelson, Benjamin; Patel, Naimish R.; Reinach, Peter S.; Koziel, Henry; Tachado, Souvenir D.

    2011-01-01

    Toll-like receptor 4 (TLR4) mediated signaling is significantly impaired in macrophages from HIV+ persons predominantly due to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. Here we assessed in these macrophages if the blunted increase in TLR4-mediated TNFα release induced by lipid A are associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR4-mediated TNFα release, but instead suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in lipid A-induced TNFα and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88-IRAK interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (shRNA) and mTOR (RNAi) inhibition resulted in TLR4-mediated p70s6K activation and enhanced TNFα release, whereas IL-10 release was inhibited in both silenced and non-silenced HIV+ macrophages. Furthermore, mTOR inhibition augmented lipid A-induced TNFα release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAP kinases, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR4-mediated TNFα release in HIV+ macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MKP-1 stabilization, which shortens and blunts MAP kinase activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV+ persons. PMID:22025552

  6. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory

  7. MAPK/p38 regulation of cytoskeleton rearrangement accelerates induction of macrophage activation by TLR4, but not TLR3.

    Bian, Hongjun; Li, Feifei; Wang, Wenwen; Zhao, Qi; Gao, Shanshan; Ma, Jincai; Li, Xiao; Ren, Wanhua; Qin, Chengyong; Qi, Jianni

    2017-11-01

    Toll-like receptor 3 (TLR3) and TLR4 utilize adaptor proteins to activate mitogen‑activated protein kinase (MAPK), resulting in the acute but transient inflammatory response aimed at the clearance of pathogens. In the present study, it was demonstrated that macrophage activation by lipopolysaccharide (LPS) or poly(I:C), leading to changes in cell morphology, differed significantly between the mouse macrophage cell line RAW264.7 and mouse primary peritoneal macrophages. Moreover, the expression of α- and β-tubulin was markedly decreased following LPS stimulation. By contrast, α- and β-tubulin expression were only mildly increased following poly(I:C) treatment. However, the expression of β-actin and GAPDH was not significantly affected. Furthermore, it was verified that vincristine pretreatment abrogated the cytoskeleton rearrangement and decreased the synthesis and secretion of proinflammatory cytokines and migration of macrophages caused by LPS. Finally, it was observed that the MAPK/p38 signaling pathway regulating cytoskeleton rearrangement may participate in LPS‑induced macrophage cytokine production and migration. Overall, the findings of the present study indicated that MAPK/p38 regulation of the cytoskeleton, particularly tubulin proteins, plays an important role in LPS-induced inflammatory responses via alleviating the synthesis and secretion of proinflammatory cytokines and inhibiting the migration of macrophages.

  8. The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken.

    Liu, Wenjing; Ge, Ming; Hu, Xuequan; Lv, Ai; Ma, Dexing; Huang, Xiaodan; Zhang, Ruili

    2017-11-01

    In this study, we investigated the effects of Agaricus blazei Murill polysaccharides (ABP) on cadmium (Cd)-induced apoptosis and the TLR4 signaling pathway of chicken peripheral blood lymphocytes (PBLs). Seven-day-old healthy chickens were randomly divided into four groups, and each group contained 20 males. The cadmium-supplemented diet group (Cd group) was fed daily with full feed that contained 140 mg cadmium chloride (CdCl 2 )/kg and 0.2 mL saline. The A. blazei Murill polysaccharide diet group (ABP group) was fed daily with full feed with 0.2 mL ABP solution (30 mg/mL) by oral gavage. The cadmium-supplemented plus A. blazei Murill polysaccharide diet group (Cd + ABP group) was fed daily with full feed containing 140 mg CdCl 2 /kg and 0.2 mL ABP solution (30 mg/mL) by gavage. The control group was fed daily with full feed with 0.2 mL saline per day. We measured the apoptosis rate and messenger RNA (mRNA) levels of apoptosis genes (caspase-3, Bax, and Bcl-2), the mRNA levels of TLR4 and TLR4 signaling pathway-related factors (MyD88, TRIF, NF-κB, and IRF3), the TLR4 protein expression, and the concentrations of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in chicken PBLs. The results showed that the PBL apoptosis rate was significantly increased, the mRNA levels of caspase-3 and Bax were significantly increased, while that of Bcl-2 was significantly reduced. The Bax/Bcl-2 ratio was significantly increased in the Cd group at 20, 40, and 60 days after treatment compared with that in the control group. After treatment with ABP, the above changes were clearly suppressed. At the same time, ABP reduced the concentrations of IL-1β, IL-6, and TNF-α induced by Cd. We also found that ABP inhibited the TLR4 mRNA level and protein expression and inhibited the mRNA levels of MyD88, TRIF, NF-κB, and IRF3. The results demonstrated that Cd could induce apoptosis, activate the TLR4 signaling pathway, and induce the expression of inflammatory cytokines in

  9. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway.

    Zhang, Rui; Zhao, Jian; Xu, Jian; Jiao, De-Xin; Wang, Jian; Gong, Zhi-Qiang; Jia, Jian-Hui

    2017-10-01

    Modern pharmacological research has revealed that andrographolide has various functions, including anti-bacterial, anti-inflammatory and anti-viral effects, immunoregulation, treating cardiovascular and cerebrovascular diseases, and prevention and treatment of alcoholic liver injury. The present study investigated whether andrographolide suppresses the proliferation of human colon cancer cell through the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB/matrix metalloproteinase-9 (MMP-9) signaling pathway. The MTT assay and lactate dehydrogenase assay were used to evaluate the anticancer effects of andrographolide on cell proliferation and cytotoxicity in human colon cancer SW620 cells. Flow cytometry was used to analyze the anticancer effects of andrographolide on apoptosis by Annexin V-fluorescein isothiocyanate/propidium iodide kit. The effects of andrographolide on the activity of caspase-3/9 were measured using ELISA. Western blot analysis was also used to analyze the protein expression of TLR4, myeloid differentiation primary response gene 88 (MyD88), NF-κB-p65 and MMP-9. In the present study, it was found that andrographolide suppressed the cell proliferation, augmented cytotoxicity, evoked cell apoptosis and activated caspase-3/9 activities in human colon cancer SW620 cells. The results revealed that the anti-proliferation effects of andrographolide on the SW620 cells was associated with the inhibition of TLR4, MyD88, NF-κB-p65 and MMP-9 signaling activation. The results suggest that andrographolide is a promising drug for treatment of human colon cancer via suppression of the TLR4/NF-κB/MMP-9 signaling pathway.

  10. Identification of the key differential transcriptional responses of human whole blood following TLR2 or TLR4 ligation in-vitro.

    Simon Blankley

    Full Text Available The use of human whole blood for transcriptomic analysis has potential advantages over the use of isolated immune cells for studying the transcriptional response to pathogens and their products. Whole blood stimulation can be carried out in a laboratory without the expertise or equipment to isolate immune cells from blood, with the added advantage of being able to undertake experiments using very small volumes of blood. Toll like receptors (TLRs are a family of pattern recognition receptors which recognise highly conserved microbial products. Using the TLR2 ligand (Pam3CSK4 and the TLR4 ligand (LPS, human whole blood was stimulated for 0, 1, 3, 6, 12 or 24 hours at which times mRNA was isolated and a comparative microarray was undertaken. A common NFκB transcriptional programme was identified following both TLR2 and TLR4 ligation which peaked at between 3 to 6 hours including upregulation of many of the NFκB family members. In contrast an interferon transcriptional response was observed following TLR4 but not TLR2 ligation as early as 1 hour post stimulation and peaking at 6 hours. These results recapitulate the findings observed in previously published studies using isolated murine and human myeloid cells indicating that in vitro stimulated human whole blood can be used to interrogate the early transcriptional kinetic response of innate cells to TLR ligands. Our study demonstrates that a transcriptomic analysis of mRNA isolated from human whole blood can delineate both the temporal response and the key transcriptional differences following TLR2 and TLR4 ligation.

  11. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis.

    Angela Castoldi

    Full Text Available The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2(-/-, TLR4(-/- and MyD88(-/- male mice were subjected to sepsis by cecal ligation and puncture (CLP. Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2(-/-, TLR4(-/- and MyD88(-/- mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT. MyD88(-/- mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1(+low cells migration compared with the knockout mice and decreased in GR1(+high cells migration into the peritoneal cavity. The TLR2(-/-, TLR4(-/-, and MyD88(-/- mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.

  13. Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway.

    Zhou, Chen-hui; Wang, Chun-xi; Xie, Guang-bin; Wu, Ling-yun; Wei, Yong-xiang; Wang, Qiang; Zhang, Hua-sheng; Hang, Chun-hua; Zhou, Meng-liang; Shi, Ji-xin

    2015-12-10

    Early brain injury (EBI) determines the unfavorable outcomes after subarachnoid hemorrhage (SAH). Fisetin, a natural flavonoid, has anti-inflammatory and neuroprotection properties in several brain injury models, but the role of fisetin on EBI following SAH remains unknown. Our study aimed to explore the effects of fisetin on EBI after SAH in rats. Adult male Sprague-Dawley rats were randomly divided into the sham and SAH groups, fisetin (25mg/kg or 50mg/kg) or equal volume of vehicle was given at 30min after SAH. Neurological scores and brain edema were assayed. The protein expression of toll-like receptor 4 (TLR 4), p65, ZO-1 and bcl-2 was examined by Western blot. TLR 4 and p65 were also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the production of pro-inflammatory cytokines. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) was perform to assess neural cell apoptosis. High-dose (50mg/kg) fisetin significantly improved neurological function and reduced brain edema at both 24h and 72h after SAH. Remarkable reductions of TLR 4 expression and nuclear factor κB (NF-κB) translocation to nucleus were detected after fisetin treatment. In addition, fisetin significantly reduced the productions of pro-inflammatory cytokines, decreased neural cell apoptosis and increased the protein expression of ZO-1 and bcl-2. Our data provides the evidence for the first time that fisetin plays a protective role in EBI following SAH possibly by suppressing TLR 4/NF-κB mediated inflammatory pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation ...

  15. Andrographolide Ameliorates Liver Fibrosis in Mice: Involvement of TLR4/NF-κB and TGF-β1/Smad2 Signaling Pathways

    Liteng Lin

    2018-01-01

    Full Text Available Liver fibrosis is characterized by activated hepatic stellate cells (HSC and extracellular matrix accumulation. Blocking the activation of HSC and the inflammation response are two major effective therapeutic strategies for liver fibrosis. In addition to the long history of using andrographolide (Andro for inflammatory disorders, we aimed at elucidating the pharmacological effects and potential mechanism of Andro on liver fibrosis. In this study, liver fibrosis was induced by carbon tetrachloride (CCl4 and the mice were intraperitoneally injected with Andro for 6 weeks. HSC cell line (LX-2 and primary HSC were also treated with Andro in vitro. Treatment of CCl4-induced mice with Andro decreased the levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST, Sirius red staining as well as the expression of α smooth muscle actin (α-SMA and transforming growth factor- (TGF- β1. Furthermore, the expression of Toll-like receptor (TLR4 and NF-κB p50 was also inhibited by Andro. Additionally, in vitro data confirmed that Andro treatment not only attenuated the expression of profibrotic and proinflammatory factors but also blocked the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways. These results demonstrate that Andro prevents liver inflammation and fibrosis, which is in correlation with the inhibition of the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways, highlighting Andro as a potential therapeutic strategy for liver fibrosis.

  16. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes.

    Wu, Jinfeng; Zhou, Junmin; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika A; Wei, Sheng; Dong, Jingcheng

    2012-01-01

    To evaluate the anti-inflammatory potential of ICT in LPS stimulated human innate immune cells. 3, 5, 7-Trihydroxy-4'-methoxy-8-(3-hydroxy-3- methylbutyl)-flavone (ICT) is a novel derivative of icariin, the major active ingredient of Herba Epimedii, an herb used in traditional Chinese medicine. We previously demonstrated its anti-inflammatory potential in a murine macrophage cell line as well as in mouse models. We measured TNF-α production by ELISA, TLR4/CD14 expression by flow cytometry, and NF-κB and MAPK activation by western blot all in LPS-stimulated PBMC, human monocytes, or THP-1 cells after treatment with ICT. ICT inhibited LPS-induced TNF-α production in THP-1 cells, PBMCs and human monocytes in a dose-dependent manner. ICT treatment resulted in down-regulation of the expression of CD14/TLR4 and attenuated NF-κB and MAPK activation induced by LPS. We illustrate the anti-inflammatory property of ICT in human immune cells, especially in monocytes. These effects were mediated, at least partially, via inhibition of the CD14/TLR4 signaling pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    Firas Alhasson

    Full Text Available Many of the symptoms of Gulf War Illness (GWI that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4 activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  18. Role of innate immune receptors TLR2 and TLR4 as mediators of the inflammatory reaction in human visceral adipose tissue.

    Fusaru, Ana Marina; Stănciulescu, Camelia Elena; Surlin, V; Taisescu, C; Bold, Adriana; Pop, O T; Baniţă, Ileana Monica; Crăiţoiu, Stefania; Pisoschi, Cătălina Gabriela

    2012-01-01

    White adipose tissue from different locations is characterized by significant differences in the structure of adipocyte "secretoma". Fat accumulation in the central-visceral depots is usually associated with a chronic inflammatory state, which is complicated by the metabolic syndrome. Recently, the adipose tissue was emerged to have an essential role in the innate immunity, adipocytes being considered effector cells due to the presence of the Toll-like receptors (TLRs). In this study, we compared the expression of TNF-α, TLR2 and TLR4 in peripheral-subcutaneous and central-peritoneal adipose depots in three different conditions - lean, obese and obese diabetic - using immunohistochemistry. Our results suggest a correlation between the incidence of the stromal vascular cells and adipocytes TNF-α and TLR4 in the visceral depots in strong correlation with adipose tissue expansion. TLR2 positive cells were seen in the peripheral depots from all groups without any association with fat accumulation. These results focus on the existence of a new pathogenic pathway, the activation of TLR4, for the involvement of visceral adipose tissue in the activation and maintenance of the inflammatory cascade in obesity.

  19. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways.

    Kang, Hyeon Hui; Kim, In Kyoung; Lee, Hye In; Joo, Hyonsoo; Lim, Jeong Uk; Lee, Jongmin; Lee, Sang Haak; Moon, Hwa Sik

    2017-08-19

    Obstructive sleep apnea (OSA) is associated with nonalcoholic fatty liver disease (NAFLD), and causes chronic intermittent hypoxia (CIH) during sleep. Inflammation is associated with the development of metabolic complications induced by CIH. Research suggests that innate immune mechanisms are involved in the pro-inflammatory pathways of liver fibrosis. The purpose of this study was to investigate whether innate immune responses induce liver fibrosis, and to evaluate mechanisms underlying hepatic inflammation related to CIH in a murine diet-induced obesity (DIO) model. Inflammatory and oxidative stress markers, TLR4, MyD88, Toll/interleukin-1-receptor-domain-containing adaptor-inducing interferon-β (TRIF), I-κB, NF-κB, p38 MAPK, c-JNK, and ERK activation, were measured in the serum and liver. As a result, α1(I)-collagen mRNA was significantly higher in DIO mice exposed to CIH than in the control groups. CIH mice exhibited liver fibrosis and significantly higher protein expression of TLR4, MyD88, phosphorylated (phospho-) I-κB, and phospho-ERK1/2 activation in the liver, and higher expression of NF-κB than that in the controls. TRIF, p38 MAPK, and JNK activation did not differ significantly between groups. We conclude that CIH in DIO mice leads to liver fibrosis via TLR4/MyD88/MAPK/NF-kB signaling pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The Role of TLR4, TNF-α and IL-1β in Type 2 Diabetes Mellitus Development within a North Indian Population.

    Doody, Natalie E; Dowejko, Monika M; Akam, Elizabeth C; Cox, Nick J; Bhatti, Jasvinder S; Singh, Puneetpal; Mastana, Sarabjit S

    2017-07-01

    This study investigated the role of IL-1β-511 (rs16944), TLR4-896 (rs4986790) and TNF-α-308 (rs1800629) polymorphisms in type 2 diabetes mellitus (T2DM) among an endogamous Northern Indian population. Four hundred fourteen participants (204 T2DM patients and 210 nondiabetic controls) were genotyped for IL-1β-511, TLR4-896 and TNF-α-308 loci. The C allele of IL-1β-511 was shown to increase T2DM susceptibility by 75% (OR: 1.75 [CI 1.32-2.33]). Having two parents affected by T2DM increased susceptibility by 5.7 times (OR: 5.693 [CI 1.431-22.648]). In this study, we have demonstrated a conclusive association with IL-1β-511 locus and IL-1β-511-TLR4-896 diplotype (CC-AA) and T2DM, which warrants further comprehensive analyses in larger cohorts. © 2017 John Wiley & Sons Ltd/University College London.

  1. GLA-SE, a Synthetic Toll-like Receptor 4 Agonist, Enhances T-Cell Responses to Influenza Vaccine in Older Adults

    Behzad, Hayedeh; Huckriede, Anke L. W.; Haynes, Laura; Gentleman, Beth; Coyle, Krysta; Wilschut, Jan C.; Kollmann, Tobias R.; Reed, Steven G.; McElhaney, Janet E.

    2012-01-01

    Background. The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza. Methods. The Toll-like receptor 4 agonist

  2. Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2

    Holden, James A.; O'Brien-Simpson, Neil M.; Lenzo, Jason C.; Orth, Rebecca K. H.; Mansell, Ashley

    2017-01-01

    ABSTRACT Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2−/−, and TLR4−/− macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae-induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals. PMID:28630066

  3. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.

    Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore

    2016-03-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and

  4. Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2.

    Holden, James A; O'Brien-Simpson, Neil M; Lenzo, Jason C; Orth, Rebecca K H; Mansell, Ashley; Reynolds, Eric C

    2017-09-01

    Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2 -/- , and TLR4 -/- macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae- induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals. Copyright © 2017 American Society for Microbiology.

  5. TLR4/MyD88/NF-κB signaling and PPAR-γ within the paraventricular nucleus are involved in the effects of telmisartan in hypertension

    Li, Hong-Bao; Li, Xiang; Huo, Chan-Juan; Su, Qing; Guo, Jing [Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an 710061 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi' an Jiaotong University, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Shi, Xiao-Lian, E-mail: shxl@mail.xjtu.edu.cn [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Liu, Jin-Jun, E-mail: jupet@163.com [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an 710061 (China)

    2016-08-15

    Previous findings from our laboratory and others indicate that the main therapeutic effect of angiotensin II type 1 receptor (AT1-R) antagonists is to decrease blood pressure and exert anti-inflammatory effects in the cardiovascular system. In this study, we determined whether AT1-R antagonist telmisartan within the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and hypothalamic inflammation via both the TLR4/MyD88/NF-κB signaling pathway and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the PVN in hypertensive rats. Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were treated for 4 weeks through bilateral PVN infusion with the AT1-R antagonist telmisartan (TEL, 10 μg/h), or losartan (LOS, 20 μg/h), or the PPAR-γ antagonist GW9662 (GW, 100 μg/h), or vehicle via osmotic minipump. Mean arterial pressure (MAP) was recorded by a tail-cuff occlusion method. PVN tissue and blood were collected for the measurement of AT1-R, PPAR-γ, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6), inducible nitric oxide synthase (iNOS), TLR4, MyD88, nuclear factor-kappa B (NF-κB) activity and plasma norepinephrine (NE), respectively. Hypertensive rats exhibited significantly higher level of AT1-R and lower level of PPAR-γ in the PVN. PVN treatment with TEL attenuated MAP, improved cardiac hypertrophy, reduced TNF-α, IL-1β, IL-6, iNOS levels, and plasma NE in SHR but not in WKY rats. These results were associated with reduced TLR4, MyD88 and NF-κB levels and increased PPAR-γ level in the PVN of hypertensive rats. Our findings suggest that TLR4/MyD88/NF-κB signaling and PPAR-γ within the PVN are involved in the beneficial effects of telmisartan in hypertension. - Highlights: • PVN infusion of TEL in spontaneously hypertensive rats is reported. • PVN infusion of TEL attenuates hypertension and proinflammatory cytokines in PVN. • PVN blockade of AT1-R attenuates

  6. Polymorphisms in NFKB1 and TLR4 and interaction with dietary and life style factors in relation to colorectal cancer in a Danish prospective case-cohort study.

    Kopp, Tine Iskov; Andersen, Vibeke; Tjonneland, Anne; Vogel, Ulla

    2015-01-01

    Maintenance of a balance between commensal bacteria and the mucosal immune system is crucial and intestinal dysbiosis may be a key event in the pathogenesis of colorectal cancer (CRC). The toll-like receptor 4 (TLR4) is an important pattern-recognition receptor that regulates inflammation and barrier function in the gut by a mechanism that involves activation of the nuclear factor-κB (NF-κB) transcription factor. Dietary and life style factors may impact these functions. We therefore used a Danish prospective case-cohort study of 1010 CRC cases and 1829 randomly selected participants from the Danish Diet, Cancer and Health cohort to investigate three polymorphisms in NFKB1 and TLR4 and their possible interactions with diet and life style factors in relation to risk of CRC. Homozygous carriage of the variant allele of the TLR4/rs5030728 polymorphism was associated with increased risk of CRC (incidence rate ratio (IRR) = 1.30; 95% confidence interval (CI): 1.05-1.60; P = 0.02 (gene-dose model); IRR = 1.24; 95%CI: 1.01-1.51; P = 0.04 (recessive model)). Del-carriers of the NFKB1/rs28362491 polymorphism had a 17% (95%CI: 1.03-1.34; P = 0.02) increased risk of CRC compared to homozygous carriers of the ins-allele. However, none of these risk estimates withstood adjustment for multiple comparisons. We found no strong gene-environment interactions between the examined polymorphism and diet and life style factors in relation to CRC risk.

  7. Polymorphisms in NFKB1 and TLR4 and interaction with dietary and life style factors in relation to colorectal cancer in a Danish prospective case-cohort study.

    Tine Iskov Kopp

    Full Text Available Maintenance of a balance between commensal bacteria and the mucosal immune system is crucial and intestinal dysbiosis may be a key event in the pathogenesis of colorectal cancer (CRC. The toll-like receptor 4 (TLR4 is an important pattern-recognition receptor that regulates inflammation and barrier function in the gut by a mechanism that involves activation of the nuclear factor-κB (NF-κB transcription factor. Dietary and life style factors may impact these functions. We therefore used a Danish prospective case-cohort study of 1010 CRC cases and 1829 randomly selected participants from the Danish Diet, Cancer and Health cohort to investigate three polymorphisms in NFKB1 and TLR4 and their possible interactions with diet and life style factors in relation to risk of CRC. Homozygous carriage of the variant allele of the TLR4/rs5030728 polymorphism was associated with increased risk of CRC (incidence rate ratio (IRR = 1.30; 95% confidence interval (CI: 1.05-1.60; P = 0.02 (gene-dose model; IRR = 1.24; 95%CI: 1.01-1.51; P = 0.04 (recessive model. Del-carriers of the NFKB1/rs28362491 polymorphism had a 17% (95%CI: 1.03-1.34; P = 0.02 increased risk of CRC compared to homozygous carriers of the ins-allele. However, none of these risk estimates withstood adjustment for multiple comparisons. We found no strong gene-environment interactions between the examined polymorphism and diet and life style factors in relation to CRC risk.

  8. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  9. Dexmedetomidine reduces ventilator-induced lung injury (VILI by inhibiting Toll-like receptor 4 (TLR4/nuclear factor (NF-κB signaling pathway

    Hongli Chen

    2018-02-01

    Full Text Available Mechanical ventilation (MV may lead to ventilator-induced lung injury (VILI. Previous research has shown that dexmedetomidine attenuates pulmonary inflammation caused by MV, but the underlying mechanisms remain unclear. Our study aims to test whether dexmedetomidine has a protective effect against VILI and to explore the possible molecular mechanisms using the rat model. Thirty adult male Wistar rats weighing 200-250 g were randomly assigned to 5 groups (n = 6: control, low tidal volume MV (LMV, high tidal volume (HVT MV (HMV, HVT MV + dexmedetomidine (DEX, HVT MV + dexmedetomidine + yohimbine (DEX+Y. Rats were euthanized after being ventilated for 4 hours. Pathological changes, lung wet/dry (W/D weight ratio, lung myeloperoxidase (MPO activity, levels of inflammatory cytokines (i.e., interleukin [IL]-1β, tumor necrosis factor alpha [TNF-α], and IL-6 in the bronchoalveolar lavage fluid (BALF and lung tissues, expression of Toll-like receptor 4 (TLR4 and nuclear factor (NF-κB, and activation of NF-κB in lung tissues were measured. Compared with HMV, DEX group showed fewer pathological changes, lower W/D ratios and decreased MPO activity of the lung tissues and lower concentrations of the inflammatory cytokines in the BALF and lung tissues. Dexmedetomidine significantly inhibited the expression of TLR4 and NF-κB and activation of NF-κB. Yohimbine partly alleviated the effects of dexmedetomidine. Dexmedetomidine reduced the inflammatory response to HVT-MV and had a protective effect against VILI, with the inhibition of the TLR4/NF-κB signaling pathway, at least partly via α2-adrenoceptors.

  10. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants.

    Rossi, Omar; Pesce, Isabella; Giannelli, Carlo; Aprea, Susanna; Caboni, Mariaelena; Citiulo, Francesco; Valentini, Sara; Ferlenghi, Ilaria; MacLennan, Calman Alexander; D'Oro, Ugo; Saul, Allan; Gerke, Christiane

    2014-09-05

    Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Lauryn Samelko

    Full Text Available Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1 and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL. Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate

  12. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated

  13. Association of NOD1, CXCL16, STAT6 and TLR4 gene polymorphisms with Malaysian patients with Crohn’s disease

    Kek Heng Chua

    2016-03-01

    Full Text Available Crohn’s disease (CD is a prominent type of inflammatory bowel disease (IBD that can affect any part of the gastrointestinal tract. CD is known to have higher prevalence in the Western countries, but the number of cases has been increasing in the past decades in Asia, including Malaysia. Therefore, there is a need to investigate the underlining causes of CD that may shed light on its prevention and treatment. In this study, genetic polymorphisms in NOD1 (rs2075820, CXCL16 (rs2277680, STAT6 (rs324015 and TLR4 (rs4986791 genes were examined in a total of 335 individuals (85 CD patients and 250 healthy controls with PCR-RFLP approach. There was no significant association observed between NOD1 rs2075820 and STAT6 rs324015 with the onset of CD in the studied cohort. However, the G allele of CXCL16 rs2277680 was found to have a weak association with CD patients (P = 0.0482; OR = 1.4310. The TLR4 rs4986791 was also significantly associated to CD. Both the homozygous C genotype (P = 0.0029; OR = 0.3611 and C allele (P = 0.0069; OR = 0.4369 were observed to confer protection against CD. On the other hand, the heterozygous C/T genotype was a risk genotype (P = 0.0015; OR = 3.1392. Further ethnic-stratified analysis showed that the significant associations in CXCL16 rs2277680 and TLR4 rs4986791 were accounted by the Malay cohort. In conclusion, the present study reported two CD-predisposing loci in the Malay CD patients. However, these loci were not associated to the onset of CD in Chinese and Indian patients.

  14. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  15. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

    Lee I-Ta

    2012-11-01

    Full Text Available Abstract Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4 activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1, which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs. Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88, Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2, and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone, NADPH oxidase [apocynin (APO or diphenyleneiodonium chloride (DPI], c-Src (PP1, p38 MAPK (SB202190, and p300 (GR343. LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may

  16. Lactobacillus rhamnosus GR-1 enhances NF-kappaB activation in Escherichia coli-stimulated urinary bladder cells through TLR4

    Karlsson Mattias

    2012-01-01

    Full Text Available Abstract Background Epithelial cells of the urinary tract recognize pathogenic bacteria through pattern recognition receptors on their surface, such as toll-like receptors (TLRs, and mount an immune response through the activation of the NF-kappaB pathway. Some uropathogenic bacteria can subvert these cellular responses, creating problems with how the host eliminates pathogens. Lactobacillus is a genus of lactic acid bacteria that are part of the microbiota and consist of many probiotic strains, some specifically for urogenital infections. Immunomodulation has emerged as an important mode of action of probiotic and commensal lactobacilli and given the importance of epithelial cells, we evaluated the effect of the urogenital probiotic Lactobacillus rhamnosus GR-1 on epithelial immune activation. Results Immune activation through the NF-kappaB pathway was initiated by stimulation of T24 urothelial cells with heat-killed Escherichia coli and this was further potentiated when cells were co-cultured with live L. rhamnosus GR-1. Heat-killed lactobacilli were poor activators of NF-kappaB. Concomitant stimulation of bladder cells with E. coli and L. rhamnosus GR-1 increased the levels of the pro-inflammatory cytokine TNF, whereas IL-6 and CXCL8 levels were reduced. Another probiotic, L. rhamnosus GG, was also able to potentiate NF-kappaB in these cells although at a significantly reduced level compared to the GR-1 strain. The transcript numbers and protein levels of the lipopolysaccharide receptor TLR4 were significantly increased after co-stimulation with E. coli and lactobacilli compared to controls. Furthermore, inhibition of TLR4 activation by polymixin B completely blocked the lactobacilli potentiation of NF-kappaB. Conclusions The immunological outcome of E. coli challenge of bladder cells was influenced by probiotic L. rhamnosus GR-1, by enhancing the activation of NF-kappaB and TNF release. Thus the urogenital probiotic L. rhamnosus GR-1

  17. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe

    2015-01-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products...

  18. Evidences of +896 A/G TLR4 Polymorphism as an Indicative of Prevalence of Complications in T2DM Patients

    Carmela Rita Balistreri

    2014-01-01

    Full Text Available T2DM is today considered as world-wide health problem, with complications responsible of an enhanced mortality and morbidity. Thus, new strategies for its prevention and therapy are necessary. For this reason, the research interest has focused its attention on TLR4 and its polymorphisms, particularly the rs4986790. However, no conclusive findings have been reported until now about the role of this polymorphism in development of T2DM and its complications, even if a recent meta-analysis showed its T2DM association in Caucasians. In this study, we sought to evaluate the weight of rs4986790 polymorphism in the risk of the major T2DM complications, including 367 T2DM patients complicated for the 55.6%. Patients with A/A and A/G TLR4 genotypes showed significant differences in complication’s prevalence. In particular, AG carriers had higher risk prevalence for neuropathy (P=0.026, lower limb arteriopathy (P=0.013, and the major cardiovascular pathologies (P=0.017. Their cumulative risk was significant (P=0.01, with a threefold risk to develop neuropathy, lower limb arteriopathy, and major cardiovascular events in AG cases compared to AA cases. The adjusted OR for the confounding variables was 3.788 (95% CI: 1.642–8.741. Thus, the rs4986790 polymorphism may be an indicative of prevalence of complications in T2DM patients.

  19. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  20. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.

    Cheng, Xiao; Yang, Ying-Lin; Yang, Huan; Wang, Yue-Hua; Du, Guan-Hua

    2018-03-01

    Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    Ying Zhu

    2017-01-01

    Full Text Available Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER. Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA, flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β, enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II, and elevated the expression of macrophage scavenger receptor 1(MSR1, all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase.

  2. The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    Weijie Liang

    2017-02-01

    Full Text Available Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS, toll-like receptor 4 (TLR4, receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis, which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis or TAK-242 (an inhibitor of TLR4 co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener or pinacidil (Pin, a non-selective KATP channel opener or N-acetyl-L-cysteine (NAC, a ROS scavenger pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker or glibenclamide (Gli, a non-selective KATP channel blocker pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway.

  3. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry.

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe; Linnet, Kristian

    2015-03-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products. This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using an authentic urine sample and high-resolution accurate-mass Fourier transform Orbitrap mass spectrometry, we identified 16 phase-I metabolites of 5F-AKB-48. The modifications included mono-, di-, and trihydroxylation on the adamantyl ring alone or in combination with hydroxylation on the N-fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having the hydroxyl groups on the adamantyl ring. The results presented here may be used to select metabolites specific of 5F-AKB-48 for use in clinical and forensic screening. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  5. Enzyme-linked immunosorbent assay (ELISA) for the detection of use of the synthetic cannabinoid agonists UR-144 and XLR-11 in human urine.

    Mohr, Amanda L A; Ofsa, Bill; Keil, Alyssa Marie; Simon, John R; McMullin, Matthew; Logan, Barry K

    2014-09-01

    Ongoing changes in the synthetic cannabinoid drug market create the need for relevant targeted immunoassays for rapid screening of biological samples. We describe the validation and performance characteristics of an enzyme-linked immunosorbent assay designed to detect use of one of the most prevalent synthetic cannabinoids in urine, UR-144, by targeting its pentanoic acid metabolite. Fluorinated UR-144 (XLR-11) has been demonstrated to metabolize to this common product. The assay has significant cross-reactivity with UR-144-5-OH, UR-144-4-OH and XLR-11-4-OH metabolites, but assay's cutoff is 5 ng/mL relative to the pentanoic acid metabolite of UR-144, which is used as the calibrator. The method was validated with 90 positive and negative control urine samples for UR-144, XLR-11 and its metabolites tested versus liquid chromatography-tandem mass spectrometry. The accuracy, sensitivity and specificity were determined to be 100% for the assay at the specified cutoff. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  7. Expression of TLR-2, TLR-4, NOD2 and pNF-kappaB in a neonatal rat model of necrotizing enterocolitis.

    Aurelie Le Mandat Schultz

    Full Text Available BACKGROUND: The etiology of necrotizing enterocolitis (NEC results from a combination of several risk factors that act synergistically and occurs in the same circumstances as those which lead to innate immunity activation. Pattern recognition molecules could be an important player in the initiation of an exaggerated inflammatory response leading to intestinal injury in NEC. METHODOLOGY/PRINCIPAL FINDINGS: We specifically evaluated intestinal epithelial cell (IEC expression of Toll-like receptor 2 (TLR-2, TLR-4, NOD2 and phosphorylated NF-kappaB (pNF-kappaB after mucosal injury in a rat model of NEC induced by prematurity, systemic hypoxia, and a rich protein formula. In the control group (group 1, neonatal rats were full-term and breast-fed; in the experimental groups, rat pups were preterm at day 21 of gestation and rat-milk fed (group 2 or hand-gavaged with a protein rich formula after a hypoxia-reoxygenation procedure (group 3. Morphological mucosal changes in the small bowel were scored on hematoxylin- and eosin-stained sections. Immunohistochemistry was performed on frozen tissue sections using anti TLR-2 and active pNF-kappaB p65 antibodies. Real-time RT-PCR was performed to assess mRNA expression of NOD2, TLR-2 and TLR-4. Proliferation and apoptosis were studied in paraffin sections using anti Ki-67 and caspase-3 antibodies, respectively. The combination of immaturity, protein rich formula and a hypoxia-reoxygenation procedure induces pathological mucosal damage consistent with NEC. There was an overexpression of TLR-2, and pNF-kappaB in IECs that was correlated with the severity of mucosal damage, together with an increase of apoptotic IECs and markedly impaired proliferation. In addition, these immunological alterations appeared before severe mucosal damage. TLR-2 mRNA were also increased in NEC together with TLR-4 mRNA using real-time RT-PCR whereas NOD2 expression was unchanged. CONCLUSIONS/SIGNIFICANCE: These results show that this

  8. Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets.

    Ping Kang

    Full Text Available The experiment was conducted to study the effect of the glutamate (Glu on muscle protein loss through toll-like receptor 4 (TLR4, nucleotide-binding oligomerization domain proteins (NODs, Akt/Forkhead Box O (Akt/FOXO and mammalian target of rapamycin (mTOR signaling pathways in LPS-challenged piglets. Twenty-four weaned piglets were assigned into four treatments: (1 Control; (2 LPS+0% Glu; (3 LPS + 1.0% Glu; (4 LPS + 2.0% Glu. The experiment was lasted for 28 days. On d 28, the piglets in the LPS challenged groups were injected with LPS on 100 μg/kg body weight (BW, and the piglets in the control group were injected with the same volume of 0.9% NaCl solution. After 4 h LPS or saline injection, the piglets were slaughtered and the muscle samples were collected. Glu supplementation increased the protein/DNA ratio in gastrocnemius muscle, and the protein content in longissimus dorsi (LD muscle after LPS challenge (P<0.05. In addition, Glu supplementation decreased TLR4, IL-1 receptor-associated kinase (IRAK 1, receptor-interacting serine/threonine-protein kinase (RIPK 2, and nuclear factor-κB (NF-κB mRNA expression in gastrocnemius muscle (P<0.05, MyD88 mRNA expression in LD muscle, and FOXO1 mRNA expression in LD muscle (P<0.05. Moreover, Glu supplementation increased p-Akt/t-Akt ratio (P<0.05 in gastrocnemius muscle, and p-4EBP1/t-4EBP1 ratio in both gastrocnemius and LD muscles (P<0.05. Glu supplementation in the piglets' diets might be an effective strategy to alleviate LPS-induced muscle protein loss, which might be due to suppressing the mRNA expression of TLR4 and NODs signaling-related genes, and modulating Akt/FOXO and mTOR signaling pathways.

  9. Atopy and new-onset asthma in young Danish farmers and CD14, TLR2, and TLR4 genetic polymorphisms: a nested case-control study

    Smit, L A M; Bongers, S I M; Ruven, H J T

    2007-01-01

    BACKGROUND: Evidence exists that exposure to high levels of microbial agents such as endotoxin in the farm environment decreases the risk of atopic sensitization. Genetic variation in innate immunity genes may modulate the response to microbial agents and thus influence susceptibility to asthma...... and atopy. OBJECTIVE: To study potential associations between single nucleotide polymorphisms (SNPs) in CD14, Toll-like receptor 2 (TLR2), and TLR4 genes, and atopy and new-onset asthma in young farmers. METHODS: A nested case-control study was conducted within a cohort of 1901 young Danish farmers. We....../-651 promoter polymorphisms are associated with atopy prevalence among young adults exposed to farm environments. Udgivelsesdato: 2007-Nov...

  10. EGCG Maintains Th1/Th2 Balance and Mitigates Ulcerative Colitis Induced by Dextran Sulfate Sodium through TLR4/MyD88/NF-κB Signaling Pathway in Rats

    Xue Bing

    2017-01-01

    Full Text Available Objective. To observe the protective effect of epigallocatechin gallate (EGCG on dextran sulfate sodium- (DSS- induced ulcerative colitis in rats and to explore the roles of TLR4/MyD88/NF-κB signaling pathway. Methods. Rat models of ulcerative colitis were established by giving DSS. EGCG (50 mg/kg/d was given to assess disease activity index. HE staining was applied to observe histological changes. ELISA and qPCR detected the expression of inflammatory factors. Flow cytometry was used to measure the percentage of CD4+IFN-γ+ and CD4+IL-4+ in the spleen and colon. TLR4 antagonist E5564 was given in each group. Flow cytometry was utilized to detect CD4+IFN-γ+ and CD4+IL-4+ cells. Immunohistochemistry, qPCR, and western blot assay were applied to measure the expression of TLR4, MyD88, and NF-κB. Results. EGCG improved the intestinal mucosal injury in rats, inhibited production of inflammatory factors, maintained the balance of Th1/Th2, and reduced the expression of TLR4, MyD88, and NF-κB. After TLR4 antagonism, the protective effect of EGCG on intestinal mucosal injury was weakened in rats with ulcerative colitis, and the expressions of inflammatory factors were upregulated. Conclusion. EGCG can inhibit the intestinal inflammatory response by reducing the severity of ulcerative colitis and maintaining the Th1/Th2 balance through the TLR4/MyD88/NF-κB signaling pathway.

  11. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-01-01

    Highlights: ► Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. ► EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. ► EGCG-treated DCs inhibited MAPKs activation and NF-κB p65 translocation via 67LR. ► EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  12. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger

    Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri; Ryu, Shi Yong; Han, Sang-Bae; Kim, Youngsoo

    2012-01-01

    Highlights: ► 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. ► 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. ► 1D10G down-regulates the expression of NF-κB-, AP1- or IRF3-target genes. ► MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity than gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-κB (NF-κB) or activating protein 1 (AP1)-target genes such as tumor necrosis factor α (TNF-α) and interleukin-1β, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-β gene and IFN-γ inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.

  13. Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model.

    Zhu, Huiling; Wang, Haibo; Wang, Shuhui; Tu, Zhixiao; Zhang, Lin; Wang, Xiuying; Hou, Yongqing; Wang, Chunwei; Chen, Jie; Liu, Yulan

    2018-05-01

    Flaxseed oil is a rich source of α-linolenic acid (ALA), which is the precursor of the long-chain n-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). This study investigates the protective effect of flaxseed oil against intestinal injury induced by lipopolysaccharide (LPS). Twenty-four weaned pigs were used in a 2 × 2 factorial experiment with dietary treatment (5% corn oil vs 5% flaxseed oil) and LPS challenge (saline vs LPS). On day 21 of the experiment, pigs were administrated with LPS or saline. At 2 h and 4 h post-administration, blood samples were collected. After the blood harvest at 4 h, all piglets were slaughtered and intestinal samples were collected. Flaxseed oil supplementation led to the enrichment of ALA, EPA, and total n-3 PUFAs in intestine. Flaxseed oil improved intestinal morphology, jejunal lactase activity, and claudin-1 protein expression. Flaxseed oil downregulated the mRNA expression of intestinal necroptotic signals. Flaxseed oil also downregulated the mRNA expression of intestinal toll-like receptors 4 (TLR4) and its downstream signals myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), and nucleotide-binding oligomerization domain proteins 1, 2 (NOD1, NOD2) and its adapter molecule, receptor-interacting protein kinase 2 (RIPK2). These results suggest that dietary addition of flaxseed oil enhances intestinal integrity and barrier function, which is involved in modulating necroptosis and TLR4/NOD signaling pathways. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Involvement of Ubiquitin-Editing Protein A20 in Modulating Inflammation in Rat Cochlea Associated with Silver Nanoparticle-Induced CD68 Upregulation and TLR4 Activation

    Feng, Hao; Pyykkö, Ilmari; Zou, Jing

    2016-05-01

    Silver nanoparticles (AgNPs) were shown to temporarily impair the biological barriers in the skin of the external ear canal, mucosa of the middle ear, and inner ear, causing partially reversible hearing loss after delivery into the middle ear. The current study aimed to elucidate the molecular mechanism, emphasizing the TLR signaling pathways in association with the potential recruitment of macrophages in the cochlea and the modulation of inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these signaling pathways were thoroughly analysed using immunohistochemistry in the rat cochlea exposed to AgNPs at various concentrations through intratympanic injection. The results showed that 0.4 % AgNPs but not 0.02 % AgNPs upregulated the expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, TNFR2, IL-10, or TGF-β. This study suggested that AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ through the upregulation of CD68, which might be involved in TLR4 activation. A20 and RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expressions of inflammatory cytokines.

  15. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  16. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger

    Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Ryu, Shi Yong [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity than gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.

  17. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    Byun, Eui-Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Choi, Han-Gyu [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@gmail.com [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  18. TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse

    Blanchet Fabien P

    2013-01-01

    Full Text Available Abstract Background Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24 potently restricts HIV-1 release by retaining viral particles at the cell surface in many cell types, including primary cells such as macrophages. However, BST-2/tetherin does not efficiently restrict HIV-1 infection in immature dendritic cells. Results We now report that BST-2/tetherin expression in myeloid (myDC and monocyte-derived dendritic cells (DC can be significantly up-regulated by IFN-α treatment and TLR-4 engagement with LPS. In contrast to HeLa or 293T cells, infectious HIV-1 release in immature DC and IFN-α–matured DC was only modestly affected in the absence of Vpu compared to wild-type viruses. Strikingly, immunofluorescence analysis revealed that BST-2/tetherin was excluded from HIV containing tetraspanin-enriched microdomains (TEMs in both immature DC and IFN-α–matured DC. In contrast, in LPS-mediated mature DC, BST-2/tetherin exerted a significant restriction in transfer of HIV-1 infection to CD4+ T cells. Additionally, LPS, but not IFN-α stimulation of immature DC, leads to a dramatic redistribution of cellular restriction factors to the TEM as well as at the virological synapse between DC and CD4+ T cells. Conclusions In conclusion, we demonstrate that TLR-4 engagement in immature DC significantly up-regulates the intrinsic antiviral activity of BST-2/tetherin, during cis-infection of CD4+ T cells across the DC/T cell virological synapse. Manipulating the function and potency of cellular restriction factors such as BST-2/tetherin to HIV-1 infection, has implications in the design of antiviral therapeutic strategies.

  19. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway.

    Liu, Ai-Hua; Wu, Ya-Ting; Wang, Yu-Ping

    2017-06-01

    The study aimed to explore the effects of microRNA-129-5p (miR-129-5p) on the development of autoimmune encephalomyelitis (AE)-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway in a rat model. AE-related epilepsy models were established. Sprague-Dawley (SD) rats were randomly divided into control, model, miR-129-5p mimics, miR-129-5p inhibitor, HMGB1 shRNA, TLR4/NF-kB (TLR4/NF-kB signaling pathway was inhibited) and miR-129-5p mimics+HMGB1 shRNA groups respectively. Latency to a first epilepsy seizure attack was recorded. Neuronal injuries in the hippocampus regions were detected using HE, Nissl and FJB staining methods 24h following model establishment. Microglial cells were detected by OX-42 immunohistochemistry. Expressions of miR-129-5p, HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by qRT-PCR. Protein expressions of HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by Western blotting. Dual luciferase reporter gene assay showed that miR-129-5p was negatively targeting HMGB1. Neurons of hippocampal tissues in rats were heavily injured by an injection of lithium chloride. Compared with the model and control groups, neuronal injury of the hippocampus and AE-related epilepsy decreased and microglial cells increased in the miR-129-5p mimics, HMGB1 shRNA and TLR4/NF-kB groups; however, in the miR-129-5p inhibitor group, miR-129-5p expression decreased, HMGB1 expression increased, TLR4/NF-kB signaling pathway was activated, latency to a first epilepsy seizure attack was shortened, and neuronal injury increased. This study provides evidence that miR-129-5p inhibits the development of AE-related epilepsy by suppressing HMGB1 expression and inhibiting TLR4/NF-kB signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Gene polymorphisms and febrile neutropenia in acute leukemia--no association with IL-4, CCR-5, IL-1RA, but the MBL-2, ACE, and TLR-4 are associated with the disease in Turkish patients: a preliminary study.

    Pehlivan, Mustafa; Sahin, Handan Haydaroğlu; Ozdilli, Kurşat; Onay, Hüseyin; Ozcan, Ali; Ozkinay, Ferda; Pehlivan, Sacide

    2014-07-01

    The aim of this study was to investigate the mannose-binding lectin 2 (MBL-2), interleukin (IL)-4, Toll-like receptor 4 (TLR-4), angiotensin converting enzyme (ACE), chemokine receptor 5 (CCR-5), and IL-1 receptor antagonist (RA) gene polymorphisms (GPs) in acute leukemias (ALs) and to evaluate their roles in febrile neutropenia (FN) resulting from chemotherapy. The study included 60 AL patients hospitalized between the period of July 2001 and August 2006. Polymorphisms for the genes ACE(I/D), CCR-5, IL-1RA, MBL-2, TLR-4, and IL-4 were typed by polymerase chain reaction (PCR) and/or PCR-restriction fragment length polymerase. Genotype frequencies for these genes were compared in the patient and control groups. The relationships between the genotypes and the body distribution of infections, pathogens, the duration of neutropenia, and febrile episodes in AL patients were evaluated. No significant differences in either the genotype distribution or the allelic frequencies of TLR-4, IL-4, CCR-5, IL-1RN GPs were observed between patients and healthy controls. The AB/BB genotype (53.3%) in the MBL-2 gene was found to be significantly higher in the AL patients compared with control groups. There were correlations between the presence of MBL-2, TLR-4, and ACE polymorphisms and clinical parameters due to FN. Overall, bacteremia was more common in MBL BB and ACE DD. Gram-positive bacteremia was more common in ACE for ID versus DD genotype. Gram-negative bacteremia was more common for both the MBL-2 AB/BB genotype and TLR-4 AG genotype. Median durations of febrile episodes were significantly shorter in ACE DD and MBL AB/BB. Although TLR-4, ACE, and MBL-2 GPs have been extensively investigated in different clinical pictures, this is the first study to evaluate the role of these polymorphisms in the genetic etiopathogenesis of FN in patients with ALs. As a conclusion, TLR-4, ACE, and MBL-2 genes might play roles in the genetic etiopathogenesis of FN in patients with ALs.

  1. Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge.

    Liu, Yulan; Chen, Feng; Li, Quan; Odle, Jack; Lin, Xi; Zhu, Huiling; Pi, Dingan; Hou, Yongqing; Hong, Yu; Shi, Haifeng

    2013-11-01

    Long-chain n-3 (ω-3) polyunsaturated fatty acids exert beneficial effects in neuroendocrine dysfunctions in animal models and clinical trials. However, the mechanism(s) underlying the beneficial effects remains to be elucidated. We hypothesized that dietary treatment with fish oil (FO) could mitigate LPS-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis through inhibition of Toll-like receptor 4 and nucleotide-binding oligomerization domain protein signaling pathways. Twenty-four weaned pigs were used in a 2 × 2 factorial design, and the main factors consisted of diet (5% corn oil vs. 5% FO) and immunological challenge (saline vs. LPS). After 21 d of dietary treatment with 5% corn oil or FO diets, pigs were treated with saline or LPS. Blood samples were collected at 0 (preinjection), 2, and 4 h postinjection, and then pigs were humanely killed by intravenous injection of 40 mg/kg body weight sodium pentobarbital for tissue sample collection. FO led to enrichment of eicosapentaenoic acid and docosahexaenoic acid and total n-3 polyunsaturated fatty acids in hypothalamus, pituitary gland, adrenal gland, spleen, and thymus. FO decreased plasma adrenocorticotrophin and cortisol concentrations as well as mRNA expressions of hypothalamic corticotropin releasing hormone and pituitary proopiomelanocortin. FO also reduced mRNA expression of tumor necrosis factor-α in hypothalamus, adrenal gland, spleen, and thymus, and of cyclooxygenase 2 in hypothalamus. Moreover, FO downregulated the mRNA expressions of Toll-like receptor 4 (TLR4) and its downstream molecules, including cluster differentiation factor 14, myeloid differentiation factor 2, myeloid differentiation factor 88, interleukin-1 receptor-associated kinase 1, tumor necrosis factor-α receptor-associated factor 6, and nuclear factor kappa-light-chain-enhancer of activated B cells p65, and also decreased the mRNA expressions of nucleotide-binding oligomerization domain 1, nucleotide

  2. TLR-4/miRNA-32-5p/FSTL1 signaling regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages.

    Zhang, Zhi-Min; Zhang, Ai-Rong; Xu, Min; Lou, Jun; Qiu, Wei-Qiang

    2017-03-15

    Macrophages play a pivotal role in host immune response against mycobacterial infection, which is tightly modulated by multiple factors, including microRNAs. The purpose of the present study was to investigate the biological function and potential mechanism of miR-32-5p in human macrophages during Mycobacterium tuberculosis (M.tb) infection. The results demonstrated that miR-32-5p was robustly enhanced in THP-1 and U937 cells in response to M.tb infection. TLR-4 signaling was required for upregulation of miR-32-5p induced by M.tb infection. Additionally, the introduction of miR-32-5p strongly increased the survival rate of intracellular mycobacteria, whereas inhibition of miR-32-5p suppressed intracellular growth of mycobacteria during M.tb challenged. Furthermore, forced expression of miR-32-5p dramatically attenuated the accumulation of inflammatory cytokines IL-1β, IL-6 and TNF-α induced by M.tb infection. Conversely, downregulated expression of miR-32-5p led to enhancement in these inflammatory cytokines. More importantly, our study explored that Follistatin-like protein 1 (FSTL1) was a direct and functional target of miR-32-5p. qRT-PCR and western blot analysis further validated that miR-32-5p negatively regulated the expression of FSTL1. Mechanistically, re-expression of FSTL1 attenuated the ability of miR-32-5p to promote mycobacterial survival. Meanwhile, miR-32-5p-mediated inhibition of the inflammatory cytokine production were completely reversed by overexpression of FSTL1. Collectively, our findings demonstrated a novel role of TLR-4/miRNA-32-5p/FSTL1 in the modulation of host defense against mycobacterial infection, which may provide a better understanding of the pathogenesis of tuberculosis and useful information for developing potential therapeutic interventions against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine.

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2012-03-15

    Necrotizing enterocolitis (NEC) is the leading gastrointestinal cause of mortality and morbidity in the premature infant. Premature infants have a delay in intestinal colonization by commensal bacteria and colonization with potentially pathogenic organisms. Lactobacillus reuteri is a probiotic that inhibits enteric infections, modulates the immune system, and may be beneficial to prevent NEC. In previous studies, L. reuteri strains DSM 17938 and ATCC PTA 4659 differentially modulated inflammation in vitro; however, the strains had equivalent anti-inflammatory responses in LPS feeding-induced ileitis in neonatal rats in vivo. The impact of these two strains in the prevention of NEC has not been previously investigated. NEC was induced in newborn rats by orogastric formula feeding and exposure to hypoxia. L. reuteri was added to the formula to prevent NEC. NEC score, Toll-like receptor (TLR)-signaling genes, phospho-IκB activity, and cytokine levels in the intestine were examined. Both strains significantly increased survival rate and decreased the incidence and severity of NEC, with optimal effects from DSM 17938. In response to probiotic, mRNA expression of IL-6, TNF-α, TLR4, and NF-κB was significantly downregulated, while mRNA levels of anti-inflammatory cytokine IL-10 were significantly upregulated. In parallel, L. reuteri treatment led to decrease intestinal protein levels of TLR4 and cytokine levels of TNF-α and IL-1β in newborn rats with NEC. Both strains significantly inhibited not only intestinal LPS-induced phospho-IκB activity in an ex vivo study but also decreased the levels of phospho-IκB in the intestines of NEC rat model. Cow milk formula feeding produced a similar but milder proinflammatory profile in the intestine that was also ameliorated by 17938. Our studies demonstrate that each of the two L. reuteri strains has potential therapeutic value in our NEC model and in enteritis associated with cow milk feeding. These results support the

  4. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    St Laurent Georges

    2010-03-01

    Full Text Available Abstract Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4

  5. Synthetic Cannabinoids.

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  6. Unilateral Partial Nephrectomy with Warm Ischemia Results in Acute Hypoxia Inducible Factor 1-Alpha (HIF-1α and Toll-Like Receptor 4 (TLR4 Overexpression in a Porcine Model.

    Zhiyong Zhang

    Full Text Available Ischemia/reperfusion (I/R during partial nephrectomy (PN contributes to acute kidney injury (AKI, which is inaccurately assessed using existent clinical markers of renal function. We evaluated I/R-related changes in expression in hypoxia inducible factor 1α (HIF-1α and toll-like receptor 4 (TLR4, within kidney tissue and peripheral blood leukocytes (PBL in a porcine model of PN.Three adult pigs each underwent unilateral renal hilar cross clamping for 180 min followed by a 15 min reperfusion. The contralateral kidney served as control. Biopsies of clamped kidneys were obtained at baseline (time 0, every 60 min during the hypoxic phase, and post-reperfusion. Control kidneys were biopsied once at 180 min. Peripheral blood was sampled at time 0, every 30 min during the hypoxic phase, and post-reperfusion. HIF-1α and TLR4 expression in kidney tissue and PBL were analyzed by Western blotting. I/R-related histological changes were assessed.Expression of HIF-1α in clamped kidneys and PBL was below detection level at baseline, rising to detectable levels after 60 min of hypoxia, and continuing to rise throughout the hypoxic and reperfusion phases. Expression of TLR-4 in clamped kidneys followed a similar trend with initial detection after 30-60 min of hypoxia. Control kidneys exhibited no change in HIF-1α or TLR-4 expression. I/R-related histologic changes were minimal, primarily mild tubular dilatation.In a porcine model of PN, HIF-1α and TLR4 exhibited robust, I/R-related increases in expression in kidney tissue and PBL. Further studies investigating these molecules as potential markers of AKI are warranted.

  7. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  8. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  9. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes

    Robinson, Emily; Durrer, Cody; Simtchouk, Svetlana; Jung, Mary E.; Bourne, Jessica E.; Voth, Elizabeth

    2015-01-01

    Exercise can have anti-inflammatory effects in obesity, but the optimal type and intensity of exercise are not clear. This study compared short-term high-intensity interval training (HIIT) with moderate-intensity continuous training (MICT) in terms of improvement in cardiorespiratory fitness, markers of inflammation, and glucose control in previously inactive adults at elevated risk of developing type 2 diabetes. Thirty-nine inactive, overweight/obese adults (32 women) were randomly assigned to 10 sessions over 2 wk of progressive HIIT (n = 20, four to ten 1-min sessions at ∼90% peak heart rate, 1-min rest periods) or MICT (n = 19, 20-50 min at ∼65% peak heart rate). Before and 3 days after training, participants performed a peak O2 uptake test, and fasting blood samples were obtained. Both HIIT (1.8 ± 0.4 vs. 1.9 ± 0.4 l/min, pre vs. post) and MICT (1.8 ± 0.5 vs. 1.9 ± 0.5 l/min, pre vs. post) improved peak O2 uptake (P HIIT and MICT (P HIIT and MICT (P HIIT or MICT can improve cardiorespiratory fitness and glucose control and lead to reductions in TLR2 and TLR4 expression. MICT, which involved a longer duration of exercise, may be superior for reducing fasting glucose. PMID:26139217

  11. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  12. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF-κB pathway inhibition.

    Makled, Mirhan N; El-Awady, Mohammed S; Abdelaziz, Rania R; Atwan, Nadia; Guns, Emma T; Gameil, Nariman M; Shehab El-Din, Ahmed B; Ammar, Elsayed M

    2016-04-01

    Acute liver injury secondary to sepsis is a major challenge in intensive care unit. This study was designed to investigate potential protective effects of pomegranate against sepsis-induced acute liver injury in rats and possible underlying mechanisms. Pomegranate was orally given (800mg/kg/day) for two weeks before sepsis induction by cecal ligation and puncture (CLP). Pomegranate improved survival and attenuated liver inflammatory response, likely related to downregulation of mRNA expression of toll like recptor-4, reduced nuclear translocation and DNA binding activity of proinflammatory transcription factor NF-κB subunit p65, decreased mRNA and protein expression of tumor necrosis factor-alpha and reduction in myeloperoxidase activity and mRNA expression. Pomegranate also decreased CLP-induced oxidative stress as reflected by decreased malondialdehyde content, and increased reduced glutathione level and superoxide dismutase activity. These results confirm the antiinflammatory and antioxidant effects of pomegranate in CLP-induced acute liver injury mediated through inhibiting TLR4/NF-κB pathway, lipid peroxidation and neutrophil infiltration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Immunomodulatory effect of APS and PSP is mediated by Ca2+-cAMP and TLR4/NF-κB signaling pathway in macrophage.

    Wang, Zhixue; Liu, Zijing; Zhou, Lijng; Long, Tingting; Zhou, Xing; Bao, Yixi

    2017-01-01

    This study is to investigate the role of second messengers and TLR4/NF-κB signaling pathway in the immunomodulatory activities of Astragalus polysaccharide (APS) and Polysaccharopeptide (PSP) in macrophages. RAW 264.7 macrophage cells were treated with APS, PSP, lipopolysaccharide (LPS), or NiCl 2 . Power-spectral method was used to detect protein kinase C (PKC) and Griess reaction to detect nitric oxide (NO). ELISA was conducted to detect cyclic adenosine monophosphate (cAMP), diglycerides (DAG), inositol 1, 4, 5-triphosphate (IP3), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Confocal laser scanning microscopy was performed to detect calcium level. qRT-PCR and Western blot was used to detect mRNA and protein expression of NF-κB. APS and PSP significantly increased the concentrations of intracellular second messengers (NO, cAMP, DAG, IP3, Ca 2+ ) and the activity of PKC in macrophages (pAPS and PSP (pAPS and PSP mediated immunomodulatory activities in macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice.

    Xu, Min-Xuan; Wang, Ming; Yang, Wei-Wei

    2017-01-01

    High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide- co -glycolide)-loaded gold nanoparticles precipitated with quercetin (GQ) to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte injury was found to participate in endotoxin-stimulated inflammatory response. TLR4/NF-κB and Nrf2 pathways were upregulated with high-fat diet intake in mice, resulting in reduction of superoxide dismutase activity and increase in superoxide radical, H 2 O 2 , malondialdehyde, XO, XDH, and XO/XDH ratio. In addition, upregulation of TLR4/NF-κB and oxidative stress by endotoxin were observed in vitro, which were suppressed by GQ administration, ultimately alleviating podocyte injury. These findings indicated that GQ could restore the metabolic disorders caused by high-fat diet, which suppresses insulin

  15. Inflammatory response of TLR4 deficient spleen macrophages (CRL 2471) to Brucella abortus S19 and an isogenic ΔmglA deletion mutant.

    Jacob, Jens; Makou, Patricia; Finke, Antje; Mielke, Martin

    2016-05-01

    Brucellosis is a worldwide distributed zoonosis caused by members of the genus Brucella. One of them, Brucella abortus, is the etiological agent of bovine brucellosis. With the attenuated strain B. abortus S19 a vaccine is available. However, both, virulence (safety) and the ability to induce a protective B and T cell response (efficacy) have to be tested in suitable assays before successful use in the field. For this purpose, several macrophage cell lines of various origins have been used while splenic macrophages are the preferred host cells in vivo. We here characterized the in vitro response of the murine splenic macrophage cell line CRL 2471(I-13.35) to B. abortus. This cell line still depends on the presence of colony-stimulating factor 1 (CSF1) and is derived from LPS resistant (TLR4 deficient) C3H/HeJ mice. For infection the vaccine strain B. abortus S19A as well as the formerly described isogenic deletion mutant B. abortus S19A ΔmglA 3.14 were used. While numbers of viable bacteria did not differ significantly between the vaccine strain and the deletion mutant at 6h post infection, a higher bacterial load was measured in case of the mutant at 24h and 48h after infection. This was also true, when IFNγ was used for macrophage activation. A comprehensive gene expression profile of macrophages was analysed 6 and 24h after infection by means of an RT-PCR based gene expression array. The mutant strain B. abortus S19A ΔmglA 3.14 elicited a stronger cellular response of the splenic macrophages as compared to the parental vaccine strain. This was most prominent for the pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL6 as well as for the chemokine ligands CXCL1, CXCL2, CXCL10, CCL2, CCL5, CCL7, CCL17 and the co-stimulatory molecules CD40 and ICAM1. While these differences were also present in IFNγ-stimulated macrophages, an addition of IFNγ after infection not only resulted in a dramatic increase of the translation of the afore mentioned genes but also

  16. Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNFα-induced inflammatory responses

    Chuang Yung-Jen

    2010-05-01

    Full Text Available Abstract Background Development in systems biology research has accelerated in recent years, and the reconstructions for molecular networks can provide a global view to enable in-depth investigation on numerous system properties in biology. However, we still lack a systematic approach to reconstruct the dynamic protein-protein association networks at different time stages from high-throughput data to further analyze the possible cross-talks among different signaling/regulatory pathways. Methods In this study we integrated protein-protein interactions from different databases to construct the rough protein-protein association networks (PPANs during TNFα-induced inflammation. Next, the gene expression profiles of TNFα-induced HUVEC and a stochastic dynamic model were used to rebuild the significant PPANs at different time stages, reflecting the development and progression of endothelium inflammatory responses. A new cross-talk ranking method was used to evaluate the potential core elements in the related signaling pathways of toll-like receptor 4 (TLR-4 as well as receptors for tumor necrosis factor (TNF-R and interleukin-1 (IL-1R. Results The highly ranked cross-talks which are functionally relevant to the TNFα pathway were identified. A bow-tie structure was extracted from these cross-talk pathways, suggesting the robustness of network structure, the coordination of signal transduction and feedback control for efficient inflammatory responses to different stimuli. Further, several characteristics of signal transduction and feedback control were analyzed. Conclusions A systematic approach based on a stochastic dynamic model is proposed to generate insight into the underlying defense mechanisms of inflammation via the construction of corresponding signaling networks upon specific stimuli. In addition, this systematic approach can be applied to other signaling networks under different conditions in different species. The algorithm and method

  17. Rice Bioactive Peptide Binding with TLR4 To Overcome H2O2-Induced Injury in Human Umbilical Vein Endothelial Cells through NF-κB Signaling.

    Liang, Ying; Lin, Qinlu; Huang, Ping; Wang, Yuqian; Li, Jiajia; Zhang, Lin; Cao, Jianzhong

    2018-01-17

    Reactive oxygen species-induced vessel endothelium injury is crucial in cardiovascular diseases progression. Rice-derived bran bioactive peptides (RBAP) might exert antioxidant effect through unknown mechanisms. Herein, we validated the antioxidant effect and mechanism of RBAP on H 2 O 2 -induced oxidative injury in human umbilical vein endothelial cells (HUVECs). Here, HUVECs were treated with RBAP under H 2 O 2 stimulation; the effects of RBAP on HUVECs oxidative injury were evaluated. H 2 O 2 injury-induced cell morphology changes were ameliorated by RBAP. The effect of H 2 O 2 - on HUVEC apoptosis (percentage of apoptotic cell: 38.00 ± 2.00 in H 2 O 2 group vs 21.07 ± 2.06 in RBAP + H 2 O 2 group, P = 0.0013 compared to H 2 O 2 group), the protein levels of cleaved caspase-3 (relative protein expression: 2.90 ± 0.10 in H 2 O 2 group vs 1.82 ± 0.09 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) and p-p65 (relative protein expression: 1.86 ± 0.09 in H 2 O 2 group vs 1.35 ± 0.08 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) could be attenuated by RBAP. RBAP exerts its protective function through binding with Toll-like receptor 4 (TLR4). Taken together, RBAP protects HUVECs against H 2 O 2 -induced oxidant injury, which provided the theoretical basis for the molecular mechanism of rice deep processing and exploitation of functional peptides.

  18. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3.

    Liu, Guomu; Zhai, Xiaoyu; Zhou, Hongyue; Yang, Xiaoyu; Zhang, Nannan; Tai, Guixiang; Ni, Weihua

    2018-03-01

    Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 + T cells with MBP and BCG in vitro. The results demonstrated that MBP combined with BCG synergistically increased IFN-γ production and TLR2/4/9 expression, suggesting the involvement of TLR2/4/9 in the combination-induced Th1 activation. Next, TLRs 2/4/9 were blocked to analyze the effects of TLRs on Th1 activation. The results demonstrated that MBP induced a low level of Th1 activation by upregulating TLR2-mediated MyD88-TRAF6 and TLR4-mediated TRIF-TRAF3 expression, whereas MBP combined with BCG induced synergistic Th1 activation, which was not only triggered by strong upregulation of TLR2/9-mediated MyD88-TRAF6 expression but also by shifting TLR4-mediated TRIF-TRAF3 into the TRIF-TRAF6 pathway. Moreover, we observed that a TLR4 antibody upregulated MyD88 expression and a TLR9 inhibitor downregulated TRIF expression, indicating that there was cross-talk between TLRs 2/4/9 in MBP combined with BCG-induced Th1 activation. Our findings may expand the knowledge regarding TLR cross-talk involved in regulating the Th1 response. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy.

    Zhu, Su-Hua; Liu, Bing-Qian; Hao, Mao-Juan; Fan, Yi-Xin; Qian, Cheng; Teng, Peng; Zhou, Xiao-Wei; Hu, Liang; Liu, Wen-Tao; Yuan, Zhi-Lan; Li, Qing-Ping

    2017-10-01

    Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.

  20. The Rhizome Mixture of Anemarrhena asphodeloides and Coptidis chinensis Ameliorates Acute and Chronic Colitis in Mice by Inhibiting the Binding of Lipopolysaccharide to TLR4 and IRAK1 Phosphorylation

    Jin-Ju Jeong

    2014-01-01

    Full Text Available In the previous study, the mixture of the rhizome of Anemarrhena asphodeloides (AA, family Liliaceae and the rhizome of Coptidis chinensis (CC, family Ranunculaceae (AC-mix improved TNBS- or oxazolone-induced colitis in mice. Therefore, to investigate its anticolitic mechanism, we measured its effect in acute and chronic DSS-induced colitic mice and investigated its anti-inflammatory mechanism in peritoneal macrophages. AC-mix potently suppressed DSS-induced body weight loss, colon shortening, myeloperoxidase activity, and TNF-α, IL-1β, and IL-6 expressions in acute or chronic DSS-stimulated colitic mice. Among AC-mix ingredients, AA, CC, and their main constituents mangiferin and berberine potently inhibited the expression of proinflammatory cytokines TNF-α and IL-1β, as well as the activation of NF-κB in LPS-stimulated peritoneal macrophages. AA and mangiferin potently inhibited IRAK phosphorylation, but CC and berberine potently inhibited the binding of LPS to TLR4 on macrophages, as well as the phosphorylation of IRAK1. AC-mix potently inhibited IRAK phosphorylation and LPS binding to TLR4 on macrophages. Based on these findings, AC-mix may ameliorate colitis by the synergistic inhibition of IRAK phosphorylation and LPS binding to TLR4 on macrophages.

  1. Common TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis

    Eugen-Olsen Jesper

    2007-09-01

    Full Text Available Abstract Background Several studies have investigated single nucleotide polymorphisms (SNPs in candidate genes associated with sepsis and septic shock with conflicting results. Only few studies have combined the analysis of multiple SNPs in the same population. Methods Clinical data and DNA from consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-α, (TNF-α, interleukin-1β (IL-1β, plasminogen activator-1 (PAI-1, urokinase plasminogen activator (uPA, CD14 and toll-like receptor 4 (TLR4 was done. Results Of 319 adults, 74% had sepsis, 19% had severe sepsis and 7% were in septic shock. No correlation between severity or outcome of sepsis was observed for the analyzed SNPs of TNF-α, IL-1β, PAI-1, uPA, CD14 or TLR-4. In multivariate Cox proportional hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. Conclusion We did not find any association between TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis.

  2. Role of ESAT-6 in renal injury by regulating microRNA-155 expression via TLR4/MyD88 signaling pathway in mice with Mycobacterium tuberculosis infection.

    Zhou, Zhong-Qi; Wang, Zhi-Kui; Zhang, Lei; Ren, Yue-Qin; Ma, Zhong-Wei; Zhao, Nan; Sun, Fu-Yun

    2017-08-31

    The study aims to investigate the underlying mechanism involved in the early secretory antigenic target-6 (ESAT-6) in renal injury through regulation of the expression of miR-155 through the oll-like receptor (TLR)-4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway in Mycobacterium tuberculosis (MTB)-infected mice. Sixty C57BL/6 mice with MTB-induced renal injury were randomly assigned into control, MTB, mimic, inhibitor, inhibitor + ESAT6, and inhibitor + ESAT6 + TAK242 groups. Body weight, the ratio of kidney weight to body weight (Kw/Bw), blood urea nitrogen (BUN), and serum creatinine (Scr) of mice were measured. Flow cytometry was used to detect renal activation in mice. Expressions of miR-155 and ESAT6 were detected by quantitative real-time PCR (qRT-PCR), and Western blotting was used to examine the expressions of ESAT6, TLR4, and MyD88. Expressions of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), and interferon-γ (IFN-γ) were measured by qRT-PCR and ELISA. Compared with the control group, the BUN and Scr levels as well as the expression levels of miR-155 , TLR4, MyD88, TNF-α, IL-17, and IFN-γ increased, while Kw/Bw decreased in the MTB and mimic groups. In comparison with the MTB group, the above indexes except Kw/Bw were elevated in the mimic group, but were reduced in the inhibitor group, while the Kw/Bw dropped in the mimic group but increased in the inhibitor group. Compared with the inhibitor group, the Kw/Bw decreased while the rest of the indexes increased in the inhibitor + ESAT6 group. ESAT6 may induce renal injury by promoting miR-155 expression through the TLR-4/MyD88 signaling pathway in MTB-infected mice. © 2017 The Author(s).

  3. Meat and fiber intake and interaction with pattern recognition receptors (TLR1, TLR2, TLR4, and TLR10) in relation to colorectal cancer in a Danish prospective, case-cohort study.

    Kopp, Tine Iskov; Vogel, Ulla; Tjonneland, Anne; Andersen, Vibeke

    2018-03-01

    Meat and dietary fiber are associated with increased and decreased risk of colorectal cancer (CRC), respectively. Toll-like receptors (TLRs) regulate the intestinal immune response in a complex interplay between the mucosal epithelium and the microbiota and may therefore be important modulators of diet-induced CRC together with other inflammatory mediators. Our aim was to investigate the association between functional TLR polymorphisms and risk of CRC and the interaction with dietary factors. Additionally, interactions with previously studied polymorphisms in IL10, IL1B, PTGS2, and NFKB1 were assessed in order to examine possible biological pathways in meat-induced CRC. A nested case-cohort study of 897 CRC cases and 1689 randomly selected participants from the Danish prospective "Diet, Cancer and Health" study encompassing 57,053 persons was performed using Cox proportional hazard models and the likelihood ratio test. We found associations between polymorphisms in TLR2 (P = 0.018) and TLR4 (P = 0.044) and risk of CRC per se, interactions between intake of red and processed meat (10 g/d) and polymorphisms in TLR1 (P-interaction = 0.032) and TLR10 (P-interaction = 0.026 and 0.036), and intake of cereals (50 g/d) and TLR4 (P-interaction = 0.044) in relation to risk of CRC. Intake of red and processed meat also interacted with combinations of polymorphisms in TLR1 and TLR10 and polymorphisms in NFKB1, IL10, IL1B, and PTGS2 (P-interaction; TLR1/rs4833095 × PTGS2/rs20417 = 0.021, TLR10/rs11096955 × IL10/rs3024505 = 0.047, TLR10/rs11096955 × PTGS2/rs20417 = 0.017, TLR10/rs4129009 × NFKB1/rs28362491 = 0.027, TLR10/rs4129009 × IL1B/rs4848306 = 0.020, TLR10/rs4129009 × IL1B/rs1143623 = 0.021, TLR10/rs4129009 × PTGS2/rs20417 = 0.027), whereas intake of dietary fiber (10 g/d) interacted with combinations of polymorphisms in TLR4, IL10, and PTGS2 (P-interaction; TLR4/rs1554973 × IL10/rs3024505 = 0.0012, TLR4/rs1554973 × PTGS2/rs20417 = 0.0041, TLR4/rs1554973 × PTGS

  4. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kB signaling and Nrf2 pathway in high fat diet fed mice

    Xu MX

    2017-01-01

    Full Text Available Min-Xuan Xu,1,2,* Ming Wang,3,* Wei-Wei Yang4 1Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 2College of Engineering and Applied Sciences, Nanjing University, Nanjing, 3Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 4Department of Nephrology, Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4/nuclear factor-kappa B (NF-κB and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide-co-glycolide-loaded gold nanoparticles precipitated with quercetin (GQ to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte

  5. A preliminary study on the association of single nucleotide polymorphisms of interleukin 4 (IL4, IL13, IL4 receptor alpha (IL4Rα & Toll-like receptor 4 (TLR4 genes with asthma in Indian adults

    Parisa Davoodi

    2015-01-01

    Full Text Available Background & objectives: Interleukin 4 (IL4 and IL13 genes are believed to be responsible for inflammation of the airways in asthmatics. These share a common receptor component called IL4Rα which is another potentially important candidate gene linked to asthma phenotypes. Another gene Toll-like receptor 4 (TLR4 might affect the incidence or progression of asthma through the expression of proinflammatory genes. Several single nucleotide polymorphisms (SNPs in IL4, IL13, IL4Rα and TLR4 have been reported to be linked to asthma or related phenotypes in several ethnic populations using linkage studies and association studies. However, the results have not been consistent. We investigated five SNPs (C-589T and C-33T of IL4, G+2044A of IL13, A+1902G of IL4Rα, and A+896G of TLR4 in patients with adult onset asthma to evaluate their role in manifestation and severity of asthma. Methods: Adult (>18 yr of age patients with asthma (n=100 and healthy controls (n=50 were included in the study. Genotyping was performed using sequenom MassARRAY technology. Results: The mutant alleles of the C-589T and C-33T SNPs in the promoter region of IL4 were present in 4 per cent patients with asthma but absent from the control group suggesting that the variations in IL4 may contribute to asthma occurrence. The SNPs of other genes were seen in both controls and patients. Interpretation & conclusions: The results suggest the possible association between the genetic distribution of C-589T and C-33T SNPs of IL4 with asthma in Indian adults.

  6. Ursolic acid isolated from Uncaria rhynchophylla activates human dendritic cells via TLR2 and/or TLR4 and induces the production of IFN-gamma by CD4+ naïve T cells.

    Jung, Tae-Young; Pham, Thanh Nhan Nguyen; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2010-09-25

    Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro. Dendritic cells harvested on day 8 were examined using functional assay. The expression levels of CD1a, CD80, CD83, CD86, HLA-DR and CCR7 on Ursolic acid-primed dendritic cells was slightly enhanced. Ursolic acid dose-dependently enhanced the T cell stimulatory capacity in an allogeneic mixed lymphocyte reaction, as measured by T cell proliferation. The production of IL-12p70 induced by Ursolic acid-primed dendritic cells was inhibited by the anti-Toll-like receptor-2 (TLR2) mAb and anti-TLR4 mAb. Moreover, Ursolic acid-primed dendritic cells expressed levels of mRNA coding for both TLR2 and TLR4. The majority of cells produced considerable interferon-gamma (IFN-gamma), but also small amounts of interleukin (IL-4)-4. Ursolic acid-primed dendritic cells have an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that Ursolic acid modulates human dendritic cells function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR2 and/or TLR4, and may be used on dendritic cells-based vaccines for cancer immunotherapy. 2010 Elsevier B.V. All rights reserved.

  7. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling.

    Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua

    2018-02-01

    Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley

  8. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner.

    Sun, Lin; Li, Man; Ma, Xun; Feng, Haoyu; Song, Junlai; Lv, Cong; He, Yajun

    2017-11-25

    Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). The post-natal day 1-2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett's test. The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated-at least in part-via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11

  9. Beneficial Effects of Ethyl Pyruvate through Inhibiting High-Mobility Group Box 1 Expression and TLR4/NF-κB Pathway after Traumatic Brain Injury in the Rat

    Xingfen Su

    2011-01-01

    Full Text Available Ethyl pyruvate (EP has demonstrated neuroprotective effects against acute brain injury through its anti-inflammatory action. The nuclear protein high-mobility group box 1 (HMGB1 can activate inflammatory pathways when released from dying cells. This study was designed to investigate the protective effects of EP against secondary brain injury in rats after Traumatic Brain Injury (TBI. Adult male rats were randomly divided into three groups: (1 Sham + vehicle group, (2 TBI + vehicle group, and (3 TBI + EP group (n=30 per group. Right parietal cortical contusion was made by using a weight-dropping TBI method. In TBI + EP group, EP was administered intraperitoneally at a dosage of 75 mg/kg at 5 min, 1 and 6 h after TBI. Brain samples were harvested at 24 h after TBI. We found that EP treatment markedly inhibited the expressions of HMGB1 and TLR4, NF-κB DNA binding activity and inflammatory mediators, such as IL-1β, TNF-α and IL-6. Also, EP treatment significantly ameliorated beam walking performance, brain edema, and cortical apoptotic cell death. These results suggest that the protective effects of EP may be mediated by the reduction of HMGB1/TLR4/NF-κB-mediated inflammatory response in the injured rat brain.

  10. The Fps/Fes kinase regulates the inflammatory response to endotoxin through down-regulation of TLR4, NF-kappaB activation, and TNF-alpha secretion in macrophages.

    Parsons, Sean A; Greer, Peter A

    2006-12-01

    Fps/Fes and Fer are members of a distinct subfamily of cytoplasmic protein tyrosine kinases that have recently been implicated in the regulation of innate immunity. Previous studies showed that mice lacking Fps/Fes are hypersensitive to systemic LPS challenge, and Fer-deficient mice displayed enhanced recruitment of leukocytes in response to local LPS challenge. This study identifies physiological, cellular, and molecular defects that contribute to the hyperinflammatory phenotype in Fps/Fes null mice. Plasma TNF-alpha levels were elevated in LPS challenged Fps/Fes null mice as compared with wild-type mice and cultured Fps/Fes null peritoneal macrophages treated with LPS showed increased TNF-alpha production. Cultured Fps/Fes null macrophages also displayed prolonged LPS-induced degradation of IkappaB-alpha, increased phosphorylation of the p65 subunit of NF-kappaB, and defective TLR4 internalization, compared with wild-type macrophages. Together, these observations provide a likely mechanistic basis for elevated proinflammatory cytokine secretion by Fps/Fes null macrophages and the increased sensitivity of Fps/Fes null mice to endotoxin. We posit that Fps/Fes modulates the innate immune response of macrophages to LPS, in part, by regulating internalization and down-regulation of the TLR4 receptor complex.

  11. Glutamate receptor agonists

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  12. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE-/- mice as well as smooth muscle cells.

    Wang, Zhaojun; Wang, Zhongqun; Zhu, Jie; Long, Xinguang; Yan, Jinchuan

    2018-02-01

    Background and objectives Vascular calcification is a common complication in atherosclerosis. Accumulating evidence showed that Toll-like receptors (TLRs) mediate pro-inflammatory and atherosclerosis. Recent studies demonstrated that vascular calcification is one of the detrimental effects of vitamin K (Vit K) antagonists. However, the effects of Vit K on the expression of TLR2 and 4 and intimal calcification in artery remained unidentified. Methods and results Eighteen ApoE -/- mice were randomly divided into model group, Vit K-treated group, and control group. The mice of model and Vit K-treated group were fed with high-fat diet, while control group mice were fed with normal diet. Mice of Vit K-treated group were administered orally with vitamin K2 (40 mg.kg -1 .day -1 ) for 12 weeks. Twelve weeks later the aortic sections of mice were acquired and stained with hematoxylin and eosin and von Kossa, respectively. Calcium content and activity of alkaline phosphatase (ALP) at aortic tissues were measured. The expression levels of TLR2 and TLR4 in aorta sections were detected by immunohistochemisty and RT-PCR, respectively. The effects of Vit K on cellular calcification were further studied in A7r5 SMCs. Results demonstrated that high-fat diet induced typical atherosclerosis with intimal calcification in ApoE -/- mice, while in Vit K-treated group atherosclerosis and calcium deposits were not serious; Vit K2 also inhibited cellular calcification in A7r5 SMCs. Quantitative analysis showed that calcium and ALP activity at aortic tissues in the Vit K-treated mice were significantly lower than that of the model group ( P < 0.01); Compared to the control group, the expression levels of TLR2 and TLR4 in the model group were significantly higher ( P < 0.05), while in Vit K-treated group the levels of TLR2 and 4 were significantly lower than that in the model group. Furthermore, the content of calcium was positively related to the expression levels of TLR2 and TLR4

  13. Common TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis

    Jessen, Kirstine Marie; Lindboe, Sarah Bjerre; Petersen, Anncatrine Luisa

    2007-01-01

    consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-alpha, (TNF-alpha), interleukin-1 beta (IL-1 beta), plasminogen activator-1 (PAI-1), urokinase plasminogen activator (uPA), CD14...... hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. CONCLUSION: We did not find any association between TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors...... appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis....

  14. Protective effect of Rabdosia amethystoides (Benth Hara extract on acute liver injury induced by Concanavalin A in mice through inhibition of TLR4-NF-κB signaling pathway

    Ke-Feng Zhai

    2016-02-01

    Full Text Available Extract of Rabdosia amethystoides (Benth Hara (ERA, a traditional Chinese medicine has antibacterial, antiviral, anti-tumor, anti-hepatitis and anti-inflammatory properties. However, the hepatoprotective effects and molecular mechanisms of ERA on acute liver injury have not been fully elucidated. This study aims to investigate the anti-inflammatory effect and liver protection of ERA against the acute liver injury induced by Concanavalin A (Con A and its underlying molecular mechanisms in mice. Mice received ERA (50, 100, 150 mg/kg body weight by gavage before Con A intravenous administration. We found that ERA pretreatment was able to significantly reduce the elevated serum alanine and aspartate aminotransferase levels and liver necrosis in Con A-induced hepatitis. In addition, ERA treatment significantly decreased the myeloperoxidase, malondialdehyde levels and augmented superoxide dismutase level in the liver tissue, and also suppressed the secretion of proinflammatory cytokines in the serum, compared with Con A group by enzyme linked immunosorbent assay. Furthermore, we observed that ERA pretreatment can significantly decrease the expression level of Toll-like receptor (TLR 4 mRNA or protein in liver tissues. Further results showed that ERA pretreatment was capable of attenuating the activation of the NF-κB pathway by inhibiting IκBα kinase and p65 phosphorylation in Con A-induced liver injury. Our results demonstrate that ERA pretreatment has hepatoprotective property against Con A-induced liver injury through inhibition of inflammatory mediators in mice. The beneficial effect of ERA may be mediated by the downregulation of TLR4 expression and the inhibition of NF-κB activation.

  15. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-05-01

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma.

    Aryan, Zahra; Holgate, Stephen T; Radzioch, Danuta; Rezaei, Nima

    2014-01-01

    Toll-like receptors (TLR) belong to a large family of pattern recognition receptors known as the ancient 'gatekeepers' of the immune system. TLRs are located at the first line of defense against invading pathogens as well as aeroallergens, making them interesting targets to modulate the natural history of respiratory allergy. Agonists of TLRs have been widely employed in therapeutic or prophylactic preparations useful for asthma/allergic rhinitis (AR) patients. MPL® (a TLR4 agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a TLR9 agonist, show strong immunogenicity effects that make them appropriate adjuvants for allergy vaccines. Targeting the TLRs can enhance the efficacy of specific allergen immunotherapy, currently the only available 'curative' treatment for respiratory allergies. In addition, intranasal administration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 agonist) as stand-alone therapeutics have revealed efficacy in the relief of the symptoms of AR patients. No anaphylaxis has been so far reported with such compounds targeting TLRs, with the most common adverse effects being transient and local irritation (e.g. redness, swelling and pruritus). Many other compounds that target TLRs have been found to suppress airway inflammation, eosinophilia and airway hyper-responsiveness in various animal models of allergic inflammation. Indeed, in the future a wide variability of TLR agonists and even antagonists that exhibit anti-asthma/AR effects are likely to emerge. © 2014 S. Karger AG, Basel.

  17. Chlamydia abortus Pmp18.1 Induces IL-1β Secretion by TLR4 Activation through the MyD88, NF-κB, and Caspase-1 Signaling Pathways.

    Pan, Qing; Zhang, Qiang; Chu, Jun; Pais, Roshan; Liu, Shanshan; He, Cheng; Eko, Francis O

    2017-01-01

    The polymorphic membrane protein D (Pmp18D) is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1) as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s) involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18.1-mediated innate immune activation. Finally, the effect of siRNA targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in DCs on IL-1β cytokine secretion was also investigated. Bone marrow-derived dendritic cells (BMDCs) were stimulated with rPmp18.1 in the presence or absence of VCG or CpG or FL and the magnitude of cytokines produced was assessed using a multiplex cytokine ELISA assay. Expression of costimulatory molecules and Toll-like receptors (TLRs) was analyzed by flow cytometry. Quantitation of intracellular levels of myeloid differentiation factor 88 (MyD88), nuclear factor kappa beta (NF-κB p50/p65), and Caspase-1 was evaluated by Western immunoblotting analysis while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The results showed DC stimulation with rPmp18.1 provoked the secretion of proinflammatory cytokines and upregulated expression of TLRs and co-stimulatory molecules associated with DC maturation. These responses were significantly ( p ≤ 0.001) enhanced by VCG but not CpG or FL. In addition, rPmp18.1 activated the expression of MyD88, NF-κB p50, and Caspase-1 as well as the nuclear expression of NF-κB p65 in treated DCs. Furthermore, targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in BMDCs with siRNA significantly reduced their expression levels, resulting in decreased IL-1β cytokine

  18. Chlamydia abortus Pmp18.1 Induces IL-1β Secretion by TLR4 Activation through the MyD88, NF-κB, and Caspase-1 Signaling Pathways

    Qing Pan

    2017-12-01

    Full Text Available The polymorphic membrane protein D (Pmp18D is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1 as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18.1-mediated innate immune activation. Finally, the effect of siRNA targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in DCs on IL-1β cytokine secretion was also investigated. Bone marrow-derived dendritic cells (BMDCs were stimulated with rPmp18.1 in the presence or absence of VCG or CpG or FL and the magnitude of cytokines produced was assessed using a multiplex cytokine ELISA assay. Expression of costimulatory molecules and Toll-like receptors (TLRs was analyzed by flow cytometry. Quantitation of intracellular levels of myeloid differentiation factor 88 (MyD88, nuclear factor kappa beta (NF-κB p50/p65, and Caspase-1 was evaluated by Western immunoblotting analysis while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The results showed DC stimulation with rPmp18.1 provoked the secretion of proinflammatory cytokines and upregulated expression of TLRs and co-stimulatory molecules associated with DC maturation. These responses were significantly (p ≤ 0.001 enhanced by VCG but not CpG or FL. In addition, rPmp18.1 activated the expression of MyD88, NF-κB p50, and Caspase-1 as well as the nuclear expression of NF-κB p65 in treated DCs. Furthermore, targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in BMDCs with siRNA significantly reduced their expression levels, resulting in decreased IL-1

  19. PARTIAL AGONISTS, FULL AGONISTS, ANTAGONISTS - DILEMMAS OF DEFINITION

    HOYER, D; BODDEKE, HWGM

    The absence of selective antagonists makes receptor characterization difficult, and largely dependent on the use of agonists. However, there has been considerable debate as to whether certain drugs acting at G protein-coupled receptors are better described as agonists, partial agonists or

  20. Polydatin Protects Rat Liver against Ethanol-Induced Injury: Involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-κB p65 Pathway

    Qiong-Hui Huang

    2017-01-01

    Full Text Available Excessive alcohol consumption leads to serious liver injury, associating with oxidative stress and inflammatory response. Previous study has demonstrated that polydatin (PD exerted antioxidant and anti-inflammatory effects and attenuated ethanol-induced liver damage, but the research remained insufficient. Hence, this experiment aimed to evaluate the hepatoprotective effect and potential mechanisms of PD on ethanol-induced hepatotoxicity. Our results showed that PD pretreatment dramatically decreased the levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and lactate dehydrogenase (LDH in the serum, suppressed the malonaldehyde (MDA and triglyceride (TG content and the production of reactive oxygen species (ROS, and enhanced the activities of superoxide dismutase (SOD, glutathione peroxidase (GSH-Px, catalase (CAT, andalcohol dehydrogenase (ADH, and aldehyde dehydrogenase (ALDH, paralleled by an improvement of histopathology alterations. The protective effect of PD against oxidative stress was probably associated with downregulation of cytochrome P450 2E1 (CYP2E1 and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2 and its target gene haem oxygenase-1 (HO-1. Moreover, PD inhibited the release of proinflammatory cytokines (TNF-α, IL-1β, and IL-6 via downregulating toll-like receptor 4 (TLR4 and nuclear factor kappa B (NF-κB p65. To conclude, PD pretreatment protects against ethanol-induced liver injury via suppressing oxidative stress and inflammation.

  1. The effect of melatonin from slow-release implants on basic and TLR-4-mediated gene expression of inflammatory cytokines and their receptors in the choroid plexus in ewes.

    Kowalewska, M; Herman, A P; Szczepkowska, A; Skipor, J

    2017-08-01

    The present study concerns the effect of melatonin from slow-release implants on the expression of genes coding interleukin-1β (Il1B), inerleukin-6 (Il6), tumour necrosis factor α (Tnf) and their receptors: IL-1 receptor type I (Il1r1) and type II (Il1r2), IL-6 receptor (Il6r) and signal transducer (Il6st), TNFα receptor type I (Tnfrsf1a) and II (Tnfrsf1b) and retinoid-related orphan receptor α (RorA) and Rev.-erbα in the ovine choroid plexus (CP) under basal and lipopolysaccharide (LPS)-challenged conditions. Studies were performed on four groups: 1) sham-implanted and placebo-treated, 2) melatonin-implanted (Melovine, 18mg) and placebo-treated, 3) sham-implanted and LPS-treated (400ng/kg of body weight) and 4) melatonin-implanted and LPS-treated. Under basal conditions, we observed weak expression of Tnf, low expression of Il1B, Il6 and Il1r2 and intermediate expression of other cytokines receptors. LPS treatment induced (P≤0.05) expression in all cytokines and their receptors, except Il6r 3h after the administration. Melatonin attenuated (P≤0.05) LPS-induced up-regulation of Il6 but had no effect on other cytokines and their receptors and up-regulated (P≤0.05) Rev.-erbα expression under basal conditions. This indicates that melatonin from slow-release implants suppresses TLR4-mediated Il6 expression in the ovine CP via a mechanism likely involving clock genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  3. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation

    Yang Tian

    2016-10-01

    Full Text Available Abstract Background Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive. Methods In this study, we established an arterialized mouse non-heart-beating (NHB liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion. Results MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation. Conclusion Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.

  4. Synthetic Cannabinoids

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  5. Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation

    Palová-Jelínková, Lenka; Dáňová, Klára; Drašarová, Hana; Dvořák, Miloš; Funda, David P.; Fundová, Petra; Kotrbová-Kozak, Anna; Černá, Marie; Kamanová, Jana; Martin, Stefan F.; Freudenberg, Marina; Tučková, Ludmila

    2013-01-01

    Celiac disease (CD) is a gluten-responsive, chronic inflammatory enteropathy. IL-1 cytokine family members IL-1β and IL-18 have been associated with the inflammatory conditions in CD patients. However, the mechanisms of IL-1 molecule activation in CD have not yet been elucidated. We show in this study that peripheral blood mononuclear cells (PBMC) and monocytes from celiac patients responded to pepsin digest of wheat gliadin fraction (PDWGF) by a robust secretion of IL-1β and IL-1α and a slightly elevated production of IL-18. The analysis of the upstream mechanisms underlying PDWGF-induced IL-1β production in celiac PBMC show that PDWGF-induced de novo pro-IL-1β synthesis, followed by a caspase-1 dependent processing and the secretion of mature IL-1β. This was promoted by K+ efflux and oxidative stress, and was independent of P2X7 receptor signaling. The PDWGF-induced IL-1β release was dependent on Nod-like receptor family containing pyrin domain 3 (NLRP3) and apoptosis-associated speck like protein (ASC) as shown by stimulation of bone marrow derived dendritic cells (BMDC) from NLRP3−/− and ASC−/− knockout mice. Moreover, treatment of human PBMC as well as MyD88−/− and Toll-interleukin-1 receptor domain-containing adaptor-inducing interferon-β (TRIF)−/− BMDC illustrated that prior to the activation of caspase-1, the PDWGF-triggered signal constitutes the activation of the MyD88/TRIF/MAPK/NF-κB pathway. Moreover, our results indicate that the combined action of TLR2 and TLR4 may be required for optimal induction of IL-1β in response to PDWGF. Thus, innate immune pathways, such as TLR2/4/MyD88/TRIF/MAPK/NF-κB and an NLRP3 inflammasome activation are involved in wheat proteins signaling and may play an important role in the pathogenesis of CD. PMID:23658628

  6. Dopaminergic agonists for hepatic encephalopathy

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy....

  7. Synthetic environments

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  8. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists.

    Tomic, Sergej; Djokic, Jelena; Vasilijic, Sasa; Vucevic, Dragana; Todorovic, Vera; Supic, Gordana; Colic, Miodrag

    2011-04-01

    Adult mesenchymal stem cells (MSCs) have recently become a potent tool in regenerative medicine. Due to certain shortcomings of obtaining bone marrow MSCs, alternate sources of MSCs have been sought. In this work, we studied MSCs from dental pulp (DP-MSCs) and dental follicle (DF-MSCs), isolated from the same tooth/donor, to define differences in their phenotypic properties, differentiation potential, and immunomodulatory activities. Both cell types showed colony-forming ability and expressed typical MSCs markers, but differed in the levels of their expression. DF-MSCs proliferated faster, contained cells larger in diameter, exhibited a higher potential to form adipocytes and a lower potential to form chondrocytes and osteoblasts, compared with DP-MSCs. In contrast to DF-MSCs, DP-MSCs produced the transforming growth factor (TGF)-β and suppressed proliferation of peripheral blood mononuclear cells, which could be neutralized with anti-TGF-β antibody. The treatment with toll-like receptor 3 (TLR3) agonist augmented the suppressive potential of both cell types and potentiated TGF-β and interleukin-6 secretions by these cells. TLR4 agonist augmented the suppressive potential of DF-MSCs and increased TGF-β production, but abrogated the immunosuppressive activity of DP-MSCs by inhibiting TGF-β production and the expression of indolamine-2,3-dioxygenase-1. Some of these effects correlated with the higher expression of TLR3 and TLR4 by DP-MSCs compared with DF-MSCs. When transplanted in imunocompetent xenogenic host, both cell types induced formation of granulomatous tissue. In conclusion, our results suggest that dental MSCs are functionally different and each of these functions should be further explored in vivo before their specific biomedical applications.

  9. Synthetic Rutile

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  10. Natural - synthetic - artificial!

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  11. Synthetic Brainbows

    Wan, Y.

    2013-06-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.

  12. Synthetic Botany.

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Anti-inflammatory effects of the new generation synthetic surfactant CHF5633 on Ureaplasma-induced cytokine responses in human monocytes.

    Glaser, Kirsten; Fehrholz, Markus; Henrich, Birgit; Claus, Heike; Papsdorf, Michael; Speer, Christian P

    2017-02-01

    Synthetic surfactants represent a promising alternative to animal-derived preparations in the treatment of neonatal respiratory distress syndrome. The synthetic surfactant CHF5633 has proven biophysical effectiveness and, moreover, demonstrated anti-inflammatory effects in LPS-stimulated monocytes. With ureaplasmas being relevant pathogens in preterm lung inflammation, the present study addressed immunomodulatory features on Ureaplasma-induced monocyte cytokine responses. Ureaplasma parvum-stimulated monocytes were exposed to CHF5633. TNF-α, IL-1β, IL-8, IL-10, TLR2 and TLR4 expression were analyzed using qPCR and flow cytometry. CHF5633 did not induce pro-inflammation, and did not aggravate Ureaplasma-induced pro-inflammatory cytokine responses. It suppressed U. parvum-induced intracellular TNF-α (p Ureaplasma-induced TNF-α mRNA (p Ureaplasma-modulated IL-8, IL-10, TLR2 and TLR4 were unaffected. CHF5633 does neither act pro-apoptotic nor pro-inflammatory in native and Ureaplasma-infected monocytes. Suppression of Ureaplasma-induced TNF-α and IL-1β underlines anti-inflammatory features of CHF5633.

  14. Novel non-indolic melatonin receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude

    Drijfhout, W.J; de Vries, J.B; Homan, E.J; Brons, H.F; Copinga, S; Gruppen, G; Beresford, I.J M; Hagan, R.M; Grol, Cor; Westerink, B.H.C.

    1999-01-01

    In this study we have examined the ability of melatonin and four synthetic melatonin receptor agonists to entrain endogenous melatonin secretion in rats, free running in constant darkness. The circadian melatonin profile was measured by trans-pineal microdialysis, which not only reveals the time of

  15. Hormones and β-Agonists

    Ginkel, van L.A.; Bovee, T.F.H.; Blokland, M.H.; Sterk, S.S.; Smits, N.G.E.; Pleadin, Jelka; Vulić, Ana

    2016-01-01

    This chapter provides some updated information on contemporary methods for hormone and β-agonist analyses. It deals with the classical approaches for the effective detection and identification of exogenous hormones. The chapter examines specific problems related to control strategies for natural

  16. Synthetic Astrobiology

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  17. Protective Effect of 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1, 4-Dione, Isolated from Averrhoa Carambola L., Against Palmitic Acid-Induced Inflammation and Apoptosis in Min6 Cells by Inhibiting the TLR4-MyD88-NF-κB Signaling Pathway

    Qiuqiao Xie

    2016-09-01

    Full Text Available Background/Aims: Studies have demonstrated that 2-dodecyl-6-methoxycyclohexa-2, 5-diene-1, 4-dione (DMDD, isolated from the roots of Averrhoa carambola L., has significant therapeutic potential for the treatment of diabetes. However, the protective effect of DMDD against pancreatic beta cell dysfunction has never been reported. We investigated whether DMDD protected against palmitic acid-induced dysfunction in pancreatic β-cell line Min6 cells by attenuating the inflammatory response and apoptosis and to shed light on its possible mechanism. Methods: Cell viability was assessed by CCK-8. Glucose-stimulated insulin secretion levels and inflammatory cytokines levels were examined by ELISA. Apoptosis was assessed by Annexin V-FITC/PI Flow cytometry assay, Hoechst 33342/PI double-staining assay, and Transmission electron microscopy assay. Relative quantitative real-time PCR and western blot were used to determine the expressions of genes and proteins. Results: Cell viability and glucose-stimulated insulin secretion levels were increased in DMDD-pretreated Min6 cells. DMDD inhibited inflammatory cytokines IL-6, TNF-α and MCP-1 generations in palmitic acid (PA-induced Min6 cells. Moreover, DMDD protected against PA-induced Min6 cells apoptosis and the expression of Cleaved-Caspase-3, -8 and -9 were down-regulated and the Bcl-2/Bax ratio was increased in DMDD-pretreated Min6 cells. In addition, the expression of TLR4, MyD88 and NF-κB were down-regulated in DMDD-pretreated Min6 cells and TAK-242-pretreated group cells. Conclusions: DMDD protected Min6 cells against PA-induced dysfunction by attenuating the inflammatory response and apoptosis, and its mechanism of this protection was associated with inhibiting the TLR4-MyD88-NF-κB signaling pathway.

  18. Protective Effect of 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1, 4-Dione, Isolated from Averrhoa Carambola L., Against Palmitic Acid-Induced Inflammation and Apoptosis in Min6 Cells by Inhibiting the TLR4-MyD88-NF-κB Signaling Pathway.

    Xie, Qiuqiao; Zhang, Shijun; Chen, Chunxia; Li, Juman; Wei, Xiaojie; Xu, Xiaohui; Xuan, Feifei; Chen, Ning; Pham, Thithaihoa; Qin, Ni; He, Junhui; Ye, Fangxing; Huang, Wansu; Huang, Renbin; Wen, Qingwei

    2016-01-01

    Studies have demonstrated that 2-dodecyl-6-methoxycyclohexa-2, 5-diene-1, 4-dione (DMDD), isolated from the roots of Averrhoa carambola L., has significant therapeutic potential for the treatment of diabetes. However, the protective effect of DMDD against pancreatic beta cell dysfunction has never been reported. We investigated whether DMDD protected against palmitic acid-induced dysfunction in pancreatic β-cell line Min6 cells by attenuating the inflammatory response and apoptosis and to shed light on its possible mechanism. Cell viability was assessed by CCK-8. Glucose-stimulated insulin secretion levels and inflammatory cytokines levels were examined by ELISA. Apoptosis was assessed by Annexin V-FITC/PI Flow cytometry assay, Hoechst 33342/PI double-staining assay, and Transmission electron microscopy assay. Relative quantitative real-time PCR and western blot were used to determine the expressions of genes and proteins. Cell viability and glucose-stimulated insulin secretion levels were increased in DMDD-pretreated Min6 cells. DMDD inhibited inflammatory cytokines IL-6, TNF-α and MCP-1 generations in palmitic acid (PA)-induced Min6 cells. Moreover, DMDD protected against PA-induced Min6 cells apoptosis and the expression of Cleaved-Caspase-3, -8 and -9 were down-regulated and the Bcl-2/Bax ratio was increased in DMDD-pretreated Min6 cells. In addition, the expression of TLR4, MyD88 and NF-κB were down-regulated in DMDD-pretreated Min6 cells and TAK-242-pretreated group cells. DMDD protected Min6 cells against PA-induced dysfunction by attenuating the inflammatory response and apoptosis, and its mechanism of this protection was associated with inhibiting the TLR4-MyD88-NF-κB signaling pathway. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Ghrelin receptor agonist (TZP-101) accelerates gastric emptying in adults with diabetes and symptomatic gastroparesis

    Ejskjaer, N; Vestergaard, E T; Hellström, P M

    2009-01-01

    BACKGROUND: TZP-101 is a synthetic, selective ghrelin agonist in development for gastroparesis. AIM: To assess safety and effects of TZP-101 in diabetes patients with symptomatic gastroparesis. METHODS: Adults with type 1 or type 2 diabetes mellitus received placebo and TZP-101 (80, 160, 320 or 600...... between TZP-101 and placebo. CONCLUSIONS: This proof-of-concept study demonstrates that the ghrelin agonist TZP-101 is well-tolerated in diabetes patients with moderate-to-severe chronic gastroparesis and shows statistically significant improvements in gastric emptying....

  20. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.

  1. The Pharmacologic and Clinical Effects of Illicit Synthetic Cannabinoids.

    White, C Michael

    2017-03-01

    This article presents information on illicitly used synthetic cannabinoids. Synthetic cannabinoids are structurally heterogeneous and commonly used drugs of abuse that act as full agonists of the cannabinoid type-1 receptor but have a variety of additional pharmacologic effects. There are numerous cases of patient harm and death in the United States, Europe, and Australia with many psychological, neurological, cardiovascular, pulmonary, and renal adverse events. Although most users prefer using cannabis, there are convenience, legal, and cost reasons driving the utilization of synthetic cannabinoids. Clinicians should be aware of pharmacologic and clinical similarities and differences between synthetic cannabinoid and cannabis use, the limited ability to detect synthetic cannabinoids in the urine or serum, and guidance to treat adverse events. © 2016, The American College of Clinical Pharmacology.

  2. Muscarinic Receptor Agonists and Antagonists

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  3. Emerging GLP-1 receptor agonists

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    and liraglutide, as well as the emerging GLP-1R agonists including the long-acting compounds. Expert opinion: An emerging therapeutic trend toward initial or early combination therapy with metformin- and incretin-based therapy is anticipated for patients with type 2 diabetes. GLP-1-based therapy has so far proven...... development may improve the effects of GLP-1 even further with optimized pharmacokinetic profiles resulting in fewer side effects. Meta-analyses have shown promising effects on cardiovascular disease and data from ongoing multicenter trials with cardiovascular endpoints are expected in 2015....

  4. The epileptogenic spectrum of opiate agonists.

    Snead, O C; Bearden, L J

    1982-11-01

    The present authors gave mu, delta, kappa, epsilon and sigma opiate receptor agonists intracerebroventricularly to rats both singly and in combination while monitoring the electroencephalogram from cortical and depth electrodes. Dose-response curves were plotted with naloxone against the changes produced by each agonist, and the effect of a number of anticonvulsant drugs on agonist-induced seizures was ascertained. Each opiate agonist produced a different seizure pattern with a different naloxone dose-response curve and anticonvulsant profile. The order of convulsive potency was epsilon greater than delta greater than mu greater than sigma much greater than kappa. Petit mal-like seizure activity was unique to the delta agonist, leucine-enkephalin, while only the mu agonist, morphine produced generalized convulsive seizures. These experiments raise the possibility that opiate systems in the brain may be involved in the pathogenesis of a wide spectrum of seizure disorders.

  5. AGONISTIC BEHAVIOR OF LABORATORY MICE

    D. Cinghiţă

    2005-01-01

    Full Text Available In this work we study agonistic behavior of laboratory white mice when they are kept in captivity. For all this experimental work we used direct observation of mice, in small lists, because we need a reduced space to emphasize characteristics of agonistic behavior. Relations between members of the same species that live in organized groups are based in most cases on hierarchical structure. Relations between leader and subservient, decided by fighting, involve a thorough observation between individuals. Each member of a group has its own place on the ierarchical scale depending on resultes of fhights – it can be leader or it can be subsurvient, depending on if it wines or looses the fight. Once hierarchical scale made, every animal will adjust its behavior. After analyzing the obtained data we have enough reasons to believe that after fights the winner, usually, is the massive mouse, but it is also very important the sexual ripeness, so the immature male will be beaten. The leader male had a big exploring area and it checks up all territory.The females can be more aggressive, its fights are more brutal, than male fights are, when they fight for supremacy, but in this case fights are not as frequent as in the case of males. Always the superior female, on hierarchical scale, shows males its own statute, so the strongest genes will be perpetuated.

  6. Synthetic biology, inspired by synthetic chemistry.

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Synthetic cannabimimetic agents metabolized by carboxylesterases

    Thomsen, Ragnar; Nielsen, Line M; Holm, Niels B

    2015-01-01

    Synthetic cannabimimetic agents are a large group of diverse compounds which act as agonists at cannabinoid receptors. Since 2004, synthetic cannabinoids have been used recreationally, although several of the compounds have been shown to cause severe toxicity in humans. In this study......, the metabolism of two indazole carboxamide derivatives, AB-PINACA and AB-FUBINACA, was investigated by using human liver microsomes (HLM). For both compounds, a major metabolic pathway was the enzymatic hydrolysis of the primary amide, resulting in the major metabolites AB-PINACA-COOH and AB-FUBINACA-COOH. Other...... major metabolic pathways were mono-hydroxylation of the N-pentyl chain in AB-PINACA and mono-hydroxylation of the 1-amino-3-methyl-1-oxobutane moiety in AB-FUBINACA. To identify the enzyme(s) responsible for the amide hydrolysis, incubations with recombinant carboxylesterases and human serum, as well...

  8. Plant synthetic biology.

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synthetic Cathinones ("Bath Salts")

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  10. Beta-agonists and animal welfare

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  11. Small molecule fluoride toxicity agonists.

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from effluents in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. LACTIC ACIDOSIS: A RARE MANIFESTATION OF SYNTHETIC MARIJUANA INTOXICATION.

    Antill, T; Jakkoju, A; Dieguez, J; Laskhmiprasad, L

    2015-01-01

    Synthetic cannabinoids are designer drugs that mimic the effect of cannabis, which has become popular with young drug users. These drugs have a similar chemical structure and pharmacologic effects as marijuana, but seem to be more potent. These substances have been banned by the US Drug Enforcement Agency in 2010. Prior to 2010, these drugs were perceived as "safer" by the general population. Synthetic cannabinoids cause effects similar to marijuana making the subjects euphoric. However, they act as full, rather than partial, agonist at the receptor sites causing more severe side effects such as severe agitation, seizures, acute renal failure, and lactic acidosis.

  14. Trial Watch: Toll-like receptor agonists in oncological indications.

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  15. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  16. Dopamine Agonists and Pathologic Behaviors

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  17. Endogenous Receptor Agonists: Resolving Inflammation

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  18. Antineoplastic Effects of PPARγ Agonists, with a Special Focus on Thyroid Cancer.

    Ferrari, Silvia Martina; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro; Fallahi, Poupak

    2016-01-01

    Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a ligand-activated nuclear hormone receptor that functions as transcription factor and plays an important role in lipid metabolism and insulin sensitization. Recent studies have shown that PPARγ is overexpressed in many tumor types, including cancers of breast, lung, pancreas, colon, glioblastoma, prostate and thyroid differentiated/anaplastic cancers. These data suggest a role of PPARγ in tumor development and/or progression. PPARγ is emerging as a growth-limiting and differentiation-promoting factor, and it exerts a tumor suppressor role. Moreover, naturally-occurring and synthetic PPARγ agonists promote growth inhibition and apoptosis. Thiazolidinediones (TZDs) are synthetic agonists of PPARγ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity. Various preclinical and clinical studies strongly suggest a role for TZDs both alone and in combination with existing chemotherapeutic agents, for the treatment of cancer. Differentiation therapy involves the use of agents with the ability to induce differentiation in cells that have lost this ability, i.e. cancer cells, targeting pathways capable of re-activating blocked terminal differentiation programs. PPARγ agonists have been shown to induce differentiation in solid tumors such as thyroid differentiated/ anaplastic cancers and sarcomas. However, emerging data suggest that chronic use of TZDs is associated with increased risk of adverse cardiovascular events. The exploration of newer PPARγ agonists can help in unveiling the underlying mechanisms of these drugs, providing new molecules that are able to treat cancer, without increasing the cardiovascular risk of neoplastic patients.

  19. Evolvable synthetic neural system

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  20. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells.

    Lee, Young Han; Jeon, Seung-Hyun; Kim, Se Hyun; Kim, Changyoun; Lee, Seung-Jae; Koh, Dongsoo; Lim, Yoongho; Ha, Kyooseob; Shin, Soon Young

    2012-06-30

    Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IκB and p65/RelA NF-κB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-κB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, and IL-1β, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant- active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IκB kinase (IKK)/NF-κB signaling pathway.

  1. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  2. [From synthetic biology to synthetic humankind].

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Toll-like receptor-4 (TLR-4) expression on polymorphonuclear ...

    reading 5

    leukocytes (PMN) functions in dairy cow during perinatal period, the counting of PMN, as well as the. mRNA and .... The RNA samples were treated with DNaseI to .... Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res.

  4. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists.

    Shey, Muki S; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.

  5. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists.

    Muki S Shey

    Full Text Available HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β or agonists for TLR4 (LPS, TLR2/1 (PAM3 and TLR7/8 (R848. Migration (frequency and activation (HLA-DR expression of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833. There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77. Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.

  6. Designing synthetic biology.

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  7. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.

    Zhang, Xue-Qing; Even-Or, Orli; Xu, Xiaoyang; van Rosmalen, Mariska; Lim, Lucas; Gadde, Suresh; Farokhzad, Omid C; Fisher, Edward A

    2015-01-28

    Liver X receptor (LXR) signaling pathways regulate lipid metabolism and inflammation, which has generated widespread interest in developing synthetic LXR agonists as potential therapeutics for the management of atherosclerosis. In this study, it is demonstrated that nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (NP-LXR) exert anti-inflammatory effects and inhibit the development of atherosclerosis without causing hepatic steatosis. These NPs are engineered through self-assembly of a biodegradable diblock poly(lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) copolymer. NP-LXR is significantly more effective than free GW3965 at inducing LXR-target gene expression and suppressing inflammatory factors in macrophages in vitro and in vivo. Additionally, the NPs elicit negligible lipogenic gene stimulation in the liver. Using the Ldlr (-/-) mouse model of atherosclerosis, abundant colocalization of fluorescently labeled NPs within plaque macrophages following systemic administration is seen. Notably, six intravenous injections of NP-LXR over 2 weeks markedly reduce the CD68-positive cell (macrophage) content of plaques (by 50%) without increasing total cholesterol or triglycerides in the liver and plasma. Together, these findings identify GW3965-encapsulated PLGA-b-PEG NPs as a promising nanotherapeutic approach to combat atherosclerosis, providing the benefits of LXR agonists without their adverse effects on hepatic and plasma lipid metabolism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Treatment of Obesity-Related Complications with Novel Classes of Naturally Occurring PPAR Agonists.

    Bassaganya-Riera, Josep; Guri, Amir J; Hontecillas, Raquel

    2011-01-01

    The prevalence of obesity and its associated comorbidities has grown to epidemic proportions in the US and worldwide. Thus, developing safe and effective therapeutic approaches against these widespread and debilitating diseases is important and timely. Activation of peroxisome proliferator-activated receptors (PPARs) α, γ, and δ through several classes of pharmaceuticals can prevent or treat a variety of metabolic and inflammatory diseases, including type II diabetes (T2D). Thus, PPARs represent important molecular targets for developing novel and better treatments for a wide range of debilitating and widespread obesity-related diseases and disorders. However, available PPAR γ agonistic drugs such as Avandia have significant adverse side effects, including weight gain, fluid retention, hepatotoxicity, and congestive heart failure. An alternative to synthetic agonists of PPAR γ is the discovery and development of naturally occurring and safer nutraceuticals that may be dual or pan PPAR agonists. The purpose of this paper is to summarize the health effects of three plant-derived PPAR agonists: abscisic acid (ABA), punicic acid (PUA), and catalpic acid (CAA) in the prevention and treatment of chronic inflammatory and metabolic diseases and disorders.

  9. Synthetic Defects for Vibrothermography

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  10. Synthetic biological networks

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  11. Small-molecule AT2 receptor agonists

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha

    2018-01-01

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist...... with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8......, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also...

  12. Liver X Receptor Agonists Inhibit the Phospholipid Regulatory Gene CTP: Phosphoethanolamine Cytidylyltransferase-Pcyt2

    Lin Zhu

    2008-01-01

    Full Text Available Metabolic pulse-chase experiments demonstrated that 25-hydroxycholesterol (25-OH, the endogenous activator of the liver X receptor (LXR, significantly reduced the biosynthesis of phosphatidylethanolamine via CDP-ethanolamine (Kennedy pathway at the step catalyzed by CTP: phosphoethanolamine cytidylyltransferase (Pcyt2. In the mouse embryonic fibroblasts C3H10T1/2, the LXR synthetic agonist TO901317 lowered Pcyt2 promoter-luciferase activity in a concentration-dependent manner. Furthermore, 25-OH and TO901317 reduced mouse Pcyt2 mRNA and protein levels by 35–60%. The inhibitory effects of oxysterols and TO901317 on the Pcyt2 promoter function, mRNA and protein expression were conserved in the human breast cancer cells MCF-7. These studies identify the Pcyt2 gene as a novel target whereby LXR agonists may indirectly modulate inflammatory responses and atherosclerosis.

  13. Models for synthetic biology.

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  14. Technical Assessment: Synthetic Biology

    2015-01-01

    Pfizer, Bausch & Lomb, Coca - Cola , and other Fortune 500 companies 8 Data estimated by the... financial prize for ideas to drive forward the production of a sensor relying on synthetic organisms that can detect exposure to 500 specific chemicals

  15. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-01-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode

  16. PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings.

    Monica Puligheddu

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are involved in seizure mechanisms. Hence, nocturnal frontal lobe epilepsy was the first idiopathic epilepsy linked with specific mutations in α4 or β2 nAChR subunit genes. These mutations confer gain of function to nAChRs by increasing sensitivity toward acetylcholine. Consistently, nicotine elicits seizures through nAChRs and mimics the excessive nAChR activation observed in animal models of the disease. Treatments aimed at reducing nicotinic inputs are sought as therapies for epilepsies where these receptors contribute to neuronal excitation and synchronization. Previous studies demonstrated that peroxisome proliferator-activated receptors-α (PPARα, nuclear receptor transcription factors, suppress nicotine-induced behavioral and electrophysiological effects by modulating nAChRs containing β2 subunits. On these bases, we tested whether PPARα agonists were protective against nicotine-induced seizures. To this aim we utilized behavioral and electroencephalographic (EEG experiments in C57BL/J6 mice and in vitro patch clamp recordings from mice and rats. Convulsive doses of nicotine evoked severe seizures and bursts of spike-waves discharges in ∼100% of mice. A single dose of the synthetic PPARα agonist WY14643 (WY, 80 mg/kg, i.p. or chronic administration of fenofibrate, clinically available for lipid metabolism disorders, in the diet (0.2% for 14 days significantly reduced or abolished behavioral and EEG expressions of nicotine-induced seizures. Acute WY effects were reverted by the PPARα antagonist MK886 (3 mg/kg, i.p.. Since neocortical networks are crucial in the generation of ictal activity and synchrony, we performed patch clamp recordings of spontaneous inhibitory postsynaptic currents (sIPSCs from frontal cortex layer II/III pyramidal neurons. We found that both acute and chronic treatment with PPARα agonists abolished nicotine-induced sIPSC increases. PPARα within the CNS are key

  17. Reciprocity of agonistic support in ravens.

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals.

  18. A comparative review of Toll-like receptor 4 expression and functionality in different animal species

    Céline eVAURE

    2014-07-01

    Full Text Available Toll-like receptors (TLRs belong to the pattern recognition receptor (PRR family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide (LPS, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine and dog, in terms of molecular, cellular and functional properties of TLR4.

  19. FXR agonist activity of conformationally constrained analogs of GW 4064.

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  20. Gonadotropin releasing hormone agonists: Expanding vistas

    Navneet Magon

    2011-01-01

    Full Text Available Gonadotropin-releasing hormone (GnRH agonists are derived from native GnRH by amino acid substitution which yields the agonist resistant to degradation and increases its half-life. The hypogonadotropic hypogonadal state produced by GnRH agonists has been often dubbed as "pseudomenopause" or "medical oophorectomy," which are both misnomers. GnRH analogues (GnRH-a work by temporarily "switching off" the ovaries. Ovaries can be "switched off" for the therapy and therapeutic trial of many conditions which include but are not limited to subfertility, endometriosis, adenomyosis, uterine leiomyomas, precocious puberty, premenstrual dysphoric disorder, chronic pelvic pain, or the prevention of menstrual bleeding in special clinical situations. Rapidly expanding vistas of usage of GnRH agonists encompass use in sex reassignment of male to female transsexuals, management of final height in cases of congenital adrenal hyperplasia, and preserving ovarian function in women undergoing cytotoxic chemotherapy. Hypogonadic side effects caused by the use of GnRH agonists can be tackled with use of "add-back" therapy. Goserelin, leuprolide, and nafarelin are commonly used in clinical practice. GnRH-a have provided us a powerful therapeutic approach to the treatment of numerous conditions in reproductive medicine. Recent synthesis of GnRH antagonists with a better tolerability profile may open new avenues for both research and clinical applications. All stakeholders who are partners in women′s healthcare need to join hands to spread awareness so that these drugs can be used to realize their full potential.

  1. Sports doping: Emerging designer and therapeutic B2-agonists

    Fragkaki, A.G.; Georgakopoulos, C.; Sterk, S.S.; Nielen, M.W.F.

    2013-01-01

    Beta2-adrenergic agonists, or ß2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of ß2-agonists is prohibited in sports by the World Anti-Doping

  2. Modification of kindled amygdaloid seizures by opiate agonists and antagonists.

    Albertson, T E; Joy, R M; Stark, L G

    1984-03-01

    The effects of 19 opiate agonists and antagonists on kindled amygdaloid seizures in the rat were studied. The mu agonists tended to reduce the length of elicited afterdischarges and behavioral ranks, while markedly increasing postictal electroencephalogram spikes and behavioral arrest time. These effects were reversed by naloxone. The kappa agonists reduced behavioral rank and variably reduced afterdischarge length with a concomitant lengthening of postictal behavioral arrest time and number of electroencephalogram spikes. The putative sigma agonist, SKF 10,047, reduced afterdischarge durations only at the higher doses tested. The decreases found after the sigma agonists in postictal electroencephalogram spiking and time of behavioral arrest were not reversed by naloxone. Only the lower doses of normeperidine were found to decrease seizure thresholds. The mixed agonist/antagonists (MAA) cyclazocine and cyclorphan markedly increased seizure threshold and reduced afterdischarge duration and behavioral rank. Only the MAA pentazocine tended to increase threshold but not suprathreshold afterdischarge durations. The order of ability to modify the ictal events was MAA (selected) greater than kappa agonists greater than mu agonists greater than sigma agonists. The increase in postictal events (behavior arrest and spikes) was caused most effectively by pretreatment with mu agonist greater than kappa agonist greater than selected MAA greater than sigma agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Triazolophostins: a library of novel and potent agonists of IP3 receptors? ?Electronic supplementary information (ESI) available: Synthetic procedures and spectral data for all new compounds, crystal data for disaccharide 4 and details of the docking study. CCDC 1022279. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob00440c Click here for additional data file. Click here for additional data file.

    Vibhute, Amol M.; Konieczny, Vera; Taylor, Colin W.; Sureshan, Kana M.

    2015-01-01

    IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the ?-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of sy...

  4. What Are Synthetic Cannabinoids?

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  5. Synthetic Aperture Sequential Beamforming

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  6. Building synthetic cellular organization

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  7. Towards a synthetic chloroplast.

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  8. Synthetic Metabolic Pathways

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  9. Subtype selective kainic acid receptor agonists

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  10. Synthetic adenosine receptor agonists modulate murine haematopoiesis: a study employing the cytotoxic action of 5-fluorouracil

    Hofer, Michal; Pospíšil, Milan; Vacek, Antonín; Znojil, V.; Pipalová, I.

    2004-01-01

    Roč. 5, Suppl. 2 (2004), s. S65 ISSN 1466-4860. [Congress of the European Hematology Association /9./. 10.06.2004-13.06.2004, Geneva] R&D Projects: GA ČR GA305/02/0423 Keywords : 5-fluorouracil * haematopoiesis * adenosine Subject RIV: BO - Biophysics

  11. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists

    Zhang Songwen; Liu Qiangyuan; Wang Juan; Harnish, Douglas C.

    2009-01-01

    C-reactive protein (CRP), a human acute-phase protein, is a risk factor for future cardiovascular events and exerts direct pro-inflammatory and pro-atherogenic properties. The farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, plays an essential role in the regulation of enterohepatic circulation and lipid homeostasis. In this study, we report that two synthetic FXR agonists, WAY-362450 and GW4064, suppressed interleukin-6-induced CRP expression in human Hep3B hepatoma cells. Knockdown of FXR by short interfering RNA attenuated the inhibitory effect of the FXR agonists and also increased the ability of interleukin-6 to induce CRP production. Furthermore, treatment of wild type C57BL/6 mice with the FXR agonist, WAY-362450, attenuated lipopolysaccharide-induced serum amyloid P component and serum amyloid A3 mRNA levels in the liver, whereas no effect was observed in FXR knockout mice. These data provide new evidence for direct anti-inflammatory properties of FXR.

  12. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice.

    Wang, Xiaoxin X; Luo, Yuhuan; Wang, Dong; Adorini, Luciano; Pruzanski, Mark; Dobrinskikh, Evgenia; Levi, Moshe

    2017-07-21

    Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Synthetic Electric Microbial Biosensors

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  14. Differential activation of G-proteins by μ-opioid receptor agonists

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-01-01

    We investigated the ability of the activated μ-opioid receptor (MOR) to differentiate between myristoylated Gαi1 and GαoA type Gα proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each Gα protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The Gα subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified Gα protein by CB1 cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[35S]GTPγS exchange was then compared for Gαi1 and GαoA. Activation of MOR by DAMGO produced a high-affinity saturable interaction for GαoA (Km=20±1 nM) but a low-affinity interaction with Gαi1 (Km=116±12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal Gα activation among the agonists evaluated. Endomorphins 1 and 2, methadone and β-endorphin activated both Gα to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between Gαi1 and GαoA. Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two Gα. Differences in maximal activity and potency, for Gαi1 versus GαoA, are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects. PMID:16415903

  15. Evaluation of partial beta-adrenoceptor agonist activity.

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether

  16. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response

    Qiuyu Wang

    2018-02-01

    Full Text Available Lipopolysaccharides (LPS are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses.

  17. Opportunities in plant synthetic biology.

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  18. Sulfoximines as potent RORγ inverse agonists.

    Ouvry, Gilles; Bihl, Franck; Bouix-Peter, Claire; Christin, Olivier; Defoin-Platel, Claire; Deret, Sophie; Feret, Christophe; Froude, David; Hacini-Rachinel, Feriel; Harris, Craig S; Hervouet, Catherine; Lafitte, Guillaume; Luzy, Anne-Pascale; Musicki, Branislav; Orfila, Danielle; Parnet, Veronique; Pascau, Coralie; Pascau, Jonathan; Pierre, Romain; Raffin, Catherine; Rossio, Patricia; Spiesse, Delphine; Taquet, Nathalie; Thoreau, Etienne; Vatinel, Rodolphe; Vial, Emmanuel; Hennequin, Laurent F

    2018-05-01

    Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. GLP-1 agonists for type 2 diabetes

    Jespersen, Maria J; Knop, Filip K; Christensen, Mikkel

    2013-01-01

    and legal documents in the form of assessment reports from the European Medicines Agency and the United States Food and Drug Administration. EXPERT OPINION: GLP-1-based therapy combines several unique mechanisms of action and have the potential to gain widespread use in the fight against diabetes......Within recent years, glucagon-like peptide 1 receptor agonists (GLP-1-RA) have emerged as a new treatment option for type 2 diabetes. The GLP-1-RA are administered subcutaneously and differ substantially in pharmacokinetic profiles. AREAS COVERED: This review describes the pharmacokinetics...

  20. Sports doping: emerging designer and therapeutic β2-agonists.

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future. © 2013.

  1. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents.

    Jian Luo

    Full Text Available Type 2 diabetes is characterized by impaired glucose homeostasis due to defects in insulin secretion, insulin resistance and the incretin response. GPR40 (FFAR1 or FFA1 is a G-protein-coupled receptor (GPCR, primarily expressed in insulin-producing pancreatic β-cells and incretin-producing enteroendocrine cells of the small intestine. Several GPR40 agonists, including AMG 837 and TAK-875, have been disclosed, but no GPR40 synthetic agonists have been reported that engage both the insulinogenic and incretinogenic axes. In this report we provide a molecular explanation and describe the discovery of a unique and potent class of GPR40 full agonists that engages the enteroinsular axis to promote dramatic improvement in glucose control in rodents. GPR40 full agonists AM-1638 and AM-6226 stimulate GLP-1 and GIP secretion from intestinal enteroendocrine cells and increase GSIS from pancreatic islets, leading to enhanced glucose control in the high fat fed, streptozotocin treated and NONcNZO10/LtJ mouse models of type 2 diabetes. The improvement in hyperglycemia by AM-1638 was reduced in the presence of the GLP-1 receptor antagonist Ex(9-39NH(2.

  2. Synthetic staggered architecture composites

    Dutta, Abhishek; Tekalur, Srinivasan Arjun

    2013-01-01

    Highlights: ► Composite design inspired by nature. ► Tuning microstructure via changing ceramic content and aspect ratio. ► Experimental display of structure–property correlationship in synthetic composites. - Abstract: Structural biocomposites (for example, nacre in seashells, bone, etc.) are designed according to the functional role they are delegated for. For instance, bone is primarily designed for withstanding time-dependent loading (for example, withstanding stresses while running, jumping, accidental fall) and hence the microstructure is designed primarily from enhanced toughness and moderate stiffness point of view. On the contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the organism (it is hosting) against predatory attacks, are subjected to static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is directed primarily towards providing enhanced stiffness. In order to conform between stiffness and toughness, nature precisely employs a staggered arrangement of inorganic bricks in a biopolymer matrix (at its most elementary level of architecture). Aspect ratio and content of ceramic bricks are meticulously used by nature to synthesize composites having varying degrees of stiffness, strength and toughness. Such an amazing capability of structure–property correlationship has rarely been demonstrated in synthetic composites. Therefore, in order to better understand the mechanical behavior of synthetic staggered composites, the problem becomes two-pronged: (a) synthesize composites with varying brick size and contents and (b) experimental investigation of the material response. In this article, an attempt has been made to synthesize and characterize staggered ceramic–polymer composites having varying aspect ratio and ceramic content using freeze-casting technique. This will in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials

  3. Synthetic Aperture Ultrasound Imaging

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  4. Transition in synthetic jets

    Tesař, Václav; Kordík, Jozef

    2012-01-01

    Roč. 187, NOV 2012 (2012), s. 105-117 ISSN 0924-4247 R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GPP101/12/P556; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence * synthetic jet * transition * velocity spectra Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www. science direct.com/ science /article/pii/S0924424712005031

  5. Radiolabelled D2 agonists as prolactinoma imaging agents

    Otto, C.A.

    1989-08-01

    During the past year, further studies on mAChR were conducted. These studies included verification of the difference in pituitary distribution based on ligand charge. The pituitary localization of TRB. A neutral mAChR ligand, was verified. The lack of QNB blockade of TRB uptake was tested by blockage with scopolamine, another mAChR antagonist and by testing the effect in a different strain of rat. Neither scopolamine or change of rat strain had any effect. We concluded that TRB uptake in pituitary is not a receptor-mediated process. Further studies were conducted with an additional quaternized mAChR ligand: MQNB. Pituitary localization of MQNB, like MTRB, could be blocked by pretreatment with QNB. We have tentatively concluded that permanent charge on a mAChR antagonist changes the mechanism of uptake in the pituitary. Time course studies and the effects of DES on myocardial uptake are reported. A brief report on preliminary results of evaluation of quaternized mAChR ligands in the heart is included. In a limited series of such ligands, we have observed a single binding site and a difference in B{sub max} values: QNB competition studies yield larger B{sub max} values than studies with {sup 3}H-NMS. Progress in the synthesis of D{sub 2} agonists includes solving a synthetic problem and preparation of the cold'' analogue of N-0437 using procedures applicable to eventual synthesis with {sup 11}C-CH{sub 3}I. 2 refs., 5 figs., 1 tab.

  6. Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119

    Engelstoft, Maja Storm; Norn, C; Pedersen, Maria Hauge

    2014-01-01

    BACKGROUND AND PURPOSE: GPR119 is a Gαs-coupled 7TM receptor activated by endogenous lipids such as oleoylethanolamide (OEA) and by the dietary triglyceride metabolite 2-monoacylglycerol. GPR119 stimulates enteroendocrine hormone and insulin secretion. But despite massive drug discovery efforts...... activation (AR231453 and OEA). Novel Rosetta-based receptor modelling was applied, using a composite template approach with segments from different X-ray structures and fully flexible ligand docking. KEY RESULTS: The increased signalling induced by increasing the cell surface expression of GPR119...... in the absence of agonist and the inhibitory effect of two synthetic inverse agonists demonstrated that GRP119 signals with a high degree of constitutive activity through the Gαs pathway. The mutational maps for AR231453 and OEA were very similar and, surprisingly, also similar to the mutational map for residues...

  7. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    Chuu, Chih-pin; Chen, Rou-Yu; Hiipakka, Richard A.; Kokontis, John M.; Warner, Karen V.; Xiang, Jialing; Liao, Shutsung

    2007-01-01

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  8. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  9. Analog synthetic biology.

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  10. Synthetic lubricating oils

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  11. Coloring of synthetic fluorite

    Birsoy, R.

    1980-01-01

    A synthetic fluorite of the Harshaw Chemical Company is analyzed for rare earth elements, yttrium, and sodium. Samples of this fluorite are irradiated with X-rays, γ-rays, neutrons, electrons, protons, and α-particles at different energies, and their absorption spectra are analyzed. Analyzing the thermal bleaching of these radiation-coloured fluorites shows that both, impurities and radiation play a part in the coloration of synthetic fluorite. However, the main contribution comes from the radiation induced lattice defects. In the visible region spectra, the colour centre of the 5800 to 5900 A absorption band is probably mainly related with large aggregates of F-centres. The 5450 and the 5300 A absorption bands are mainly related to monovalent and divalent ion impurities and their association with lattice defects. The 3800 A absorption band seems to be related with F-centre aggregates. However, the contribution from the rare earth elements related complex color centres also plays some part for the production of this absorption band. These results indicate that the color centres of different origin can absorb light at the same wavelength. (author)

  12. Space Synthetic Biology Project

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  13. Principles of agonist recognition in Cys-loop receptors

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    , functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically...

  14. Current status of synthetic epikeratoplasty.

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  15. Synthetic biology and occupational risk.

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  16. Finding Hope in Synthetic Biology.

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  17. Tissue Harmonic Synthetic Aperture Imaging

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  18. Life after the synthetic cell

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  19. Computational synthetic geometry

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  20. Synthetic Aperture Compound Imaging

    Hansen, Jens Munk

    and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging......Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......-mode images have high contrast. Like all imaging modalities, ultrasound is subject to a number of inherent artifacts that compromise image quality. The most prominent artifact is the degradation by coherent wave interference, known as “speckle”, which gives a granular appearance to an otherwise homogeneous...

  1. Transionospheric synthetic aperture imaging

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  2. Radioimmunoassay of synthetic steroids

    Raynaud, J -P; Bucourt, R; Salmon, J

    1975-12-01

    The sensitivity of a radioimmunoassay depends on the intrinsic association constant of the interaction between ligand and antibody. Its specificity depends on the position of the chain which forms the link with the antigen. Thus, an antibody specific of estradiol has been obtained by coupling estradiol to albumin via a chain at position 7. For synthetic steroids the structure of which is sufficiency different from that of natural hormones, the requirements for a sensitive assay method not involving chromatography are simply maximum affinity and positioning of the couple at a site which does not undergo metabolic attack. These criteria were used to develop assays for R 2858 and R 2453 which obviate the need to administer radioactive product in clinical pharmacology. Cross-reaction with structural analogs may be used to assay competitors. Thus, R 2323 antibody, highly specific for endogenous steroids, may be used to assay other trienes such as R 1697 (trenbolone) and R 2010 (norgestrienone).

  3. Synthetic fuels and fusion

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  4. Combining GLP-1 receptor agonists with insulin

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  5. Imaging with Synthetic Aperture Radar

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  6. Synthetic peptides for antibody production

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  7. Synthetic peptides for antibody production

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  8. Synthetic biology and metabolic engineering.

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  9. The Ethics of Synthetic Biology

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially...

  10. Synthetic biology of polyketide synthases

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  11. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.

    Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric

    2017-12-01

    Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

  12. Anti-tumor Activity of Toll-Like Receptor 7 Agonists

    Huju Chi

    2017-05-01

    Full Text Available Toll-like receptors (TLRs are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.

  13. PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

    Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A

    2007-06-01

    Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.

  14. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Sreenivasan Paruthiyil

    2009-07-01

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  15. Antibodies against the melanocortin-4 receptor act as inverse agonists in vitro and in vivo.

    Peter, Jean-Christophe; Nicholson, Janet R; Heydet, Déborah; Lecourt, Anne-Catherine; Hoebeke, Johan; Hofbauer, Karl G

    2007-06-01

    Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus.

  16. Role and development of GLP-1 receptor agonists in the management of diabetes

    Chee W Chia

    2009-05-01

    Full Text Available Chee W Chia, Josephine M EganNational Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, USAAbstract: Glucagon-like peptide-1 (GLP-1 is a hormone secreted from enteroendocrine L cells of the intestine in response to food. Exogenous GLP-1 administration at pharmacological doses results in many effects that are beneficial for treating type 2 diabetes, these include: (1 an increase in insulin secretion from β cells; (2 a suppression of glucagon secretion from α cells in the presence of hyperglycemia but not hypoglycemia; (3 a delay in gastric emptying and gut motility which in turns delays absorption of ingested nutrients and dampens post-prandial glucose excursion; and (4 an increase in the duration of postprandial satiety therefore suppressing appetite and decreasing food intake which eventually leads to weight loss. However, GLP-1 is subject to rapid enzymatic degradation, and therefore, not suitable for long-term treatment. A synthetic enzyme-resistant GLP-1 receptor agonist that reproduces the biological effects of GLP-1 is in use and more are under development. This review aims at providing a summary of the properties of GLP-1 and the development of GLP-1-based therapies for treatment of diabetes.Keywords: incretin, GLP-1, GLP-1R agonist, diabetes

  17. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    Laurindo Ferreira da Rocha Junior

    2013-01-01

    Full Text Available Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.

  18. Computing with synthetic protocells.

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  19. Dopamine agonist withdrawal syndrome: implications for patient care.

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  20. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-01-01

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has bee...

  1. Synthetic Biology and Personalized Medicine

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  2. Nicotine receptor partial agonists for smoking cessation

    Kate Cahill

    Full Text Available BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist and reducing smoking satisfaction (acting as an antagonist. OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist' in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialized register was in December 2011. We also searched online clinical trials registers. SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up. The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs, using the Mantel-Haenszel fixed-effect model. MAIN RESULTS: Two recent cytisine trials (937 people

  3. Nicotine receptor partial agonists for smoking cessation.

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2012-04-18

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist') in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialised register was in December 2011. We also searched online clinical trials registers. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up.The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs), using the Mantel-Haenszel fixed-effect model. Two recent cytisine trials (937 people) found that more participants taking cytisine stopped smoking compared with placebo at longest follow-up, with a pooled RR of

  4. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  5. Effects of TLR agonists on maturation and function of 3-day dendritic cells from AML patients in complete remission

    Merk Martina

    2011-09-01

    Full Text Available Abstract Background Active dendritic cell (DC immunization protocols are rapidly gaining interest as therapeutic options in patients with acute myeloid leukemia (AML. Here we present for the first time a GMP-compliant 3-day protocol for generation of monocyte-derived DCs using different synthetic Toll-like receptor (TLR agonists in intensively pretreated patients with AML. Methods Four different maturation cocktails were compared for their impact on cell recovery, phenotype, cytokine secretion, migration, and lymphocyte activation in 20 AML patients and 25 healthy controls. Results Maturation cocktails containing the TLR7/8 agonists R848 or CL075, with and without the addition of the TLR3 agonist poly(I:C, induced DCs that had a positive costimulatory profile, secreted high levels of IL-12(p70, showed chemotaxis to CCR7 ligands, had the ability to activate NK cells, and efficiently stimulated antigen-specific CD8+ T cells. Conclusions Our results demonstrate that this approach translates into biologically improved DCs, not only in healthy controls but also in AML patients. This data supports the clinical application of TLR-matured DCs in patients with AML for activation of innate and adaptive immune responses.

  6. Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist.

    Simonneau, Claire; Bérénice Leclercq; Mougel, Alexandra; Adriaenssens, Eric; Paquet, Charlotte; Raibaut, Laurent; Ollivier, Nathalie; Drobecq, Hervé; Marcoux, Julien; Cianférani, Sarah; Tulasne, David; de Jonge, Hugo; Melnyk, Oleg; Vicogne, Jérôme

    2015-03-01

    The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a "head to tail" dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively. Starting from these structural and biological observations, we investigated whether it was possible to recapitulate the biological properties of NK1 using a new molecular architecture of isolated N or K1 domains. Therefore, we engineered multivalent N or K1 scaffolds by combining synthetic and homogeneous site-specifically biotinylated N and K1 domains (NB and K1B) and streptavidin (S). NB alone or in complex failed to activate MET signaling and to trigger cellular phenotypes. Importantly and to the contrary of K1B alone, the semi-synthetic K1B/S complex mimicked NK1 MET agonist activity in cell scattering, morphogenesis and survival phenotypic assays. Impressively, K1B/S complex stimulated in vivo angiogenesis and, when injected in mice, protected the liver against fulminant hepatitis in a MET dependent manner whereas NK1 and HGF were substantially less potent. These data reveal that without N domain, proper multimerization of K1 domain is a promising strategy for the rational design of powerful MET agonists.

  7. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility. © 2010 American Academy of Forensic Sciences.

  8. MELATONIN DAN MELATONIN RECEPTOR AGONIST SEBAGAI PENANGANAN INSOMNIA PRIMER KRONIS

    Ni Luh Putu Ayu Maha Iswari

    2013-04-01

    Full Text Available Melatonin is a hormone that has an important role in the mechanism of sleep. Hypnotic effects of melatonin and melatonin receptor agonist are mediated via MT1 and MT2 receptors, especially in circadian rhythm pacemaker, suprachiasmatic nucleus, which is worked on the hypothalamic sleep switch. This mechanism is quite different with the GABAergic drugs such as benzodiazepine. Agonist melatonin triggers the initiation of sleep and normalize circadian rhythms so that makes it easier to maintain sleep. The main disadvantage of melatonin in helping sleep maintenance on primary insomnia is that the half life is very short. The solution to this problem is the use of prolonged-release melatonin and melatonin receptor agonist agents such as ramelteon. Melatoninergic agonist does not cause withdrawal effects, dependence, as well as cognitive and psychomotor disorders as often happens on the use of benzodiazepine.  

  9. Approaches to chemical synthetic biology.

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Synthetic Biology for Specialty Chemicals.

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  11. Is synthetic biology mechanical biology?

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  12. Adaptive Synthetic Forces: Situation Awareness

    Hill, Randall

    2001-01-01

    ...: perception, comprehension, and prediction. Building on these ideas, we developed techniques for improving the situation awareness in synthetic helicopter pilots for the ModSAF military simulation by giving them more human-like perception...

  13. Programming languages for synthetic biology.

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  14. Should We Use PPAR Agonists to Reduce Cardiovascular Risk?

    Jennifer G. Robinson

    2008-01-01

    Full Text Available Trials of peroxisome proliferator-activated receptor (PPAR agonists have shown mixed results for cardiovascular prevention. Fibrates are PPAR- agonists that act primarily to improve dyslipidemia. Based on low- and high-density lipoprotein cholesterol (LDL and HDL effects, gemfibrozil may be of greater cardiovascular benefit than expected, fenofibrate performed about as expected, and bezafibrate performed worse than expected. Increases in both cardiovascular and noncardiovascular serious adverse events have been observed with some fibrates. Thiazolidinediones (TZDs are PPAR- agonists used to improve impaired glucose metabolism but also influence lipids. Pioglitazone reduces atherosclerotic events in diabetic subjects, but has no net cardiovascular benefit due to increased congestive heart failure risk. Rosiglitazone may increase the risk of atherosclerotic events, and has a net harmful effect on the cardiovascular system when congestive heart failure is included. The primary benefit of TZDs appears to be the prevention of diabetic microvascular complications. Dual PPAR-/ agonists have had unacceptable adverse effects but more selective agents are in development. PPAR- and pan-agonists are also in development. It will be imperative to prove that future PPAR agonists not only prevent atherosclerotic events but also result in a net reduction on total cardiovascular events without significant noncardiovascular adverse effects with long-term use.

  15. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  16. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  17. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  18. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals.

    Chen, Kong Y; Muniyappa, Ranganath; Abel, Brent S; Mullins, Katherine P; Staker, Pamela; Brychta, Robert J; Zhao, Xiongce; Ring, Michael; Psota, Tricia L; Cone, Roger D; Panaro, Brandon L; Gottesdiener, Keith M; Van der Ploeg, Lex H T; Reitman, Marc L; Skarulis, Monica C

    2015-04-01

    Activation of the melanocortin-4 receptor (MC4R) with the synthetic agonist RM-493 decreases body weight and increases energy expenditure (EE) in nonhuman primates. The effects of MC4R agonists on EE in humans have not been examined to date. In a randomized, double-blind, placebo-controlled, crossover study, we examined the effects of the MC4R agonist RM-493 on resting energy expenditure (REE) in obese subjects in an inpatient setting. Twelve healthy adults (6 men and 6 women) with body mass index of 35.7 ± 2.9 kg/m(2) (mean ± SD) received RM-493 (1 mg/24 h) or placebo by continuous subcutaneous infusion over 72 hours, followed immediately by crossover to the alternate treatment. All subjects received a weight-maintenance diet (50% carbohydrate, 30% fat, and 20% protein) and performed 30 minutes of standardized exercise daily. Continuous EE was measured on the third treatment day in a room calorimeter, and REE in the fasting state was defined as the mean of 2 30-minute resting periods. RM-493 increased REE vs placebo by 6.4% (95% confidence interval, 0.68-13.02%), on average by 111 kcal/24 h (95% confidence interval, 15-207 kcal, P = .03). Total daily EE trended higher, whereas the thermic effect of a test meal and exercise EE did not differ significantly. The 23-hour nonexercise respiratory quotient was lower during RM-493 treatment (0.833 ± 0.021 vs 0.848 ± 0.022, P = .02). No adverse effect on heart rate or blood pressure was observed. Short-term administration of the MC4R agonist RM-493 increases REE and shifts substrate oxidation to fat in obese individuals.

  19. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  20. Rational screening of peroxisome proliferator-activated receptor-γ agonists from natural products: potential therapeutics for heart failure.

    Chen, Rui; Wan, Jing; Song, Jing; Qian, Yan; Liu, Yong; Gu, Shuiming

    2017-12-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Activation of PPARγ pathway has been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis in heart failure. Thus, the protein has been raised as an attractive target for heart failure therapy. This work attempted to discover new and potent PPARγ agonists from natural products using a synthetic strategy of computer virtual screening and transactivation reporter assay. A large library of structurally diverse, drug-like natural products was compiled, from which those with unsatisfactory pharmacokinetic profile and/or structurally redundant compounds were excluded. The binding mode of remaining candidates to PPARγ ligand-binding domain (LBD) was computationally modelled using molecular docking and their relative binding potency was ranked by an empirical scoring scheme. Consequently, eight commercially available hits with top scores were selected and their biological activity was determined using a cell-based reporter-gene assay. Four natural product compounds, namely ZINC13408172, ZINC4292805, ZINC44179 and ZINC901461, were identified to have high or moderate agonistic potency against human PPARγ with EC 50 values of 0.084, 2.1, 0.35 and 5.6 μM, respectively, which are comparable to or even better than that of the approved PPARγ full agonists pioglitazone (EC 50  =   0.16 μM) and rosiglitazone (EC 50  =   0.034 μM). Hydrophobic interactions and van der Waals contacts are the primary chemical forces to stabilize the complex architecture of PPARγ LBD domain with these agonist ligands, while few hydrogen bonds, salt bridges and/or π-π stacking at the complex interfaces confer selectivity and specificity for the domain-agonist recognition. The integrated in vitro-in silico screening strategy can be successfully applied to rational discovery of

  1. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  2. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  3. Synthetic biology, metaphors and responsibility.

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  4. Content metamorphosis in synthetic holography

    Desbiens, Jacques

    2013-01-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  5. Control theory meets synthetic biology.

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  6. Salvinorin A, a kappa-opioid receptor (KOP-r agonist hallucinogen: Pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Eduardo eButelman

    2015-09-01

    Full Text Available Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins in higher functions, including cognition, and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A- containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and drug reinforcers (including drugs of abuse. KOPr activation (including by salvinorin A can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike all other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects, with a reduced burden of undesirable effects associated with salvinorin A.

  7. Microfluidic Technologies for Synthetic Biology

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  8. Synthetic neurosteroids on brain protection

    Mariana Rey

    2015-01-01

    Full Text Available Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABA A receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.

  9. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.

    2011-01-01

    Based on the conformationally constrained D-Trp-Phe-D-Trp (wFw) core of the prototype inverse agonist [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers...... connecting the D-Trp-Phe-D-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH(2), where Isn is isonipecotic acid) ~80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained w......Fw-Isn-NH(2) was found to be a functionally biased agonist. Thus, wFw-Isn-NH(2) mediated potent and efficacious signaling through the Ga(q) and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Ga(12...

  10. Modification of opiate agonist binding by pertussis toxin

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  11. Ecdysone Agonist: New Insecticides with Novel Mode of Action

    Y. Andi Trisyono

    2002-12-01

    Full Text Available Development of insect resistance to insecticide has been the major driving force for the development of new insecticides. Awareness and demand from public for more environmentally friendly insecticides have contributed in shifting the trend from using broad spectrum to selective insecticides. As a result, scientists have looked for new target sites beyond the nervous system. Insect growth regulators (IGRs are more selective insecticides than conventional insecticides, and ecdysone agonists are the newest IGRs being commercialized, e.g. tebufenozide, methoxyfenozide, and halofenozide. Ecdysone agonists bind to the ecdysteroid receptors, and they act similarly to the molting hormone 20-hydroxyecdysone. The binding provides larvae or nymphs with a signal to enter a premature and lethal molting cycle. In addition, the ecdysone agonists cause a reduction in the number of eggs laid by female insects. The ecdysone agonists are being developed as selective biorational insecticides. Tebufenozide and methoxyfenozide are used to control lepidopteran insect pests, whereas halofenozide is being used to control coleopteran insect pests. Their selectivity is due to differences in the binding affinity between these compounds to the receptors in insects from different orders. The selectivity of these compounds makes them candidates to be used in combinations with other control strategies to develop integrated pest management programs in agricultural ecosystems. Key words: new insecticides, selectivity, ecdysone agonists

  12. Modification of opiate agonist binding by pertussis toxin

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-01-01

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in 3 (H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding

  13. Synthetic biology as red herring.

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. US Competitiveness in Synthetic Biology.

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  15. Synthetic Phage for Tissue Regeneration

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  16. Synthetic biology and its promises

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.