WorldWideScience

Sample records for synthesis thermal stability

  1. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  2. Polyesteramides based on PET and nylon 2,T part 2. synthesis and thermal stability

    NARCIS (Netherlands)

    Bouma, K.; Groot, G.M.M.; Feijen, Jan; Gaymans, R.J.

    2000-01-01

    The synthesis and the thermal stability of polyesteramides based on PET and nylon 2,T (PETA) using DMT, T2T-dimethyl (N,N′-bis(p-carbo-methoxybenzoyl)ethanediamine) and 1,2-ethanediol as starting materials has been studied. The catalysts that were used are tetraisopropyl orthotitanate, manganese

  3. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  4. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  5. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    International Nuclear Information System (INIS)

    Nunes, D.; Livramento, V.; Mateus, R.; Correia, J.B.; Alves, L.C.; Vilarigues, M.; Carvalho, P.A.

    2011-01-01

    Highlights: → The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. → Preservation of nD crystalline structure during high-energy milling was demonstrated. → Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. → Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. → Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  6. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  7. Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2013-05-01

    Full Text Available Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  8. Synthesis and Thermal-Stability Study of Polybutylene Itaconate Modified with Divinyl Benzene and Glycerol

    Directory of Open Access Journals (Sweden)

    Atmanto Heru Wibowo

    2014-10-01

    Full Text Available Polybutylene itaconate (PBI for modification with divinyl benzene (DVB and glycerol has been synthesized at 180 °C for 3 h via polycondensation of itaconic acid (IA and butanediols using catalyst of Ti(OBu4. Modification on PBI was done with addition of 15%, 20% and 25% DVB (w/w using benzoyl peroxide. With glycerol, weight variations of glycerol:1,4-butanediol (BDO in the synthesis were 10%, 30%, and 50% (mole/mole. PBI and PBI modified with DVB and glycerol were characterized with FTIR and TG-DTA. PBI showed a wavenumber shift from 1703 cm-1 to 1728 cm-1 of the C=O functional group from acid to esther. The DVB modification on PBI also showed that the intensity decrease of C=C stretching was due to the formation of crosslinking on the double bond. In the modification with glycerol, three dimensional networking on the polyester occurred through bonding between hydroxyl of glycerol and acid group of IA. Constant intensity of C=C stretching on polyester was seen. The thermal stability of PBI modified with DVB increased, accompanied by rigidity change of the structure. The thermal stability of PBI modified with glycerol decreased, caused by the decrease of regularity degree and the elasticity increase of the three dimensional structure of polyester.

  9. Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability

    Directory of Open Access Journals (Sweden)

    Fabio R. Simões

    2009-01-01

    Full Text Available In this work, a detailed chemical route to prepare thermally stable polyaniline (PANI/carbon black (CB composites is described. The syntheses were performed by chemical polymerization of aniline over CB particles, using different PANI/CB mass ratios. The thermal and electrical properties were characterized. Composites with mass ratio up to 65:35 (PANI:CB showed excellent thermal stability maintaining their conducting properties when thermally treated at 230 °C for two hours, which is adequate to process these materials. Moreover, the results showed an important reduction in the surface area of the composites which have a good relationship with the improvement of the rheological properties in melt processing.

  10. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    Science.gov (United States)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  11. Synthesis, Amphiphilic Property and Thermal Stability of Novel Main-chain Poly(o-carborane-benzoxazines)

    Science.gov (United States)

    Yang, Xiaoxue; Han, Guo; Yang, Zhen; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei

    2017-10-01

    Five poly(o-carborane-benzoxazines) were synthesized via Mannich reaction of o-carborane bisphenol, paraformaldehyde, and diamine, and their structures were well characterized. Light transmission and 1H NMR in D2O confirmed that poly(o-carborane-benzoxazines) with PEG segments showed excellent water solubility and amphiphilic property. TGA analyses were conducted under nitrogen and air, and the results showed that the polymers own high initial decomposition temperatures owing to the shielding effect of carborane moiety on its adjacent aromatic structures. Besides, poly(o-carborane-benzoxazines) own high char yield at elevated temperatures, for the boron atom could combine with oxygen from the polymer structure or/and the air and be oxidized to form boron oxide, and thus the polymer weight is retained to a large extent. PEG segments had an adverse effect on the initial decomposition and char yield, and thus their concentration should be adjusted to control the polymer’s thermal stability.

  12. Synthesis of a Novel Polyethoxysilsesquiazane and Thermal Conversion into Ternary Silicon Oxynitride Ceramics with Enhanced Thermal Stability.

    Science.gov (United States)

    Iwase, Yoshiaki; Horie, Yoji; Daiko, Yusuke; Honda, Sawao; Iwamoto, Yuji

    2017-12-05

    A novel polyethoxysilsesquiazane ([EtOSi(NH) 1.5 ] n , EtOSZ) was synthesized by ammonolysis at -78 °C of ethoxytrichlorosilane (EtOSiCl₃), which was isolated by distillation as a reaction product of SiCl₄ and EtOH. Attenuated total reflection-infra red (ATR-IR), 13 C-, and 29 Si-nuclear magnetic resonance (NMR) spectroscopic analyses of the ammonolysis product resulted in the detection of Si-NH-Si linkage and EtO group. The simultaneous thermogravimetric and mass spectrometry analyses of the EtOSZ under helium revealed cleavage of oxygen-carbon bond of the EtO group to evolve ethylene as a main gaseous species formed in-situ, which lead to the formation at 800 °C of quaternary amorphous Si-C-N with an extremely low carbon content (1.1 wt %) when compared to the theoretical EtOSZ (25.1 wt %). Subsequent heat treatment up to 1400 °C in N₂ lead to the formation of X-ray amorphous ternary Si-O-N. Further heating to 1600 °C in N₂ promoted crystallization and phase partitioning to afford Si₂N₂O nanocrystallites identified by the XRD and TEM analyses. The thermal stability up to 1400 °C of the amorphous state achieved for the ternary Si-O-N was further studied by chemical composition analysis, as well as X-ray photoelectron spectroscopy (XPS) and 29 Si-NMR spectroscopic analyses, and the results were discussed aiming to develop a novel polymeric precursor for ternary amorphous Si-O-N ceramics with an enhanced thermal stability.

  13. Synthesis of a Novel Polyethoxysilsesquiazane and Thermal Conversion into Ternary Silicon Oxynitride Ceramics with Enhanced Thermal Stability

    Directory of Open Access Journals (Sweden)

    Yoshiaki Iwase

    2017-12-01

    Full Text Available A novel polyethoxysilsesquiazane ([EtOSi(NH1.5]n, EtOSZ was synthesized by ammonolysis at −78 °C of ethoxytrichlorosilane (EtOSiCl3, which was isolated by distillation as a reaction product of SiCl4 and EtOH. Attenuated total reflection-infra red (ATR-IR, 13C-, and 29Si-nuclear magnetic resonance (NMR spectroscopic analyses of the ammonolysis product resulted in the detection of Si–NH–Si linkage and EtO group. The simultaneous thermogravimetric and mass spectrometry analyses of the EtOSZ under helium revealed cleavage of oxygen-carbon bond of the EtO group to evolve ethylene as a main gaseous species formed in-situ, which lead to the formation at 800 °C of quaternary amorphous Si–C–N with an extremely low carbon content (1.1 wt % when compared to the theoretical EtOSZ (25.1 wt %. Subsequent heat treatment up to 1400 °C in N2 lead to the formation of X-ray amorphous ternary Si–O–N. Further heating to 1600 °C in N2 promoted crystallization and phase partitioning to afford Si2N2O nanocrystallites identified by the XRD and TEM analyses. The thermal stability up to 1400 °C of the amorphous state achieved for the ternary Si-O-N was further studied by chemical composition analysis, as well as X-ray photoelectron spectroscopy (XPS and 29Si-NMR spectroscopic analyses, and the results were discussed aiming to develop a novel polymeric precursor for ternary amorphous Si–O–N ceramics with an enhanced thermal stability.

  14. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  15. Thermal Stabilization Blend Plan

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-05-02

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  16. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  17. Synthesis and Thermal Stability of Novel Poly(M-Carborane-Siloxanes) with Various Pendant Groups

    Science.gov (United States)

    Yang, Xiaoxue; Zhao, Yanyan; Wang, Cuicui; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei

    2017-10-01

    Poly(m-carborane-siloxanes) with various pendant groups (P15-P46) were synthesized via polycondensation of m-carborane-containing disilanols (1-4) and highly active bisureidosilanes (5 and 6). The obtained polymers exhibit controlled molecular weight by carefully adjusting the monomer ratio. Standard spectroscopic techniques including FTIR and NMR were utilized to characterize these polymers and satisfactory results were obtained. TGA analysis indicated that the thermal cyclization of polysiloxanes under nitrogen was greatly postponed by the incorporated m-carborane cage, since the siloxane bonds within the main chain were strengthened by the inductive effect of the latter. DSC and FTIR results confirmed that both siloxane unit and carborane cage were oxidized at elevated temperature under air, which contributed to the transformation of the polymers into the mixture of SiO2 and B2O3. Therefore, high char yield was obtained. Besides, the electronic effect of pendant groups greatly influenced the degradation behavior of m-carborane-containing polysiloxanes, having nothing to do with their position. The initial degradation temperature (T d5) increases with varying substituent in the order: CH2CH2CF3 < CH3 ≈ Ph < CH=CH2.

  18. Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper

    Energy Technology Data Exchange (ETDEWEB)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood [Islamic Azad University, Plasma Physics Research Center, Science and Research Branch, Tehran (Iran, Islamic Republic of); Boochani, Arash [Islamic Azad University, Department of Physics, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of)

    2016-05-15

    The amorphous W/WN bi-layer with excellent thermal stability was successfully prepared by hot-filament chemical vapor deposition method on SiO{sub 2}/Si substrate. It was found that the W/WN bi-layer is technological importance because of its low resistivity and good diffusion barrier properties between Cu and Si up to 700 C for 30 min. The thermal stability was evaluated by X-ray diffractometer (XRD) and scanning electron microscope. The XRD results show that the Cu{sub 3}Si phase was formed by Cu diffusion through W/WN barrier for the 800 C annealed sample. The formation of the Cu-Si compounds denotes the failure of the W/WN diffusion barrier with rapid increase in sheet resistance of the film. The microstructure of the interface between W/WN and Cu reflects the stability and breakdown of the barriers. The failure of this amorphous barrier occurs with heat treatment when the deposited amorphous barrier material crystallizes. The major part of Cu diffusion in polycrystalline structure with disordered grain boundaries is controlled by grain boundaries. AFM results indicated a rapid increase in surface roughness at the diffusion barrier failure temperature. It was found that the grain size plays an important factor to control the thermally stability of the W/WN bi-layer. (orig.)

  19. Synthesis of Poly(cinnam-4'-yl methyl methacrylate) derivatives and their thermal stability as photoalignment layer

    International Nuclear Information System (INIS)

    Lee, Jong Woo; Kim, Hak Won; Kim, Hong Doo

    2001-01-01

    Photocyclizable poly(cinnam-4'-yl methyl methacrylate) derivatives bearing methoxy benzene (PMCMMA), anthracene (PACMMA), and coumarin (PCCMMMA) have been synthesized via Heck type reaction. Three different types of polymers are photoreactable using linearly polarized UV light and applicable as liquid crystal alignment layer. Anthracene and coumarin containing polymers (PACMMA, PCCMMA) have better thermal stability than PMCMMA. This observation may be attributed to the glass transition temperature elevation due to the bulky size and another photocrosslinking site provided by anthracene or coumarin group

  20. Dispersion stability of thermal nanofluids

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2017-10-01

    Full Text Available Thermal nanofluids, the engineered fluids with dispersed functional nanoparticles, have exhibited extraordinary thermophysical properties and added functionalities, and thus have enabled a broad range of important applications. The poor dispersion stability of thermal nanofluids, however, has been considered as a long-existing issue that limits their further development and practical application. This review overviews the recent efforts and progresses in improving the dispersion stability of thermal nanofluids such as mechanistic understanding of dispersion behavior of nanofluids, examples of both water-based and oil-based nanofluids, strategies to stabilize nanofluids, and characterization techniques for dispersion behavior of nanofluids. Finally, on-going research needs, and possible solutions to research challenges and future research directions in exploring stably dispersed thermal nanofluids are discussed. Keywords: Thermal nanofluids, Dispersion, Aggregation, Electrostatic stabilization, Steric stabilization

  1. Stabilized thermally compensated mirror

    International Nuclear Information System (INIS)

    Dunn, C. III; Tobin, R.D.; Bergstreser, N.E.; Heinz, T.A.

    1975-01-01

    A thermally compensated mirror is described that is formed by a laminated structure. The structure is comprised of a front plate having a reflective front surface and having a plurality of grooves formed in the rear surface for conducting coolant fluid in heat exchanging relation with said reflective surface, a rear plate having coolant inlet and coolant outlet openings extending therethrough, a minimum temperature plate interposed between said front and rear plates and formed with a plurality of coolant distribution passageways coupled to receive coolant fluid from said coolant inlet and oriented to distribute said coolant fluid in a manner to establish a minimum temperature plane parallel to said reflective surface, a temperature stabilization plate interposed between said front plate and said minimum temperature plate and formed with a plurality of coolant distribution channels coupled to receive said coolant fluid after said coolant fluid has passed in heat exchanging relation with said reflective surface and oriented to distribute said coolant fluid in a manner to establish a uniform temperature plane parallel to said reflective surface, and means for circulating said coolant fluid through said structure in a predetermined path. (U.S.)

  2. Investigation on Synthesis, Stability, and Thermal Conductivity Properties of Water-Based SnO2/Reduced Graphene Oxide Nanofluids

    Directory of Open Access Journals (Sweden)

    Xiaofen Yu

    2017-12-01

    Full Text Available With the rapid development of industry, heat removal and management is a major concern for any technology. Heat transfer plays a critically important role in many sectors of engineering; nowadays utilizing nanofluids is one of the relatively optimized techniques to enhance heat transfer. In the present work, a facile low-temperature solvothermal method was employed to fabricate the SnO2/reduced graphene oxide (rGO nanocomposite. X-ray diffraction (XRD, thermogravimetric analysis (TGA, X-ray photoelectron spectroscope (XPS, Raman spectroscopy, and transmission electron microscopy (TEM have been performed to characterize the SnO2/rGO nanocomposite. Numerous ultrasmall SnO2 nanoparticles with average diameters of 3–5 nm were anchored on the surface of rGO, which contain partial hydrophilic functional groups. Water-based SnO2/rGO nanofluids were prepared with various weight concentrations by using an ultrasonic probe without adding any surfactants. The zeta potential was measured to investigate the stability of the as-prepared nanofluid which exhibited great dispersion stability after quiescence for 60 days. A thermal properties analyzer was employed to measure thermal conductivity of water-based SnO2/rGO nanofluids, and the results showed that the enhancement of thermal conductivity could reach up to 31% at 60 °C under the mass fraction of 0.1 wt %, compared to deionized water.

  3. Investigation on Synthesis, Stability, and Thermal Conductivity Properties of Water-Based SnO2/Reduced Graphene Oxide Nanofluids

    Science.gov (United States)

    Yu, Xiaofen; Wu, Qibai; Zhang, Haiyan; Zeng, Guoxun; Li, Wenwu; Qian, Yannan; Li, Yang; Yang, Guoqiang; Chen, Muyu

    2017-01-01

    With the rapid development of industry, heat removal and management is a major concern for any technology. Heat transfer plays a critically important role in many sectors of engineering; nowadays utilizing nanofluids is one of the relatively optimized techniques to enhance heat transfer. In the present work, a facile low-temperature solvothermal method was employed to fabricate the SnO2/reduced graphene oxide (rGO) nanocomposite. X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscope (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) have been performed to characterize the SnO2/rGO nanocomposite. Numerous ultrasmall SnO2 nanoparticles with average diameters of 3–5 nm were anchored on the surface of rGO, which contain partial hydrophilic functional groups. Water-based SnO2/rGO nanofluids were prepared with various weight concentrations by using an ultrasonic probe without adding any surfactants. The zeta potential was measured to investigate the stability of the as-prepared nanofluid which exhibited great dispersion stability after quiescence for 60 days. A thermal properties analyzer was employed to measure thermal conductivity of water-based SnO2/rGO nanofluids, and the results showed that the enhancement of thermal conductivity could reach up to 31% at 60 °C under the mass fraction of 0.1 wt %, compared to deionized water. PMID:29280972

  4. Synthesis and Characterization of PEDOT:P(SS-co-VTMS with Hydrophobic Properties and Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Wonseok Cho

    2016-05-01

    Full Text Available Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene, i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane (PEDOT:P(SS-co-VTMS copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS copolymers. PSS and P(SS-co-VMTS copolymers were successfully synthesized via radical solution polymerization, and PEDOT:P(SS-co-VTMS was synthesized via Fe+-catalyzed oxidative polymerization. The characterization of PEDOT:P(SS-co-VTMS was performed through an analysis of Fourier transform infrared spectroscopy (FTIR results, water contact angle and optical images. The electrical properties of conductive PEDOT:P(SS-co-VTMS thin films were evaluated by studying the influence of the VTMS content on the electrical and physical properties. The conductivity of PEDOT:P(SS-co-VTMS decreased with an increase in the VTMS content, but was close to that of the PEDOT:PSS, 235.9 S·cm−1. The introduction of VTMS into the PSS copolymer improved the mechanical properties and thermal stability and increased the hydrophobicity. The thermal stability test at a temperature over 240 °C indicated that the sheet resistance of PEDOT:PSS increased by 3,012%. The sheet resistance of PEDOT:P(SS-co-VTMS, on the other hand, only increased by 480%. The stability of PEDOT:P(SS-co-VTMS was six-times higher than that of the reference PEDOT:PSS.

  5. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    Li, Shu-Ming; Fu, Lian-Hua; Ma, Ming-Guo; Zhu, Jie-Fang; Sun, Run-Cang; Xu, Feng

    2012-01-01

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO 3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  6. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus.

    Directory of Open Access Journals (Sweden)

    Nastassia Havarushka

    Full Text Available Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15 °C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50 °C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface.

  7. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    Science.gov (United States)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  8. Synthesis, structure, thermal stability, mechanical and antibacterial behaviour of lanthanum (La{sup 3+}) substitutions in β-tricalciumphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Meenambal, Rugmani; Singh, Ram Kishore; Nandha Kumar, P.; Kannan, S., E-mail: para_kanna@yahoo.com

    2014-10-01

    Five different concentrations of lanthanum (La{sup 3+}) substituted β-tricalcium phosphate [β-TCP, β-Ca{sub 3}(PO{sub 4}){sub 2}] were formed through aqueous precipitation technique and the results were compared with stoichiometric β-TCP. All the La{sup 3+} substituted β-TCP powders were characterized using XRD, FT-IR, XRF, Raman spectroscopy and Rietveld refinement of the XRD data. The results from the investigation confirmed the presence of La{sup 3+} in rhombohedral β-TCP structure. The substitution of higher sized of La{sup 3+} led to the considerable enhancement in lattice parameters of β-TCP crystal structure and La{sup 3+} was found to have occupied the eight fold coordinated Ca (3) site of β-TCP structure. La{sup 3+} occupancy at the Ca (3) site resulted in the significant distortions of the associated PO{sub 4} tetrahedra, which were supported by the Raman and FT-IR spectroscopic techniques. La{sup 3+} presence in the crystal lattice of β-TCP also led to the delay in allotropic phase transformation of β-TCP to α-TCP till 1300 °C, thus signifying the good thermal stability of La{sup 3+} substituted β-TCP powders. The antibacterial efficiency of La{sup 3+} substituted β-TCP powders was confirmed from the in vitro tests done on microbes such as Staphylococcus aureus and Escheria coli. Further, the presence of La{sup 3+} in the crystal lattice of β-TCP did not affect the hardness and Young's modulus values of β-TCP. - Graphical abstract: A fragment of β-Ca{sub 3}(PO{sub 4}){sub 2} structure showing the occupancy of La{sup 3+} at the Ca (3) site. - Highlights: • A series of La{sup 3+} doped β-Ca{sub 3}(PO{sub 4}){sub 2} were obtained by aqueous precipitation method. • Higher sized La{sup 3+} was found positioned at the Ca (3) site of β-Ca{sub 3}(PO{sub 4}){sub 2}. • La{sup 3+} presence in β-Ca{sub 3}(PO{sub 4}){sub 2} had not deteriorated its mechanical properties. • La{sup 3+} doped β-Ca{sub 3}(PO{sub 4}){sub 2} show good

  9. Chemical and thermal stability of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.......To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands....

  10. Synthesis, characterization, and thermal stability of novel poly(azomethine-urethane)s and polyphenol derivatives derived from 2,4-dihydroxy benzaldehyde and toluene-2,4-diisocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Ismet, E-mail: kayaismet@hotmail.com [Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, 17020, Canakkale (Turkey); Avc Latin-Small-Letter-Dotless-I , Ali [Celal Bayar University, Faculty of Sciences and Arts, Department of Chemistry, 45040, Manisa (Turkey)

    2012-03-15

    Graphical abstract: Black-Right-Pointing-Triangle Synthesis, characterization, and thermal stability of novel poly(azomethine-urethane)s and polyphenol derivatives derived from 2,4-dihydroxy benzaldehyde and toluene-2,4-diisocyanate. Highlights: Black-Right-Pointing-Pointer New pol(azomethine-urethane)s were synthesized. Black-Right-Pointing-Pointer PAMUs were converted to their polyphenol species by oxidative polymerization reaction with NaOCl. Black-Right-Pointing-Pointer The synthesized compounds were characterized by solubility tests, TGA and DSC. Black-Right-Pointing-Pointer T{sub g} values of PAMUs were between 137 and 178 Degree-Sign C and thermal stabilities of them were very good. Black-Right-Pointing-Pointer Obtained compounds can be promising candidates for aerospace applications. - Abstract: Up to date, only a few kinds of poly(azomethine-urethane)s (PAMUs) were synthesized and studied with thermal degradation steps. However, polyphenol based PAMUs including azomethine linkages have not been investigated yet. The polyurethanes were prepared by condensation reaction of 2,4-dihydroxybenzaldehyde (2,4-DHBA) with toluene-2,4-diisocyanate (TDI) under argon atmosphere. Synthesized polyurethane was converted to its poly(azomethine urethane) species (TP-2AP, TP-3AP, and TP-4AP) by graft copolymerization reactions with amino phenols (2-amino phenol, 3-amino phenol, and 4-amino phenol). Obtained poly(azomethine urethane)s were converted to their polyphenol species (P-TP-2AP, P-TP-3AP, and P-TP-4AP) by oxidative polymerization reaction (OP) using NaOCl as the oxidant. The structures of the obtained compounds were confirmed by FT-IR, UV-vis, {sup 1}H NMR, and {sup 13}C NMR techniques. The molecular weight distribution parameters of the synthesized compounds were determined by the size exclusion chromatography (SEC). The synthesized compounds were also characterized by solubility tests, TG-DTA, and DSC. Fluorescence measurements were carried out in various

  11. Synthesis, Characterization, Thermal Stability and Sensitivity Properties of New Energetic Polymers—PVTNP-g-GAPs Crosslinked Polymers

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2016-01-01

    Full Text Available A series of energetic polymers, poly(vinyl 2,4,6-trinitrophenylacetal-g-polyglycidylazides (PVTNP-g-GAPs, were synthesized via cross-linking reactions of PVTNP with three different molecular weight GAPs using toluene diisocyanate as the cross-linking agent. The structures of these energetic polymers were characterized by ultraviolet visible spectra (UV–Vis, attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR, and nuclear magnetic resonance spectrometry (NMR. The glass-transition temperatures of these energetic polymers were measured with differential scanning calorimetry (DSC method, and the results showed that all the measured energetic polymers have two distinct glass-transition temperatures. The thermal decomposition behaviors of these energetic polymers were evaluated by differential thermal analysis (DTA, thermogravimetric analysis (TGA and thermogravimetric analysis tandem infrared spectrum (TGA-IR. The results indicated that all the measured energetic polymers have excellent resistance to thermal decomposition up to 200 °C, and the initial thermal decomposition was attributed to the breakdown of azide group. Moreover, the sensitivity properties of these energetic polymers were measured with the national military standard methods and their compatibilities with the main energetic components of 2,4,6-trinitrotoluene (TNT-based melt-cast explosive were evaluated by using the DTA method. The results indicate that these energetic polymers have feasible mechanical sensitivities and can be safely used with TNT, cyclotetramethylene tetranitramine (HMX, 1,1-diamino-2,2-dinitroethene (FOX-7, 3-nitro-1,2,4-triazol-5-one (NTO and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB.

  12. Cerium(III) pivalate [Ce(Piv)3(HPiv)3]2: synthesis, crystal structure, and thermal stability

    International Nuclear Information System (INIS)

    Khudyakov, M.Yu.; Kuz'mina, N.P.; Pisarevskij, A.P.; Martynenko, L.I.

    2002-01-01

    Complex [Ce(Piv) 3 (HPiv) 3 ] 2 was prepared by precipitation of cerium(III) nitrate aqueous solution with salt NH 4 (Piv) (HPiv = pivalic acid) and subsequent recrystallization from 5% HPiv solution in hexane. According to data of X-ray diffraction analysis and IR spectroscopy crystal structure of the complex is built of centrally symmetric dimers, in which cerium atoms are bound by four bridge pivalate ligands. Thermal analysis suggests that heating of the complex in nitrogen atmosphere results first in splitting off six HPiv molecules in the range of 90-190 deg C and then in thermolysis of Ce(Piv) 3 formed at 290-450 deg C. Sublimation of Ce(Piv) 3 occurs in the range of 290-350 deg C along with thermolysis during heating in vacuum (0.01 mm Hg), which permits preparing CeO 2 films by the method of chemical precipitation from gaseous phase [ru

  13. Control for fusion thermal stability

    International Nuclear Information System (INIS)

    Maya, I.; Campbell, H.D.

    1983-01-01

    An analysis of the thermal balance of a fusioning plasma from a control system perspective has been performed. The requirements for stability and the response characteristics of the thermal balance have been evaluated. The results show that open-loop equilibria are characterized by restrictively narrow stable operating temperature regimes and generally poor system performance. Closed-loop proportional feedback using the fuel feedrate and injection energy can be used to extend the stable operating temperature regime and significantly improve the system response. Thus, high open-loop temperature overshoots without neutral beam injection can be reduced to acceptable levels at temperature overshoots without neutral beam injection can be reduced to acceptable levels at temperatures as low as 20 keV, with a decrease in the settling time to under 30 sec. With 75 keV injection energy, acceptable overshoot can be obtained at plasma temperatures as low as 10 keV, with the time-to-peak below 20 sec and settling times less than 30 sec. It is still difficult to simultaneously satisfy overshoot and speed of response requirements at low temperatures with low feedback fractions. Additional improvement is available using proportional-integral-derivative (PID) control

  14. Synthesis and photocatalytic activity of Eu3+-doped nanoparticulate TiO2 sols and thermal stability of the resulting xerogels

    International Nuclear Information System (INIS)

    Borlaf, Mario; Moreno, Rodrigo; Ortiz, Angel L.; Colomer, María T.

    2014-01-01

    The synthesis of nanoparticulate TiO 2 sols without and with Eu 3+ doping (1, 2, or 3 mol%) by the colloidal sol–gel method in aqueous media was investigated, with emphasis on the effect of the Eu 3+ doping on the peptization time and rheological properties of the sols. It was found that the addition of Eu 3+ increasingly retards the peptization process, and also results in sols with greater aggregate sizes which are therefore more viscous, although in all cases the distributions of aggregate sizes are unimodal and the flow behavior is Newtonian. The shifting of the isoelectric point of the sols toward greater pH with increasing Eu 3+ doping indicates that the aforementioned trends are due to the chemical adsorption of europium ionic complexes in the form of solvated species. Furthermore, the effect of Eu 3+ doping on the ultraviolet–visible spectrum and photocatalytic activity of the peptized sols was also explored. It was found that the Eu 3+ doping increasingly shifts slightly the absorption edge from the ultraviolet to the visible range, and that its effect on the photocatalytic activity is certainly complex because this is enhanced only if the Eu 3+ cations have some electronic transition (charge transfer transition or transitions between the ground state and the excited states) at the wavelength of the incident radiation, in which case the photocatalytic activity first increases with increasing Eu 3+ content and then decreases perhaps due to occurrence of Eu–Eu interactions or simply to the greater aggregation state. Finally, the influence of the Eu 3+ doping on the thermal stability of the nanoparticulate xerogels resulting from the drying of the peptized sols was also examined by X-ray thermo-diffractometry together with transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry. It was found that although the xerogels crystallize all as anatase phase, this is increasingly more thermally stable

  15. Synthesis and photocatalytic activity of Eu{sup 3+}-doped nanoparticulate TiO{sub 2} sols and thermal stability of the resulting xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, Mario; Moreno, Rodrigo [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Ortiz, Angel L. [Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. de Elvas S/N, 06006 Badajoz (Spain); Colomer, María T., E-mail: tcolomer@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, CSIC, C/Kelsen 5, 28049 Madrid (Spain)

    2014-03-01

    The synthesis of nanoparticulate TiO{sub 2} sols without and with Eu{sup 3+} doping (1, 2, or 3 mol%) by the colloidal sol–gel method in aqueous media was investigated, with emphasis on the effect of the Eu{sup 3+} doping on the peptization time and rheological properties of the sols. It was found that the addition of Eu{sup 3+} increasingly retards the peptization process, and also results in sols with greater aggregate sizes which are therefore more viscous, although in all cases the distributions of aggregate sizes are unimodal and the flow behavior is Newtonian. The shifting of the isoelectric point of the sols toward greater pH with increasing Eu{sup 3+} doping indicates that the aforementioned trends are due to the chemical adsorption of europium ionic complexes in the form of solvated species. Furthermore, the effect of Eu{sup 3+} doping on the ultraviolet–visible spectrum and photocatalytic activity of the peptized sols was also explored. It was found that the Eu{sup 3+} doping increasingly shifts slightly the absorption edge from the ultraviolet to the visible range, and that its effect on the photocatalytic activity is certainly complex because this is enhanced only if the Eu{sup 3+} cations have some electronic transition (charge transfer transition or transitions between the ground state and the excited states) at the wavelength of the incident radiation, in which case the photocatalytic activity first increases with increasing Eu{sup 3+} content and then decreases perhaps due to occurrence of Eu–Eu interactions or simply to the greater aggregation state. Finally, the influence of the Eu{sup 3+} doping on the thermal stability of the nanoparticulate xerogels resulting from the drying of the peptized sols was also examined by X-ray thermo-diffractometry together with transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry. It was found that although the xerogels crystallize all as anatase

  16. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    Zirconia stabilized with 11 mol% scandia (11ScSZ) has been successfully synthesized by novel alanine-assisted soft chemical aqueous combustion method. The reaction kinetics during combustion synthesis has been studied in detail by analysing thermal behaviour of different metal–alanine complexes. A single phase ...

  17. Synthesis, formation and stability of yttrium disilicate

    International Nuclear Information System (INIS)

    Santos, S.C.; Yamagata, C.; Silva, A.C.; Mello-Castanho, S.R.H.

    2012-01-01

    The disilicates such as TR 2 Si 2 O 7 (TR= rare earth and Y) show particulars magnetic, electric and optical proprieties. In the case of yttrium disilicate (Y 2 Si 2 O 7 ) its phases (Y,α, β,γ,δ) have been studied very much by many authors showing that is not easy to gain stable phases, wherein high temperatures and time are used to stabilize them. In this work, Y 2 Si 2 O 7 was synthesized by a low cost and simpler hydrothermal method developed by our group. The precursor was treated thermally in the temperature range of 900-1400°C to form different polymorphic phases, being characterized by X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Photon Correlation Spectroscopy (PCS). The XRD results show by the following synthesis method is possible to form stable phases apart from 1000°C. (author)

  18. Thermal stability of PMMA–clay hybrids

    Indian Academy of Sciences (India)

    Administrator

    are then polymerized with poly methyl methacrylate (PMMA) by solution intercalation method. The thermal stability of these different clay–PMMA hybrids have been ... Dispersants; DSC; exfoliation; hybrid; nanoclay; poly (methyl methacrylate); SEM; thermal sta- .... drop of clove oil was added to the naturally dispersed clay.

  19. Thermal stability of phosphate coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-07-01

    Full Text Available The work was validated thermal stability of zinc, manganese and tri-cations phosphate coatings on steel, made from commercial phosphating bath type Pragofos. Thermogravimetric data dehydration of scholzite, phosphophylite and hureaulite coatings in the temperature range 160 °C – 400 °C define the conditions for applying paints with higher firing temperature or thermal spraying ceramic coatings.

  20. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity.

    Science.gov (United States)

    Li, Jihui; Li, Yongshen; Song, Yunna; Niu, Shuai; Li, Ning

    2017-11-01

    In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time. Copyright © 2017. Published by Elsevier B.V.

  1. Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties

    Directory of Open Access Journals (Sweden)

    Pierre Boufflet

    2016-10-01

    Full Text Available The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophenes and poly(3-octylthiophene (F-P3OT-b-P3OT. Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems.

  2. Thermal hydraulic stability experiments in rod bundle

    International Nuclear Information System (INIS)

    Enomoto, T.; Muto, S.; Ishizuka, T.; Tanabe, A.; Mitsutake, T.; Sakurai, M.

    1985-01-01

    Thermal hydraulic stability tests have been performed on electrically heated bundles to simulate Boiling Water Reactor (BWR) fuels in a parallel channel test-loop. The test facility used is for the study of the steady state and transient characteristics of various thermal hydraulic conditions encountered in BWR operation, such as flow- high power operation, abnormal transient conditions and post boiling transition, including thermal hydraulic stability. Moreover, steady state and transient void behavior can be measured using an additional test section for this facility

  3. Thermal stability of Cryptococcus albidus α-L-rhamnosidase

    Directory of Open Access Journals (Sweden)

    O. V. Gudzenko

    2015-06-01

    Full Text Available Yeast as well as micromycetes α-L-rhamnosidases, currently, are the most promising group of enzymes. Improving of the thermal stability of the enzyme preparation are especially important studies. Increase in stability and efficiency of substrate hydrolysis by α-L-rhamnosidase will improve the production technology of juices and wines. The aim of our study was to investigate the rate of naringin hydrolysis by α-L-rhamnosidase from Cryptococcus albidus, and also some aspects of the thermal denaturation and stabilization of this enzyme. We investigated two forms of α-L-rhamnosidase from C. albidus, which were obtained by cultivation of the producer on two carbon sources – naringin and rhamnose. A comparative study of properties and the process of thermal inactivation of α-L-rhamnosidases showed that the inducer of synthesis had no effect on the efficiency of naringin hydrolysis by the enzyme, but modified thermal stability of the protein molecule. Hydrophobic interactions and the cysteine residues are involved in maintaining of active conformation of the α-L-rhamnosidase molecule. Yeast α-L-rhamnosidase is also stabilized by 0.5% bovine serum albumin and 0.25% glutaraldehyde.

  4. Thermal Stabilization of Biologics with Photoresponsive Hydrogels.

    Science.gov (United States)

    Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W

    2018-03-12

    Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex

  5. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. C V MYTHILI, A MALAR RETNA and S GOPALAKRISHNAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. MS received 28 August 2003; revised 19 February 2004.

  6. Synthesis of Bio-Based Poly(lactic acid-co-10-hydroxy decanoate Copolymers with High Thermal Stability and Ductility

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2015-03-01

    Full Text Available Novel bio-based aliphatic copolyesters, poly(lactic acid-co-10-hydroxy decanoate (P(LA-co-HDA, PLH, were successfully synthesized from lactic acid (LA and 10-hydroxycapric acid (HDA by a thermal polycondensation process, in the presence of p-toluenesulfonic acid (p-TSA and SnCl2·2H2O as co-catalyst. The copolymer structure was characterized by Fourier transform infrared (FTIR and proton nuclear magnetic resonance (1H NMR. The weight average molecular weights (Mw of PLH, from gel permeation chromatography (GPC measurements, were controlled from 18,500 to 37,900 by changing the molar ratios of LA and HDA. Thermogravimetric analysis (TGA results showed that PLH had excellent thermal stability, and the decomposition temperature at the maximum rate was above 280 °C. The glass transition temperature (Tg and melting temperature (Tm of PLH decreased continuously with increasing the HDA composition by differential scanning calorimetry (DSC measurements. PLH showed high ductility, and the breaking elongation increased significantly by the increment of the HDA composition. Moreover, the PLH copolymer could degrade in buffer solution. The cell adhesion results showed that PLH had good biocompatibility with NIH/3T3 cells. The bio-based PLH copolymers have potential applications as thermoplastics, elastomers or impact modifiers in the biomedical, industrial and agricultural fields.

  7. Research of thermal stability of ion exchangers

    International Nuclear Information System (INIS)

    Stuchlik, S.; Srnkova, J.

    1983-01-01

    Prior to the fixation of radioactive ion exchangers into bitumen these exchangers have to be dried. The resulting gaseous products may generate explosive mixtures. An analysis was made of the thermal stability of two types of ion exchangers, the cation exchanger KU-2-8 cS and the anion exchanger AV-17-8 cS which are used in the V-1 nuclear power plant at Jaslovske Bohunice. The thermal stability of the anion exchangers was monitored using gas chromatography at temperatures of 100, 120, 140, 160 and 180 degC and by measuring weight loss by kiln-drying at temperatures of 120, 140, 160 and 180 degC. The ion exchanger was heated for 6 hours and samples were taken continuously at one hour intervals. The thermal stability of the cation exchanger was monitored by measuring the weight loss. Gas chromatography showed the release of trimethylamine from the anion exchanger in direct dependence on temperature. The measurement of weight losses, however, only showed higher losses of released products which are explained by the release of other thermally unstable products. The analysis of the thermal stability of the cation exchanger showed the release of SO 2 and the weight loss (following correction for water content) was found only after the fourth hour of decomposition. The experiment showed that the drying of anion exchanger AV-17-8 cS may cause the formation of explosive mixtures. (J.P.)

  8. Thermal stability engineering of Glomerella cingulata cutinase.

    Science.gov (United States)

    Chin, Iuan-Sheau; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad; Nathan, Sheila; Abu Bakar, Farah Diba

    2013-05-01

    Cutinase has been ascertained as a biocatalyst for biotechnological and industrial bioprocesses. The Glomerella cingulata cutinase was genetically modified to enhance its enzymatic performance to fulfill industrial requirements. Two sites were selected for mutagenesis with the aim of altering the surface electrostatics as well as removing a potentially deamidation-prone asparagine residue. The N177D cutinase variant was affirmed to be more resilient to temperature increase with a 2.7-fold increase in half-life at 50°C as compared with wild-type enzyme, while, the activity at 25°C is not compromised. Furthermore, the increase in thermal tolerance of this variant is accompanied by an increase in optimal temperature. Another variant, the L172K, however, exhibited higher enzymatic performance towards phenyl ester substrates of longer carbon chain length, yet its thermal stability is inversely affected. In order to restore the thermal stability of L172K, we constructed a L172K/N177D double variant and showed that these two mutations yield an improved variant with enhanced activity towards phenyl ester substrates and enhanced thermal stability. Taken together, our study may provide valuable information for enhancing catalytic performance and thermal stability in future engineering endeavors.

  9. Synthesis and thermal degradation Kinetics of D - (+ - galactose containing polymers

    Directory of Open Access Journals (Sweden)

    Fehmi Saltan

    2013-01-01

    Full Text Available In this study, it is investigated the synthesis and characterizations of polymerizable vinyl sugars. Carbohydrate containing polymers were synthesized via free radical polymerization. Thermal behavior of polymer derivatives was analyzed by using DSC and TG. Molecular weight dispersion of polymer derivatives was also analyzed with GPC. Molecular structures were analyzed by FT-IR and 1H-NMR spectrophotometer. We found that molecular weight of copolymers could effect to the thermal stability. According to TG data related to the copolymers, molecular weight of polymers increased while the thermal stability decreased. Thermogravimetric analysis of polymers also investigated. The apparent activation energies for thermal degradation of carbohydrate containing polymers were obtained by integral methods (Flynn - Wall - Ozawa, Kissinger - Akahira - Sunose, and Tang.

  10. Thermal characteristics of yttria stabilized zirconia nanolubricants

    Directory of Open Access Journals (Sweden)

    Sakthinathan Ganapathy

    2012-01-01

    Full Text Available The transition from microparticles to nanoparticles can lead to a number of changes in its properties. The objective of this work is to analyze the thermal, tribological properties of yttria stabilized zirconia nanoparticles. Nanosized yttria stabilized zir conia particles were prepared by milling the yttria stabilized zirconia (10 ftm in a planetary ball mill equipped with vials using tungsten carbide balls. After 40 hours milled the yttria stabilized zirconia nanoparticles of sizes ranging from 70-90 nm were obtained. The phase composition and morphologies of the assynthesized particles were characterized by energy dispersive X-ray analysis, scanning electron microscope, transmission electron microscope, thermogravimetric analysis and differential scanning calorimeter, and the images of the same were obtained. From TG-DSC analysis it was confirmed that, the yttria stabilized zirconia nanoparticles were heat stable under different thermal conditions which is due to the addition of yttria to pure zirconia. Due to this property of yttria stabilized zirconia nanoparticles, it can be widely used in high transfer application such as lubricant additives. The heat transfer properties of automotive engine lubricants were determined by utilization of measured thermal conductivity, viscosity index, density, flash point, fire point and pour point revealed that lubricants with additive constituents have a significant effect on the resultant heat transfer characteristics of the lubricants.

  11. Synthesis of partially stabilized leucite

    Czech Academy of Sciences Publication Activity Database

    Kloužková, A.; Mrázová, M.; Kohoutková, Martina

    2007-01-01

    Roč. 68, 5-6 (2007), s. 1207-1210 ISSN 0022-3697 R&D Projects: GA MPO 2A-1TP1/063 Institutional research plan: CEZ:AV0Z40320502 Keywords : ceramics * chemical synthesis * X-ray diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 0.899, year: 2007

  12. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  13. (C7H7NO4Mo)n: Synthesis, characterization and thermal stability of a new oxo-bridged helical-1D-polymer cluster

    Science.gov (United States)

    Pathak, Sayantan; Jana, Barun; Ghosh, Mithun K.; Ghorai, Tanmay K.

    2017-12-01

    A new look of helical-1D-polymeric cluster of molybdenum (C7H7NO4Mo)n (1) is herein reported. The one dimensional polymeric molybdenum cluster was generated from a mixture of Na2MoO4, 2, 6-pyridinedimethanol (pdm), RuCl3 and chloroacetic acid in methanol. Single crystal X-ray diffraction study of the isolated crystal shows that it is a μ2-oxo bridged 1D-Polymer assembly of molybdenum pdm2- complex where the nitrogen atom, two de-protonated 'O' atoms of the pdm2- ligand are connected to the central metal atoms. Furthermore, terminally connected double bonded 'O' atoms fulfilled the distorted octahedral environment of the metal atoms. In addition, BVS calculations show that Mo atoms are exists in +VI oxidation state in complex 1. The oxidation state of the metal atoms is further confirmed from the cyclic voltammogram. FT-IR spectroscopy and elemental analysis of the isolated crystals further supports the functional group attached to the periphery of the metal ion. Thermal gravimetric analysis of complex 1 confirms the thermodynamic stability of the polymer up to 190 °C.

  14. Multifunctional Composites for Improved Polyimide Thermal Stability

    Science.gov (United States)

    Miller, Sandi G.

    2007-01-01

    The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.

  15. Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures.

    Science.gov (United States)

    Inaguma, Yoshiyuki; Tanaka, Kie; Tsuchiya, Takeshi; Mori, Daisuke; Katsumata, Tetsuhiro; Ohba, Tomonori; Hiraki, Ko-ichi; Takahashi, Toshihiro; Saitoh, Hiroyuki

    2011-10-26

    We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.

  16. Improvement of Thermal Stability of BCG Vaccine

    Science.gov (United States)

    Jahanbakhsh Sefidi, Fatemeh; Kaghazian, Homan; Moradli, Gholam Ali; Hassanzadeh, Seyed Mehdi

    2017-11-01

    Thermal stability (TS) is a part of the BCG vaccine characterization by which the consistency of process in BCG vaccine production could be confirmed. To enhance the TS of the vaccine, some prevalent stabilizers in different concentrations were added to the final formulation of BCG bulk prior to Freeze-drying process. We found a formulation more effective than the current stabilizer for retaining the higher viability of lyophilized BCG vaccine produced by Pasteur Institute of Iran. In the design of experiments using Taguchi method, lactose, trehalose, glucose, dextran, and monosodium glutamate were added to the final formulation of BCG bulk prior to freeze-drying process. Viability of the samples was determined by counting the colony forming unit. Maximum signal-to-noise ratio equal to maximum TS and viability was obtained by adding lactose, dextran, and glutamate in defined concentrations. Adding the stabilizers had a significant impact on TS of BCG vaccine to meet the quality requirements.

  17. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  18. Chemically stabilized subtilisins in peptide synthesis

    OpenAIRE

    Colleary, Sandra; Ó Fágáin, Ciarán

    2008-01-01

    We have stabilized alcalaseTM and subtilisin Carlsberg (SC) against heat by chemical modification with ethylene glycol bis-succinimidyl succinate (EGNHS), a procedure not previously reported for subtilisins. The increases in thermal stability at 65oC were 1.8-fold and 4.7-fold respectively. Caseinolytic activity of alcalase in aqueous buffer was unchanged following modification but apparent Km of SC decreased 2.5-fold. Native and modified forms of both enzymes synthesized the tripeptide Z-...

  19. System Design Description PFP Thermal Stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures

  20. Synthesis and Characterization of Oleic Acid Stabilized ...

    African Journals Online (AJOL)

    Oleic acid stabilized magnetite nanocrystals have been synthesized by the organic phase thermal decomposition of iron oleate complex in 1-octadecene for potential application as magnetic resonance imaging (MRI) contrast agent. The synthetic process resulted in 13.5 and 15.1 nm highly monodisperse nanocrystals as ...

  1. Synthesis, spectral, thermal, optical dispersion and dielectric ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Ahmed Farouk Al-Hossainy. Volume 39 Issue 1 February 2016 pp 209-222 ...

  2. Synthesis, crystal structure, thermal analysis and dielectric

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis, crystal structure, thermal analysis and dielectric properties of two mixed trichlorocadmiates (II).

  3. Thermal stability of soy-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Luciane L. Monteavaro

    2005-06-01

    Full Text Available New types of polyurethanes were prepared by reacting diisocyanates and formiated soy polyols with different OH functionalities. Thermal properties and degradation kinetics were investigated by TGA. All prepared PU's showed at least two-weight loss steps, the first one, around 210 °C. Thermal stability of these PUs depends strongly on urethane groups per unit volume and an increase in the weight loss was observed as a result of the increased amount of urethane groups. Degradation kinetics behavior of the soy-based polyurethanes was investigated according to the Flynn method. Different average activation energy values were obtained from isothermal and isoconversional curves, 140.6 KJ/mol and 62.8 KJ/mol, respectively, indicating the complexity of the PUs degradation process.

  4. Thermal stability of gallium arsenide solar cells

    Science.gov (United States)

    Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara

    2017-12-01

    This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.

  5. Stability of organometallic compounds in processes of their synthesis and decomposition

    International Nuclear Information System (INIS)

    Domrachev, G.A.; Zakharov, L.N.; Shevelev, Yu.A.

    1985-01-01

    From common positions critically considered is the notion of stability of isolated molecule of organometallic compound (OMC) as well as of the systems including OMC and products of their decomposition in various modular states aof aggregation, energy (electronic structure stability) and space (molecular structure stability) factors of OMC stability and their manifestation under different conditions. Various aspects of OMC stability during their synthesis-decomposition processes proceeding under the conditions: thermal reactions with participation of uncharged (neutral) particles of OMC and decomposition products; electron impact or electric current effect with ionized particles participation, electromagnetic radiation effect are discussed. The necessity in complex solution of the OMC stability problem is pointed out

  6. New Lipophilic 2-Amino-N,N’-dialkyl-4,5-dimethylimidazolium Cations: Synthesis, Structure, Properties, and Outstanding Thermal Stability in Alkaline Media

    Czech Academy of Sciences Publication Activity Database

    Kunetskiy, Roman Alexejevič; Císařová, I.; Šaman, David; Lyapkalo, Ilya

    2009-01-01

    Roč. 15, č. 37 (2009), s. 9477-9485 ISSN 0947-6539 Institutional research plan: CEZ:AV0Z40550506 Keywords : aromatic stabilization * imidazolium cations * lipophilicity * phase-transfer catalysis Subject RIV: CC - Organic Chemistry Impact factor: 5.382, year: 2009

  7. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.

    2010-01-01

    -LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  8. Synthesis, stabilization, and characterization of metal nanoparticles

    Science.gov (United States)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  9. SYNTHESIS, SPECTRAL AND THERMAL PROPERTIES OF SOME ...

    African Journals Online (AJOL)

    The infrared spectral studies reveal that the ligand HNAAPTS is coordinated in neutral tridentate (N,N,S) fashion. The coordination number of Th(IV) in these coordination compounds varies from 6, 8, 10 or 11; while for U(VI) the coordination number are 8, 9 or 10. Thermal stabilities of these complexes were investigated ...

  10. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  11. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    Science.gov (United States)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  12. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity

    Science.gov (United States)

    Refat, Moamen S.

    2013-03-01

    Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.

  13. Synthesis, Crystal Structure and Thermal Stability of 1D Linear Silver(I Coordination Polymers with 1,1,2,2-Tetra(pyrazol-1-ylethane

    Directory of Open Access Journals (Sweden)

    Evgeny Semitut

    2016-10-01

    Full Text Available Two new linear silver(I nitrate coordination polymers with bitopic ligand 1,1,2,2-tetra(pyrazol-1-ylethane were synthesized. Synthesized compounds were characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and thermal analysis. Silver coordination polymers demonstrated a yellow emission near 500 nm upon excitation at 360 nm. Crystal structures of coordination polymers were determined and structural peculiarities are discussed. In both of the structures, silver ions are connected via bridging ligand molecules to form polymeric chains with a five-atomic environment. The coordination environment of the central atom corresponds to a distorted trigonal bipyramid with two N atoms of different ligands in apical positions. The Ag–N bond distances vary in a wide range of 2.31–2.62 Å, giving strongly distorted metallacycles. Thermolysis of coordination polymers in reductive atmosphere (H2/He leads to the formation of silver nanoparticles with a narrow size distribution.

  14. Thermal stability of rare earth oxychlorides

    Energy Technology Data Exchange (ETDEWEB)

    Bunda, V.V.; Shtilikha, M.V.; Golovej, V.M. (Uzhgorodskij Gosudarstvennyj Univ. (Ukrainian SSR))

    1984-12-01

    The thermal stability of oxychlorides of the lanthanum series is investigated to determine the possibility of preparing them in the form of crystals by the method of l chemical gas-transport reactions (CTR). The lanthanide oxychlorides were subjected to thermogravimetric studies in the 20-1500 deg C temperature range under normal conditions. The temperatures of initiation of incongruent decomposition reactions are found. It is found that the process of LnOCl decomposition is preceeded by the exothermal effect connected with the Ln/sub 2/OCl/sub 4/ recrystallization to LnOCl. The thermodynamic and kinetic parameters of decomposition reactions are determined, such as reaction heats ..delta..H, decomposition rate constants K, dissociation energies E, reaction orders n. The LnOCl specific heats (Csub(P))sub(T) are estimated. It is shown that the LnOCl compounds can be prepared in the form of monocrystals by the CTR method.

  15. Thermal stability of nanoscale metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.S., E-mail: sofia.ramos@dem.uc.pt [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Cavaleiro, A.J.; Vieira, M.T. [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow (Poland); Safran, G. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1121 Budapest (Hungary)

    2014-11-28

    Metallic nanolayered thin films/foils, in particular Ni/Al multilayers, have been used to promote joining. The objective of this work is to evaluate the thermal stability of nanoscale metallic multilayers with potential for joining applications. Multilayers thin films with low (Ti/Al and Ni/Ti), medium (Ni/Al) and high (Pd/Al) enthalpies of exothermic reaction were prepared by dual cathode magnetron sputtering. Their thermal stability was studied by: i) differential scanning calorimetry combined with X-ray diffraction (XRD), ii) in-situ XRD using cobalt radiation, and iii) in-situ transmission electron microscopy. It was possible to detect traces of intermetallic or amorphous phases in the as-deposited short period (bilayer thickness) multilayers, except for the Ti/Al films where no reaction products that might be formed during deposition were identified. For short periods (below 20 nm) the equilibrium phases are directly achieved upon annealing, whereas for higher periods intermediate trialuminide phases are present for Ti/Al and Ni/Al multilayers. The formation of B2-NiTi from Ni/Ti multilayers occurs without the formation of intermediate phases. On the contrary, for the Pd–Al system the formation of intermediate phases was never avoided. The viability of nanoscale multilayers as “filler” materials for joining macro or microparts/devices was demonstrated. - Highlights: • Me1 and Me2 (Me—metal) alternated nanolayers deposited by magnetron sputtering • Reactive Me1/Me2 multilayer thin films with nanometric modulation period • By heat treatment the films always evolve to the equilibrium intermetallic phase. • For some Me1–Me2 systems and periods, the formation of intermediate phases occurs. • Me1/Me2 multilayer thin films can be used as filler materials to enhance joining.

  16. Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles

    Directory of Open Access Journals (Sweden)

    Aminu Musa

    2016-01-01

    Full Text Available A chemical reduction method was employed for the synthesis of copper nanoparticles stabilized by nanocrystalline cellulose (NCC using different concentrations of copper salt in aqueous solution under atmospheric air. CuSO4·5H2O salt and hydrazine were used as metal ion precursor and reducing agent, respectively. Ascorbic acid and aqueous NaOH were also used as an antioxidant and a pH moderator, respectively. The number of CuNPs increased with increasing concentration of the precursor salt. The formation of copper nanoparticles stabilized by NCC (CuNPs@NCC was investigated by UV-visible spectroscopy (UV-vis, where the surface absorption maximum was observed at 590 nm. X-ray diffraction (XRD analysis showed that the CuNPs@NCC are of a face-centered cubic structure. Moreover, the morphology of the CuNPs@NCC was investigated using transmission electron microscope (TEM and field emission scanning electron microscope (FESEM, which showed well-dispersed CuNPs with an average particle size less than 4 nm and the shape of CuNPs was found to be spherical. Energy dispersive X-ray spectroscope (EDS also confirmed the presence of CuNPs on the NCC. The results demonstrate that the stability of CuNPs decreases with an increasing concentration of the copper ions.

  17. Synthesis and Storage Stability of Diisopropylfluorophosphate

    Directory of Open Access Journals (Sweden)

    Derik R. Heiss

    2016-01-01

    Full Text Available Diisopropylfluorophosphate (DFP is a potent acetylcholinesterase inhibitor commonly used in toxicological studies as an organophosphorus nerve agent surrogate. However, LD50 values for DFP in the same species can differ widely even within the same laboratory, possibly due to the use of degraded DFP. The objectives here were to identify an efficient synthesis route for high purity DFP and assess the storage stability of both the in-house synthesized and commercial source of DFP at the manufacturer-recommended storage temperature of 4°C, as well as −10°C and −80°C. After 393 days, the commercial DFP stored at 4°C experienced significant degradation, while only minor degradation was observed at −10°C and none was observed at −80°C. DFP prepared using the newly identified synthesis route was significantly more stable, exhibiting only minor degradation at 4°C and none at −10°C or −80°C. The major degradation product was the monoacid derivative diisopropylphosphate, formed via hydrolysis of DFP. It was also found that storing DFP in glass containers may accelerate the degradation process by generating water in situ as hydrolytically generated hydrofluoric acid attacks the silica in the glass. Based on the results here, it is recommended that DFP be stored at or below −10°C, preferably in air-tight, nonglass containers.

  18. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Administrator

    an improved thermal stability of the polystyrene (PS) composite film much above its glass transition tempera- ture. Keywords. Thermal stability; polymer nanocomposites; low temperature .... The color of the solution changed immediately from pale yellow to black upon the addition. The reaction mix- ture was stirred for 2 h ...

  19. System Design Description PFP Thermal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-01-27

    DOE has authorized in their letter of August 2, 1999, the operation of these three furnaces, quote ''Operation of the three uncompleted muffle furnaces (No.3, No.4, and No.5) located in Room 235B is authorized, using the same feed charge limits as the two existing furnaces (No.1, and No.2) located in Room 230C,''. The above statement incorrectly refers to Room 230C whereas the correct location is Room 230A. The current effort is directed to initiate the operation and to complete the design activities DOE authorized the operation of the furnaces based on their Safety Evaluation Report (SER). Based on analogy and the principle of similarity, the risks and consequences of accidents both onsite and offsite due to operation of three furnaces are not significantly larger than those already evaluated with the two operating furnaces. Thermal stabilization operations and the material of feed for furnaces in Glovebox HA-21 I are essentially the same as those currently being stabilized in furnaces in Glovebox HC-21 C. Therefore the accident analysis has utilized identical accident scenarios in evaluation and no additional failure modes are introduced by HA-21 I muffle furnace operation that would enhance the consequences of accidents. Authorization Basis documents as referenced below (PFP FSAR and DOE Letter authorizing the operation) appear to contradict each other, i.e. one allows and authorizes the operation and the other imposes the restriction on the operation. The purpose of the PFP FSAR restrictions was to review thoroughly the design and installation of three furnaces and perform acceptance testing before approving the startup for operation. With the experience of operating the two furnaces in Glovebox HC-21C, and the knowledge of risks and hazards the facility operation, the plant is adequately prepared to operate these additional furnaces. ECN 653595 has been prepared to incorporate operation of the muffle furnaces in Glovebox HA-21 I into the

  20. Ion exchange synthesis and thermal characteristics of some [N

    Indian Academy of Sciences (India)

    Ionic liquid; thermal energy storage; ion exchange synthesis; heat transfer fluid. ... to high values of thermal energy storage capacity coupled with handsome liquid phase thermal conductivity, ILs under investigation were recommended as materials for thermal energy storage (TES) as well as heat transfer applications.

  1. Ion exchange synthesis and thermal characteristics of some [ N ...

    Indian Academy of Sciences (India)

    Thermal conductivity of the samples was determined both in solid and liquid phases. Owing to high values of thermal energy storage capacity coupled with handsome liquid phase thermal conductivity, ILs under ... Ionic liquid; thermal energy storage; ion exchange synthesis; heat transfer fluid. 1. .... with a scanning rate of 10.

  2. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  3. Determination of thermal diffusivity of cement-stabilized laterite by ...

    African Journals Online (AJOL)

    Knowledge of thermo-physical properties of local building materials are necessary for thermal comfort design and construction of residential accommodation. Thermal diffusivity of cement-stabilized laterites were measured under conditions of transient thermal field and induced surface stress, assuming constant temperature ...

  4. Zirconia coating for enhanced thermal stability of gold nanoparticles

    Science.gov (United States)

    Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boé, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R.

    2016-01-01

    This paper describes a rapid, simple and one-step method for the preparation of 2-4 nm diameter zirconia-coated gold nanoparticles at room temperature. These nanoparticles were synthesized by two simultaneous processes: the chemical reduction of tetrachloroauric acid with sodium borohydride and the formation of zirconia sol-gel matrices. All the gold nanoparticle sols were characterized by UV-visible absorption and transmission electron microscopy to determine the nanoparticle size and shape. The synthesis method is a combination of a polymeric structure of the amorphous zirconia and the use of a strong reducing agent, and it yields to very small quasi-spherical gold nanoparticles at room temperature. The thermal stability up to 1200 °C of the coated nanoparticles was studied by x-ray diffraction. The metastable tetragonal phase of the zirconia coating was obtained at 400 °C, and a progressive transformation from tetragonal to monoclinic phases of the zirconia coating was observed up to 1100 °C. After the heat treatment at 400 °C, the crystallite size of the gold nanoparticles was about 29 nm, and it remained unchanged from 400 °C to 1200 °C. These results are promising for the development of such materials as doping elements for optical fiber applications.

  5. Thermal stability of ultrasoft Fe-Zr-N films

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Schut, H; Chezan, AR; Boerma, D; Vystavel, T; De Hosson, JTM

    2003-01-01

    The thermal stability of nanocrystalline ultrasoft magnetic (Fe98Zr2)(1-x)N-x films with x = 0.10-0.25 was studied using thermal desorption spectrometry, positron beam analysis and high resolution transmission electron microscopy. The results demonstrate that grain growth during the heat treatment

  6. Thermal stability of α-amylase in aqueous cosolvent systems

    Indian Academy of Sciences (India)

    Prakash

    Enhancement of the structural stability of enzymes is of great importance for their application in several industrial processes. The mechanism of thermal denaturation depends on various physicochemical parameters of the solution in which the reaction is catalysed. Any process that enhances the structural stability and rate ...

  7. Polyaniline Conducting Electroactive Polymers Thermal and Environmental Stability Studies

    OpenAIRE

    Ansari, Reza; Keivani, M. B.

    2006-01-01

    In the current studies, polyaniline (PANi) was prepared both chemical and electrochemically in the presence of different bronsted acids from aqueous solutions. The effect of thermal treatment on electrical conductivity, and thermal stability of the PANi conducting polymers were investigated using 4-point probe and TGA techniques respectively. It was found that polymer prepared by CV method is more thermally stable than those prepared by the other electrochemical techniques. In this paper we h...

  8. Green synthesis and catalytic application of curcumin stabilized ...

    Indian Academy of Sciences (India)

    nols, like in the case of tea, wine and winery waste, red grape pomace.10,11 Similarly, curcumin, the main polyphenol in turmeric has recently been used as a stabilizing and reducing agent in synthesis of Au and. Ag nanoparticles.12 14 To the best of our knowledge, there is no study on whether curcumin stabilization of.

  9. On thermal stability in incompressible slip flow

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper considers the classical problem of the stability of a layer of fluid heated from below, but in the case when the density is low and there is slip flow at the bounding walls. The eigenvalue problem which ensures is tackled by taking cognisance of the orthogonality of Bessel function of the first kind. It is observed that the Rayleigh number for the onset of instability, for the case of marginal stability, is increased by gas rarefication. (author). 2 refs

  10. Synthesis and characterization of phenol/formaldehyde nanocomposites: Studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology and thermal stability

    Directory of Open Access Journals (Sweden)

    Walaa S.E. Solyman

    2017-01-01

    Full Text Available In this work, phenol/formaldehyde nanocomposites were synthesized using reactive rubber nanoparticles (RRNP and cloisite30B nanoclay with different percentages and were fully investigated. A little amount of these nanomaterials enhanced the mechanical properties of the produced composites. This enhancement is attributed to the interaction of these nanomaterials with the bakelite matrix. In bakelite/RRNP, the mechanical properties enhancement is due to the chemical connection of RRNP to the bakelite matrix while in bakelite/Cloisite30B, this enhancement is due to polar/polar interaction. It was observed that the composites exhibited an intercalated disordered structure by means of Xray diffraction (XRD and transmission electronic microscopy. The crosslinking density of the bakelite network was greatly influenced by the presence and type of nanomaterial that was added to the resin. The thermal stability was investigated with TGA/DSC which proved that these nanocomposite are (10–20% more thermally stable than neat Bakelite resin.

  11. Aging effects on vertical graphene nanosheets and their thermal stability

    Science.gov (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  12. Thermal conductivity of ytterbia-stabilized zirconia

    International Nuclear Information System (INIS)

    Feng, Jing; Ren, Xiaorui; Wang, Xiaoyan; Zhou, Rong; Pan, Wei

    2012-01-01

    The 3–10 mol.% Yb 2 O 3 –ZrO 2 (YbSZ) ceramics were synthesized by solid reaction methods and sintered at 1600 °C. The phases were identified by high-resolution X-ray diffraction with a K α1 monochromator, and it was found that the tetragonal-prime phases exist in 3–6 mol.% YbSZ. The thermal conductivity of the sintered YbSZ ceramics were measured using a laser flash method and it was demonstrated that the values of the thermal conductivities of the 5 and 10 mol.% YbSZ ceramics are the lowest at high and room temperature, respectively, and much lower than that of 7YSZ. The lower thermal conductivity of YbSZ ceramics may be due to the heavier dopant of ytterbium and the tetragonal-prime ZrO 2 phase.

  13. On the thermal stability length dependence of high TC superconductors

    International Nuclear Information System (INIS)

    Maytal, B.Z.; Yang, S.; Waldrop, J.; Pfotenhauer, J.M.

    1996-01-01

    The margin of stability for high T c superconductors may be characterized by the lowest thermal pulse that results in a quench. A numerical code, developed to investigate this stability margin, accounts for the temperature dependence of the thermal conductivity, electrical resistivity and heat capacity of the materials involved. The conductor is cooled solely by thermal conduction along its length, and its stability is studied as function of the length. It is found that the stability margin for a pure BSCCO 2212 conductor is independent of the length. However, the stability margin for a composite conductor obtained by adding 10 % (by volume) of silver to the BSCCO is found to be strongly length dependent. A transition length is identified, for which shorter lengths exhibit a dramatically higher stability margin. This feature results when the length dependent thermal diffusion time is shorter than the time required to determine the conductor's stability. This study confirms and explains the growing awareness that if normal zones appear in high T c coils, they will remain fairly localized

  14. Morphology, thermal stability and thermal degradation kinetics of ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Different differential and integral isoconversional methods have been employed to determine the thermal degradation activation energy of UFC. Substantial variation in activation energy with the advancement of reaction verifiesmulti-step reaction pathway of UFC. A plausible interpretation of the obtained ...

  15. Thermal Plasma Generators with Water Stabilized Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    2009-01-01

    Roč. 2, č. 1 (2009), s. 99-104 ISSN 1876-5343 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma torch * Gerdien arc Subject RIV: BL - Plasma and Gas Discharge Physics http://www.bentham.org/open/toppj/openaccess2.htm

  16. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    Science.gov (United States)

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  17. Thermal stability of PMMA–clay hybrids

    Indian Academy of Sciences (India)

    Administrator

    stability of these different clay–PMMA hybrids have been studied and compared with that of pure PMMA by differential scanning calorimeter (DSC). The bonding of clay with PMMA has been studied by IR. Morpho- logy of clay–PMMA hybrids has been shown by SEM and XRD which indicate partially exfoliated structure in.

  18. The influence of polyol type on cell geometry and the thermal stability of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.

    2006-01-01

    Full Text Available The aim of this study was to examine the influence of substituting defined amounts of polyol Voranol 3322 by polyol Voranol CP 1055 on the cell geometry and thermal stability of the synthesized flexible polyurethane foams. The influence of the amount of antipyrene on the cell geometry and their thermal stability was also investigated. The following components were used in the synthesis of the polyurethanes: a mixture of two polyols (Voranol 3322 with the hydroxyl number 47 mg KOH/g, mean molecular mass 3400 and Voranol CP 1055 with the hydroxyl number 156 mg KOH/g, mean molecular mass 1000, toluene discarnate as the isocyanate component, a combination of an organic-metallic compound and a tertiary amine as catalysts, surfactant and water as the coreactant. The thermal stability was determined by thermogravimetric analysis (in a nitrogen atmosphere. The cell geometry was analyzed by optical microscopy. Examination of the cell geometry revealed different cell shapes. The form factor as an indicator of cell deviation from spherical shape increased (more round forms were observed with increasing amount of Voranol CP 1055. The TG examination showed that specimens with 6 and 8 g of Voranol 3322 substituted by Voranol CP 1055 completely degraded at 350 °C, while foams with 10 and 12 g of Voranol 3322 substituted by Voranol CP 1055 displayed lower mass loss at higher temperatures and had residual masses of 46 % and 43 % at 600°C respectively. The addition of antipyrene in an amount of 1% (based on the amount of polyol contributed to improved thermal stability, no visible color change of the specimen tested at 210°C for 40 minutes, and to rounder cell forms. Considering the obtained results it can be concluded that an increase in the amount of Voranol CP 1055 yielded more spherically shaped cells and better thermal stability of the synthesized flexible polyurethane foams. The addition of antipyrene improves the thermal stability and the cell geometry.

  19. Morphology, thermal stability and thermal degradation kinetics of ...

    Indian Academy of Sciences (India)

    Different differential and integral isoconversional methods have been employed to determine the thermal degrada- tion activation energy of UFC. .... β(dE/dT). RT. − β. T. { n+. Eα. RT. } + d2α/dt2 dα/dt. ] . (8). Under invariant conditions of α, equation (6) can be trans- formed into the following equation: y = a(x)b exp(−c/x),. (9) ...

  20. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  1. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  2. Novel Antimicrobial Organic Thermal Stabilizer and Co-Stabilizer for Rigid PVC

    Directory of Open Access Journals (Sweden)

    Nadia A. Mohamed

    2012-07-01

    Full Text Available Biologically active N-benzoyl-4-(N-maleimido-phenylhydrazide (BMPH was synthesized and its structure was confirmed by elemental analysis and various spectral tools. It was examined as a thermal stabilizer and co-stabilizer for rigid poly (vinyl chloride at 180 °C in air. Blending BMPH with reference samples in different ratios greatly lengthens the thermal stability value and improves the extent of discoloration of PVC. TGA confirmed the improved stability of PVC in presence of the investigated organic stabilizer. GPC measurements were done to investigate the changes occurred in the molecular masses of the degraded samples of blank PVC and PVC in presence of the novel stabilizer. BMPH showed good antimicrobial activity towards two kinds of bacteria and two kinds of fungi.

  3. Thermal barrier coating having high phase stability

    Science.gov (United States)

    Subramanian, Ramesh

    2001-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  4. SYNTHESIS OF PERFLUOROSULFONATE IONOMER-STABILIZED PLATINUM

    Directory of Open Access Journals (Sweden)

    L. JIANG

    2008-07-01

    Full Text Available Pt colloid was synthesized by the reduction of hexachloroplatinic acid with formaldehyde in the presence of a stabilizer (a cation-exchanged polymer – perfluorosulfonate ionomer (PFSI or Teflon or without any stabilizers. The average size of platinum particles with a stabilizer, characterized by a transmission electron microscopy and X-ray diffraction, is in a nanometer range in comparison with the particle agglomeration without any stabilizers. Highly dispersive 40 wt. % Pt/C catalyst obtained from the PFSI-stabilized Pt colloid shows much better performance than its counterpart with Teflon as a stabilizer or without any stabilizer according to the cyclic voltammetric (CV characterization and the single direct methanol fuel cell (DMFC performance testing. It is strongly suggested that the proton-conducting ionomer could smooth the reaction pathway by facilitating the proton transport, while Teflon inhibit the active sites, though both of them can inhibit the particle growth. The improved fuel cell performance is attributed to the small particles and the unhindered transport of protons/electrons ascribed to the intimate contact of Pt and proton-conducting ionomer.

  5. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  6. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.

    Science.gov (United States)

    Voronova, Marina I; Surov, Oleg V; Guseinov, Sabir S; Barannikov, Vladimir P; Zakharov, Anatoly G

    2015-10-05

    Thermal stability of polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) composites prepared with solution casting technique was studied. The PVA/CNCs composites were characterized by Fourier transform infrared spectrometry, X-ray diffraction, differential scanning calorimeter (DSC) and thermogravimetric (TG) analysis. Due to the presence of CNCs nanoparticles, thermal degradation of the composites occurs at much higher temperatures compared to that of the neat PVA. Thermal stability of the PVA/CNCs composites is maximally enhanced with CNCs content of 8-12 wt%. Some thermal degradation products of the PVA/CNCs composites were identified by mass spectrometric analysis. TG measurements with synchronous recording of mass spectra revealed that the thermal degradation of both CNCs and PVA in the composites with CNCs content of 8-12 wt% occurs simultaneously at a much higher temperature than that of CNCs or the neat PVA. However, with increasing CNCs content more than 12 wt% the thermal stability of the composites decreases. In this case, the degradation of CNCs comes first followed by the degradation of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Degradation Behavior of Thermal Stabilized Polyacrylonitrile Fibers

    Directory of Open Access Journals (Sweden)

    LEI Shuai

    2017-05-01

    Full Text Available In the temperature range of 300-800℃, 40%-50% of the mass lost during the processing of polyacrylonitrile based carbon fiber (PANCF. Understanding the degradation behavior will be valuable in understanding the formation mechanism of pseudo-graphite structure, and providing theoretic basis for producing high performance carbon fiber and increasing the carbonization yield. The simulation of the degradation progress was carried out on the thermogravimetric analyzer (TGA, the results show that there are two degradation steps for PAN fiber stabilized in air, and controlled by cyclization coefficient and oxygen content. The cyclization coefficient and oxygen content are effective to the density of carbon fiber by influencing the degradation behavior, which cause defects in the fiber. The higher cyclization coefficient leads to form less structural defects and higher density of the fiber; on the contrary, the higher oxygen content leads to form more structural defects and lower density of the fiber.

  8. A linear stability analysis of supercritical water reactors, (1). Thermal-hydraulic stability

    International Nuclear Information System (INIS)

    Tin Tin Yi; Koshizuka, Seiichi; Oka, Yoshiaki

    2004-01-01

    This paper summarizes the analysis results of the thermal-hydraulic stability of a high-temperature reactor cooled and moderated by supercritical-pressure light water (SCLWR-H). A linear stability analysis code in the frequency domain was developed to study the thermal-hydraulic stability of SCLWR-H at constant supercritical pressure. The analysis method is based on linearization by perturbation of numerically-discretized one-dimensional single-channel single-phase conservation equations. The effect of water rods on stability is considered. The thermal-hydraulic stability of SCLWR-H for full-power and partial-power normal operations was investigated by frequency domain method. Our analysis reveals that though SCLWR-H has low coolant flow rate and large density change in the core, the thermal-hydraulic stability can be maintained both at normal operation and during power raising phase of constant pressure startup by applying an orifice pressure drop coefficient an the inlet of the fuel assemblies. A parametric study was also carried out to determine the parameters affecting the stability. (author)

  9. Theoretical bases on thermal stability of layered metallic systems

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Rusakov, V.S.; Turkebaev, T.Eh.; Zhankadamova, A.M.; Ensebaeva, M.Z.

    2003-01-01

    The paper is dedicated to implementation of the theoretical bases for layered metallic systems thermal stabilization. The theory is based on the stabilization mechanism expense of the intermediate two-phase field formation. As parameters of calculated model are coefficients of mutual diffusion and inclusions sizes of generated phases in two-phase fields. The stabilization time dependence for beryllium-iron (Be (1.1 μm)-Fe(5.5 μm)) layered system from iron and beryllium diffusion coefficients, and inclusions sizes is shown as an example. Conclusion about possible mechanisms change at transition from microscopic consideration to the nano-crystal physics level is given

  10. Thermal transport properties of CaO-stabilized zirconia with varying amounts of stabilization

    International Nuclear Information System (INIS)

    Mirkovich, V.V.; Wheat, T.A.

    1985-01-01

    The thermal diffusivity of zirconia samples stabilized with 5.0, 7.6, 10.0, 15.0, 20.0 and 22.2 mol% CaO, and of a commercially available CaO-stabilized zirconia, was measured as a function of temperature. The thermal conductivity of samples with 7.5, 10.0, 15.0, and 20.0 mol% CaO was also measured as a function of temperature. The results have shown that the thermal transport properties for all compositions decrease with increasing temperature between 50 and 800 0 C. At lower temperatures (100-150 0 C), the transport properties depend principally on the CaO content of the specimen. Both thermal diffusivity and thermal conductivity show a minimum at 15.0 mol% CaO content. The grain size of the specimens appears to have no effect on these transport properties. (author)

  11. Thermal stability of Vernonia galamensis seed oil

    Directory of Open Access Journals (Sweden)

    Benny M. Wamalwa

    2000-12-01

    Full Text Available The physicochemical changes of refined vernonia oil-RVO (which naturally contains epoxidized triglycerides upon heating was evaluated and is reported in this manuscript. A boiling point range of 183 °C to 190 °C (at 760 mm Hg for the vernonia oil was obtained using the Siwolobboff's method. The oil changed its physical appearance and consistency in the course of the heating. A homogenous free-flowing beige-sand shade refined vernonia oil at room temperature (25 °C was transformed irreversibly to an intense-brown shade, becoming increasingly more viscous with increase in temperature, and ceasing to flow momentarily at 188 °C. On cooling to room temperature, the oil solidified into a brown rubber-like elastic material. The oil also exhibited a reduction in its oxirane content from 1.39 plus or minus 0.004 equivalent HBr kg-l at 25 °C to 0.542 plus or minus 0.002 equivalent HBr kg-l at 70 °C. This signifies a 61% drop in oxirane content for the 45 °C temperature rise. These findings point towards a thermally driven polymerization and/or decomposition of the refined vernonia oil (RVO.

  12. Amide-modified poly(butylene terepthalate): thermal stability

    NARCIS (Netherlands)

    van Bennekom, A.C.M.; van Bennekom, A.C.M.; Willemsen, P.A.A.T.; Willemsen, P.A.A.T.; Gaymans, R.J.

    1996-01-01

    The thermal stability of a poly(ester amide) copolymer (PBTA) based on poly(butylene terephthalate) (PBT) and nylon-4,T with the diamide of butanediamine and dimethyl terephthalate (N,N′-bis(p-carbomethoxybenzoyl)butanediamine) and homopolymer PBT was studied. The development of inherent viscosity

  13. Morphology, thermal, electrical and electrochemical stability of nano ...

    Indian Academy of Sciences (India)

    In the present work, an attempt has been made to develop nano aluminium oxide (Al2O3)-filled polyvinyl alcohol (PVA) composite gel electrolytes. Surface morphological studies, thermal behaviour, electrochemical stability and electrical characterization of these composite gel electrolytes have been performed. An increase ...

  14. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Administrator

    performed at liquid nitrogen temperatures to reduce the electron–beam-induced radiation damage. The results showed a marginal increase in Au nanoparticle diameter (2⋅3 nm–3⋅6 nm) and more importantly, an improved thermal stability of the polystyrene (PS) composite film much above its glass transition tempera- ture.

  15. Thermal stability of -amylase in aqueous cosolvent systems

    Indian Academy of Sciences (India)

    The activity and thermal stability of -amylase were studied in the presence of different concentrations of trehalose, sorbitol, sucrose and glycerol. ... Department of Protein Chemistry and Technology, Central Food Technological Research Institute (A constituent laboratory of Council of Scientific and Industrial Research), ...

  16. Thermal stability of liquid antioxidative extracts from pomegranate peel

    Science.gov (United States)

    This research was carried out to assess the potential of using the natural antioxidants in pomegranate peel extracts as replacement for synthetic antioxidants. As a result the thermal stability of pomegranate peel extract products during sterilization and storage, and its effect on industrial, color...

  17. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  18. Roughness effects on the thermal stability of thin films

    NARCIS (Netherlands)

    Palasantzas, George

    1997-01-01

    In this work, we investigate interface roughness effects on the energetic terms that play a key role on the thermal stability of thin silicide films. The roughness is modeled as a self-affine structure with power spectrum ~σ^2ξ^2(1+aq^2ξ^2)^-1-H convoluted with a domain size distribution ∝

  19. Thermal stability of α-amylase in aqueous cosolvent systems

    Indian Academy of Sciences (India)

    Prakash

    Department of Protein Chemistry and Technology, Central Food Technological Research Institute. (A constituent laboratory of Council of Scientific and Industrial Research), Mysore 570 020, India. *Corresponding author (Fax, +91-821-2516 308; Email, prakash@cftri.com). The activity and thermal stability of α-amylase were ...

  20. Morphology, thermal, electrical and electrochemical stability of nano

    Indian Academy of Sciences (India)

    In the present work, an attempt has been made to develop nano aluminium oxide (Al2O3)-filled polyvinyl alcohol (PVA) composite gel electrolytes. Surface morphological studies, thermal behaviour, electrochemical stability and electrical characterization of these composite gel electrolytes have been performed. An increase ...

  1. Differences in Thermal Stability of Glucosinolates in Five Brassica Vegetables

    NARCIS (Netherlands)

    Dekker, M.; Hennig, K.; Verkerk, R.

    2009-01-01

    The thermal stability of individual glucosinolates within five different Brassica vegetables was studied at 100°C for different incubation times up to 120 minutes. Three vegetables that were used in this study were Brassica oleracea (red cabbage, broccoli and Brussels sprouts) and two were Brassica

  2. Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer

    Science.gov (United States)

    Johnson, Chris

    2008-01-01

    The paper describes the specific temperature stability and control requirements for the thermal vacuum and thermal balance testing of the Aquarius Instrument at the Goddard Space Flight Center in Greenbelt, Maryland. The testing was conducted in the 10' wide x 15' deep Facility 225 Thermal Vacuum chamber. The temperature control stability requirements were less than .14 C RMS thermal variation over a seven-day period. The thermal test specification also called for the ability to impose a high-resolution sinusoidal variation for all heater zones. The special requirements of the Aquarius radiometer test necessitated the construction of a multi-function test fixture and the modification of two existing heater controller racks.

  3. Synthesis and Stability of Lanthanum Superhydrides

    Energy Technology Data Exchange (ETDEWEB)

    Geballe, Zachary M. [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Liu, Hanyu [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Mishra, Ajay K. [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Permanent address: HP& SRPD, Bhabha Atomic Research Center, Mumbai-85 India; Ahart, Muhtar [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Somayazulu, Maddury [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Meng, Yue [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL 60439 USA; Baldini, Maria [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Hemley, Russell J. [Institute of Materials Science and Department of Civil and Environmental Engineering, The George Washington University, Washington DC 20052 USA

    2017-12-15

    Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1 Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.

  4. Thermal stability of Al-Cu-Fe quasicrystals prepared by SHS method

    Directory of Open Access Journals (Sweden)

    Pavel Novak

    2013-02-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  5. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    Directory of Open Access Journals (Sweden)

    Pavel Novák

    2013-04-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  6. Laser driven thermal reactor for hazardous waste stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, A. [SAIC, Germantown, MD (United States)

    1996-12-31

    Increasing attention is being paid to treatment of hazardous waste through stabilization and possible solidification. Among the preferred technologies are thermal processes that detoxify and reduce the volume of hazardous wastes by exposing them to appropriate thermal regimes. However, as with any technology, there are potential problems which may detract from the application of the technology. Environmental pollution from particulate matter and off-gases can occur. Therefore, it is important to develop the technology of hazardous waste stabilization on a strong research base and to determine parameters and conditions of appropriate thermal processes. The purpose of the present work was to determine phenomenological parameters that characterize the processes of hazardous waste stabilization during thermal treatment. These methods can be used for any kind of liquid, solid and multiphase (liquid/solid and gas/solid) hazardous wastes. The method presented herein has been used to find corresponding parameters and conditions in the following applications: decomposition of ozone and nitrocompounds absorbed by activated carbon; sulphur compounds in heavy fuel oil; and appraisals of the explosion hazards involved in coal mining.

  7. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    ' particles with Pd-shell/Au-core and Au-shell/Pd-core morphologies, have been prepared and immobilized on both activated carbon and TiO2 supports. These have subsequently been compared as catalysts for the direct production of H2O2 and for benzyl alcohol oxidation in an attempt to elucidate the optimum particle morphology/support combination for both these reactions. Aberration corrected analytical electron microscopy has been used extensively to characterize these sol-immobilized materials. In particular, the STEM -HAADF technique has provided invaluable new (and often unexpected) information on the atomic structure, elemental distribution within particles, and compositional variations between particles for these controlled catalyst preparations. In addition, we have been able to compare their differing thermal stability and sintering behaviors, and to demonstrate that they have quite varying wetting interactions with activated carbon and TiO2 supports. Over the course of their lifetime, many supported metal catalysts exposed to elevated temperatures tend to de-activate by nanoparticle sintering, which decreases the overall exposed metal surface area and the number of active sites available for catalysis. It is sometimes desirable to devise chemical re-dispersion treatments whereby the mean size of the particles is reduced and the catalytic activity regenerated. In this work, the possibility of re-dispersing gold nanoparticles by a simple low temperature methyl iodide (CH3 I) treatment has been investigated. A variety of characterization techniques, including EXAFS, XRD, XPS, UV-DRS and STEM-HAADF imaging has been applied to samples before and after CH3 I treatment, in an attempt to determine the efficacy of the re-dispersion method. It is shown that re-dispersion of Au nanoparticles on activated carbon, graphite, Al2 O3 and TiO2 substrates is possible to varying degrees. A complete re-dispersion of `bulk' gold nanoparticles down to the atomic scale has been achieved on

  8. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    Science.gov (United States)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  9. Synthesis and stability of lanthanum superhydrides

    Energy Technology Data Exchange (ETDEWEB)

    Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.; Ahart, Muhtar; Somayazulu, Maddury; Baldini, Maria [Geophysical Laboratory, Carnegie Institution, Washington, DC (United States); Meng, Yue [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL (United States); Hemley, Russell J. [Institute of Materials Science and Department of Civil and Environmental Engineering, The George Washington University, Washington, DC (United States)

    2018-01-15

    Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH{sub 10} having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1 Aa, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. synthesis, characterization, thermal behavior and antimicrobial

    African Journals Online (AJOL)

    The present work deals with the synthesis and characterization of Co, Ni, Cd, Zn and Cu(II) complexes of 3-methyl benzoic acid with/without hydrazine. EXPERIMENTAL. The chemicals and solvents used were of AR grade received from Fluka Chemicals. The double distilled water was used for the preparation and chemical ...

  11. Phenols and aromatic amines as thermal stabilizers in polyolefin processing

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Habicher, W. D.; Al-Malaika, S.; Zweifel, H.; Nešpůrek, Stanislav

    2001-01-01

    Roč. 176, - (2001), s. 55-63 ISSN 1022-1360. [International Conference on Polymer Modification, Degradation and Stabilization /1./. Palermo, 03.09.2000-07.09.2000] R&D Projects: GA AV ČR IAA1050901; GA MŠk ME 184; GA MŠk ME 372; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : thermal stabilizers * phenols * aromatic amines Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.634, year: 2001

  12. Synthesis and characterization of thermally stable oligomer-metal ...

    African Journals Online (AJOL)

    Synthesis and characterization of thermally stable oligomer-metal complexes of copper(II), nickel(II), zinc(II) and cobalt(II) derived from oligo- p - nitrophenylazomethinephenol. ... Based on half degradation temperature parameters Cu(II) and Zn(II) complexes were more resistant than the others. KEY WORDS: Oligomer metal ...

  13. Structure and Thermal Stability of Copper Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Guangan Zhang

    2013-01-01

    Full Text Available Copper nitride (Cu3N thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.

  14. Thermal stability of charged rotating quantum black holes

    Science.gov (United States)

    Sinha, Aloke Kumar; Majumdar, Parthasarathi

    2017-12-01

    Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  15. Thermal stability of black holes with arbitrary hairs

    Science.gov (United States)

    Sinha, Aloke Kumar

    2018-02-01

    We have derived the criteria for thermal stability of charged rotating black holes, for horizon areas that are large relative to the Planck area (in these dimensions). In this paper, we generalized it for black holes with arbitrary hairs. The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble and there is no explicit use of classical spacetime geometry at all in this analysis. The assumption is that the mass of the black hole is a function of its horizon area and all the hairs. Our stability criteria are then tested in detail against some specific black holes, whose metrics provide us with explicit relations for the dependence of the mass on the area and other hairs of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  16. Production for high thermal stability NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China)], E-mail: iyy2000@163.com; Zhang, J.; Hu, S.Q.; Han, Z.D. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2008-04-15

    To improve sintered NdFeB magnets' thermal stability and magnetic properties, combined addition of elements Cu and Gd was investigated. It was found that with Gd addition increase to 1.0%, the temperature coefficient {alpha} improved from -0.15 to -0.05%/deg. C (maximum working temperature 120 deg. C), but the remanence and the maximum energy product linearly decreased. With addition of Cu in Gd-containing magnets the intrinsic coercivity increased greatly, and the remanence increased also because of their density improvement, and optimum Cu content was achieved at 0.2%. Microstructure analysis showed that most of the Cu distributed at grain boundaries and led to clear and smooth morphologies. Magnets with high thermal stability {alpha}=-0.05%/deg. C and magnetic properties were obtained with addition of Gd=0.8% and Cu=0.2%.

  17. Thermal stability of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Cipriano, Pâmela Bento; de Sá, Mayelli Dantas; Andrade, André L. Simões; de Carvalho, Laura Hecker; Canedo, Eduardo Luis

    2015-05-01

    The present work deals with the thermal stability during and after processing of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB/babassu composites with 0, 5, 10 and 20% w/w load were prepared in a laboratory internal mixer. Two fractions of the mesocarp of babassu with different particle sizes were compounded with PHB and test specimens molded by compression. The effect of loading level and processing conditions on torque, temperature and mechanical energy dissipation were studied using a new engineering model. It was found that PHB degrades during processing at temperatures slightly above the melting point. To minimize thermal degradation stabilizer and chain extender additives were incorporated, with mixed results. These findings were confirmed by the dependence of the melt flow rate on the processing temperature.

  18. Thermal Stabilization of Enzymes Immobilized within Carbon Paste Electrodes.

    Science.gov (United States)

    Wang, J; Liu, J; Cepra, G

    1997-08-01

    In this note we report on the remarkable thermal stabilization of enzymes immobilized in carbon paste electrodes. Amperometric biosensors are shown for the first time to withstand a prolonged high-temperature (>50 °C) stress. Nearly full activity of glucose oxidase is retained over periods of up to 4 months of thermal stress at 60-80 °C. Dramatic improvements in the thermostability are observed for polyphenol oxidase, lactate oxidase, alcohol oxidase, horseradish peroxidase, and amino acid oxidase. Such resistance to heat-induced denaturation is attributed to the conformational rigidity of these biocatalysts within the highly hydrophobic (mineral oil or silicone grease) pasting liquid. While no chemical stabilizer is needed for attaining such protective action, it appears that low humidity (i.e., low water content) is essential for minimizing the protein mobility. Besides their implications for electrochemical biosensors, such observations should lead to a new generation of thermoresistant enzyme reactors based on nonpolar semisolid supports.

  19. Thermal Stability and Flammability of Polypropylene/Montmorillonite Composites

    Science.gov (United States)

    Yang, Ming-Shu; Qin, Huai-Li; Zhang, Shi-Min; Han, Charles C.

    2004-03-01

    Smectite clays, such as montmorillonite, are a valuable class of mineral for industrial applications because of their high aspect ratio, plate morphology, and intercalative capacity. After preparation, smectite clays may be used as a nano-scalled inorganic fillers to prepare polymer/layered silicate nanocomposites, which has unique properties such as improved strength, modulus, heat resistance, surface scratch resistance and good barrier properties, at very low filler. In the present work, polypropylene/montmorillonite (PP/MMT) composites were prepared and their thermal stability and flammability were investigated. Regardless of the micro-dispersed or submicro-dispersed structure, the composites exhibit higher thermal stability and considerably reduced peak heat release rate (PHRR). It is likely caused by the physical-chemical adsorption of the volatile degradation products on the silicates. On the other hand, the addition of MMT can catalyze the initial decomposition of PP matrix and accelerate the ignition of PP matrix in combustion. It has been observed that a ceramic-like char formed on the surface of the composites during burning test. The characterization of the char surface before ignition indicates that it is an inorganic-rich surface, which provided a better barrier property, leading to the improvement of the thermal stability and reduction of flammability of the composites.

  20. Thermal stability of segmented polyurethane elastomers reinforced by clay particles

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2009-01-01

    Full Text Available The aim of this work was to determine the influence of clay nanoparticles on thermal properties of segmented polyurethanes based on hexamethylene- diisocyanate, aliphatic polycarbonate diol and 1,4-butanediol as chain extender. The organically modified particles of montmorillonite and bentonite were used as reinforcing fillers. The structure of elastomeric materials was varied either by diol type or chain extender content. The ratio of OH groups from diol and chain extender (R was either 1 or 10. Thermal properties of prepared materials were determined using modulated differential scanning calorimetry (MDSC. Thermal stability of obtained elastomers has been studied by simultaneously thermogravimetry coupled with DSC. The glass transition temperature, Tg, of soft segments for all investigated samples was about -33°C. On the basis of DTG results, it was concluded that obtained materials were very stable up to 300°C.

  1. Thermal stability of detonation-produced micro and nanodiamonds

    Science.gov (United States)

    Efremov, V. P.; Zakatilova, E. I.; Maklashova, I. V.; Shevchenko, N. V.

    2018-01-01

    Detonation nanodiamonds are produced at utilization of high explosives. When an explosive blasts in a water environment, the detonation products contain microdiamonds, and in a gaseous medium, nanodiamonds. It is known that with decreasing size the influence of the surface energy of particles on their properties increases. Thus, it is interesting to compare the properties of detonation nano and microdiamonds. In this study, we have examined the thermal stability of diamond materials by synchronous thermal analysis. The experiments were performed at atmospheric pressure in argon flow for different heating rates in a range from room temperature to 1500 °C. Samples of initial and annealed micro and nanomaterials were studied using electron microscopy, x-ray and x-ray-fluorescence analysis. It was established that thermal and structural properties of micro and nanodiamonds differ substantially.

  2. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    Science.gov (United States)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  3. Synthesis And Thermal Characterization Of Polypropylene ...

    African Journals Online (AJOL)

    The present work investigates the heat transfer and specifically, thermal conductivity, diffusivity and specific heat in Aluminium composite materials. The composites were obtained by mixing polypropylene (PP) with oxidized Aluminium (Al) under various volume fractions. Two sizes of filler are used in the sample composite ...

  4. Green Synthesis of Hydroxyethyl Cellulose-Stabilized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. El-Sheikh

    2013-01-01

    Full Text Available Green synthesis aims to minimize the use of unsafe reactants and maximize the efficiency of synthesis process. These could be achieved by using environmentally compassionate polymers and nontoxic chemicals. Hydroxyethyl cellulose (HEC, an ecofriendly polymer, was used as both reducing and stabilizing agents in the synthesis of stable silver nanoparticles, while silver nitrate was used as a precursor and water as a solvent. The formation of silver nanoparticles was assessed by monitoring UV-vis spectra of the silver colloidal solution. The size of the nanoparticles was measured using transmission electron microscope (TEM. Reaction kinetics was followed by measuring the absorbance of silver colloidal solution at different time intervals. Optimum reaction conditions revealed that the highest absorbance was obtained using HEC : AgNO3 of 1.5 : 0.17 (g/100 cm3 at 70°C for 120 min at pH 12. The Ag0 nanoparticles colloidal solution so obtained (1000 ppm were found stable in aqueous solution over a period of six months at room temperature (°C. The sizes of these nanoparticles were found in the range of 11–60 nm after six months of storing. FTIR spectra confirmed the interaction of both the aldehyde and OH groups in the synthesis and stabilization of silver nanoparticles.

  5. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    Science.gov (United States)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Desheng Meng, Dennis

    2011-08-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA.

  6. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  7. Thermal stability of spent coffee ground polysaccharides: galactomannans and arabinogalactans.

    Science.gov (United States)

    Simões, Joana; Maricato, Elia; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2014-01-30

    In order to better understand the thermal stability of spent coffee grounds (SCG) galactomannans and arabinogalactans and the reactions that can occur upon roasting, long term isothermal exposures, up to 3h, were performed at 160, 180, 200, 220, and 240 °C. The resultant products were analysed according to the sugars and linkage composition and also by electrospray mass spectrometry. Galactomannans did not loss mass at T ≤ 200 °C during exposures up to 3h whereas the arabinogalactans showed that thermal stability only for T ≤ 180 °C. This was in accordance with the estimated activation energies of their thermal decomposition of 138 kJ/mol and 94 kJ/mol, respectively. The roasting of galactomannans promoted the formation of new glycosidic linkages, with occurrence of 2-, 6-, 2,3-, 2,6-, 3,6-, 2,3,6-, 3,4,6-linked mannose residues, 3,4,6-linked galactose residues, and terminally-linked glucose residues, observed by methylation analysis. Depolymerisation and formation of anhydrohexose residues at the reducing end and mannose-glucose isomerisation were also observed. The roasting of galactomannans at 200 °C promoted their solubility in water upon alkali extraction and neutralisation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Unusual thermal stability of nano-structured ferritic alloys

    International Nuclear Information System (INIS)

    Wang, X.L.; Liu, C.T.; Keiderling, U.; Stoica, A.D.; Yang, L.; Miller, M.K.; Fu, C.L.; Ma, D.; An, K.

    2012-01-01

    Highlights: ► A nanostructured steel is examined by in situ small angle neutron scattering and high-temperature neutron diffraction. ► A bi-modal particle size distribution is identified by small angle neutron scattering. ► The nanometer sized clusters are thermally stable up to 1400 °C. ► The microstructure of the material is stable at high-temperatures, with no evidence of recrystallization or grain growth. - Abstract: A scientific question vitally important to the materials community is whether there exist “self-assembled” nanoclusters that are thermodynamically stable at elevated temperatures. Using in situ neutron scattering, we have characterized the structure and thermal stability of a nano-structured ferritic alloy. Nanometer sized nanoclusters were found to persist up to ∼1400 °C, providing direct evidence of a thermodynamically stable alloying state for the nanoclusters. High-temperature neutron diffraction measurements show a stable ferritic matrix, with little evidence of recrystallization or grain growth at temperatures up to 1300 °C. This result suggests that thermally stable nanoclusters and the oxygen-vacancy interaction limit the diffusion of Fe atoms and hence the mobility of grain boundaries, stabilizing the microstructure of the ferritic matrix at high temperatures.

  9. Unusual thermal stability of nano-structured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L., E-mail: wangxl@ornl.gov [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Liu, C.T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of System Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Keiderling, U. [Helmholtz Center Berlin for Materials and Energy, Glienicker Strasse 100, D-14109 Berlin (Germany); Stoica, A.D.; Yang, L. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K.; Fu, C.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ma, D.; An, K. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer A nanostructured steel is examined by in situ small angle neutron scattering and high-temperature neutron diffraction. Black-Right-Pointing-Pointer A bi-modal particle size distribution is identified by small angle neutron scattering. Black-Right-Pointing-Pointer The nanometer sized clusters are thermally stable up to 1400 Degree-Sign C. Black-Right-Pointing-Pointer The microstructure of the material is stable at high-temperatures, with no evidence of recrystallization or grain growth. - Abstract: A scientific question vitally important to the materials community is whether there exist 'self-assembled' nanoclusters that are thermodynamically stable at elevated temperatures. Using in situ neutron scattering, we have characterized the structure and thermal stability of a nano-structured ferritic alloy. Nanometer sized nanoclusters were found to persist up to {approx}1400 Degree-Sign C, providing direct evidence of a thermodynamically stable alloying state for the nanoclusters. High-temperature neutron diffraction measurements show a stable ferritic matrix, with little evidence of recrystallization or grain growth at temperatures up to 1300 Degree-Sign C. This result suggests that thermally stable nanoclusters and the oxygen-vacancy interaction limit the diffusion of Fe atoms and hence the mobility of grain boundaries, stabilizing the microstructure of the ferritic matrix at high temperatures.

  10. Grain boundary engineering to enhance thermal stability of electrodeposited nickel

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    Manufacturing technologies such as injection molding and micro electromechanical systems demand materials with improved mechanical properties (e.g. hardness, ductility) and high durability at elevated temperatures. Significant improvement in some of the mechanical properties is obtained by miniat......Manufacturing technologies such as injection molding and micro electromechanical systems demand materials with improved mechanical properties (e.g. hardness, ductility) and high durability at elevated temperatures. Significant improvement in some of the mechanical properties is obtained...... by miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly......, grain boundary engineering of electrodeposited nickel to achieve high population of coherent twin boundaries and, hence, higher thermal stability is a promising method to achieve simultaneous improvement in mechanical properties and thermal stability. This is of particular scientific and practical...

  11. Synthesis report on thermally driven coupled processes

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  12. Synthesis and electrochemical characterization of stabilized nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A.; Ramirez-Meneses, E.; Torres Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, CICATA-IPN Unidad Altamira, Carretera Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas (Mexico); Montiel-Palma, V. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Colonia Chamilpa, C.P.62201 Cuernavaca, Morelos (Mexico); Dorantes Rosales, H. [Departamento de Metalurgia, Escuela Superior de Ingenieria Quimica e Industrias Extractivas - IPN, C.P. 07300, D.F. (Mexico)

    2009-02-15

    Nickel stabilized nanoparticles produced by an organometallic approach (Chaudret's method) starting from the complex Ni(1,5-COD){sub 2} were used as electrode materials for hydrogen evolution in NaOH at two temperatures (298 and 323 K). The synthesis of the nickel nanoparticles was performed in the presence of two different stabilizers, 1,3-diaminopropane (DAP) and anthranilic acid (AA), by varying the molar ratios (1:1, 1:2 and 1:5 metal:ligand) in order to evaluate their influence on the shape, dispersion, size and electrocatalytic activity of the metallic particles. The presence of an appropriate amount of stabilizer is an effective alternative to the synthesis of small monodispersed metal nanoparticles with diameters around 5 and 8 nm for DAP and AA, respectively. The results are discussed in terms of morphology and the surface state of the nanoparticles. The importance of developing a well-controlled synthetic method which results in higher performances of the resulting nanoparticles is highlighted. Herein we found that the performance with respect to the HER of the Ni electrodes dispersed on a carbon black Vulcan substrate is active and comparable to that reported in the literature for the state-of-the-art electrocatalysts. Appreciable cathodic current densities of {proportional_to}240 mA cm{sup -2} were measured with highly dispersed nickel particles (Ni-5{sub DAP}). This work demonstrates that the aforementioned method can be extended to the preparation of highly active stabilized metal particles without inhibiting the electron transfer for the HER reaction, and it could also be applied to the synthesis of bimetallic nanoparticles. (author)

  13. Antioxidant-Based Phase-Change Thermal Interface Materials with High Thermal Stability

    Science.gov (United States)

    Aoyagi, Yasuhiro; Chung, D. D. L.

    2008-04-01

    This work provides phase-change thermal interface materials (TIMs) with high thermal stability and high heat of fusion. They are based on antioxidants mainly in the form of hydrocarbons with linear segments. The thermal stability is superior to paraffin wax and four commercial phase-change materials (PCMs). The use of 98.0 wt.% thiopropionate antioxidant (SUMILIZER TP-D) with 2.0 wt.% sterically half-hindered phenolic antioxidant (GA80) as the matrix and the use of 16 vol.% boron nitride particles as the solid component give a PCM with a 100°C lifetime indicator of 5.3 years, in contrast to 0.95 year or less for the commercial PCMs. The heat of fusion is much higher than those of commercial PCMs; the values for antioxidants with nonbranched molecular structures exceed that of wax; the value for one with a branched structure is slightly below that of wax. The phase-change properties are degraded by heating at 150°C much less than those of the commercial PCMs. The stability of the heat of fusion upon phase-change cycling is also superior. The viscosity is essentially unaffected by heating at 150°C. Commercial PCMs give slightly lower values of the thermal contact conductance for the case of rough (12 μm) mating surfaces, in spite of the lower values of the bond-line thickness.

  14. Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability

    Science.gov (United States)

    Liu, Fan; Yuan, Hao; Goel, Sunkulp; Liu, Ying; Wang, Jing Tao

    2018-02-01

    A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries ( f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to 40 and 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.

  15. Organic transistors with high thermal stability for medical applications.

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-06

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  16. Synthesis, sintering properties and thermal conductivity of uranium carbonitrides

    International Nuclear Information System (INIS)

    Wolters, R.A.M.

    1978-01-01

    An introduction to the applications and chemistry of uranium carbonitrides is given including the potential use as a nuclear fuel. The powder synthesis of UC, UN and mixtures of UC and UN by a cyclic process is described. The correlation between the composition ratio UN/(UC+UN) in the final product and the parameters of the process is only determined qualitatively. Batch synthesis of a powder does not lead to an increase of the content of metallic impurities and oxygen. The impurity level is determined by that of the starting uranium metal and the thermal conductivity of the sintered compacts of uranium carbonitrides are determined via the measurement of the thermal diffusivity at 1100-1700 K. (Auth.)

  17. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    In solid oxide fuel cells (SOFCs) the cathode functions as the site for thee lectrochemical reduction of oxygen. There- fore, thec athode must have high electronic conductivity, ade- quate porosity, stability under an oxidizing atmosphere and high catalytic activity. In addition, it is crucial for the cathode to have matched thermal ...

  18. Thermal hydraulic stability in a pressure tube nuclear reactor

    International Nuclear Information System (INIS)

    Villani, A.; Ravetta, R.; Mansani, L.

    1986-01-01

    The CIRENE plant which will undergo preoperational tests in the near future is equipped with a 40 MW(e) Heavy Water moderated Boiling Light Water cooled Reactor (HWBLWR); at the start-up and up to about 30 % of nominal power, the necessary low coolant density is obtained injecting into the core a mixture of liquid and steam. To verify the thermal-hydraulic stability of the plant in this situation, tests have been carried out in a facility simulating two full scale power channels; the system stability has been confirmed in the reference conditions, and is not reduced by even a significant reduction of the liquid flowrate, where a decrease in liquid temperature has some negative effect and steam flowrate has a small influence. (author)

  19. Thermal stability for the effective use of commercial catalase

    Directory of Open Access Journals (Sweden)

    Miłek J.

    2014-12-01

    Full Text Available Catalase with the commercial catalase name Terminox Ultra is widely used in the textile industry in bleaching processes. This enzyme is used to catalyse the decomposition of residual hydrogen peroxide into oxygen and water. In this study catalase was kept for about 30 hours in water baths in a temperature range from 35 to 70°C. For the first time, the kinetics of thermal deactivation of this enzyme was examined using an oxygen electrode. Stability of the enzyme depends strongly on temperature and its half-life times are 0.0014 h and 7.6 h, at 35 and 70°C, respectively.

  20. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...

  1. BIOCHAR MODIFICATION, THERMAL STABILITY AND TOXICITY OF PRODUCTS MODIFICATION

    Directory of Open Access Journals (Sweden)

    Romana FRIEDRICHOVÁ

    2017-12-01

    Full Text Available Biochar is a product obtained from processing of waste biomass. The main application of biochar is in soil and environment remediation. Some new applications of this carbonaceous material take advantage of its adsorption capacity use it as a heterogeneous catalyst for energy storage and conversion etc. This contribution describes thermal stability of the original biochar. It discusses biochar modified by chemical and physical methods including a new compound of biochar-graphene oxide. The purpose of the modifications is to increase its active surface to introduce active functional groups into the carbon structure of biochar in relation to fire safety and toxicity of those products.

  2. Thermal stability of hard nanocomposite Mo-B-C coatings

    Czech Academy of Sciences Publication Activity Database

    Zábranský, L.; Buršíková, V.; Souček, P.; Vašina, P.; Dugáček, J.; Sťahel, P.; Buršík, Jiří; Svoboda, Milan; Peřina, V.; Peřina, Vratislav

    2017-01-01

    Roč. 138, APR (2017), s. 199-204 ISSN 0042-207X R&D Projects: GA ČR(CZ) GA15-17875S Institutional support: RVO:68081723 ; RVO:61389005 Keywords : thermal stability * Mo2BC coatings * hardness Subject RIV: JI - Composite Materials; JI - Composite Materials (UJF-V) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (UFM-A); Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (UJF-V) Impact factor: 1.530, year: 2016

  3. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    Abstract. Thermal barrier coatings (TBCs) of yttria-stabilized zirconia (YSZ) of different thicknesses with an intermediate bond coat were deposited on C-103 Nb alloy using the air plasma spraying technique. The coatings were subjected to rapid infra-red (IR) heating (∼25◦C s−1) up to ∼1250◦C and exposed up to 100 s at ...

  4. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. [Ohio State Univ., Columbus, OH (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  5. Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands.

    Science.gov (United States)

    Knepp, Adam M; Grunbeck, Amy; Banerjee, Sourabh; Sakmar, Thomas P; Huber, Thomas

    2011-02-01

    The inherent instability of heptahelical G protein-coupled receptors (GPCRs) during purification and reconstitution is a primary impediment to biophysical studies and to obtaining high-resolution crystal structures. New approaches to stabilizing receptors during purification and screening reconstitution procedures are needed. Here we report the development of a novel homogeneous time-resolved fluorescence assay (HTRF) to quantify properly folded CC-chemokine receptor 5 (CCR5). The assay permits high-throughput thermal stability measurements of femtomole quantities of CCR5 in detergent and in engineered nanoscale apolipoprotein-bound bilayer (NABB) particles. We show that recombinantly expressed CCR5 can be incorporated into NABB particles in high yield, resulting in greater thermal stability compared with that of CCR5 in a detergent solution. We also demonstrate that binding of CCR5 to the HIV-1 cellular entry inhibitors maraviroc, AD101, CMPD 167, and vicriviroc dramatically increases receptor stability. The HTRF assay technology reported here is applicable to other membrane proteins and could greatly facilitate structural studies of GPCRs.

  6. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties

    OpenAIRE

    Salorinne, Kirsi; Man, Renee W.Y.; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M.

    2017-01-01

    NHC-Au(I) complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching...

  7. The analysis of thermal stability of detonation nanodiamond

    Science.gov (United States)

    Efremov, V. P.; Zakatilova, E. I.

    2016-11-01

    The detonation nanodiamond is a new perspective material. Ammunition recycling with use of high explosives and obtaining nanodiamond as the result of the detonation synthesis have given a new motivation for searching of their application areas. In this work nanodiamond powder has been investigated by the method of synchronous thermal analysis. Experiments have been carried out at atmospheric pressure in the environment of argon. Nanodiamond powder has been heated in the closed corundum crucible at the temperature range of 30-1500 °C. The heating rates were varied from 2 K/min to 20 K/min. After the heat treatment, the samples have been studied by the x-ray diffraction and the electron microscopy. As one of the results of this work, it has been found that the detonation nanodiamond has not started the transition into graphite at the temperature below 800 °C.

  8. The analysis of thermal stability of detonation nanodiamond

    International Nuclear Information System (INIS)

    Efremov, V P; Zakatilova, E I

    2016-01-01

    The detonation nanodiamond is a new perspective material. Ammunition recycling with use of high explosives and obtaining nanodiamond as the result of the detonation synthesis have given a new motivation for searching of their application areas. In this work nanodiamond powder has been investigated by the method of synchronous thermal analysis. Experiments have been carried out at atmospheric pressure in the environment of argon. Nanodiamond powder has been heated in the closed corundum crucible at the temperature range of 30-1500 °C. The heating rates were varied from 2 K/min to 20 K/min. After the heat treatment, the samples have been studied by the x-ray diffraction and the electron microscopy. As one of the results of this work, it has been found that the detonation nanodiamond has not started the transition into graphite at the temperature below 800 °C. (paper)

  9. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  10. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  11. Pressure effects on the thermal stability of silicon carbide fibers

    Science.gov (United States)

    Jaskowiak, Martha H.; Dicarlo, James A.

    1989-01-01

    Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.

  12. Synthesis and Thermal Characterization of Hydroxyapatite Powders Obtained by Sol-Gel Technique

    Science.gov (United States)

    Jiménez-Flores, Y.; Camacho, N.; Rojas-Trigos, J. B.; Suárez, M.

    The development of bioactive materials presents an interesting and an extremely relevant problem to solve, in the development of customized cranial and maxillofacial prosthesis, bioactive coating, and cements, for example. In such areas, one of the more employed materials is the synthetic hydroxyapatite, due to its proved biocompatibility with the human body; however, there are few studies about the thermal affinity with the biological surroundings, and most of them are centered in the thermal stability of the hydroxyapatite instead of its transient thermal response. In the present paper, the synthesis and physical-chemical characterization of hydroxyapatite samples, obtained by the sol-gel technique employing ultrasonic mixing, are reported. Employing X-ray diffraction patterns, XEDS and FTIR spectra, the crystal symmetry, chemical elements, and the present functional groups of the studied samples were determined and found to correspond to those reported in the literature, with a stoichiometry close to the ideal for biological applications. Additionally, by means of the photoacoustic detection and infrared photothermal radiometry (IPTR) techniques, the thermal response of the samples was obtained. Analyzing the photoacoustic data, the synthetized samples show photoacoustic opaqueness, responding in the thermally thick regime in the measurement range, and their thermal effusivity was also determined, having values of 1.47 folds the thermal effusivity of the mandibular human bone. Finally, from the IPTR measurements, the thermal diffusivity and thermal conductivity of the samples were also determined, having good agreement with the reported values for synthetic hydroxyapatite. The structural and thermophysical properties of the here reported samples show that the synthesized samples have good thermal affinity with the mandibular human bone tissue, and are suitable for biomedical applications.

  13. Thermal stability and modeling of lithium ion batteries

    Science.gov (United States)

    Botte, Gerardine Gabriela

    2000-10-01

    First-principles mathematical models were developed to examine the effect of the lithium-lithium ion interactions inside the anode particles on the performance of a lithium foil cell. Two different models were developed: the chemical potential model (CPM) that includes the lithium-lithium ion interactions inside the anode particles and the diffusion model (DIM) that does not include the interactions. Significant differences in the thermal and electrochemical performance of the cell were observed between the two approaches. The temperature of the cell predicted by the DFM is higher than the one predicted by the CPM at a given capacity. The discharge time of the cell predicted by the DFM is shorter than the one predicted by the CPM. The results indicate that the cell needs to be modeled using the CPM approach especially at high discharge rates. An evaluation of the numerical techniques, control volume formulation (CVF) and finite difference method (FDM), used for the models was performed. It is shown that the truncation error is the same for both methods when the boundary conditions are of the Dirichlet type, the system of equations are linear and represented in Cartesian coordinates. A new technique to analyze the accuracy of the methods is presented. The only disadvantage of the FDM is that it failed to conserve mass for a small number of nodes when both boundary conditions include a derivative term whereas the CVF did conserve mass for these cases. However, for a large number of nodes the FDM provides mass conservation. It is important to note that the CVF has only (DeltaX) order of accuracy for a Neumann type boundary condition whereas the FDM has (DeltaX) 2 order. The second topic of this dissertation presents a study of the thermal stability of LiPF6 EC:EMC electrolyte for lithium ion batteries. A differential scanning calorimeter (DSC) was used to perform the study of the electrolyte. For first time, the effect of different variables on its thermal stability

  14. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  15. Contribution to the study of superconductor thermal stability

    International Nuclear Information System (INIS)

    Meuris, Chantal.

    1982-06-01

    The fundamental problem consists in ensuring, a priori, that transitions from the superconducting state to the normal resistive state, created by thermal disturbances, resorb spontaneously. An analysis of the validity limits of the criteria generally used leads to the definition of a certain number of unsolved problems raised by two particular configurations linked to the present technology of large superconducting magnets. The thermal stability is studied in relation to disturbances leading to a dispersion of heat in the conductor. The first configuration is representative of that of magnets with cooling channels defined transversely to the conductor and communicating with the main helium source (for example toroidal coil of Tore Supra). The uneven distribution of coolant along the conductor, due to the presence of the insulating supports marking the channels, leads to possible states for the conductor which were not anticipated till now. A theoretical study is developed of the stable and unstable stationary states of the conductor and the respective attraction fields of the stable states. A complete digital analysis of the dynamics of the state of the disturbed system is then made. This digital simulation is compared with the experimental results. The second configuration relates to the case of a conductor cooled by a limited volume of superfluid helium, for example a cable with internal cooling by static superfluid helium. An analysis of the cooling medium enables a theoretical relation to be established between the usable enthalpy and the time distribution of the thermal disturbance. This culminates in a fresh stability and dimensioning criterion of the cooling system with respect to the type of disturbances. An experimental study confirms this theory [fr

  16. Thermal stability of germanium-tin (GeSn) fins

    Science.gov (United States)

    Lei, Dian; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Masudy-Panah, Saeid; Tan, Chuan Seng; Tok, Eng Soon; Gong, Xiao; Yeo, Yee-Chia

    2017-12-01

    We investigate the thermal stability of germanium-tin (Ge1-xSnx) fins under rapid thermal annealing in N2 ambient. The Ge1-xSnx fins were formed on a GeSn-on-insulator substrate and were found to be less thermally stable than blanket Ge1-xSnx films. The morphology change and material quality of the annealed Ge1-xSnx fin are investigated using scanning electron microscopy, Raman spectroscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy. Obvious degradation of crystalline quality of the Ge0.96Sn0.04 fin was observed, and a thin Ge layer was formed on the SiO2 surface near the Ge0.96Sn0.04 fin region after 500 °C anneal. A model was proposed to explain the morphology change of the Ge0.96Sn0.04 fin.

  17. Thermal stability studies of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Parmeter, J.E.; Tallant, D.R.; Siegal, M.P.

    1994-04-01

    Thin films of amorphous carbon/hydrogen, also known as diamond-like carbon or DLC, are of interest as an economical alternative to diamond in a variety of coatings applications. We have investigated the thermal stability of DLC films deposited onto tungsten and aluminum substrates via plasma CVD of methane. These films contain approximately 40 atom % hydrogen, and based on Auger spectra the carbon in the films is estimated to be 60% sp{sup 3} hybridized and 40% sp{sup 2} hybridized. Thermal desorption, Auger, and Raman measurements all indicate that the DLC films are stable to 250--300C. Between 300 and 500C, thermal evolution of hydrogen from the films is accompanied by the conversion of carbon from sp{sup 3} to sp{sup 2} hybridization, and Raman spectra indicate the conversion of the overall film structure from DLC to micro-crystalline graphite or so called ``glassy`` carbon. These results suggest that DLC of this type is potentially useful for applications in which the temperature does not exceed 250C.

  18. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  19. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.

    Science.gov (United States)

    Pei, Qing-Xiang; Zhang, Xiaoliang; Ding, Zhiwei; Zhang, Ying-Yan; Zhang, Yong-Wei

    2017-07-14

    Phosphorene, a new two-dimensional (2D) semiconducting material, has attracted tremendous attention recently. However, its structural instability under ambient conditions poses a great challenge to its practical applications. A possible solution for this problem is to encapsulate phosphorene with more stable 2D materials, such as graphene, forming van der Waals heterostructures. In this study, using molecular dynamics simulations, we show that the thermal stability of phosphorene in phosphorene/graphene heterostructures can be enhanced significantly. By sandwiching phosphorene between two graphene sheets, its thermally stable temperature is increased by 150 K. We further study the thermal transport properties of phosphorene and find surprisingly that the in-plane thermal conductivity of phosphorene in phosphorene/graphene heterostructures is much higher than that of the free-standing one, with a net increase of 20-60%. This surprising increase in thermal conductivity arises from the increase in phonon group velocity and the extremely strong phonon coupling between phosphorene and the graphene substrate. Our findings have an important meaning for the practical applications of phosphorene in nanodevices.

  20. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection

    Science.gov (United States)

    Adeyemi, Oluwapelumi O.; Nicol, Clare

    2016-01-01

    ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not

  1. Thermal stability for a reactive viscous flow in a slab

    CERN Document Server

    Okoya, S S

    2002-01-01

    The paper deals with the effect of dimensionless non - Newtonian coefficient on the thermal stability of a reactive viscous liquid in steady flow between parallel heated plates. It is assumed that the liquid is symmetrically heated and the flow fully developed. Approximate analytical solution is obtained for the velocity of the flow and the criterion for which this solution is valid is determined. After the velocity distribution is known, the temperature distribution may be calculated. Criticality and disappearance of criticality (transition values) are obtained in the following cases: (i) Bimolecular (ii) Arrhenius and (iii) Sensitized temperature dependence. We have observed that nonlinear effect from velocity and temperature fields introduced decaying for the transitional values of the dimensionless central temperature. Other effects of this nonlinearity are reported. We also give results for the plane - Couette flow problem. The results help to enhance understanding of the interplay between Newtonian and ...

  2. Novel polypyrrole films with excellent crystallinity and good thermal stability

    International Nuclear Information System (INIS)

    Jeeju, Pullarkat P.; Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M.; Jayalekshmi, Sankaran

    2012-01-01

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: ► Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. ► The solution casted films exhibit semi-crystallinity and good thermal stability. ► Percentage crystallinity estimated using XRD and DSC analysis is about 65%. ► Raman studies support the enhancement in crystallinity based on XRD and DSC data. ► The conductivity of the film is 30 times higher than that of HCl doped sample.

  3. Novel polypyrrole films with excellent crystallinity and good thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, Pullarkat P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Jayalekshmi, Sankaran, E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2012-06-15

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: Black-Right-Pointing-Pointer Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. Black-Right-Pointing-Pointer The solution casted films exhibit semi-crystallinity and good thermal stability. Black-Right-Pointing-Pointer Percentage crystallinity estimated using XRD and DSC analysis is about 65%. Black-Right-Pointing-Pointer Raman studies support the enhancement in crystallinity based on XRD and DSC data. Black-Right-Pointing-Pointer The conductivity of the film is 30 times higher than that of HCl doped sample.

  4. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment

    International Nuclear Information System (INIS)

    Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi

    2013-01-01

    Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed

  5. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  6. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  7. PLASMA THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE WITH HIGH THERMAL STABILITY

    Directory of Open Access Journals (Sweden)

    O. G. Devoino

    2015-01-01

    Full Text Available The paper presents optimization of  processes for obtaining maximum content of tetragonal phase in the initial material and thermal barrier coatings (TBC based on zirconium dioxide and hafnium oxide.  Results of the investigations on phase composition of oxide HfO2 – ZrO2 – Y2O3  system have been given in the paper. The system represents  a microstructure which is similar to  zirconia dioxide and  transformed for its application at 1300 °C. The paper explains a mechanism of hafnium oxide influence on formation of the given microstructure. The research methodology has been based on complex metallography, X – ray diffraction and electron microscopic investigations of  structural elements of the composite plasma coating HfO2 – ZrO2 – Y2O system.In order to stabilize zirconium dioxide  dopant oxide should not only have an appropriate size of  metal ion, but also form a solid solution with the zirconia. This condition severely limits the number of possible stabilizers. In fact, such stabilization is possible only with the help of rare earth oxides (Y2O3, Yb2O3, CeO2, HfO2. Chemical purity of the applied materials plays a significant role for obtaining high-quality thermal barrier coatings. Hafnium oxide has been selected as powder for thermal barrier coatings instead of zirconium dioxide due to their similarities in structural modification, grating, chemical and physical properties and its high temperature structural transformations. It has been established that plasma thermal barrier HfO2 – ZrO2 – Y2O3 coatings consist of  one tetragonal phase. This phase is equivalent to a non-equilibrium tetragonal t' phase in the “zirconium dioxide stabilized with yttrium oxide” system. Affinity of  Hf+4 and Zr+4 cations leads to the formation of identical metastable phases during rapid quenching.

  8. Thermal effects on cognition: a new quantitative synthesis.

    Science.gov (United States)

    López-Sánchez, José Ignacio; Hancock, P A

    2017-07-05

    There is little doubt that increases in thermal load beyond the thermo-neutral state prove progressively stressful to all living organisms. Increasing temperatures across the globe represent in some locales, and especially for outdoors workers, a significant source of such chronic load increase. However, increases in thermal load affect cognition as well as physical work activities. Such human cognition has perennially been viewed as the primary conduit through which to solve many of the iatrogenic challenges we now face. Yet, thermal stress degrades the power to think. Here, we advance and refine the isothermal description of such cognitive decrements, founded upon a synthesis of extant empirical evidence. We report a series of mathematical functions which describe task-specific patterns of performance deterioration, linking such degrees of decrement to the time/temperature conditions in which they occur. Further, we provide a simple, free software tool to support such calculations so that adverse thermal loads can be monitored, assessed and (where possible) mitigated to preserve healthy cognitive functioning.

  9. Facile synthesis of self-stabilized polyphenol nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bilici, Ali, E-mail: alibilici66@hotmail.com [Lapseki Vocational School, Çanakkale Onsekiz Mart University, Lapseki, Çanakkale 17020 (Turkey); Department of Chemistry, Polymer Synthesis and Analysis Laboratory, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey); Doğan, Fatih, E-mail: fatihdogan@comu.edu.tr [Secondary Science and Mathematics Education, Faculty of Education, Canakkale Onsekiz Mart University, Canakkale 17100 (Turkey); Department of Chemistry, Polymer Synthesis and Analysis Laboratory, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey); Yıldırım, Mehmet [Department of Materials Science and Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey); Department of Chemistry, Polymer Synthesis and Analysis Laboratory, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey); Kaya, İsmet [Department of Chemistry, Polymer Synthesis and Analysis Laboratory, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)

    2013-06-15

    We describe here the facile synthesis (in two-steps) of green light emitting phenol polymer with an azomethine side group. For this purpose, hydroxy functionalized-Schiff base monomer, HPMBT, was obtained by condensation of 2,3,4-trihydroxybenzaldehyde with 2-aminophenol. Subsequent oxidation of the monomer in alkaline medium by NaOCl yielded to corresponding phenol polymer (PHPMBT) with molecular weight ca. 34,500 Da. The characterizations were performed by NMR, FT-IR, UV–vis, gel permeation chromatography (GPC), thermogravimetry (TG), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), cyclic voltammetry (CV), photoluminescence (PL), dynamic light scattering (DLS) and scanning electron microscope (SEM) analysis. PL analysis indicated that HPMBT was non-fluorescent whereas PHPMBT was a green light emitter. In addition, the redox behaviors of the polymer were explored by cyclic voltammetry (CV), assigned it's electroactive nature. The formation of nano-sized polyphenol particles was revealed by the SEM and DLS analyses. A possible mechanism for the formation and self-stabilization of the polyphenol nanoparticles was also suggested. - Highlights: • The nano-sized polyphenol particles were facilely obtained by a template-free oxidative polymerization process. • A possible mechanism for the formation and self-stabilization of the nanoparticles was proposed. • These electroactive particles emitted green light, efficiently. • The obtained polymer was well soluble in polar organic solvents.

  10. Facile synthesis of self-stabilized polyphenol nanoparticles

    International Nuclear Information System (INIS)

    Bilici, Ali; Doğan, Fatih; Yıldırım, Mehmet; Kaya, İsmet

    2013-01-01

    We describe here the facile synthesis (in two-steps) of green light emitting phenol polymer with an azomethine side group. For this purpose, hydroxy functionalized-Schiff base monomer, HPMBT, was obtained by condensation of 2,3,4-trihydroxybenzaldehyde with 2-aminophenol. Subsequent oxidation of the monomer in alkaline medium by NaOCl yielded to corresponding phenol polymer (PHPMBT) with molecular weight ca. 34,500 Da. The characterizations were performed by NMR, FT-IR, UV–vis, gel permeation chromatography (GPC), thermogravimetry (TG), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), cyclic voltammetry (CV), photoluminescence (PL), dynamic light scattering (DLS) and scanning electron microscope (SEM) analysis. PL analysis indicated that HPMBT was non-fluorescent whereas PHPMBT was a green light emitter. In addition, the redox behaviors of the polymer were explored by cyclic voltammetry (CV), assigned it's electroactive nature. The formation of nano-sized polyphenol particles was revealed by the SEM and DLS analyses. A possible mechanism for the formation and self-stabilization of the polyphenol nanoparticles was also suggested. - Highlights: • The nano-sized polyphenol particles were facilely obtained by a template-free oxidative polymerization process. • A possible mechanism for the formation and self-stabilization of the nanoparticles was proposed. • These electroactive particles emitted green light, efficiently. • The obtained polymer was well soluble in polar organic solvents

  11. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Tahan Latibari, Sara; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Cornelis Metselaar, Hendrik Simon

    2014-01-01

    Highlights: • Introducing novel form-stable PCM of stearic acid (SA)/carbon nanospheres (CNSs). • The highest stabilized SA content is 83 wt% in the SA/CNS composites. • Increasing thermal conductivity of composite phase change material with high amount of latent heat. - Abstract: Stearic acid (SA) is one of the main phase change materials (PCMs) for medium temperature thermal energy storage systems. In order to stabilize the shape and enhance the thermal conductivity of SA, the effects of adding carbon nanospheres (CNSs) as a carbon nanofiller were examined experimentally. The maximum mass fraction of SA retained in CNSs was found as 80 wt% without the leakage of SA in a melted state, even when it was heated over the melting point of SA. The dropping point test shows that there was clearly no liquid leakage through the phase change process at the operating temperature range of the composite PCMs. The thermal stability and thermal properties of composite PCMs were investigated with a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The thermal conductivity of the SA/CNS composite was determined by the laser flash method. The thermal conductivity at 35 °C increased about 105% for the highest loading of CNS (50 wt%). The thermal cycling test proved that form-stable composite PCMs had good thermal reliability and chemical durability after 1000 cycles of melting and freezing, which is advantageous for latent heat thermal energy storage (LHTES)

  12. Co-crystal of 4,4‧ -sulfonyldianiline and hexamethylenetetramine: Supramolecular interactions and thermal stability studies

    Science.gov (United States)

    Lin, Jingxiang; Chen, Yu; Zhao, Dan; Lu, Xiuqiang; Lin, Yuanzhi

    2017-12-01

    Co-crystal containing 1:1 ratio of 4,4‧-sulfonyldianiline (dapsone, a sulfonamide antibiotic) and hexamethylenetetramine (HMTA) has been prepared. Herein, we report the synthesis, characterization of the drug-drug co-crystal and its thermal stability. This co-crystal can be prepared by means of solvent evaporation and solid state synthesis (neat ball milling). Single crystal structural characterization of the co-crystal revealed that the co-crystal structure is secured by hydrogen bonds sbnd NH2⋯N and multiple weak interactions, including Csbnd H⋯π, Csbnd H⋯N and Csbnd H⋯O, between the co-formers. Moreover, thermal gravimetric analysis showed that the co-former HMTA demonstrates higher thermal stability after co-crystallized with dapsone. These investigations proved that DAP is an ideal parent drug to prepare drug-drug co-crystal. The case study expands the pharmaceutically acceptable solid forms of DAP.

  13. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2′ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    International Nuclear Information System (INIS)

    Mudsainiyan, R.K.; Jassal, Amanpreet Kaur; Chawla, S.K.

    2015-01-01

    The 1-D polymeric complex (I) is having formula [Mn(2,2′-BP).(N 3 ) 2 ] n , which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn–azide–Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J 1 =64.3 K (45.3 cm −1 ), and J 2 =−75.7 K (−53.3 cm −1 ). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L–L)(N 3 ) 2 ] n type. - - Highlights: • Synthesized 1-D polymeric complex of Mn (II) ions with 2, 2′ bipyridyl and azide group. • X-ray data of complex (I) is in a good agreement with TGA and other spectroscopic techniques. • DFT calculations were done and compared with the parameter of experimental and theoretical data. • Intermolecular interactions calculated by Hirshfeld surface analysis compared with X-ray data

  14. Thermal stability and deactivation energy of free and immobilized invertase

    Directory of Open Access Journals (Sweden)

    F.J. Bassetti

    2000-12-01

    Full Text Available The thermal stability and the energy of deactivation of free invertase and the immobilized enzyme (IE was measured at temperatures in the range of 35 to 65°C for the hydrolysis of a 5% w/v sucrose solution. The free enzyme at pH 5.0 is stable up to 50°C for a period of 4 h. Invertase immobilized in controlled pore silica by the silane-glutaraldehyde covalent method is stable up to 55ºC, in pH 4.5 for the same period. For higher temperatures the enzyme deactivation follows the exponential decay model and half-lives are 0.53, 1.80, and 13.9 h for free invertase, at 65, 60, and 55ºC, respectively. For the IE half-lives are 0.48, 1.83, and 20.9 h, at 65, 60, and 55ºC, respectively. The IE is more stable than the free invertase; the energy of deactivation being 83.1 kcal/mol for the IE and 72.0 kcal/mol for the free enzyme.

  15. Thermal stability of simple tetragonal and hexagonal diamond germanium

    Science.gov (United States)

    Huston, L. Q.; Johnson, B. C.; Haberl, B.; Wong, S.; Williams, J. S.; Bradby, J. E.

    2017-11-01

    Exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursor materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.

  16. Thermal stability of the immobilized fructosyltransferase from Rhodotorula sp

    Directory of Open Access Journals (Sweden)

    E Aguiar-Oliveira

    2011-09-01

    Full Text Available The thermal stability of the extracellular fructosyltransferase (FTase from Rhodotorula sp., recovered from cultivation medium by ethanol precipitation and immobilized onto niobium ore, was studied by Arrhenius plot, half - life profile, half - inactivation temperature (T50 and thermodynamic parameters. The Arrhenius plot showed two different behaviors with different deactivation energies (Ead only after immobilization, the transition occurring in the temperature interval between 51 and 52ºC. T50 for the free enzyme was estimated to be around 62ºC and, after immobilization, 66ºC. After 15 minutes at 52ºC, it was also possible to observe enzymatic activation for both the free and immobilized forms, but greater activation was achieved at pH 4.5 with the immobilized enzyme. Between 47 - 51ºC the immobilized enzyme was more stable than the free enzyme, with pH 6.0 being the more stable condition for the immobilized enzyme. However, above 52ºC the free form was more stable.

  17. Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization.

    Science.gov (United States)

    Saeedi, Saman; Emami, Azita

    2015-08-24

    We present a scheme for thermal stabilization of micro-ring resonator modulators through direct measurement of ring temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. The closed-loop feedback system is demonstrated to operate in presence of thermal perturbations at 20Gb/s.

  18. Thermal and Chemical Stabilization of Silver Nanoplates for Plasmonic Sensor Application.

    Science.gov (United States)

    Takahashi, Yukina; Suga, Koichi; Ishida, Takuya; Yamada, Sunao

    2016-01-01

    Thermal and chemical stabilities of silver nanoplates (AgPLs), which are triangle plate-shaped silver nanoparticles, were improved by coating with titanium oxide. The titanium oxide layer prepared by a dip-coating method was certainly advantageous for the improvement of thermal stability. Furthermore, the overlayering of titanium oxide by a spray pyrolysis method was quite useful for improving the chemical stability against I(-) exposure. Such a coating exhibited satisfactory refractive index sensitivities.

  19. The effect of wood extractives on the thermal stability of different wood species

    Energy Technology Data Exchange (ETDEWEB)

    Shebani, A.N.; Reenen, A.J. van [Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602 (South Africa); Meincken, M. [Department of Forest and Wood Science, University of Stellenbosch, Private Bag X1, Matieland 7602 (South Africa)], E-mail: mmein@sun.ac.za

    2008-05-30

    This study compares the thermal stability of different wood species, which is an important factor for the production of wood-polymer composites (WPCs), and investigates the effect of extraction on thermal properties. The chemical composition of four wood species -Quercus alba, Pinus radiata, Eucalyptus grandis and Acacia cyclops - has been determined, as the species is expected to affect the thermal stability of wood. Subsequently, the hot-water (HW) extractives, ethanol/cyclohexane (E/C) extractives and both extractives were eliminated from the wood via Soxhlet extraction and the thermal stability of the wood determined with thermogravimetric analysis (TGA) under identical conditions. The results suggest that a higher cellulose and lignin content leads to better thermal stability of wood in different temperature regimes. In all cases, the removal of extractives improved the thermal stability of the wood. The effect of combined extractions was more pronounced than of an individual extraction and E/C-extraction caused less improvement in the thermal stability of wood than HW extraction. The degradation of the investigated wood extractives occurred at low rates over a broad temperature range. Pure cellulose exhibited superior thermal stability compared to wood, but differences were observed between the investigated wood species.

  20. Room temperature synthesis of an optically and thermally responsive hybrid PNIPAM-gold nanoparticle

    Science.gov (United States)

    Morones, J. Ruben; Frey, Wolfgang

    2010-05-01

    Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly- N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.

  1. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  2. Synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid-liquid phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Bicer, Alper; Karaipekli, Ali; Alkan, Cemil; Karadag, Ahmet [Gaziosmanpasa University, Department of Chemistry, 60240 Tokat (Turkey)

    2010-10-15

    The synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid-liquid phase change energy storage materials were investigated. The esters were synthesized by means of the Fischer esterification reaction of the glycerol with myristic, palmitic and stearic acids. The chemical structures of esters were proven by FT-IR and {sup 1}H NMR techniques. The melting temperatures and latent heats of the synthesized esters were found in the range of 31-63 C and 149-185 J/g, by DSC method. The results showed that the esters as phase change materials (PCMs) had good thermal reliability with respect to the 1000 thermal cycles. TGA analysis was performed to determine thermal stability of the esters. The thermal conductivity of the PCMs was also improved significantly by adding 5 wt% expanded graphite. Based on all results it can also be concluded that the synthesized esters can be considered as potential PCMs for thermal energy storage. (author)

  3. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: gpcdrummen@bionano-solutions.de [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  4. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  5. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  6. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  7. Influence of thermal effects on stability of nanoscale films and filaments on thermally conductive substrates

    Science.gov (United States)

    Seric, Ivana; Afkhami, Shahriar; Kondic, Lou

    2018-01-01

    We consider fluid films and filaments of nanoscale thickness on thermally conductive substrates exposed to external heating and discuss the influence of the variation of material parameters with temperature on film stability. Particular focus is on metal films exposed to laser irradiation. Due to the short length scales involved, the absorption of heat in the metal is directly coupled to the film evolution, since the absorption length and the film thickness are comparable. Such a setup requires self-consistent consideration of fluid mechanical and thermal effects. We approach the problem via volume-of-fluid-based simulations that include destabilizing liquid metal-solid substrate interaction potentials. These simulations couple fluid dynamics directly with the spatio-temporal evolution of the temperature field both in the fluid and in the substrate. We focus on the influence of the temperature variation of material parameters, in particular of surface tension and viscosity. Regarding variation of surface tension with temperature, the main finding is that while the Marangoni effect may not play a significant role in the considered setting, the temporal variation of surface tension (modifying normal stress balance) is significant and could lead to complex evolution including oscillatory evolution of the liquid metal-air interface. Temperature variation of film viscosity is also found to be relevant. Therefore, the variations of surface tensions and viscosity could both influence the emerging wavelengths in experiments. By contrast, the filament geometry is found to be much less sensitive to a variation of material parameters with temperature.

  8. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  9. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-06-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100-130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130-140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization.

  10. Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent

    Directory of Open Access Journals (Sweden)

    Charles B.B. Farias

    2014-05-01

    Conclusions: This process provided a simpler route for nanoparticle synthesis compared to existing systems using whole organisms or partially purified biological extracts, showing that the low-cost biosurfactant can be used for nanoparticle synthesis as a non-toxic and biodegradable stabilizing agent.

  11. Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability

    International Nuclear Information System (INIS)

    Dai, Xiaoye; Shi, Lin; An, Qingsong; Qian, Weizhong

    2016-01-01

    Highlights: • A rapid evaluation method for thermal stability of hydrocarbons for ORCs. • Methane and hydrogen are confirmed to be decomposition indicators. • The decomposition temperatures for some hydrocarbons using the rapid method. • Long carbon chain hydrocarbons are not suitable for supercritical ORCs. - Abstract: Organic Rankine Cycle (ORC) systems are widely used for industrial waste heat recovery and renewable energy utilization. The supercritical ORC is currently one of the main development directions due to its low exergy loss, high thermal efficiency and high work output. The thermal stability is the major limitation of organic working fluid selection with high temperature heat sources. This paper presents a rapid experimental method for assessing the thermal stability of hydrocarbons for ORCs. The fluids were tested in a high temperature reactor with methane and hydrogen theoretically and experimentally confirmed to be the indicators of thermal decomposition. The thermal decomposition temperatures were obtained for n-hexane, n-pentane, isopentane, cyclopentane, n-butane and isobutane using the rapid experimental method. The results show that cycloalkanes are not the good choices by thermal stability and long carbon chain hydrocarbons (longer than C6) are not suitable for supercritical ORCs due to the thermal stability limitation.

  12. Thermally Stable Dialkylzirconocenes with β-Hydrogens. Synthesis and Diastereoselectivity

    OpenAIRE

    Wendt, Ola F.; Bercaw, John E.

    2001-01-01

    Alkylation of Cp^r_2ZrCl_2 (Cpr = Cp (η^5-C_5H_5), Cp‘ (η^5-C_5H_4Me), Cp^* (η^5-C_5Me_5)) and CpCp^*Zr(CH_3)Cl with 1-lithio-2-methylpentane (R^1Li) gives the corresponding dialkylzirconocenes Cp^r_2ZrR^1_2 and CpCp^*Zr(CH_3)R^1, in high yields. Such alkyls have unprecedented thermal stabilities, especially for the CpCp^* ligand framework. The diastereomers of the Cp^r_2ZrR^1_2 complexes are formed in a statistical distribution, whereas the diastereomers of CpCp^*Zr(CH_3)R^1 form in a 2:3 ra...

  13. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  14. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    National Research Council Canada - National Science Library

    Irvine, Solveig

    2004-01-01

    ... over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel...

  15. Synthesis, characterization and thermal properties of inorganic-organic hybrid

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Poly (St-MAn-APTES/silica hybrid materials were successfully prepared from styrene (St, maleic anhydride (MAn and tetraethoxysilane (TEOS in the presence of a coupling agent 3-aminopropyltriethoxysilane (APTES, by freeradical solution polymerization and in situ sol-gel process. The TEOS content varied from 0 to 25 wt%. Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids (condensed siloxane bonds designated as Q1, Q2, Q3, Q4, with 3-aminopropyltriethoxysilane having mono-, di-, tri, tetra-substituted siloxane bonds designated as T1, T2 and T3. The results revealed that Q3, Q4 and T3 were the major microstructure elements in forming a network structure. The hybrid materials were also characterized by the methods of solvent extraction, Transmission Electron Microscopy (TEM, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA for determining the gel contents, particle size and thermal performance. The results showed that gel contents in the hybrid materials were much higher, the SiO2 phase were well dispersed in the polymer matrix, silicon dioxide existed at nanoscale in the composites, which had excellent thermal stability.

  16. The thermal stability of poly(methyl methacrylate prepared by RAFT polymerisation

    Directory of Open Access Journals (Sweden)

    LYNNE KATSIKAS

    2008-08-01

    Full Text Available Poly(methyl methacrylate, PMMA, was prepared by reversible addition–fragmentation chain transfer, RAFT, polymerisation using 2-(2-cyanopropyl-dithiobenzoate, CPDB, as the RAFT agent. The thermal stability of the resulting polymer approached that of anionically prepared PMMA, as determined by thermogravimetry. This was the consequence of the RAFT prepared polymer having no head-to-head links and no chain end double bonds, which are responsible for the relatively low thermal stability of radically prepared PMMA.

  17. Fluorescent pyrene-centered starburst oligocarbazoles with excellent thermal and electrochemical stabilities.

    Science.gov (United States)

    Ren, Ming-Guang; Guo, Hui-Jun; Qi, Fei; Song, Qin-Hua

    2011-10-21

    A series of pyrene-centered starburst oligocarbazoles (1-3) have been synthesized and well characterized. Based on photophysical, thermal and electrochemical studies in solutions and as thin films, all starburst molecules reveal a sky blue emission with a high efficiency (Φ(F) = 0.99-0.81) and excellent thermal and electrochemical stabilities. As OLED materials, these superior properties are helpful to enhance device stability and lifetime.

  18. Test of Cable Products in Respect of Thermal and Dynamic Stability

    Directory of Open Access Journals (Sweden)

    M. A. Коrotkevich

    2010-01-01

    Full Text Available The paper considers conditions for selection of  power supply of the unit which is used for testing samples of cable products by thermal and dynamic stability currents. It has been shown that while conducting testing by thermal and dynamic stability currents at nominal cable voltage it is more justifiable to use a percussive energy accumulator, and in the case when the voltage is low an inductive energy accumulator is used.

  19. Introduction to the concept of thermal stability: expression of the general problem

    International Nuclear Information System (INIS)

    Llory, M.; Planchard, J.

    1981-01-01

    In the first part, an introduction is given to the concept of thermal stability, based firstly on experimental results and secondly on a simplified formulation of the problem. In the second part, the above considerations are generalized: the general problem of thermal stability is stated and it is shown that it can be considered as an eigenvalue problem. In the third part, a simple application of the general case is developed [fr

  20. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  1. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding

    OpenAIRE

    Yuan, Hongbo; Xu, Jialiang; van Dam, Eliane P.; Giubertoni, Giulia; Rezus, Yves L. A.; Hammink, Roel; Bakker, Huib J.; Zhan, Yong; Rowan, Alan E.; Xing, Chengfen; Kouwer, Paul H. J.

    2017-01-01

    Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions fo...

  2. Preparation, thermal stability, and magnetic properties of Fe-Zr-Mo-W-B bulk metallic glass

    International Nuclear Information System (INIS)

    Liu, D.Y.; Sun, W.S.; Wang, A.M.; Zhang, H.F.; Hu, Z.Q.

    2004-01-01

    A bulk metallic glass (BMG) cylinder of Fe 60 Co 8 Zr 10 Mo 5 W 2 B 15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (T g ), crystallization temperature (T x ), supercooled liquid region (ΔT x ) between T g and T x , and reduced glass transition temperature T rg (T g /T m ) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases α-Fe, ZrFe 2 , Fe 3 B, MoB 2 , Mo 2 FeB 2 , and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Moessbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. α-Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses

  3. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  4. Analysis of Thermal Stability of Different Counter on 28nm FPGA

    DEFF Research Database (Denmark)

    Gupta, Daizy; Yadav, Amit; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we are presenting the power analysis for thermal awareness of different counters. The technique we are using to do the analysis is based on 28 nm FPGA tech-nique. In this work during implementation on FPGA, we are going to analyze thermal stability of different counters in temperature...

  5. Enhancement of thermal stability of silver(I) acetylacetonate by platinum(II) acetylacetonate

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Kovářík, T.; Pola, M.; Jakubec, Ivo; Bezdička, Petr; Bastl, Zdeněk; Pokorná, Dana; Urbanová, Markéta; Galíková, Anna; Pola, Josef

    2013-01-01

    Roč. 554, FEB (2013), s. 1-7 ISSN 0040-6031 Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:67985858 Keywords : thermal gravimetric analysis * differential scanning calorimetry * silver(I) acetylacetonate * platinum(II) acetylacetonate * enhancement of thermal stability Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.105, year: 2013

  6. Activation and thermal stability of ultra-shallow B+-implants in Ge

    DEFF Research Database (Denmark)

    Yates, B. R.; Darby, B. L.; Petersen, Dirch Hjorth

    2012-01-01

    The activation and thermal stability of ultra-shallow B+ implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B+ implants in Ge was char...

  7. Thermal stability of porous sol-gel phosphosilicates and their surface area stabilisation by lanthanum addition

    NARCIS (Netherlands)

    Falco, Lorena; De Mendonca, Mariana Van Den Tempel; Mercadal, Juan J.; Zarubina, Valeriya; Melián-Cabrera, Ignacio

    2016-01-01

    The thermal stability of porous sol-gel phosphosilicates was studied by comparing the textural features upon calcination between 400 and 550 °C. A significant loss of surface area and pore volume were observed; the first is due to thermal coarsening of the nanoparticles, and the pore volume

  8. THERMAL STABILITY OF NICKEL AZIDES | Irom | Global Journal of ...

    African Journals Online (AJOL)

    . The samples, prepared using different methods, are fresh nickel azide, fresh nickel hydroxy axide and the third sample was obtained by ageing fresh nickel hydroxy azide for almost one year. Thermal decomposition of the samples at different ...

  9. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  10. Optimal Robust Stabilization and Dissipativity Synthesis by Behavioral Interconnection

    NARCIS (Netherlands)

    Trentelman, H.L.; Fiaz, Shaik; Takaba, K.

    2011-01-01

    Given a nominal plant, together with a fixed neighborhood of this plant, the problem of robust stabilization is to find a controller that stabilizes all plants in that neighborhood (in an appropriate sense). If a controller achieves this design objective, we say that it robustly stabilizes the

  11. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Kevin C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-06

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in its composite form.

  12. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Bautista

    2017-12-01

    Full Text Available A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR analysis of the volatiles.

  13. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Science.gov (United States)

    Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente

    2017-01-01

    A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542

  14. An unsymmetrical porphyrin and its metal complexes: synthesis, spectroscopy, thermal analysis and liquid crystal properties

    Directory of Open Access Journals (Sweden)

    CHANGFU ZHUANG

    2009-09-01

    Full Text Available The synthesis and characterization of a new unsymmetrical porphyrin liquid crystal, 5-(4-stearoyloxyphenylphenyl-10,15,20-triphenylporphyrin (SPTPPH2 and its transition metal complexes (SPTPPM, M(II = Zn, Fe, Co, Ni, Cu or Mn are reported. Their structure and properties were studied by elemental analysis, and UV–Vis, IR, mass and 1H-HMR spectroscopy. Their luminescent properties were studied by excitation and emission spectroscopy. The quantum yields of the S1 ® S0 fluorescence were measured at room temperature. According to thermal studies, the complexes have a higher thermal stability (no decomposition until 200 °C. Differential scanning calorimetry (DSC data and an optical textural photograph, obtained using a polarizing microscope (POM, indicate that the porphyrin ligand had liquid crystalline character and that it exhibited more than one mesophase and a low-lying phase transition temperature, with transition temperatures of 19.3 and 79.4 °C; the temperature range of the liquid crystal (LC phase of the ligand was 70.1 °C.

  15. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    Science.gov (United States)

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.

  16. Thermal and stability considerations of super LWR during sliding pressure startup

    International Nuclear Information System (INIS)

    Yi Tin Tin; Ishiwatari, Yuki; Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2005-01-01

    The feasibility of the sliding pressure startup of a high-temperature supercritical-pressure light water reactor (super LWR, SCLWR-H) is assessed from both thermal and stability considerations. In the sliding pressure startup, nuclear heating starts at subcritical pressure and the reactor is pressurized to supercritical pressure at a low power and high enough flow rate. The reactor power and flow rate are then raised gradually to the rated normal values at constant supercritical operating pressure. During startup, the maximum cladding surface temperature must not exceed 620degC. For two-phase flow at subcritical pressures, the homogeneous equilibrium model is used. The thermal-hydraulic and coupled neutronic thermal-hydraulic stabilities during pressurization and power-raising are investigated by a frequency-domain linear analysis for both supercritical-pressure and subcritical-pressure operating conditions. The same stability criteria as those of BWRs are used. From the analysis results, a sliding pressure startup procedure is proposed for super LWR. The thermal criteria are satisfied by keeping the core power between the maximum allowable limit and minimum limit required for turbine startup and operation. The thermal-hydraulic stability and coupled neutronic thermal-hydraulic stability can be maintained by applying an orifice pressure drop coefficient at the inlet of fuel assembly and by controlling the power and flow rate during startup. (author)

  17. Thermal stability of phenolic based binders and frictional performance of brake composite materials

    Science.gov (United States)

    Pudhota, Madhuri

    To enhance frictional performance, wear and to obtain improved thermal stability with a reduction of noise, vibration, and harshness (NVH) and provide environment friendly brakes for the increasing needs of the population's comfort and safety requirements this study was initiated. The thermal stability of two different phenolic resins as binder on the frictional performance of brake composite material was studied. The two phenolic resins used are Durite phenolic resin and Bakelite phenolic resins. They were tested for friction, wear, thermal stability and degradation. This was executed by using a universal friction tester (UFT) for testing friction and wear, then on thermo gravimetric analysis (TGA) and the TGA results indicate more mass loss of NB samples contrary to test results. When individual materials were heated, Bakelite lost less mass compared to Durite. The friction test indicates more friction when used the NB samples but they had less wear and more stability nevertheless this could vary for other compositions and conditions.

  18. Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids

    Science.gov (United States)

    Kaur, Navjot; Chudasama, Bhupendra

    2018-04-01

    Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.

  19. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  20. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Lu, Lixin; Wang, Ju; Tang, Guoyi; Song, Guolin

    2015-01-01

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g −1 . • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g −1 ) and crystallization enthalpy (108.3 J g −1 ) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  1. Synthesis, Characterization and Thermal Studies of Co(II), Ni(II), Cu ...

    African Journals Online (AJOL)

    NICO

    2010-06-15

    Jun 15, 2010 ... Ni(II) and Zn(II). TG curves indicated that the complexes decompose in three to four steps. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. KEY WORDS. Synthesis, Schiff bases, 1,2,4-triazine, thermal study. 1. Introduction. Triazine chemistry ...

  2. Newkome-type dendron stabilized gold nanoparticles: Synthesis, reactivity, and stability.

    Science.gov (United States)

    Cho, Tae Joon; Zangmeister, Rebecca A; Maccuspie, Robert I; Patri, Anil K; Hackley, Vincent A

    2011-05-24

    We report the synthesis and evaluation of four Newkome-type dendrons, G1-COOH, G2-COOH, SH-G1-COOH, and TA-G1-COOH, and their respective gold-dendron conjugates, where GX represents the generation number. G1- and G2-COOH are 2-directional symmetric dendrons that have cystamine cores containing a disulfide group. SH-G1-COOH was prepared by treatment of G1-COOH with dithioerythritol to yield a free thiol group to replace the disulfide linkage. TA-G1-COOH has a thioctic acid moiety, which is a 5-member ring containing a disulfide group that cleaves to produce two anchoring thiols to bond with the gold surface. All dendrons have peripheral carboxylate groups to afford hydrophilicity and functionality. Gold nanoparticle conjugates were prepared by reaction of each dendron solution with a suspension of gold colloid (nominally 10 nm diameter) and purified by stirred cell ultrafiltration. Chemical structures were confirmed by (1)H and (13)C nuclear magnetic resonance spectroscopy and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Particle size and surface plasmon resonance of the conjugates were characterized by dynamic light scattering (DLS) and UV-Vis spectroscopy, respectively. X-ray photoelectron spectroscopy (XPS) was utilized to confirm covalent bonding between the thiols on the dendron and the gold surface. XPS also revealed changes in the S/Au intensity ratio as a function of the dendron chemical structure, suggesting steric effects play a role in the reaction and/or conformation of dendrons on the gold surface. The colloidal and chemical stability of the conjugates as a function of temperature, pH, and suspending medium, and with respect to chemical resistance toward KCN, was investigated using DLS and UV-Vis absorption.

  3. Heat conduction and thermal stabilization in YBCO tape

    Indian Academy of Sciences (India)

    †Shibli National College, Azamgarh 276 131, India. MS received 20 April 2011; ... profile along the length of HTS tape under a given energy (joule heating) such that propagation of the hot spot devel- oped locally can be prevented ... diction is best described by carrying out a thermal conduc- tion of the initial quench zone ...

  4. Sterculia striata seed kernel oil: Characterization and thermal stability

    Directory of Open Access Journals (Sweden)

    Oliveira Cavalheiro, José Marcelino

    2008-06-01

    Full Text Available The objective of the present work was to characterize sterculia seed kernel oil. The chemical composition of the seeds, physicochemical properties as well as the fatty acid composition of the kernel oil was determined. The chemical composition of kernel flour presented about 25.8% lipid content. The physicochemical parameters such as acid, iodine, peroxide and saponification values were 0.82 (% as oleic acid, 69.2 (g iodine/100 g oil, 4.20 (m eq./kg and 136.1 (mg. KOH/g oil, respectively. With respect to fatty acid composition, the oil contained 36.2, 43.7 and 10.9% saturated, monounsaturated and polyunsaturated fatty acids, respectively. Palmitic acid (31.9%, oleic acid (41.7% and linoleic acid (10.73% were the principal saturated, monounsaturated and polyunsaturated fatty acids. Two cyclopropanoid fatty acids i.e. sterculic and malvalic acid were identified at a concentration of 5.3 and 2.3%, respectively. With regards to the thermal stability of the oil, a thermogravimetric analysis (TGA has shown that the oil was stable until about 284 °C, above that the oil started loosing mass, while a differential thermogravimetric analysis (DTGA revealed three stages of degradation with an increase in temperature. These stages corresponded to the degradation of polyunsaturated, monounsaturated and saturated fatty aids. The Differential Scanning Calorimetric (DSC analysis showed the existence of two exothermic events of energy transition, one of which is related to the oxidation reactions and another to the decomposition of the oil. Exothermic transitions in the oil were initiated at a temperature (Ti of 287.79 °C, and terminated at 347.81 °C, with an enthalpy variation of 11.69 joules.g–1 and at initial temperature (Ti of 384.87 °C, peak temperature (Tp 415.71 °C, final temperature (Tf 448.9 °C and an enthalpy of 200.83 Joules. G–1El objetivo de este trabajo fue la caracterización del aceite de almendra de la semilla de

  5. Fabrication and thermal stability studies of polyamide 66 containing ...

    Indian Academy of Sciences (India)

    During fabrication of FR-PA66, melt polymerization time exhibits more surprising influence on intrinsic viscosity than aqueous solution polymerization time. The LOI value of FR-PA66 with 9 wt% TPO reaches 27.2, and corresponding UL94 rating reaches V-0. Improved thermo-stability of FR-PA66 can be attributed to both ...

  6. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Flexural tests and dimensional stability (water absorption and thickness swelling) of the rattan composites were determined. The results obtained revealed that the rattan composites possessed adequate strength and had low water absorption and thickness swelling rates. The water absorption of the composites was ...

  7. The Thermal Stabilization of Vaccines Against Agents of Bioterrorism

    Science.gov (United States)

    2005-09-01

    Stability of Adenovirus Type 2 as a Function of pH Jason Rexroad’, Talia Martin1, David McNeilly, Simon Godwin2, and C. Russell Middaugh’* ’Department of...1507-1512. 19. Huyghe BG, Liu X, Sutjipto S, Sugarman BJ, Horn MT, Shepard HM, Scandella CJ, Shabram P 1995. Purification of a type 5 recombinant

  8. Thermal stability in a newly designed columnar-conical fluidized bed for combustion of rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Rozainee, M.; Salema, A.A.; Ngo, S.P.; Chye, G.B. [Malaysian Technological Univ., Johor Bahru (Malaysia). Dept. of Chemical Engineering

    2006-07-01

    The effects of fluidizing and liquid propane gas (LPG) flow rates on thermal stability of a fluidized bed were examined. The aim of the study was to hybridize a columnar and conical fluidized bed (CCFB) in order to encourage the combustion of low-calorific fuels such as rice husks. Experiments were conducted to examine the thermal stability of the CCFB. Premixed primary air and liquid propane gas (LPG) was fed into the bed in order to verify its thermal stability. Temperature profiles of the combustor and bed were measured. The impact of the fluidizing velocity and LPG flow rate on the temperature profile was examined in order to analyze the influence of the fluidizing velocity and LPG rate on combustion rates. Results of the study showed that the combustion of the CCFB was sustained at a fluidizing velocity of 1.5 U{sub mf} and at an LPG flow rate of 8 liters per minute. Results of the study showed that fluidizing velocity played an important role on the thermal stability of the bed. It was concluded that the thermal stability of the combustor is sufficient for the CCFB. 13 refs., 2 tabs., 5 figs.

  9. Thermal stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk

    Directory of Open Access Journals (Sweden)

    FLAVIA POP

    Full Text Available The physical and chemical characteristics and thermal stability of butter oil produced from non-pasteurized and pasteurized sheep’s milk were studied. Thermal stability of samples was estimated by using the accelerated shelf-life testing method. Samples were stored at 50, 60 and 70oC in the dark and the reaction was monitored by measuring peroxide, thiobarbituric acid and free fatty acid values. The peroxide and thiobarbituric acid values increased as the temperature increased. The increase of acid values of the two samples was not significant. A slight increase in free fatty acid value showed that hydrolytic reactions were not responsible for the deterioration of butter oil samples in thermal stability studies. When compared, butter oil produced from pasteurized sheep’s milk has higher thermal stability than butter oil produced from non-pasteurized sheep’s milk. Although butter oil produced from non-pasteurized milk was not exposed to any heat treatment, the shelf-life of this product was lower than the shelf-life of butter oil produced from pasteurized sheep’s milk. Therefore, heat treatment for pasteurization did not affect the thermal stability of butter oil.

  10. Solution and solid state thermal stability of morpholinedithiocarbamates

    Directory of Open Access Journals (Sweden)

    Antunes Patrícia A.

    2001-01-01

    Full Text Available Thermogravimetric and differential scanning calorimetric investigation of the thermal behavior of NH4+, Mn2+, Co2+, Ni2+ e Cu2+ morpholinedithiocarbamates were performed under nitrogen and air atmospheres in order to investigate the effect, in the thermal decomposition, of the presence of an oxygen as the heteroatom in the amine ring. Decomposition products were identified by their X-ray diffraction patterns. Metal sulfites and oxides were the major residues under nitrogen and air atmospheres, respectively. Spectrophotometric measurements were used to estimate the pKa =3.56 for the morpholinedithiocarbamic acid at 0.50 mol dm-3 ionic strength (NaClO4 at 25.0 °C and kinetic parameters of decomposition at different pH values (k lim = 0.14 ± 0.04 s-1 e t½ lim = 5.3 ± 1.2 s.

  11. Thermal stability of nanocrystalline ε-Fe2O3

    Czech Academy of Sciences Publication Activity Database

    Brázda, Petr; Večerníková, Eva; Pližingrová, Eva; Lančok, Adriana; Nižňanský, D.

    2014-01-01

    Roč. 117, č. 1 (2014), s. 85-91 ISSN 1388-6150 R&D Projects: GA ČR GAP204/10/0035 Institutional support: RVO:61388980 Keywords : ε-Fe2O3 * Differential thermal analysis * Evolved gas analysis * Infrared spectroscopy * Thermogravimetry * X-ray powder diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.042, year: 2014

  12. Stabilization of organosilver(I) compounds, and their application in organic synthesis

    NARCIS (Netherlands)

    Westmijze, H.; Kleijn, H.; Vermeer, P.

    1979-01-01

    The favourable influence of lithium bromide on the thermal stability of organosilver(I) compounds is described. The stabilized silver(I) compounds have been brought into reaction with conjugated enynes; the regiochemistry of the reactions appears to depend on steric factors. A comparison is

  13. [Thermal inactivation and stabilization of lysozyme substrate-- Micrococcus lysodeicticus cells].

    Science.gov (United States)

    Tarun, E I; Eremin, A N; Metelitsa, D I

    1986-01-01

    Heat inactivation of the acetonic powder of Micrococcus lysodeicticus cells suspended in phosphate buffer pH 6.2 was quantitatively characterized in the temperature range from 34 to 52 degrees. The total value of the rate constant for heat inactivation of the cells equals 2.88 X 10(8) exp(-18360/RT) sec-1. The activation parameters of the process at 34 degrees are the following: delta H* = 17.7 kcal/mole; delta S* = 21.8 E. U.; delta F* = 24.4 kcal/mole. The effect of ethylene glycol, mannitol, dextran, polyvinyl alcohol (PVA) and polyethylene glycols with different molecular weights on the lysis rate and cell stability was studied. Polyvinyl alcohol was found to be the most effective stabilizer. At concentrations of about 10(-5) it enhances the thermostability of the cells threefold.

  14. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s −1 ). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  15. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  16. synthesis and characterization of thermally stable poly(amide-imide)

    African Journals Online (AJOL)

    Preferred Customer

    -imide)- montmorillonite nanocomposite, Thermal properties. INTRODUCTION. Polymer-clay nanocomposites typically exhibited mechanical, thermal and gas barrier properties, which are superior to those of the corresponding pure polymers ...

  17. Thermal stability study for candidate stainless steels of GEN IV reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simeg Veternikova, J., E-mail: jana.veternikova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Degmova, J. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pekarcikova, M. [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Paulinska 16, 917 24 Trnava (Slovakia); Simko, F. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Petriska, M. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Skarba, M. [Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mikula, P. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pupala, M. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)

    2016-11-30

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  18. Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra.

    Science.gov (United States)

    Gilroy, Kyle D; Elnabawy, Ahmed O; Yang, Tung-Han; Roling, Luke T; Howe, Jane; Mavrikakis, Manos; Xia, Younan

    2017-06-14

    Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wave density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200-400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. The mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.

  19. Formation and thermal stability of gold-silica nanohybrids: insight into the mechanism and morphology by electron tomography.

    Science.gov (United States)

    Kundu, Paromita; Heidari, Hamed; Bals, Sara; Ravishankar, N; Van Tendeloo, Gustaaf

    2014-04-07

    Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presented-at the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 °C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ion exchange synthesis and thermal characteristics of some [N

    Indian Academy of Sciences (India)

    These ionic liquids (ILs) were characterized using thermal methods, infrared spectroscopy and densitometry. Thermophysical properties such as density, coefficient of volume expansion, heat of fusion, heat capacity and thermal energy storage capacity were determined. Thermal conductivity of the samples was determined ...

  1. Preparation, characterization and thermal stability of bentonite modified with bis-imidazolium salts

    Energy Technology Data Exchange (ETDEWEB)

    Makhoukhi, B., E-mail: benamarmakh@yahoo.fr [Laboratory of Separation and Purification Technologies, Department of Chemistry, Tlemcen University, Box 119, Tlemcen (Algeria); Villemin, D. [Laboratoire de Chimie Moléculaire et Thio-organique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN and Université de Caen, 14050 Caen (France); Didi, M.A. [Laboratory of Separation and Purification Technologies, Department of Chemistry, Tlemcen University, Box 119, Tlemcen (Algeria)

    2013-02-15

    Sodium bentonite was modified with several organic bis-imidazolium salts. Organoclays with water soluble surfactants were prepared by the traditional cation exchange reaction. The bis-imidazolium-bentonites were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD) and thermogravimetric analysis (TGA). The effect of chemical composition and molecular weight of the salts on the thermal stability and basal spacing were evaluated. The bis-imidazolium-bentonites showed enhanced thermal stability (300–400 °C) and may be potentially useful materials for melt processing of polymer/layered silicates nanocomposites. - Highlights: ► Geometry and volume of the molecule influence on interlayer spacing of modified bentonites. ► The intercalation increases with molecule length. ► The modified bentonites have an appreciably higher thermal stability.

  2. [THERMAL STABILITY AS A PROGNOSTIC INDICATOR OF CONSERVATION OF LIVE EMBRYONIC SMALLPOX VACCINE (TEOVAC) DURING STORAGE].

    Science.gov (United States)

    Zhukov, V A; Kokorev, S V; Rogozhkina, S V; Melnikov, D G; Terentiev, A I; Kovalchuk, E A; Vakhnov, E Yu; Borisevich, S V

    2016-01-01

    Determination of values of coefficients of thermal stability of TEOVac for prognosis of conservation of the vaccine (specific biological activity) during the process of warranty period storage. TEOVac (masticatory tablets) in primary packaging was kept at increased temperature (accelerated and stress-tests) and at the conditions established by PAP for the preparation (long-term tests). Biological activity of the vaccine was determined by titration on 12-day chicken embryos. A correlation between the value of coefficients of thermal stability and conservation of the prepared series of the condition preparation at the final date of storage was experimentally established. Coefficients of thermal stability could be used as a prognostic indicator of quality of the produced pelleted formulation of the preparation for evaluation of conservation of the vaccine during warranty period storage.

  3. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  4. Lattice position and thermal stability of diluted As in Ge

    CERN Document Server

    Decoster, S; Cottenier, S; Correia, JG; Mendonça, T; Amorim, LM; Pereira, LMC; Vantomme, A

    2012-01-01

    We present a lattice location study of the n-type dopant arsenic after ion implantation into germanium. By means of electron emission channeling experiments, we have observed that the implanted As atoms substitute the Ge host atoms. However, in contrast to several implanted metal impurities in Ge, no significant fraction of As is found on interstitial sites. The substitutional As impurities are found to be thermally stable up to 600°C. After 700°C annealing a strong reduction of emission channeling effects was observed, in full accordance with the expected diffusion-induced broadening of the As profile.

  5. Grain boundary engineering to enhance thermal stability of electrodeposited nickel

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    by miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly...... interest. The evolution of microstructure in as-deposited and annealed condition was investigated with a combination of complementary microscopic techniques, electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI), ion channelling contrast imaging (ICCI), and, for the as...

  6. Kaliophilite from fly ash: synthesis, characterization and stability

    Indian Academy of Sciences (India)

    Administrator

    hydrogen production, ammonia synthesis and catalytic combustion of diesel soot (Juntgen 1985). As for the syn- thesis, kaliophilite was mostly synthesized using flint clay or sodalite (Juntgen 1985) as raw materials and syn- thesis from fly ash has not been reported yet. Fly ash is a by-product derived from the combustion of.

  7. short communication synthesis of stabilized phosphorus ylides from ...

    African Journals Online (AJOL)

    Preferred Customer

    Vinyltriphenylphosphonium salt. INTRODUCTION. Phosphorus ylides are important reagents in synthetic organic chemistry [1-6], especially in the synthesis of naturally occurring products, compounds with biological and pharmacological activity [6]. The development of the modern chemistry of natural and physiologically ...

  8. Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2014-01-01

    Full Text Available Nanofluids containing Al2O3 nanoparticles (either 11 or 30 nm in size dispersed in distilled water at low concentrations (0.125–0.5 wt% were prepared using two different ultrasonic devices (a probe and a bath sonicator as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.

  9. Influence of Carbon Nanotubes on Thermal Stability of Water-Dispersible Nanofibrillar Polyaniline/Nanotube Composite

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Zhang

    2012-02-01

    Full Text Available Significant influence on the thermal stability of polyaniline (PANI in the presence of multi-walled carbon nanotubes (MWCNTs is reported. By means of in-situ rapid mixing approach, water-dispersible nanofibrillar PANI and composites, consisting of MWCNTs uniformly coated with PANI in the state of emeraldine salt, with a well-defined core-shell heterogeneous structure, were prepared. The de-protonation process in PANI occurs at a lower temperature under the presence of MWCNTs on the polyaniline composite upon thermal treatment. However, it is found that the presence of MWCNTs significantly enhances the thermal stability of PANI’s backbone upon exposure to laser irradiation, which can be ascribed to the core-shell heterogeneous structure of the composite of MWCNTs and PANI, and the high thermal conductivity of MWCNTs.

  10. Thermal stability of the krypton Hall effect thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2017-03-01

    Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.

  11. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides.

    Science.gov (United States)

    Babucci, Melike; Akçay, Aslı; Balci, Volkan; Uzun, Alper

    2015-08-25

    Thermal stability limits of 33 imidazolium ionic liquids (ILs) immobilized on three of the most commonly used high surface area metal-oxides, SiO2, γ-Al2O3, and MgO, were investigated. ILs were chosen from a family of 13 cations and 18 anions. Results show that the acidity of C2H of an imidazolium ring is one of the key factors controlling the thermal stability. An increase in C2H bonding strength of ILs leads to an increase in their stability limits accompanied by a decrease in interionic energy. Systematic changes in IL structure, such as changes in electronic structure and size of anion/cation, methylation on C2 site, and substitution of alkyl groups on the imidazolium ring with functional groups have significant effects on thermal stability limits. Furthermore, thermal stability limits of ILs are influenced strongly by acidic character of the metal-oxide surface. Generally, as the point of zero charge (PZC) of the metal-oxide increases from SiO2 to MgO, the interactions of IL and metal-oxide dominate over interionic interactions, and metal-oxide becomes the significant factor controlling the stability limits. However, thermal stability limits of some ILs show the opposite trend, as the chemical activities of the cation functional group or the electron donating properties of the anion alter IL/metal-oxide interactions. Results presented here can help in choosing the most suitable ILs for materials involving ILs supported on metal-oxides, such as for supported ionic liquid membranes (SILM) in separation applications or for solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) catalysts in catalysis.

  12. Thermal stability of soils and detectability of intrinsic soil features

    Science.gov (United States)

    Siewert, Christian; Kucerik, Jiri

    2014-05-01

    Soils are products of long term pedogenesis in ecosystems. They are characterized by a complex network of interactions between organic and inorganic constituents, which influence soil properties and functions. However, the interrelations cannot easily be determined. Our search for unifying principles of soil formation focuses on water binding. This approach was derived from water-dependent soil formation. It considers the importance of water binding in theories about the origin of genes, in the structural arrangement and functionality of proteins, and in the co-evolution of organism species and the biosphere during the history of earth. We used thermogravimetry as a primary experimental technique. It allows a simple determi-nation of bound water together with organic and inorganic components in whole soil samples without a special preparation. The primary goal was to search for fingerprinting patterns using dynamics of thermal mass losses (TML) caused by water vaporization from natural soils, as a reference base for soil changes under land use. 301 soil samples were collected in biosphere reserves, national parks and other areas as-sumingly untouched by human activity in Siberia, North and South America, Antarctica, and in several long term agricultural experiments. The results did not support the traditional data evaluation procedures used in classical differ-ential thermogravimetry. For example, peak positions and amplitudes did not provide useful information. In contrast, using thermal mass losses (TML) in prefixed smaller, e.g. 10 °C temperature intervals allowed the determination of the content of carbon, clay, nitrogen and carbonates with high accuracy. However, this approach was applicable for soils and neither for soil-like carbon containing mineral substrates without pedogenetic origin, nor for plant residues or soils containing ashes, cinder, or charcoal. Therefore, intrinsic soil regulation processes are discussed as a possible factor causing

  13. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  14. Read/write simulation of thermally stabilized magnetic recording media with a thin film head

    International Nuclear Information System (INIS)

    Takanosu, S.; Abe, T.; Yoneyama, Y.; Fujiwara, N.; Shinagawa, K.

    2004-01-01

    In order to study the thermal stability of an antiferromagnetically coupled medium and a keepered one with a soft magnetic underlayer, a finite element read/write simulation based on the Poisson equation is performed on the 2D model of the medium and a thin film head system. The model used for the recording layer is a Stoner-Wohlfarth model extended at finite temperatures. As a result, it is found that both media have high thermal stability compared with the conventional medium

  15. Electro-optic side-chain polyimide system with large optical nonlinearity and high thermal stability

    Science.gov (United States)

    Sotoyama, Wataru; Tatsuura, Satoshi; Yoshimura, Tetsuzo

    1994-04-01

    We report electro-optic (EO) efficiency and thermal stability of a poled polyimide system with nonlinear optical dyes as side chains. The side-chain polyimide system is synthesized from a dianhydride containing azobenzene dye and a diamine. The dye in the polymer is chemically stable for temperatures below 250 °C. The polymer can be poled simultaneously with or after imidization of the polyamic acid. Our sample poled after imidization shows a large EO coefficient (r33=10.8 pm/V at λ=1.3 μm) and long-term thermal stability at 120 °C.

  16. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  17. Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment.

    Science.gov (United States)

    Lee, Hansol; Sundaram, Jaya; Zhu, Lu; Zhao, Yiping; Mani, Sudhagar

    2018-02-01

    The thermal stability of cellulose nanofibrils (CNFs) can be improved by converting cellulose crystalline structure to cellulose II using an alkaline treatment method. The conventional method requires around 20wt.% NaOH solutions and causes the cellulose interdigitation and aggregation, making CNFs production difficult. The objective of this study is to develop a new pretreatment method using a low-concentration alkaline solution to produce well-dispersed CNFs with improved thermal stability. CNFs with 90nm diameter were successfully prepared by treating cellulose powder with 2wt.% NaOH solution below 0°C, followed by homogenization through a French pressure cell press. The CNFs had relatively high thermal stability with the mean onset and maximum thermal decomposition temperature of 305°C and 343°C, respectively, compared with the CNFs prepared without the NaOH pretreatment (283°C and 310°C). The increased thermal stability can create new opportunities for the development of CNF-based bio-composites and electronics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available resin-CB composites (with 70wt% loading). Keywords: Polydimethylsiloxane (PDMS); Polymer nanocomposite, Carbon black; Thermal conductivity; Thermal stability; Fuel cell Biographical notes: Hao Chen received his bachelor degree honours in physics... initiative (SANi), his current main research focus is related to smart and engineered nano-materials for photonics and renewable energy applications. Prof. V. Vasudeva Rao holds Bachelors Degree in Mechanical Engineering, Masters Degree...

  19. Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates.

    Science.gov (United States)

    Padbury, Richard P; Halbur, Jonathan C; Krommenhoek, Peter J; Tracy, Joseph B; Jur, Jesse S

    2015-01-27

    The stability and spatial separation of nanoparticles (NP's) is essential for employing their advantageous nanoscale properties. This work demonstrates the entrapment of gold NP's embedded in a porous inorganic matrix. Initially, gold NP's are decorated on fibrous nylon-6, which is used as an inexpensive sacrificial template. This is followed by inorganic modification using a novel single exposure cycle vapor phase technique resulting in distributed NP's embedded within a hybrid organic-inorganic matrix. The processing is extended to the synthesis of porous nanoflakes after calcination of the modified nylon-6 yielding a porous metal oxide framework surrounding the disconnected NP's with a surface area of 250 m(2)/g. A unique feature of this work is the use of a transmission electron microscope (TEM) equipped with an in situ annealing sample holder. The apparatus affords the opportunity to explore the underlying nanoscopic stability of NP's embedded in these frameworks in a single step. TEM analysis indicates thermal stability up to 670 °C and agglomeration characteristics thereafter. The vapor phase processes developed in this work will facilitate new complex NP/oxide materials useful for catalytic platforms.

  20. Synthesis and Behavior of Nanostructured Coatings Using Thermal Spraying

    National Research Council Canada - National Science Library

    Lavernia, E

    2003-01-01

    ... (powder as well as coatings) for structure, composition, properties, and performance. One of the program's accomplishments was the successful synthesis of diverse nanostructured feedstock powders using mechanical milling in different...

  1. Thermal stability of neodymium, samarium, europium and gadolinium thiocarbamide compounds

    International Nuclear Information System (INIS)

    Sakharova, Yu.G.; Borisova, G.M.

    1976-01-01

    The behaviour of thiocarbamide complexes of the composition Me(C 3 H 5 O 2 ) 3 x Cs(NH 2 ) 2 x 3H 2 O, where Me is Nd, Sm, Eu or Gd, has been studied in the process of heating by thermographic, thermogravimetric, and chemical analyses and by infrared spectroscopy. It has been established that thermolysis of complexes is accompanied by thermal effects which point to the fact that the processes take place both with absorption liberation of heat. Above 100 deg C dehydration of compounds begins. The weight of neodymium, samarium, europium, and gadolinium decreases by 11.43, 12.57, 12.57, and 11.48% which corresponds to the loss of water entering into the compounds. It has been proved experimentally that complete removal of water from complexes proceeds at 110 deg C. As main products of thermolysis of thiocarbomide compounds at 230 deg C, oxypropionates of the corresponding rare-earth elements are formed. The highest rate of decomposition of thiocarbamide complexes of rare-earth elements has been attained at 320 and 360 deg C. Qualitative and quantitative analyses as well as IR spectroscopy have shown that the main products of thermolysis at these temperatures are oxysulphates of rare-earth elements with a small impurity of oxysulphides and adsorbed ammonia

  2. Palladium(II)-Stabilized Pyridine-2-Diazotates: Synthesis, Structural Characterization, and Cytotoxicity Studies.

    Science.gov (United States)

    Tskhovrebov, Alexander G; Vasileva, Anna A; Goddard, Richard; Riedel, Tina; Dyson, Paul J; Mikhaylov, Vladimir N; Serebryanskaya, Tatiyana V; Sorokoumov, Viktor N; Haukka, Matti

    2018-02-05

    Well-defined diazotates are scarce. Here we report the synthesis of unprecedented homoleptic palladium(II) diazotate complexes. The palladium(II)-mediated nitrosylation of 2-aminopyridines with NaNO 2 results in the formation of metal-stabilized diazotates, which were found to be cytotoxic to human ovarian cancer cells.

  3. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    The coatings before and after IR heating were investigated by scanning electron microscopy, X-ray diffraction, electron probe microanalysis, microhardness and residual stress measurements in order to understand the effect of thermal shock on the properties of the TBC. On account of these high-temperature properties, ...

  4. Thermal Stability Threshold for Amyloid Formation in Light Chain Amyloidosis

    Directory of Open Access Journals (Sweden)

    Tanya L. Poshusta

    2013-11-01

    Full Text Available Light chain (AL amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis.

  5. Synthesis and antioxidative properties of novel multifunctional stabilizers

    Czech Academy of Sciences Publication Activity Database

    Habicher, W. D.; Pawelke, B.; Bauer, I.; Yamaguchi, K.; Kósa, C.; Chmela, Š.; Pospíšil, Jan

    2001-01-01

    Roč. 7, č. 1 (2001), s. 4-18 ISSN 0193-7197 R&D Projects: GA MŠk ME 372; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : multifunctional polymer stabilizers * polypropylene Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.269, year: 2001

  6. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of stabilized phosphorus ylides from electron-poor ...

    African Journals Online (AJOL)

    Wittig reaction of the stabilized phosphorus ylides with ninhydrin leads to the corresponding densely functionalized 2H-indeno[2,1-b]furans in fairly good yields. KEY WORDS: Electron-poor alcohol, Acetylenic esters, Ninhydrin, Intramolecular Wittig reaction, Vinyltriphenylphosphonium salt. Bull. Chem. Soc. Ethiop. 2012 ...

  8. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    2Chemistry Division, State Forensic Science Laboratory, Kolkata 700037, India. MS received 6 March 2015; accepted 8 July 2015. Abstract. Zirconia stabilized with 11 mol% scandia (11ScSZ) has been successfully synthesized by novel alanine- assisted soft chemical aqueous combustion method. The reaction kinetics ...

  9. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    1Fuel Cell and Battery Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700 032, India. 2Chemistry Division, State Forensic Science Laboratory, Kolkata 700037, India. ... viability of solid oxide fuel cell (SOFC) technology.1–12 Till date, yttria-stabilized zirconia (YSZ) is the leading choice as electrolyte ...

  10. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    Science.gov (United States)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  11. Synthesis and characterization of thermally stable poly(amide-imide ...

    African Journals Online (AJOL)

    ... polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermal gravimetry analysis (TGA) and water uptake measurements. KEYWORDS: Bis(4-carboxyphenyl)-N,N'-pyromellitimide acid moiety, Poly(amide-imide)-montmorillonite nanocomposite, Thermal properties.

  12. Ion exchange synthesis and thermal characteristics of some [ N ...

    Indian Academy of Sciences (India)

    als in thermal applications (Kenisarin and Mahkamov 2007). Recently, an organoclay composite with a remarkable energy storage capacity has been reported (Sarier et al 2011). A vari- ety of inorganic salts of alkali and alkaline earth metals find a place in thermal energy storage (Prabhu et al 2012). Major disadvantages of ...

  13. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Metallic zinc thin films were deposited onto glass substrates using vacuum thermal evaporation method. By thermal oxidation of as-deposited Zn films, in ambient conditions, at different temperatures (570,. 670 and 770 K, respectively, for 1 h) zinc oxide thin films were obtained. The structural characteristics of the.

  14. Thermal and pH stabilities of partially purified polyphenol oxidase ...

    African Journals Online (AJOL)

    Enzyme activity depends largely on environmental conditions such as temperature and pH. The stability of polyphenol oxidase (PPO) extracted from Solanum melongenas and Musa sapientum fruits preincubated in varying thermal and pH conditions were carried out. Enzyme activity was measured by spectrophotometric ...

  15. Adhesion properties and stability to thermal oxidation of irradiated copolymers of ethylene with vinyl acetate

    International Nuclear Information System (INIS)

    Ovechkina, G.I.; Soboleva, N.S.; Naumkina, S.I.; Ovechkin, P.L.; Leshchenko, S.S.; Finkel', Eh.Eh.; Karpov, V.L.

    1981-01-01

    Effect of gamma radiation on adhesion strength and stability to thermal oxidation of copolymers of ethylene with vinyl acetate of different composition is considered. Polyetiylene, PVC-plasticized substance copper are used as substrates. Optimum radiation doses for copolymers of different composition are determined [ru

  16. Thermal stability of catalytically grown multi-walled carbon nanotubes observed in transmission electron microscopy

    DEFF Research Database (Denmark)

    Wang, Cheng-Yu; Liu, Chuan-Pu; Boothroyd, Chris

    2009-01-01

    The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWC-NTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800...

  17. Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms

    Czech Academy of Sciences Publication Activity Database

    Karlický, Václav; Kurasová, Irena; Ptáčková, B.; Večeřová, Kristýna; Urban, Otmar; Špunda, Vladimír

    2016-01-01

    Roč. 130, 1-3 (2016), s. 357-371 ISSN 0166-8595 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-28093S Institutional support: RVO:67179843 Keywords : Norway spruce * Thermal stability * Circular dichroism * Photosystem II organization * Thylakoid membrane Subject RIV: ED - Physiology Impact factor: 3.864, year: 2016

  18. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    of decreasing hydrophobicity. This is indicated by the initial decrease and then increase in the value of Keq. with the increasing strength of the acid treatment. The corresponding carbon - ionomer composite also showed varying thermal stability depending on Nafion orientation. The specific maximum surface...

  19. Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A

    NARCIS (Netherlands)

    Benoit, Isabelle; Asther, Michèle; Sulzenbacher, Gerlind; Record, Eric; Marmuse, Laurence; Parsiegla, Goetz; Gimbert, Isabelle; Asther, Marcel; Bignon, Christophe

    2006-01-01

    The thermal stability of four molecular forms (native, refolded, glycosylated, non-glycosylated) of feruloyl esterase A (FAEA) was studied. From the most to the least thermo-resistant, the four molecular species ranked as follows: (i) glycosylated form produced native, (ii) non-glycosylated form

  20. Why collagens best survived in fossils? Clues from amino acid thermal stability

    DEFF Research Database (Denmark)

    Wang, Shuang-Yin; Cappellini, Enrico; Zhang, Hong-Yu

    2012-01-01

    Explaining why type I collagens are preferentially preserved in the geological time scale remains a challenge. Several pieces of evidence indicate that its rich content in the bone and its unique, stable structure played key roles in its preservation. By considering the distinct thermal stability...

  1. Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction

    Czech Academy of Sciences Publication Activity Database

    Man, O.; Pantělejev, L.; Kunz, Ludvík

    2010-01-01

    Roč. 51, č. 2 (2010), s. 209-213 ISSN 1345-9678 R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultra-fine grained copper * thermal stability of microstructure * electron back scattering diffraction * grain size * texture Subject RIV: JG - Metallurgy Impact factor: 0.779, year: 2010

  2. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  3. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  4. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara

    2013-01-01

    Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner....... Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission...

  5. Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors

    Science.gov (United States)

    Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.

    2017-08-01

    Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.

  6. Network structure and thermal stability study of high temperature seal glass

    Science.gov (United States)

    Lu, K.; Mahapatra, M. K.

    2008-10-01

    High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 °C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 °C.

  7. Study on thermal stability and chemical structure of polyamide blended with small amount of Cu

    International Nuclear Information System (INIS)

    Arai, Tsuyoshi; Ueno, Tomonaga; Kajiya, Takafumi; Ishikawa, Tomoyuki; Takeda, Kunihiko

    2007-01-01

    The thermal stability and the chemical structure of Polyamide 66 (PA66) blended with a small amount of copper have been studied. The thermal degradation of the blend with 35 ppm or more of copper was restrained and no strong influence of the concentration of copper was observed. The molecular weight of PA66 decreased by the thermal aging process but the amount of decrease of the blend was smaller than that of the non-blend. The water uptake of the blend increased. The chemical structure, which was observed by IR and NMR, changed slightly by blending with copper after aging at higher temperatures. Multiple items influenced the thermal stability of PA66 blended with a small amount of copper instead of just one. Namely, the main chain of PA66 is cut by heat and the degree of the cut is restrained by the copper. The diffusion time of copper atoms that disperse uniformly in the PA66 matrix is short enough to cover the individual amide groups and the effect enlarges the entire configuration of the PA66 chain to enhance the thermal stability. (author)

  8. Thermal plasma synthesis of Fe1−xNix alloy nanoparticles

    International Nuclear Information System (INIS)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-01-01

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe 1−x Ni x ; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  9. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  10. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... on the substitution pattern of the anthraquinone. The insertion of anthraquinone was found to stabilize the i-motif structure when replacing any one of the positions of the central TAA loop and the thermal stabilities were typically higher than those previously found for i-motifs containing pyrene-modified uracilyl...

  11. Maximum conversion of heavy hydrocarbons. Product stability dictates thermal and catalytic conversion rates of residues

    Energy Technology Data Exchange (ETDEWEB)

    Hennico, A.; Peries, J.P. (Institut Francais du Petrole, 92 - Rueil Malmaison (France)); Laurent, J.; Espeillac, M.

    1992-01-01

    The maximum conversion achieved by thermal cracking is limited by the fuel stability. The same holds for catalytic hydrotreating. ASVAHL has studied for many years the relation between conversion and product stability in thermal and catalytic processes. Thermal Mode: Several solutions are proposed to increase the conversion of the TERVAHL T visbreaking process such as the use of hydrogen (TERVAHL H) and possibly the addition of a few ppm of a dispersed catalyst (TERVAHL C). Catalytic Mode: The conversion of the HYVAHL residue hydrotreating process may be increased either by adding a hydrovisbreaking furnace before the hydrotreating step (HYVAHL T) or by adding an existing visbreaking downstream the hydrotreating step. These various routes enable the ASVAHL processes to maximize the marketable light product quantities in function of the residue to be upgraded and the fuel qualities to be assured. (orig.).

  12. Thermal Stability and Rheological Behaviors of High-Density Polyethylene/Fullerene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Liping Zhao

    2012-01-01

    Full Text Available High-density polyethylene/fullerene (HDPE/C60 nanocomposites with the C60 loading that varied from 0.5 to 5.0% by weight were prepared via melt compounding. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC results showed that the presence of C60 could remarkably enhance the thermal properties of HDPE. A very low C60 loading (0.5 wt% increased the onset degradation temperature from 389∘C to 459∘C and decreased the heat release from 3176 J/g to 1490 J/g. The larger the loading level of C60, the better the thermal stability of HDPE/C60 nanocomposites. Rheological investigation results showed that the free radical trapping effect of C60 was responsible for the improved thermal stability of HDPE.

  13. Degradation mechanism and thermal stability of urea nitrate below the melting point

    International Nuclear Information System (INIS)

    Desilets, Sylvain; Brousseau, Patrick; Chamberland, Daniel; Singh, Shanti; Feng, Hongtu; Turcotte, Richard; Anderson, John

    2011-01-01

    Highlights: → Decomposition mechanism of urea nitrate. → Spectral characterization of the decomposition mechanism. → Thermal stability of urea nitrate at 50, 70 and 100 o C. → Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 o C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, 1 H and 13 C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 o C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 o C. The thermal stability of urea nitrate, under extreme storage conditions (50 o C), was also examined by isothermal nano-calorimetry.

  14. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  15. Chemical synthesis and stabilization of magnesium substituted brushite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun [Department of Biomedical Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2010-08-30

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is the most ubiquitous calcium phosphate phase used in implant coatings and more recently in gene/drug delivery applications due to its chemical stability under normal physiological conditions (37 deg. C, pH {approx} 7.5, 1 atm.). However, different calcium phosphate phases, such as brushite (CaH(PO{sub 4}){center_dot}2(H{sub 2}O)) and tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) which are thermodynamically unstable under physiological conditions are also being explored for biomedical applications. One way of stabilizing these phases under physiological conditions is to introduce magnesium to substitute for calcium in the brushite lattice. The role of magnesium as a stabilizing agent for synthesizing brushite under physiological conditions at room temperature has been studied. Chemical analysis, Fourier transform infrared spectroscopy and X-ray diffraction have also been conducted to validate the formation of magnesium substituted brushite under physiological conditions.

  16. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite

    Science.gov (United States)

    Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas

    2018-04-01

    We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

  17. Synthesis, Characterization, Thermal Analyses, and Spectroscopic Properties of Novel Naphthyl-Functionalized Imidazolium Ionic Liquids

    Science.gov (United States)

    Yao, Meihuan; Li, Qing; Xia, Yanqiu; Liang, Yongmin

    2018-03-01

    A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf- 2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF- 6, BF- 4, and Br- decreases the thermal stabilities of such ionic liquids. Fluorescence and UV-Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV-Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.

  18. A Peltier thermal cycling unit for radiopharmaceutical synthesis

    International Nuclear Information System (INIS)

    McKinney, C.J.; Nader, M.W.

    2001-01-01

    We have investigated the use of Peltier devices to rapidly cycle the temperature of reaction vessels in a radiopharmaceutical synthesis system. Peltier devices have the advantage that they can be actively cooled as well as heated, allowing precise and rapid control of vessel temperatures. Reaction vessel temperatures of between -6 deg. C and 110 deg. C have been obtained with commercially available devices with reasonable cycle times. Two devices have been used as the basis for a general purpose, two-pot synthesis system for production of [ 11 C] compounds such as raclopride

  19. Microstructure and thermal stability of Fe, Ti and Ag implanted Yttria-stabilized zirconia

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; Burggraaf, Anthonie; Burggraaf, A.J.

    1991-01-01

    Yttria-stabilized zirconia (YSZ) was implanted with 15 keV Fe or Ti ions up to a dose of 8×1016 at cm−2. The resulting “dopant” concentrations exceeded the concentrations corresponding to the equilibrium solid solubility of Fe2O3 or TiO2 in YSZ. During oxidation in air at 400° C, the Fe and Ti

  20. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Directory of Open Access Journals (Sweden)

    Musorina Tatiana

    2018-01-01

    Full Text Available High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic – thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  1. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  2. Rapid thermal synthesis of GaN nanocrystals and nanodisks

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Sedmidubský, D.; Huber, Š.; Šimek, P.; Šaněk, F.; Jankovský, O.; Gregorová, E.; Fiala, R.; Matějková, Stanislava; Mikulics, M.

    2013-01-01

    Roč. 15, č. 1 (2013), 1411/1-1411/7 ISSN 1388-0764 Institutional support: RVO:61388963 Keywords : gallium nitride * thermal ammonolysis * nanodisks * nanocrystals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.278, year: 2013

  3. Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences.

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2015-04-01

    Full Text Available Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR, a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r=0.65-0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover

  4. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  5. Synthesis of biolubricants with high viscosity and high oxidation stability

    Directory of Open Access Journals (Sweden)

    Bondioli Paolo

    2003-03-01

    Full Text Available The synthetic procedure as well as the main properties of obtained products of a group of complex esters are reported here. Complex esters were prepared using low molecular weight saturated fatty acids, trimethylolpropane and a dicarboxylic acid as a feedstock. By means of this procedure it is possible to obtain products having high viscosity and very good lubricating, thermal and cold properties. Thanks to the absence of unsaturations into the ester also the oxidation property is good, opening several application perspective for these products which are partly prepared from renewable source.

  6. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  7. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  8. SYNTHESIS, THERMAL STUDIES AND CONVERSION DEGREE OF DIMETHACRYLATE POLYMERS USING NEW NON-TOXIC COINITIATORS

    Directory of Open Access Journals (Sweden)

    Rafael Turra Alarcon

    Full Text Available The aim of this paper is to replace toxic coinitiators (tertiary amines by non-toxic compounds such as glycerol and inositol (polyalcohol in dimethacrylate resins. For this purpose, mid infrared spectroscopy (MIR was used to calculate the monomers' degree of conversion (%DC; as well as simultaneous Thermogravimetric Analysis – Differential Thermal Analysis (TGA-DTA and Differential Scanning Calorimetry (DSC were conducted to evaluate thermal stability, degradation steps, and thermal events. The use of different initiator systems did not modify the thermal events or the thermal stability of each of the dimethacrylate resins. Results show a substitution of system 2 (toxicity by system 3 (low toxicity, which had a good conversion velocity and total conversion in some monomers, is plausible.

  9. SYNTHESIS OF NEURAL NETWORK MODEL REFERENCE CONTROLLER FOR AIMING AND STABILIZING SYSTEM

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2015-11-01

    Full Text Available The aim of this work is the synthesis of neural network reference model controller. The synthesis is performed in MATLAB for the problem of control of the aiming and stabilization system for the special equipment of moving objects. This paper presents the synthesis of the neural network reference model controller to meet the given performance characteristics of operation for the aiming and stabilization system for the special equipment of moving objects. Simulink tool in MATLAB is used to build the block diagram of double-loop neural network system of aiming and stabilization, where the reference model controller is put in the velocity loop and P-regulator is put in the position loop, with feedforward velocity control. Presented the method of synthesis of the neural network reference model controller that is implemented in the Neural Network Toolbox in MATLAB. System tests with the broad range of parameter values determined the key parameters defining the control quality. Optimal values of the key parameters were found to provide the highest control performance. System simulation and analysis of the obtained results is given.

  10. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  11. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  12. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    This paper investigates the thermal stability of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates based on the nonlocal theory and a refined plate model. The METE-FG nanoplate is subjected to the external electric potential, magnetic potential and different temperature rises. Interaction of elastic medium with the METE-FG nanoplate is modeled via Winkler-Pasternak foundation model. The governing equations are derived by using the Hamilton principle and solved by using an analytical method to determine the critical buckling temperatures. To verify the validity of the developed model, the results of the present work are compared with those available in the literature. A detailed parametric study is conducted to study the influences of the nonlocal parameter, foundation parameters, temperature rise, external electric and magnetic potentials on the size-dependent thermal buckling characteristics of METE-FG nanoplates.

  13. Sodium meta-autunite colloids: Synthesis, characterization,stability

    Energy Technology Data Exchange (ETDEWEB)

    zzuoping@lbl.gov

    2004-04-10

    Waste forms of U such as those in the United States Department of Energy's Hanford Site often contain high concentrations of Na and P. Low solubility sodium uranyl phosphates such as sodium meta-autunite have the potential to form mobile colloids that can facilitate transport of this radionuclide. In order to understand the geochemical behavior of uranyl phosphate colloids, we synthesized sodiummeta-autunite colloids, and characterized their morphology, chemical composition, structure, dehydration, and surface charge. The stability of these synthetic plate-shaped colloids was tested with respect to time and pH. The highest aggregation rate was observed at pH 3, and the rate decreases as pH increases, indicating that higher stability of colloid dispersion under neutral and alkaline pH conditions. The synthetic colloids are all negatively charged and no isoelectric points were found over a pH range of 3 to 9. The zeta-potentials of the colloids in the phosphate solution show a strong pH-dependence in the more acidic range over time, but are relatively constant in the neutral and alkaline pH range. The geochemical behavior of the synthetic colloids can be interpreted using DLVO theory. The results suggest that formation of mobile sodium meta-autunite colloids can enhance the transport of U in some contaminated sediments.

  14. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Le Guevel, Xavier; Schneider, Marc [Pharmaceutical Nanotechnology, Saarland University, Saarbruecken (Germany); Daum, Nicole, E-mail: Marc.Schneider@mx.uni-saarland.de [Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken (Germany)

    2011-07-08

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (<2 nm) are stabilized in the protein via sulfur groups and have a high fluorescence emission in the near infrared region (QY = 4.3%; {lambda}{sub em} = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 {mu}g ml{sup -1}-1 mg ml{sup -1}). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  15. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    Science.gov (United States)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  16. A thermal stability study of alkane and aromatic thiolate self-assembled monolayers on copper surfaces

    Science.gov (United States)

    Carbonell, L.; Whelan, C. M.; Kinsella, M.; Maex, K.

    2004-07-01

    The thermal stability of 1-decanethiol (C10) and benzenethiol (BT) Self-Assembled Monolayers (SAMs) on metallic and oxidized copper surfaces has been investigated by thermal desorption spectrometry. High quality C10 and BT SAMs exhibit low thermal stabilities on clean copper surfaces with a maximum in decomposition occurring between 100 and 150 ∘C. The decomposition of SAMs follows different mechanisms. For the alkanethiol, a direct interaction between the alkyl group of the thiolate and the metallic copper surface is the dominant pathway for the C-S bond scission. The head group desorbs as oxidized sulfur and this is followed by the desorption of the alkyl fragments of the chain adsorbed on the clean copper surface. In the case of benzenethiol, a simultaneous desorption of the head group as oxidized sulfur and the benzene group occurs. SAM formation on the oxidized copper surface results in complete removal and/or reduction of the CuO layer. Higher SAM surface coverages on the resulting Cu/Cu 2O surface result from the enhanced surface roughness of the substrate. The decomposition mechanisms and thermal stabilities of the C10 and BT SAMs are dependent on the oxidation state of the underlying substrate and the chemical nature of the chain.

  17. Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition.

    Science.gov (United States)

    Benkato, Kheiria; O'Brien, Benjamin; Bui, My N; Jasinski, Daniel L; Guo, Peixuan; Khisamutdinov, Emil F

    2017-01-01

    Temperature gradient gel electrophoresis (TGGE) is a powerful tool used to analyze the thermal stabilities of nucleic acids. While TGGE is a decades-old technique, it has recently gained favor in the field of RNA nanotechnology, notably in assessing the thermal stabilities of RNA nanoparticles (NPs). With TGGE, an electrical current and a linear temperature gradient are applied simultaneously to NP-loaded polyacrylamide gel, separating the negatively charged NPs based on their thermal behavior (a more stable RNA complex will remain intact through higher temperature ranges). The linear temperature gradient can be set either perpendicular or parallel to the electrical current, as either will make the NPs undergo a transition from native to denatured conformations. Often, the melting transition is influenced by sequence variations, secondary/tertiary structures, concentrations, and external factors such as the presence of a denaturing agent (e.g., urea), the presence of monovalent or divalent metal ions, and the pH of the solvent. In this chapter, we describe the experimental setup and the analysis of the thermal stability of RNA NPs in native conditions using a modified version of a commercially available TGGE system.

  18. Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica.

    Science.gov (United States)

    Devaraj, Kamsagara Basavarajappa; Kumar, Parigi Ramesh; Prakash, Vishweshwaraiah

    2008-12-10

    Ficin (EC 3.4.22.3), a cysteine proteinase isolated from the latex of a Ficus tree, is known to occur in multiple forms. Although crude ficin is of considerable commercial importance, ficin as such has not been fully characterized. A major ficin from the commercial crude proteinase mixture preparation of Ficus carica was purified and characterized. The purified enzyme was homogeneous in both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel-filtration chromatography and is a single polypeptide chain protein with a molecular mass of 23 100 +/- 300 Da as determined by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). The enzyme was active in the pH range of 6.5-8.5, and maximum activity was observed at pH 7.0. The N-terminal core sequence of ficin has homology with N-terminal sequences of plant cysteine proteinases. The enzyme contains three disulfide bonds and a single free cysteine residue at the active site. The effect of co-solvents, such as sorbitol, trehalose, sucrose, and xylitol, on the thermal stability of ficin was determined by activity measurements, fluorescence, and thermal denaturation studies. The apparent thermal denaturation temperature (T(m)) of ficin was significantly increased from the control value of 72 +/- 1 degrees C in the presence of all co-solvents. However, the maximum stabilization effect was observed in terms of thermal stabilization by the co-solvent trehalose.

  19. Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions.

    Science.gov (United States)

    Karoui, Iness Jabri; Dhifi, Wissal; Jemia, Meriam Ben; Marzouk, Brahim

    2011-03-30

    The thermal stability of corn oil flavoured with thyme flowers was determined and compared with that of the original refined corn oil (control). The oxidative stability index (OSI) was measured and samples were exposed to heating (30 min at 150, 180 and 200 °C) and deep-frying (180 °C). Changes in peroxide value (PV), free fatty acid (FFA) content, specific absorptivity values (K(232) and K(270)), colour and chlorophyll, carotenoid and total phenol contents were monitored. The OSI and heating results showed that thyme incorporation was effective against thermal oxidation based on the increased induction time observed for the flavoured oil (6.48 vs 4.36 h), which was characterised by lower PV, FFA content, K(232) and K(270) than the control oil after heating from 25 to 200 °C, with higher red and yellow colour intensities and chlorophyll, carotenoid and total phenol contents. The deep-frying test showed the accelerated deterioration of both oils in the presence of French fries. Compared with the control oil, the thyme-flavoured oil showed improved thermal stability after heating. This could be attributed to the presence of thyme pigments and antioxidant compounds allowing extended oil thermal resistance. Copyright © 2011 Society of Chemical Industry.

  20. Thermal Stability Results of a Fischer-Tropsch Fuel With Various Blends of Aromatic Solution

    Science.gov (United States)

    Lindsey, Jennifer; Klettlinger, Suder

    2013-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. F-T fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal paraffins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of F-T fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing Project. Two different aromatic content fuels from Rentech, as well as these fuels with added aromatic blend were analyzed for thermal stability using the JFTOT method. Preliminary results indicate a reduction in thermal stability occurs upon increasing the aromatic content to 10% by adding an aromatic blend to the neat fuel. These results do not specify a failure based on pressure drop, but only on tube color. It is unclear whether tube color correlates to more deposition on the tube surface or not. Further research is necessary in order to determine if these failures are true failures based on tube color. Research using ellipsometry to determine tube deposit thickness rather than color will be continued in follow-up of this study.

  1. Thermal stability and conformational changes of transglutaminase from a newly isolated Streptomyces hygroscopicus.

    Science.gov (United States)

    Cui, Li; Du, Guocheng; Zhang, Dongxu; Chen, Jian

    2008-06-01

    Thermal stability and conformational changes of transglutaminase (TGase) from a newly isolated Streptomyces hygroscopicus were investigated in this study. The inactivation kinetics of the microbial transglutaminase (MTGase) was fitted using one-step inactivation model. It was much more stable under 40 degrees C. The half-lives for the MTGase at 50 degrees C and 60 degrees C were only 20 min and 8 min, respectively. Spectroscopic studies of the enzyme suggested conformational transition from ordered secondary structural elements (alpha/beta-protein) to unordered structure during thermal denaturation. Some polyols could improve the thermal stability of the enzyme. Among the polyols examined, the prolonged half-lives of 40 min at 50 degrees C and 20 min at 60 degrees C were gained by adding 10% glycerol. The results of differential scanning calorimetric (DSC) analysis showed a distinct transition peak with a significant greater Tm and DeltaH for the MTGase mixed with polyols in comparison with the control, which indicated that the polyols could maintain the natural structure of the enzyme to some extent. The SDS-PAGE electrophoresis of cross-linked casein confirmed that the stabilizers could protect the MTGase from thermal denaturation.

  2. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels

    CERN Document Server

    Zwaag, S; Kruijver, S O; Sietsma, J

    2002-01-01

    Stability of retained austenite is the key issue to understand transformation-induced plasticity (TRIP) effect. In this work, both thermal stability and mechanical stability are investigated by thermo-magnetic as well as in situ conventional X-ray diffraction and micro synchrotron radiation diffraction measurements. The thermal stability in a 0.20C-1.52Mn-0.25Si-0.96Al (wt%) TRIP steel is studied in the temperature range between 5 and 300 K under a constant magnetic field of 5T. It is found that almost all austenite transforms thermally to martensite upon cooling to 5K and M sub s and M sub f temperatures are analyzed to be 355 and 115 K. Transformation kinetics on the fraction versus temperature relation are well described by a model based on thermodynamics. From the in situ conventional X-ray and synchrotron diffraction measurements in a 0.17C-1.46Mn-0.26Si-1.81Al (wt%) steel, the volume fraction of retained austenite is found to decrease as the strain increases according to Ludwigson and Berger relation. T...

  3. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    Science.gov (United States)

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  5. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  6. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  7. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst

    International Nuclear Information System (INIS)

    Cheng, Y; Tanaka, M; Watanabe, T; Choi, S Y; Shin, M S; Lee, K H

    2014-01-01

    The catalyst of Ni 2 B nanoparticles was successfully prepared using nickel and boron as precursors with the quenching gas in radio frequency thermal plasmas. The generating of Ni 2 B needs adequate reaction temperature and boron content in precursors. The quenching gas is beneficial for the synthesis of Ni 2 B in RF thermal plasma. The effect of quenching rate, powder feed rate and boron content in feeding powders on the synthesis of nickel boride nanoparticles was studied in this research. The high mass fraction of 28 % of Ni 2 B nanoparticles can be generated at the fixed initial composition of Ni:B = 2:3. Quenching gas is necessary in the synthesis of Ni 2 B nanoaprticles. In addition, the mass fraction of Ni 2 B increases with the increase of quenching gas flow rate and powder feed rate

  8. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps.

    Science.gov (United States)

    Nisa Khan, M

    2017-09-20

    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  9. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: Characterization and biocompatibility studies.

    Science.gov (United States)

    Dhamecha, Dinesh; Jalalpure, Sunil; Jadhav, Kiran

    2016-01-01

    The current study summarizes a unique green process for the synthesis of gold nanoparticles by simple treatment of gold salts with aqueous extract of Nepenthes khasiana (NK)--a red listed medicinal plant and its characterization. Study on the effect of different process parameters like temperature, pH and stirring on surface and stability characteristics has been demonstrated. Formation of GNPs was visually observed by change in color from colorless to wine red and characterized by UV-Visible spectroscopy, FT-IR spectroscopy, Zetasizer, X-RD, ICP-AES, SEM-EDAX, AFM and TEM. In vitro stability studies of gold colloidal dispersion in various blood components suggest that, NK mediated GNPs exhibit remarkable in vitro stability in 2% bovine serum albumin, 2% human serum albumin (HSA), 0.2M histidine, and 0.2M cysteine but unstable in 5% NaCl solution and acidic pH. Biocompatibility of NK stabilized GNPs against normal mouse fibroblasts (L929) cell lines revealed nontoxic nature of GNPs and thus provides exceptional opportunities for their uses as nanomedicine for diagnosis and drug therapy. The role of antioxidant phytochemicals (flavonoids and polyphenols) of NK extract in synthesis of biocompatible and stabilized GNPs was demonstrated by estimating total flavonoid content, total phenolic content and total antioxidant capacity of extract before and after formation of GNPs. Fast and easy synthesis of biocompatible GNPs possesses unique physical and chemical features which serve as an advantage for its use in various biomedical applications. The overall approach designated in the present research investigation for the synthesis of GNPs is based on all 12 principles of green chemistry, in which no man-made chemical other than the gold chloride was used. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    KAUST Repository

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  11. Temperature-dependent thermal conductivity of flexible yttria-stabilized zirconia substrate via 3ω technique

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shivkant; Yarali, Milad; Mavrokefalos, Anastassios [Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Shervin, Shahab [Materials Science and Engineering Program, University of Houston, Houston, TX (United States); Venkateswaran, Venkat; Olenick, Kathy; Olenick, John A. [ENrG Inc., Buffalo, NY (United States); Ryou, Jae-Hyun [Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Materials Science and Engineering Program, University of Houston, Houston, TX (United States); Texas Center for Superconductivity, University of Houston (TcSUH), Houston, TX (United States)

    2017-10-15

    Thermal management in flexible electronic has proven to be challenging thereby limiting the development of flexible devices with high power densities. To truly enable the technological implementation of such devices, it is imperative to develop highly thermally conducting flexible substrates that are fully compatible with large-scale fabrication. Here, we present the thermal conductivity of state-of-the-art flexible yttria-stabilized zirconia (YSZ) substrates measured using the 3ω technique, which is already commercially manufactured via roll-to-roll technique. We observe that increasing the grain size increases the thermal conductivity of the flexible 3 mol.% YSZ, while the flexibility and transparency of the sample are hardly affected by the grain size enlargement. We exhibit thermal conductivity values of up to 4.16 Wm{sup -1}K {sup -1} that is at least 4 times higher than state-of-the-art polymeric flexible substrates. Phonon-hopping model (PHM) for granular material was used to fit the measured thermal conductivity and accurately define the thermal transport mechanism. Our results show that through grain size optimization, YSZ flexible substrates can be realized as flexible substrates, that pave new avenues for future novel application in flexible electronics through the utilization of both their ceramic structural flexibility and high heat dissipating capability. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Microstructure and Thermal Stability of A357 Alloy With and Without the Addition of Zr

    Science.gov (United States)

    Tzeng, Yu-Chih; Chengn, Vun-Shing; Nieh, Jo-Kuang; Bor, Hui-Yun; Lee, Sheng-Long

    2017-11-01

    The principal purpose of this research was to evaluate the effects of Zr on the microstructure and thermal stability of an A357 alloy that has been subjected to an aging treatment (T6) and thermal exposure (250 °C). The results show that the addition of Zr had a significant influence on the refinement of the grain size, which enhanced the hardness and tensile strength of the A357 alloy under the T6 condition. During thermal exposure at 250 °C, the rodlike metastable β'-Mg2Si precipitates transformed into coarse equilibrium phase β-Mg2Si precipitates, resulting in a significant drop in the hardness and tensile strength of the T6 heat-treated A357 alloy. However, after thermal exposure, coherent, finely dispersed Al3Zr precipitates were found to be formed in the T6 heat-treated A357 alloy. The addition of 0.1% Zr played a critical role in improving the high-temperature strength. Consequently, the A357 alloy with the addition of Zr demonstrated better mechanical properties at room temperature and high temperature than the alloy without Zr, in terms of both microstructure and thermal stability.

  13. Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ2, Q = Se, Te.

    Science.gov (United States)

    Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama; Assoud, Abdeljalil; Bieringer, Mario; Kleinke, Holger

    2017-12-12

    A few thallium based layered chalcogenides of α-NaFeO 2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ 2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe 2 and a semiconducting nature for TlScSe 2 . DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.

  14. Thermal Stability of Frozen Volatiles in the North Polar Region of Mercury

    Science.gov (United States)

    Paige, David A.; Siegler, Matthew A.; Harmon, John K.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Solomon, Sean C.

    2012-01-01

    Earth-based radar observations have revealed the presence on Mercury of anomalously bright, depolarizing features that appear to be localized in the permanently shadowed regions of high-latitude impact craters [1]. Observations of similar radar signatures over a range of radar wavelengths implies that they correspond to deposits that are highly transparent at radar wavelengths and extend to depths of several meters below the surface [1]. Thermal models using idealized crater topographic profiles have predicted the thermal stability of surface and subsurface water ice at these same latitudes [2]. One of the major goals of the MESSENGER mission is to characterize the nature of radar-bright craters and presumed associated frozen volatile deposits at the poles of Mercury through complementary orbital observations by a suite of instruments [3]. Here we report on an examination of the thermal stability of water ice and other frozen volatiles in the north polar region of Mercury using topographic profiles obtained by the Mercury Laser Altimeter (MLA) instrument [4] in conjunction with a three-dimensional ray-tracing thermal model previously used to study the thermal environment of polar craters on the Moon [5].

  15. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bica, Doina [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania); Vekas, Ladislau [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania) and National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania)]. E-mail: vekas@acad-tim.tm.edu.ro; Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Marinica, Oana [National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania); Socoliuc, Vlad [National Institute R and D for Electrochemistry and Condensed Matter, Str. Diaconu Coressi 144, 300588 Timisoara (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  16. Synthesis of Stabilized Myrrh-Capped Hydrocolloidal Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM, and X-ray diffraction (XRD was used to examine the crystal structure of the produced magnetite nanoparticles.

  17. Synthesis of Thermally Spherical CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nittaya Tamaekong

    2014-01-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDS, and high resolution transmission electron microscopy (HRTEM, respectively. The specific surface area (SSABET of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm. The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm.

  18. Synthesis and thermal decomposition study of dysprosium trifluoroacetate

    DEFF Research Database (Denmark)

    Opata, Y. A.; Grivel, J.-C.

    2018-01-01

    A study of the thermal decomposition process of dysprosium trifluoroacetate hydrate under flowing argon is presented. Thermogravimetry, differential thermal analysis, evolved gas analysis and ex-situ x-ray diffraction techniques have been employed in the investigation. Three main stages were...... at temperatures just above the decomposition step and at 828 °C showed a variation in the sample color, being dark in the first case and rather bright at the higher quenching temperature. Based on this fact, we concluded that some carbon remains in the sample up to 800 °C. With the temperature reaching 1300 °C...

  19. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    Science.gov (United States)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  20. The thermal stability of the carbon-palladium films for hydrogen sensor applications

    Science.gov (United States)

    Rymarczyk, Joanna; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław

    2017-08-01

    The thermal stability of two types of C-Pd films prepared in PVD process were studied. These films are composed of Pd nanograins embedded in a multiphase carbonaceous matrix. These films were distinguished by Pd content. These films were annealed in a range of temperatures 50÷1000°C. The structural, topographical and molecular changes were studied by scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. The results show that investigated films are thermally stable up to 200°C.

  1. Coordinated Stability Control of Wind-Thermal Hybrid AC/DC Power System

    Directory of Open Access Journals (Sweden)

    Zhiqing Yao

    2015-01-01

    Full Text Available The wind-thermal hybrid power transmission will someday be the main form of transmitting wind power in China but such transmission mode is poor in system stability. In this paper, a coordinated stability control strategy is proposed to improve the system stability. Firstly, the mathematical model of doubly fed wind farms and DC power transmission system is established. The rapid power controllability of large-scale wind farms is discussed based on DFIG model and wide-field optical fiber delay feature. Secondly, low frequency oscillation and power-angle stability are analyzed and discussed under the hybrid transmission mode of a conventional power plant with wind farms. A coordinated control strategy for the wind-thermal hybrid AC/DC power system is proposed and an experimental prototype is made. Finally, real time simulation modeling is set up through Real Time Digital Simulator (RTDS, including wind power system and synchronous generator system and DC power transmission system. The experimental prototype is connected with RTDS for joint debugging. Joint debugging result shows that, under the coordinated control strategy, the experimental prototype is conductive to enhance the grid damping and effectively prevents the grid from occurring low frequency oscillation. It can also increase the transient power-angle stability of a power system.

  2. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  3. Metal ion-specific thermal stability of bacterial S-Layers

    Energy Technology Data Exchange (ETDEWEB)

    Drobot, Bjoern; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry; Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biophysics

    2016-07-01

    Many bacteria are covered by a surface layer (S-layer), i.e., a para-crystalline two-dimensional array of proteins which control cell shape, act as molecular sieves and have potential applications as radionuclide-binding material for bioremediation of polluted areas. Knowledge and control of the metal-dependent stability of the purified proteins is required for their technical application. Here, we have explored by differential scanning calorimetry the thermal stability of the S-layer protein slp-B53 from Lysinibacillus sphaericus, a Gram-positive bacterium isolated from a uranium mining waste pile [1].

  4. Pd-based alloy nanoclusters in ion-implanted silica: Formation and stability under thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, G.; Cattaruzza, E.; De Marchi, G.; Gonella, F.; Mattei, G. E-mail: mattei@padova.infm.it; Maurizio, C.; Mazzoldi, P.; Parolin, M.; Sada, C.; Calliari, I

    2002-05-01

    In this work we report on the formation and stability under thermal annealing of Pd-Cu and Pd-Ag alloy nanoclusters obtained by sequential ion implantation in silica. The role of the annealing atmosphere on the alloy cluster formation and stability is investigated. A comparison is made with similar alloy-based systems obtained by sequential ion implantation in silica of Au-Ag or Au-Cu followed by annealing under similar conditions, in order to evidence the peculiar effect of the various metals in controlling the alloy evolution and/or decomposition.

  5. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Latibari, Sara Tahan; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis; Silakhori, Mahyar

    2013-01-01

    Highlights: ► The composite PCM was prepared with impregnation method. ► Shapes stabilized phase change material made with paraffin and GO composite. ► Determine effects of GO composite on shape stabilized PCM properties. ► The composite PCM has good thermal stability and form-stability. ► The composite PCM has much higher thermal conductivity than that of paraffin. - Abstract: This paper mainly focuses on the preparation, characterization, thermal properties and thermal stability and reliability of new form-stable composite phase change materials (PCMs) prepared by vacuum impregnation of paraffin within graphene oxide (GO) sheets. SEM and FT-IR techniques and TGA and DSC analysis are used for characterization of material and thermal properties. The composite PCM contained 48.3 wt.% of paraffin without leakage of melted PCM and therefore this composite found to be a form-stable composite PCM. SEM results indicate that the paraffin bounded into the pores of GO. FT-IR analysis showed there was no chemical reaction between paraffin and GO. Temperatures of melting and freezing and latent heats of the composite were 53.57 and 44.59 °C and 63.76 and 64.89 kJ/kg, respectively. Thermal cycling tests were done by 2500 melting/freezing cycling for verification of the form-stable composite PCM in terms of thermal reliability and chemical stability. Thermal conductivity of the composite PCM was highly improved from 0.305 to 0.985 (W/mk). As a result, the prepared paraffin/GO composite is appropriate PCM for thermal energy storage applications because of their acceptable thermal properties, good thermal reliability, chemical stability and thermal conductivities

  6. Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger.

    Science.gov (United States)

    Chandran, Janu; Nayana, N; Roshini, N; Nisha, P

    2017-01-01

    The present study investigates the oxidative and thermal stability of flavoured oils developed by incorporating essential oils from black pepper and ginger to coconut oil (CNO) at concentrations of 0.1 and 1.0% (CNO P-0.1 , CNO P-1 , CNO G-0.1 , CNO G-1 ). The stability of oils were assessed in terms of free fatty acids, peroxide, p -anisidine, conjugated diene and triene values and compared with CNO without any additives and a positive control with synthetic antioxidant TBHQ (CNO T ). It was found that the stability of CNO P-1 and CNO G-1 were comparable with CNO T at both study conditions. The possibility of flavoured oil as a table top salad oil was explored by incorporating the same in vegetable salad and was found more acceptable than the control, on sensory evaluation. The synergetic effect of essential oil as a flavour enhancer and a powerful natural antioxidant that can slow down the oxidation of fats was established in the study.

  7. Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles

    NARCIS (Netherlands)

    Lei, P.Y.; Boies, A.M.; Calder, S.A.; Girshick, S.L.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer,

  8. A convenient thermal decomposition-co-reduction synthesis of ...

    Indian Academy of Sciences (India)

    Unknown

    (Hojo and Ishizaka 1997) can also prepare WSi2 powder. In this paper, nanocrystalline tungsten disilicide has been synthesized by a convenient thermal decomposition- co-reduction route via the reaction of metallic potassium with sodium fluorosilicate and tungsten hexachloride in an autoclave at 650°C. This reaction can ...

  9. Facile synthesis of new thermally stable and organosoluble ...

    Indian Academy of Sciences (India)

    mise between solubility, high thermal properties and processability.23–25. According to the phosphorylation technique first described by Yamazaki et al., a series of high- molecular-weight PAIs are synthesized from the imide ring bearing dicarboxylic acids with phosphorus and silicon containing new aromatic diamines.26 ...

  10. Synthesis, thermal properties and photoisomerization of trans-[Ru ...

    Indian Academy of Sciences (India)

    chemsci

    Keywords. Ruthenium nitrosyl complexes; pyridine; X-ray crystallography-thermal analysis; photoinduced linkage isomer; ruthenium phosphide; DSC. 1. Introduction. Ruthenium phosphides RuP and Ru2P are known as stable catalysts for electrochemical oxygen reduction, seem to be good candidates as substrate in fuel ...

  11. A convenient thermal decomposition-co-reduction synthesis of ...

    Indian Academy of Sciences (India)

    Nanocrystalline WSi2 was synthesized by a thermal decomposition-co-reduction route via the reaction of anhydrous tungsten hexachloride and sodium fluorosilicate with metallic potassium in an autoclave at 650°C. X-ray powder diffraction pattern indicated that it was tetragonal WSi2. Transmission electron microscope ...

  12. Synthesis and Spectroscopic, Thermal and Crystal Structure Studies ...

    African Journals Online (AJOL)

    NICO

    The salt undergoes melting followed by decomposition to give gaseous products. KEYWORDS. Hydrazine, succinic acid, hydrazinium hydrogensuccinate, crystal structure, thermal studies. 1. Introduction. Dibasic acids are known to form N2H5HA, (N2H5)2A and. N2H5HA.H2A type salts (H2A = dibasic acid) with hydrazine.

  13. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  14. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles

    Science.gov (United States)

    Velgosová, Oksana; Mražíková, Anna

    2017-12-01

    In this paper the influence of algae life cycle and the solutions pH on the green synthesis of colloidal Ag nanoparticles (AgNPs) as well as effect of different storage conditions on AgNPs long-term stability was investigated. Silver nanoparticles were biologically synthesized using extracts of Parachlorella kessleri algae cultivated 1, 2, 3 and 4 weeks. The formation of AgNPs was monitored using a UV-vis spectrophotometer and verified by TEM observation. The results confirmed formation of polyhedron and/or near polyhedron AgNPs, ranging between 5 and 60 nm in diameter. The age of algae influenced the synthesis rate and an amount of AgNPs in solution. The best results were obtained using tree weeks old algae. UV-vis analysis and TEM observation also revealed that the size and the stability of AgNPs depend on the pH of solution. AgNPs formed in solutions of higher pH (8 and 10) are polyhedron, fine, with narrow size interval and stabile. Nanoparticles formed in solutions of low pH (2, 4 and 6) started to lose their stability on 10th day of experiment, and the particle size interval was wide. The long-term stability of AgNPs can be influenced by light and temperature conditions. The most significant stability loss was observed at day light and room temperature (21°C). After 200-days significant amount of agglomerated particles settled on the bottom of the Erlenmeyer flask. AgNPs stored at dark and room temperature showed better long-term stability, weak particles agglomeration was observed. AgNPs stored at dark and at temperature 5°C showed the best long-term stability. Such AgNPs remained spherical, fine (5-20 nm), with narrow size interval and stable (no agglomeration) even after more than six months.

  15. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    International Nuclear Information System (INIS)

    Zhang Lin; Li Fan; Chen Yiwang; Wang Xiaofeng

    2011-01-01

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: → ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. → ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. → Thermal stability of these films is improved compared with those of physically blending ones.

  16. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Li Fan, E-mail: lfan@ncu.edu.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Xiaofeng [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-08-15

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: > ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. > ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. > Thermal stability of these films is improved compared with those of physically blending ones.

  17. Microwave-Assisted Synthesis of Alginate-Stabilized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Foliatini Foliatini

    2014-12-01

    Full Text Available An efficient and rapid method for preparation of Au nanoparticles (Au-NP has been developed by direct microwave irradiation of metal precursor and alginate mixed solution in a single step. Here, alginate molecules act as both the reducing and stabilizing agents of Au-NP. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis spectroscopy, particle size analyzer, fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles have a spherical form and perfectly capped with alginate when using alginate and chloro auric acid (HAuCl4 precursor in the concentration range of 0.50 to 0.75% (w/v and 0.40 mM, respectively. The use of a lower concentration of alginate and/or higher concentration of HAuCl4 caused agglomeration to occur, thereby resulting in a bigger size of Au-NP and red shifting of surface plasmon resonance (SPR peak to a higher wavelength.

  18. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    Science.gov (United States)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  19. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)

    2017-11-14

    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  20. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    Variations of lattice parameters of compounds have been monitored by in-situ XRD at different temperatures in order to study the thermo-chemical expansivity. Concentration of oxide ion vacancy has been determined by high temperature gravimetry. The results show more stability of Mn4+ ions in high temperature in ...

  1. Colour interceptions, thermal stability and surface morphology of polyester metal complexes

    International Nuclear Information System (INIS)

    Zohdy, M.H.

    2005-01-01

    Chelating copolymers via grafting of acrylic acid (AAc) and acrylamide (AAm/AAc) comonomer mixture onto polyester micro fiber fabrics (PETMF) using gamma-radiation technique were prepared. The prepared graft chains (PETMF-g-AAc) and (PETMF-g-PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The prepared graft copolymers and their metal complexes were characterized using thermogravimetric analysis (TGA), colour parameters and surface morphology measurements. The colour interception and strength measurements showed that the metal complexation is homogeneously distributed. The results showed that the thermal stability of PETMF was improved after graft copolymerization and metal complexes. Moreover, the degree of grafting enhanced the thermal stability values of the grafted and complexed copolymers up to 25% of magnitude, on the other hand the activation energy of the grafted-copolymer with acrylic acid increased up to 80%. The SEM observation gives further supports to the homogenous distribution of grafting and metal complexation

  2. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Influence of Cellulose on the Mechanical and Thermal Stability of ABS Plastic Composites

    Directory of Open Access Journals (Sweden)

    K. Crews

    2016-01-01

    Full Text Available Microcrystalline cellulose was explored as possible biodegradable fillers in the fabrication of ABS plastic composites. TGA indicates that upon inclusion of cellulose microcrystals the thermal stability of the ABS plastics was improved significantly when compared to the neat ABS plastic counterparts. Furthermore, inclusion of extracted cellulose from plant biomass showed a higher thermal stability with maximum decomposition temperatures around 131.95°C and 124.19°C for cellulose from cotton and Hibiscus sabdariffa, respectively, when compared to that of the purchased cellulose. In addition, TMA revealed that the average CTE value for the neat ABS and 1 : 1 ratio of cellulose to ABS fabricated in this study was significantly lower than the reported CTE (ca. 73.8 μm/m°C.

  4. Thermal stability and structural characteristics of PTHF–Mmt organophile nanocomposite

    Directory of Open Access Journals (Sweden)

    Youcef Hattab

    2015-05-01

    The objective of this study is to use organophilized montmorillonites in the presence of monomer tetrahydrofuran to obtain polytétrahydrofuran montmorillonites (PTHF–Mmt of composites by polymerization in situ. The organophilisation of the Mmt is formed by active cationic surface. The obtained results show an increase in the distance inside the reticular in the diffractograms of X-rays (DRX and the appearance of absorption bands of the characteristics of polytétrahydrofuran on the spectra of infrared spectroscopy (IR, which indicate pre-polymerization of tetrahydrofuran in the galleries of clay and, therefore, the obtaining of a nanocomposite. We have also studied the thermal stability of the samples by differential analysis calorimetric (DSC analysis, and we can conclude that the nanocomposites are stabilized thermally by the presence of clay in the matrix.

  5. Grain growth and thermal stability accompanying recrystallization in undercooled Ni-3at.%Sn alloy

    International Nuclear Information System (INIS)

    Chen, Z.; Chen, Q.; Shen, C.J.; Liu, F.

    2015-01-01

    The grain growth and thermal stability after recrystallization in as-solidified highly undercooled Ni-3at.%Sn alloy melt were investigated. As for undercooled Ni-3at.%Sn alloy, a transition from dendritic to granular crystals occurred when ΔT≥ΔT * , which was induced by the plastic deformation of dendrites and subsequent recrystallization. On this basis, the subsequent grain growth and solute segregation accompanying recalescence were calculated by a recently proposed thermo-kinetic model, which showed close agreement with the experimental results. It is concluded that the grain growth process was interrelated to recalescence, solute trapping and solute segregation of Sn atoms captured by solute trapping, which was responsible for the reduction of grain boundary energy and improvement of thermal stability. - Highlights: • A transition from dendritic to granular crystals occurred when ΔT≥ΔT * . • The grain growth accompanying recalescence was calculated. • A close agreement with the experimental results was shown

  6. Stability and color changes of thermally treated betanin, phyllocactin, and hylocerenin solutions.

    Science.gov (United States)

    Herbach, Kirsten M; Stintzing, Florian C; Carle, Reinhold

    2006-01-25

    Thermal degradation of betanin, phyllocactin (malonyl-betanin), and hylocerenin (3' '-hydroxy-3' '-methyl-glutaryl-betanin) solutions isolated from purple pitaya (Hylocereus polyrhizus [Weber] Britton and Rose) was monitored by spectrophotometric and high-performance liquid chromatography-diode array detection (HPLC-DAD) analyses. For betanin and phyllocactin solutions, the color shift upon thermal treatment was found to be nearly identical, while hylocerenin samples exhibited an intelligibly higher chromatic steadiness. Betanin proved to be the most stable individual pigment structure, while the enhanced tinctorial stability of the integral phyllocactin and especially hylocerenin solutions was due to the formation of red degradation products exhibiting improved color retention as opposed to their respective genuine pigments. Individual structure-related stability characteristics can exclusively be assessed by HPLC-DAD analyses and may not be noticed by mere spectrophotometric assessment of color and tinctorial strength.

  7. Radial effects in heating and thermal stability of a sub-ignited tokamak

    International Nuclear Information System (INIS)

    Fuchs, V.; Shoucri, M.M.; Thibaudeau, G.; Harten, L.; Bers, A.

    1982-02-01

    The existence of thermally stable sub-ignited equilibria of a tokamak reactor, sustained in operation by a feedback-controlled supplementary heating source, is demonstrated. The establishment of stability depends on a number of radially non-uniform, nonlinear processes whose effect is analyzed. One-dimensional (radial) stability analyses of model transport equations, together with numerical results from a 1-D transport code, are used in studying the heating of DT-plasmas in the thermonuclear regime. Plasma core supplementary heating is found to be a thermally more stable process than bulk heating. In the presence of impurity line radiation, however, core-heated temperature profiles may collapse, contracting inward from the limiter, the result of an instability caused by the increasing nature of the radiative cooling rate, with decreasing temperature. Conditions are established for the realization of a sub-ignited high-Q, toroidal reactor plasma with appreciable output power

  8. Sodium Borohydride Reduction of Aqueous Silver-Iron-Nickel Solutions: a Chemical Route to Synthesis of Low Thermal Expansion-High Conductivity Ag-Invar Alloys

    Science.gov (United States)

    Sterling, E. A.; Stolk, J.; Hafford, L.; Gross, M.

    2009-07-01

    Thermal management is a critical concern in the design and performance of electronics systems. If heat extraction and thermal expansion are not properly addressed, the thermal mismatch among dissimilar materials may give rise to high thermal stresses or interfacial shear strains, and ultimately to premature system failure. In this article, we present a chemical synthesis process that yields Ag-Invar (64Fe-36Ni) alloys with a range of attractive properties for thermal management applications. Sodium borohydride reduction of an aqueous Ag-Fe-Ni metal salt solution produces nanocrystalline powders, and conventional powder processing converts this powder to fine-grained alloys. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy, thermomechanical analysis, and electrical conductivity measurements; thermal conductivity is estimated using the Wiedemann-Franz law. Sintering of Ag-Fe-Ni powders leads to the formation of two-phase silver-Invar alloys with low coefficients of thermal expansion (CTEs) and relatively high electrical conductivities. A sample of 50Ag-50Invar exhibits a CTE of 8.76 μm/(m· °C) and an estimated thermal conductivity of 236 W/(m·K). The Ag-Invar alloys offer thermodynamic stability and tailorable properties, and they may help address the need for improved packaging materials.

  9. Thermal Stabilization of 233UO2, 233UO3, and 233U3O8

    International Nuclear Information System (INIS)

    Thein, S.M.; Bereolos, P.J.

    2000-01-01

    This report identifies an appropriate thermal stabilization temperature for 233 U oxides. The temperature is chosen principally on the basis of eliminating moisture and other residual volatiles. This report supports the U. S. Department of Energy (DOE) Standard for safe storage of 233 U (DOE 2000), written as part of the response to Recommendation 97-1 of the Defense Nuclear Facilities Safety Board (DNFSB), addressing safe storage of 233 U

  10. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites

    OpenAIRE

    Ouyang, Zen-Wei; Chen, Erh-Chiang; Wu, Tzong-Ming

    2015-01-01

    This work describes the thermal stability and magnetic properties of polyvinylidene fluoride (PVDF)/magnetite nanocomposites fabricated using the solution mixing technique. The image of transmission electron microscopy for PVDF/magnetite nanocomposites reveals that the 13 nm magnetite nanoparticles are well distributed in PVDF matrix. The electroactive β-phase and piezoelectric responses of PVDF/magnetite nanocomposites are increased as the loading of magnetite nanoparticles increases. The pi...

  11. Proteosynthetic elongation factor EF-Tu domains: Thermal stability, adaptation and functions

    Czech Academy of Sciences Publication Activity Database

    Jonák, Jiří; Šanderová, Hana; Hůlková, Marta; Maloň, Petr; Krásný, Libor; Kepková, M.

    2009-01-01

    Roč. 16, 1a (2009), b23-b24 ISSN 1211-5894. [Meeting of the Czechoslovak and Slovak Biologists /7./. 12.03.2009-14.03.2009, Nové Hrady] R&D Projects: GA MŠk 2B06065; GA MZd NR9138 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : EF-Tu * proteosynthetic elongation factor * thermal stability Subject RIV: EB - Genetics ; Molecular Biology

  12. Thermal stability of magnesium alloy AZ91 prepared by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Roman Štěpánek

    2013-12-01

    Full Text Available This paper deals with the thermal stability of ultrafine-grained alloy AZ91 prepared by means of ECAP (Equal Channel Angular Pressing method. Annealing experiments were conducted isochronally for 30 minutes in the temperature range of 220 to 400 °C in argon atmosphere. EBSD (Electron Backscatter Diffraction method was used to image the changes in microstructure due to increased temperature.

  13. Thermal-Stability and Reconstitution Ability of Listeria Phages P100 and A511

    Directory of Open Access Journals (Sweden)

    Hanie Ahmadi

    2017-12-01

    Full Text Available The study evaluated the thermal-stability of Listeria phages P100 and A511 at temperatures simulating the preparation of ready-to-eat meats. The phage infectivity after heating to 71°C and holding for a minimum of 30 s, before eventually cooling to 4°C were examined. Higher temperatures of 75, 80, and 85°C were also tested to evaluate their effect on phages thermal-stability. This study found that despite minor differences in the amino acid sequences of their structural proteins, the two phages responded differently to high temperatures. P100 activity declined at least 10 log (PFU mL-1 with exposure to 71°C (30 s and falling below the limit of detection (1 log PFU mL-1 while, A511 dropped from 108 to 105 PFU mL-1. Cooling resulted in partial reconstitution of P100 phage particles to 103 PFU mL-1. Exposure to 75°C (30 s abolished A511 activity (8 log PFU mL-1 and both phages showed reconstitution during cooling phase after exposure to 75°C. P100 exhibited reconstitution after treatment at 80°C (30 s, conversely A511 showed no reconstitution activity. Heating P100 to 85°C abolished the reconstitution potential. Substantial differences were found in thermal-stability and reconstitution of the examined phages showing A511 to be more thermo-stable than P100, while P100 exhibited reconstitution during cooling after treatment at 80°C which was absent in A511. The differences in predicted melting temperatures of structural proteins of P100 and A511 were consistent with the observed differences in thermal stability and morphological changes observed with transmission electron microscopy.

  14. Short-term thermal stability of transformer and motor oils at wide range of moisture contents

    Science.gov (United States)

    Volosnikov, D. V.; Povolotskiy, I. I.; Skripov, P. V.

    2018-01-01

    Method of controlled pulse heating of a wire probe was used for studying heat transfer and thermal stability of energy oils and motor oils in the presence of low quantities of moisture. The technique of two-pulse heating is the most suitable method for monitoring the actual state of oils. A distinct signal-response accompanying the appearance of moisture in the tested sample has been revealed.

  15. Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability

    Science.gov (United States)

    Zhang, Shupeng; Xiong, Pan; Yang, Xujie; Wang, Xin

    2011-05-01

    A series of polyethylene glycol (PEG) functionalized graphene sheet hybrid materials (FGHMs) have been successfully synthesized via ester linkages. Interestingly, our products can be dispersed in both polar/protic solvents and nonpolar/nonprotic ones, which differ significantly from previously reported systems and are of great value in the wide-spread application of these ``carbon nanosheet'' based materials by solution-phase processing. Furthermore, the addition of PEG-modified carbon nanosheets as nanofillers significantly improves the thermal stability of the bulk polymers. In our case, an increase of 35 K in thermal stability can be obtained for PEG4000 after filling with as low as 1 wt % of the PEG modified carbon sheets, suggesting their great potential as novel nanofillers in industry.A series of polyethylene glycol (PEG) functionalized graphene sheet hybrid materials (FGHMs) have been successfully synthesized via ester linkages. Interestingly, our products can be dispersed in both polar/protic solvents and nonpolar/nonprotic ones, which differ significantly from previously reported systems and are of great value in the wide-spread application of these ``carbon nanosheet'' based materials by solution-phase processing. Furthermore, the addition of PEG-modified carbon nanosheets as nanofillers significantly improves the thermal stability of the bulk polymers. In our case, an increase of 35 K in thermal stability can be obtained for PEG4000 after filling with as low as 1 wt % of the PEG modified carbon sheets, suggesting their great potential as novel nanofillers in industry. Electronic Supplementary Information (ESI) available: Table S1: Digital pictures of several typical hybrid materials dispersed in water and 22 organic solvents; Video 1: GO-PEG400 can be re-dispersed in the isooctane by simply turning the vials up and down. See DOI: 10.1039/c0nr00923g

  16. Why collagens best survived in fossils? Clues from amino acid thermal stability.

    Science.gov (United States)

    Wang, Shuang-Yin; Cappellini, Enrico; Zhang, Hong-Yu

    2012-05-25

    Explaining why type I collagens are preferentially preserved in the geological time scale remains a challenge. Several pieces of evidence indicate that its rich content in the bone and its unique, stable structure played key roles in its preservation. By considering the distinct thermal stability of amino acids, we reveal that the elevated abundance of thermostable amino acid residues in type I collagens also contribute to its survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Improvement of thermal-stability of enzyme immobilized onto mesoporous zirconia

    Directory of Open Access Journals (Sweden)

    Yuichi Masuda

    2014-03-01

    Thereafter, FDH immobilized on MPZ showed higher catalytic activity than that on MPS. Enhancement of catalytic activity was obtained by improving the substrate affinity derived from interparticle voids of MPZ. In addition, the FDH immobilized on MPZ had a very great higher thermal stability. Further investigation using transmittance Infrared spectroscopy indicated that the high-order structure of the FDH immobilized on MPZ did not get altered after the heat-treatment.

  18. Effect of thermal protectants on the stability of bovine milk immunoglobulin G

    International Nuclear Information System (INIS)

    Chen, C.C.; Chang, H.M.

    1998-01-01

    pH stability, thermal stability, and the effect of homogenization and ultrasonic treatment on the stability of bovine milk immunoglobulin G (IgG) in model systems was studied. Separated IgG (0.02 mg/mL) was found to be unstable and susceptible to denaturation when incubated at pH 4 or 10 or thermally treated at temperature 75 degrees C. IgG in the colostrum, on the other hand, was found to be much more stable than in whey or in PBS when thermally treated at temperatures in the range of 75-100 degrees C. The residual IgC content reduced more sharply with increasing heating times, and almost no IgG content was detected when IgG in PBS (0.15 M NaCl/0.01 M phosphate buffer, pH 7.0) was heated at 95 degrees C for 15 s, whereas the corresponding residual IgG contents in whey and colostrum were found to be 42 and 59%, respectively. For IgG in PBS heated at 95 degrees C for 15 s, addition of 5% fructose or maltose displayed most remarkable protection effects by raising the residual IgG content to 31%, followed by sucrose, lactose, glucose, and galactose. However, extravagant addition ( 30%) to IgG in PBS led to a decline in residual IgG content. Addition of 0.4% glutamic acid and 2% glycine to IgG in PBS heated at 95 degrees C for 15 s also remarkably improved the residual IgG content by 13.5 and 26.7%, respectively. Glycerol and sugar alcohol, such as sorbitol, stabilized IgG during the thermal treatment

  19. Design of directional prism resonator made DPL operate in TEM00 mode with thermal stability

    Science.gov (United States)

    Lu, Changyong; Wang, Xiaobing; Sun, Bin; Guo, Yanlong; Wang, Guchang; Lin, Yi; Wan, Qiang

    2005-01-01

    An alignment-free directional prism resonator that ensures the laser TEM00 mode with thermal stability in a certain range is designed by using g* parameter equivalent method. The output of all solid state laser is about of 150mJ, and the beam divergence is of 3mrad with 20Hz repetition rate, moreover, when the laser operates from 10 to 30Hz, the beam divergence is steady. This laser meets the needs of special engineering application.

  20. Thermal stability of the human blood serum acid alpha(1)-glycoprotein in acidic media

    Czech Academy of Sciences Publication Activity Database

    Hofbauerová, Kateřina; Kopecký ml., Vladimír; Sýkora, J.; Karpenko, V.

    2003-01-01

    Roč. 103, č. 1 (2003), s. 25-33 ISSN 0301-4622 Grant - others:GA UK(CZ) No.220/2000/B-CH Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM113100001; CEZ:MSM113200001; CEZ:MSM123100001 Keywords : orosomucoid * thermal stability * UV-spectroscopy Subject RIV: BO - Biophysics Impact factor: 1.728, year: 2003

  1. Correlation between Thermal Stability Map and Base Substitution Map of DNA from Related Bacteriophages

    Science.gov (United States)

    Husimi, Yuzuru; Shibata, Keizo

    1984-10-01

    The number density of substituted bases among related bacteriophages (fd, 1 and M13) is heterogeneous along the DNA strand although most base substitutions do not alter the coded amino acids. Local thermal stability of the double helical DNA is also heterogeneous. There is a negative correlation between these two maps. The same conclusion holds between less closely related phages, φX174 and G4.

  2. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder.

    Science.gov (United States)

    Colla, L M; Bertol, C D; Ferreira, D J; Bavaresco, J; Costa, J A V; Bertolin, T E

    2017-01-01

    This work aimed to evaluate the thermal and photo stability of the antioxidant potential (AP) of the Spirulina platensis biomass. Thermal stability was established at 25ºC, 40ºC and 50ºC for 60 days, in the dark, protected from light. Photo stability was evaluated using UV (15 W, λ = 265 nm) and fluorescent (20 W, 0.16 A, power factor FP > 0.5, 50/60 Hz, 60 lm/w, 1200 lm) light for 90 days in capsules, glass and Petri dishes, at room temperature. The AP of the biomass in these conditions was determined at intervals (every 7 and 30 days in the studies of thermal and photo stability, respectively) using the induction of the oxidation of a lipid system by heat and aeration. In this lipid system, the biomass submitted to degradation was used as an antioxidant. The kinetics of the reaction was determined by the Arrhenius method. Thermal degradation was found to follow zero order kinetics, whereas photo degradation followed first order kinetics. The AP decreased 50% after 50 days at 25°C. At 40°C and 50°C, the AP decreased more than 50% after 35 and 21 days of exposition, respectively. The decrease of the AP of Spirulina was more sensible to UV and fluorescence light. After 30 days of exposition, the AP decreased more than 50% in all storage conditions tested. The antioxidant potential of Spirulina platensis is easily degraded when the biomass is exposed to heat and light, indicating the need for care to be taken in its storage.

  3. Study on thermal decomposition of calix[4]arene and its application in thermal stability of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Chennakesavulu, K., E-mail: chennanml@yahoo.com [National Metallurgical Laboratory Madras Centre, CSIR Complex, Taramani, Chennai 600113 (India); Basariya, M. Raviathul; Sreedevi, P.; Bhaskar Raju, G.; Prabhakar, S.; Rao, S. Subba [National Metallurgical Laboratory Madras Centre, CSIR Complex, Taramani, Chennai 600113 (India)

    2011-03-10

    Thermal decomposition kinetics of calix[4]arene (C4) was investigated using thermogravimetric analysis (TGA) and derivative of TG curve (DTG). TG experiments were carried out under static air atmosphere with nominal heating rates of 1.0, 2.5, 5.0 and 10.0 K/min. Model-fitting methods and model-free methods such as Friedman and Ozawa-Flynn-Wall methods were employed to evaluate the kinetic parameters such as activation energy (E{sub a}), exponential factor (ln A) and reaction order (n). To determine the antioxidant property of C4 the non-isothermal kinetics of polypropylene (PP) with C4 as additive was studied. The FTIR, ESR and {sup 13}C NMR CP-MAS techniques were used to propose the decomposition mechanism of C4 in the presence of PP.

  4. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  5. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  6. Synthesis and nanoscale thermal encoding of phase-change nanowires

    International Nuclear Information System (INIS)

    Sun Xuhui; Yu Bin; Meyyappan, M.

    2007-01-01

    Low-dimensional phase-change nanostructures provide a valuable research platform for understanding the phase-transition behavior and thermal properties at nanoscale and their potential in achieving superdense data storage. Ge 2 Sb 2 Te 5 nanowires have been grown using a vapor-liquid-solid technique and shown to exhibit distinctive properties that may overcome the present data storage scaling barrier. Local heating of an individual nanowire with a focused electron beam was used to shape a nano-bar-code on a Ge 2 Sb 2 Te 5 nanowire. The data encoding on Ge 2 Sb 2 Te 5 nanowire may promote novel device concepts to implement ultrahigh density, low energy, high speed data storage using phase-change nanomaterials with diverse thermal-programing strategies

  7. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  8. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  9. Thermal stability and ignition of a thermonuclear plasma with Kaye-Goldston scaling

    International Nuclear Information System (INIS)

    Johner, J.

    1987-01-01

    Stability of the ignition operation with respect to the pure thermal instability is investigated in the case of a temperature dependent non radiative energy confinement time (τ E ∝ 1/T γ ). The thermal stability of the operation with an external power independent of temperature is also studied. The stability criterion is put in the form of a (nτ E ,T) condition. The temperature for divergence leading to the minimum stable ignition is calculated in terms of γ as well as the corresponding external density power. Special attention is paid to the case of Kaye-Goldston scaling (γ=1.38). The necessary conditions for dimension and fusion power of an ignited tokamak with Kaye-Goldston scaling are derived taking into account explicit bremsstrahlung losses and plasma elongation. At the Murakami or β density limits, realistic dimensions can only be obtained with strong magnetic fields and elongations, but the corresponding high densities yield in turn impracticably large fusion powers. Dimension and density can then be calculated for a fixed power of the reactor (4000 MW(th)). Again, reasonable dimensions need high fields and elongations (B t ∼ 10T, x ∼ 1.5), but now Murakami and β limits are never exceeded. The external power necessary for thermal divergence can also be calculated in this case. It is found to be independent of elongation and decreasing with final ignition temperature. (author). 8 refs, 9 figs

  10. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin.

    Science.gov (United States)

    Momeni, Lida; Shareghi, Behzad; Saboury, Ali A; Farhadian, Sadegh; Reisi, Fateme

    2017-01-01

    The interaction of putrescine with bovine trypsin was investigated using steady state thermal stability, intrinsic fluorescence, UV-vis spectroscopy, far and near- UV circular dichroism and kinetic techniques, as well as molecular docking. The Stern-Volmer quenching constants for the trypsin- putrescine complex were calculated revealing that putrescine interacted with trypsin via the static fluorescence quenching. The enthalpy and entropy change values and the molecular docking technique revealed that hydrogen bonds and van der Waals forces play a major role in the binding process. Upon putrescine conjugation, the V max value and the k cat /K m values of the enzyme was increased. The results of UV absorbance, circular dichroism and fluorescence techniques demonstrated that the micro environmental changes in trypsin were induced by the binding of putrescine, leading to changes in its secondary structure. The thermal stability of trypsin- putrescine complex was enhanced more significantly, as compared to that of the native trypsin. The increased thermal stability of trypsin- putrescine complex might be due to the lower surface hydrophobicity and the higher hydrogen bond formation after putrescine modification, as reflected in the increase of UV absorbance and the quenching of fluorescence spectra. It was concluded that the binding of putrescine changed trypsin structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    Science.gov (United States)

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  12. Mechanical behaviour and thermal stability of multi-axially compressed copper

    Science.gov (United States)

    Padap, Aditya Kumar; Dwivedi, Ankit; Kumar, Narendra

    2018-01-01

    In the present study coarse grained (CG) annealed copper is subjected to multi-axial compression (MAC) process up to 9 passes to analyse its mechanical behaviour and thermal stability. The samples are characterized by optical microscopy to analyse microstructure evolution and grain size during MAC process. Mechanical properties like hardness and tensile strength have been evaluated by conducting the hardness and tensile test at ambient temperature. Microstructural examinations reveal the reduction in grain size with increase in number of passes which contributes to enhanced hardness and strength of copper. Tensile fractured specimens are examined under scanning electron microscope (SEM) to analyse the mode of failure with increasing number of MAC passes. Fractured micrographs reveal the ductile mode of failure in annealed and lower pass sample which is further converted to mixed mode (ductile and brittle) as the number of passes increased. Thermal stability of processed copper is also analysed by differential scanning calorimetry (DSC) analysis and results reveal reduction in thermal stability with increase in number of MAC passes. The evaluated properties of processed copper are correlated with microstructures.

  13. Physicochemical properties and thermal stability of quercetin hydrates in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Borghetti, G.S., E-mail: greicefarm@yahoo.com.br [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil); Carini, J.P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil); Honorato, S.B.; Ayala, A.P. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60.455-970, Fortaleza, CE (Brazil); Moreira, J.C.F. [Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, CEP 90035-003, Porto Alegre, RS (Brazil); Bassani, V.L. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil)

    2012-07-10

    Highlights: Black-Right-Pointing-Pointer Quercetin raw materials may present different degree of hydration. Black-Right-Pointing-Pointer Thermal stability of quercetin in the solid state depends on its degree of hydration. Black-Right-Pointing-Pointer Quercetin dehydrate is thermodynamically more stable than the other crystal forms. - Abstract: In the present work three samples of quercetin raw materials (QCTa, QCTb and QCTc), purchased from different Brazilian suppliers, were characterized employing scanning electron microscopy, Raman spectroscopy, simultaneous thermogravimetry and infrared spectroscopy, differential scanning calorimetry, and variable temperature-powder X-ray diffraction, in order to know their physicochemical properties, specially the thermal stability in solid state. The results demonstrated that the raw materials of quercetin analyzed present distinct crystalline structures, ascribed to the different degree of hydration of their crystal lattice. The thermal stability of these quercetin raw materials in the solid state was highly dependent on their degree of hydration, where QCTa (quercetin dihydrate) was thermodynamically more stable than the other two samples.

  14. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding

    Science.gov (United States)

    2017-01-01

    Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels. PMID:29213150

  15. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding.

    Science.gov (United States)

    Yuan, Hongbo; Xu, Jialiang; van Dam, Eliane P; Giubertoni, Giulia; Rezus, Yves L A; Hammink, Roel; Bakker, Huib J; Zhan, Yong; Rowan, Alan E; Xing, Chengfen; Kouwer, Paul H J

    2017-11-28

    Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels.

  16. Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants

    Directory of Open Access Journals (Sweden)

    Sherif Elbasuney

    2018-02-01

    Full Text Available Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base (MDB propellant based on stoichiometric binary mixture of oxidizer-metal fuel (Ammonium perchlorate/Aluminum, and energetic nitramines (HMX offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80 °C for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOx gases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with (AP/Al-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the auto-catalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm3/5 g and 2.5 cm3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance, chemical stability, and service life.

  17. Improving the thermal behaviour of bricks by incorporating shape-stabilized phase change materials

    Science.gov (United States)

    Serrano, A.; Acosta, A.; Iglesias, I.; Rodríguez, J. F.; Carmona, M.

    2017-10-01

    The addition of a new shape-stabilized phase change material (ssPCM) in ceramic elements having large porosity has been carried out. In that way, a novel form-stable PCM based on bricks was developed. In order to study the incorporation of the thermoregulatory material in the composites, bricks with different porosities have been manufactured. In this work the ssPCM was synthesized using polyethylene glycol (PEG) as PCM and tetraethyl orthosilicate (TEOS) as supporter precursor by sol-gel method. The initial liquid product can be further turned into solid by neutralization procedures. ssPCM in its liquid form is adsorbed inside the porous brick by capillary action and it is further stabilized by controlling its gelation time, obtaining the new form-stable PCM. The adsorption curves, the long-term stability after 100 cycles of heating and cooling processes and the improved thermal energy storage capacities for the obtained samples have been studied. Different composites containing between 15 to 110 wt% of ssPCM respect to the initial dried mass of brick have been obtained, with thermal capacities within 8.94 to 28.80 kWh/m3. The Fick´s law was used to predict the adsorption curves and only one diffusion coefficient was required to predict the content of the ssPCM into the bricks, independently of their porosity. Besides, all the samples exhibited a high long-term thermal stability influenced by the additional stabilizer effect of the ceramic matrix.

  18. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    Abstract. In this study, oxides Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln = La,Nd and M = Mn,Fe) have been prepared and characterized to study the influence of the different cations on thermal expansion coefficient (TEC). TEC decreases favourably with replacement of Nd3+ and Mn3+ ions in the lattice. Nd3+ leads to decreasing ...

  19. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein

    DEFF Research Database (Denmark)

    Klukkert, Marten; Van De Weert, Marco; Fanø, Mathias

    2015-01-01

    The objective of this study was to investigate the influence of compaction on the conformation of trypsin, its transition temperature (Tm ) of unfolding, and its folding reversibility after thermal denaturation. Plain trypsin was compacted at 40-382 MPa. Pressure-induced changes in the trypsin...... was performed to determine the Tm as well as the folding reversibility after thermal denaturation of the reconstituted samples. It was found that compacted samples showed reduced activity accompanied by an altered secondary structure. Conformational changes that occur in the solid state were partially...... reversible upon tablet reconstitution. Aqueous-state IR spectroscopy combined with partial least squares was shown to be a powerful tool to follow irreversible structural changes and evaluate sample bioactivity. Besides its conformation, the thermal stability of trypsin was altered as a result of the applied...

  20. Differential scanning calorimetry thermal properties and oxidative stability indices of microwave heated extra virgin olive oils.

    Science.gov (United States)

    Chiavaro, Emma; Rodriguez-Estrada, Maria Teresa; Bendini, Alessandra; Rinaldi, Massimiliano; Cerretani, Lorenzo

    2011-01-30

    The use of differential scanning calorimetry (DSC) for assessing the deterioration effect of microwave heating on vegetable oils, and on olive oils in particular, has been partially explored in literature. The aim of this work was to evaluate the potential of DSC to discriminate among microwaved extra virgin olive oils (EvOo from different olive cultivar and origin), according to changes on thermal properties (upon cooling and heating) and traditional oxidative stability indices (peroxide, p-anisidine and TOTOX values). An elevated value of lipid oxidation was reached by the most unsaturated EvOo sample (9.5% of linoleic acid) at 6 min of microwave treatment. Free acidity significantly increased (0.42%) only for the oil sample with the highest water content (874 mg kg(-1) oil) at the longest time of treatment. Crystallisation enthalpies significantly decreased and the major exothermic peak shifted towards lower temperature, leading to enlargement of the transition range in all samples due to the formation of weak and mixed crystals among triacylglycerols and lipid degradation products. On the contrary, thermal properties upon heating appeared to similarly vary among samples. The analysis of DSC thermal properties upon cooling seemed to clearly discriminate among different EvOo samples after microwaving. The relation between changes of thermal properties and oxidation parameters should be further studied using additional oxidative stability indices on a larger set of oil samples, due to the complexity of EvOo composition. 2010 Society of Chemical Industry.

  1. Performance and Thermal Stability of a Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    Directory of Open Access Journals (Sweden)

    Joanna McFarlane

    2014-01-01

    Full Text Available Because polyaromatic hydrocarbons show high thermal stability, an example of these compounds, phenylnaphthalene, was tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 ℃ indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. This would indicate that the internal channels of cooler components of trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades to be used in a loop at temperatures significantly greater than the current 400 ℃ maximum for organic fluids. Similar degradation pathways may occur with other organic materials. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of 60% could be achieved using a high efficiency collector and 12 h thermal energy storage when run at a field outlet temperature of 550 ℃.

  2. Nonlinear thermal stability of geometrically imperfect shape memory alloy hybrid laminated composite plates

    Science.gov (United States)

    Asadi, Hamed; Eynbeygi, Mehdi; Wang, Quan

    2014-07-01

    The instability of geometrically imperfect shape memory alloy (SMA) fibers reinforced with hybrid laminated composite (SMAHC) plates and subjected to a uniform thermal loading is analytically investigated. The material properties of the SMAHC plates are assumed to be functions of temperature. Nonlinear equations of the plates’ thermal stability are derived based on a higher order shear deformation theory incorporating von Karman geometrical nonlinearity via stationary potential energy. The structural recovery stress, which is generated by martensitic phase transformation of the prestrained SMA fibers, is calculated based on the one-dimensional thermodynamic constitutive model by Brinson. Adopting the Galerkin procedure, the governing nonlinear partial differential equations are converted into a set of nonlinear algebraic equations, in which systems of equations are solved by introducing an analytical approach. Closed-form formulations are presented to determine the load-deflection path and critical buckling temperature of the plate. Based on the developed closed-form solutions, ample numerical results are presented to provide an insight into the effects of the volume fraction, prestrain, location and orientation of the SMA fibers, composite plate geometry, geometrical imperfection and temperature dependence on the stability of the SMAHC plates. It is shown that a proper application of SMA fibers results in a considerable delay of the thermal bifurcation and controllable thermal post-buckling deflection of the SMAHC plate.

  3. Thermal stability of antiparasitic macrocyclic lactones milk residues during industrial processing.

    Science.gov (United States)

    Imperiale, F A; Farias, C; Pis, A; Sallovitz, J M; Lifschitz, A; Lanusse, C

    2009-01-01

    The chemical stability of residues of different antiparasitic macrocyclic lactone compounds in milk subjected to thermal treatment was assessed. Concentrations of ivermectin (IVM), moxidectin (MXD) and eprinomectin (EPM) in sheep milk, equivalent to those measured in vivo in milk excretion studies, were subjected to 65 degrees C over 30 min or to 75 degrees C for 15 s. Residue concentrations of IVM, MXD and EPM in milk were measured by high-performance liquid chromatography (HPLC) (fluorescence detection) before and after heat treatment of the drug-fortified milk samples. No evidence of chemical loss was obtained in either of the thermal treatments under evaluation. The stability of the parent compounds in milk was evidenced by the lack of bioconversion products (metabolites) after both thermal treatments. Only very minor changes on drug concentrations were observed at the end of the treatments, which fell within the limits of the variation of the validated analytical method. In conclusion, residue concentrations of macrocyclic lactones are unaffected by industrial-simulated milk thermal procedures. Based on the reported findings, it can be postulated that residue concentrations of IVM, MXD and EPM measured in raw sheep milk may be used to estimate consumer exposure and dietary intake for these veterinary drugs.

  4. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene.

    Science.gov (United States)

    Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-11-01

    Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Thermal Stability of RNA Structures with Bulky Cations in Mixed Aqueous Solutions.

    Science.gov (United States)

    Nakano, Shu-Ichi; Tanino, Yuichi; Hirayama, Hidenobu; Sugimoto, Naoki

    2016-10-04

    Bulky cations are used to develop nucleic-acid-based technologies for medical and technological applications in which nucleic acids function under nonaqueous conditions. In this study, the thermal stability of RNA structures was measured in the presence of various bulky cations in aqueous mixtures with organic solvents or polymer additives. The stability of oligonucleotide, transfer RNA, and polynucleotide structures was decreased in the presence of salts of tetrabutylammonium and tetrapentylammonium ions, and the stability and salt concentration dependences were dependent on cation sizes. The degree to which stability was dependent on salt concentration was correlated with reciprocals of the dielectric constants of mixed solutions, regardless of interactions between the cosolutes and RNA. Our results show that organic solvents affect the strength of electrostatic interactions between RNA and cations. Analysis of ion binding to RNA indicated greater enhancement of cation binding to RNA single strands than to duplexes in media with low dielectric constants. Furthermore, background bulky ions changed the dependence of RNA duplex stability on the concentration of metal ion salts. These unique properties of large tetraalkylammonium ions are useful for controlling the stability of RNA structures and its sensitivity to metal ion salts. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications

    International Nuclear Information System (INIS)

    Fischer, Fabian; Laevemann, Eberhard

    2015-01-01

    Thermal energy storage based on adsorption and desorption of water on an adsorbent can achieve high energy storage densities. Many adsorbents lose adsorption capacity when operated under unfavourable hydrothermal conditions during adsorption and desorption. The stability of an adsorbent against stressing hydrothermal conditions is a key issue for its usability in adsorption thermal energy storage. We built an experimental setup that simultaneously controls the hydrothermal conditions of 16 samples arranged in a matrix of four temperatures and four water vapour pressures. This setup allows the testing of potential adsorbents between temperatures of 50 °C and 350 °C and water vapour pressures of up to 32 kPa. A measurement procedure that allows the detection of the hydrothermal stability of an adsorbent after defined time spans has been designed. We verified the functionality of the multiple sample measurements with a microporous adsorbent, a zeolite NaMSX. The hydrothermal stability of this zeolite is tested by water uptake measurements. A standard deviation lower than 1% of the 16 samples for detecting the hydrothermal stability enables setting different conditions in each sample cell. Further, we compared the water uptake measurements by measuring their adsorption isotherms with the volumetric device BELSORP Aqua 3 from Bel Japan. (paper)

  8. Glycerol, trehalose and glycerol–trehalose mixture effects on thermal stabilization of OCT

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, D., E-mail: dbarreca@unime.it [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Laganà, G. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Magazù, S.; Migliardo, F. [Dipartimento di Fisica, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Bellocco, E. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Trehalose influences both enzymatic activity and conformational changes of enzyme. • The results obtained by INS and QENS show a switching-off of the fast dynamics at very low glycerol content. • The diffusive dynamics is slowing down at very low glycerol concentration. • The mixtures of trehalose/glycerol lose the thermal stabilizing effects of pure compounds. - Abstract: The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  9. The pH-dependent thermal and storage stability of glycosylated caseinomacropeptide

    DEFF Research Database (Denmark)

    Siegert, Nadja; Tolkach, Alexander; Kulozik, Ulrich

    2012-01-01

    treatment and storage under different pH values. Process stability (preservation of native protein structure in terms of attached glycans) was analysed by quantifying the release of the terminal carbohydrate, N-acetylneuraminic acid (Neu5Ac), from gCMP. The results clearly showed that the thermal stability...... of gCMP is strongly influenced by pH. When the pH was decreased from 7 to 2, reduced stability was found even at low heating temperatures. Minimal destabilisation effects were found at neutral pH. Similar observations were found during storage of gCMP. Neu5Ac was released after six days of storage......, with a maximum release of 30% at pH 2. Acidic pH conditions were responsible for the hydrolysis of the glycans from the peptide backbone during heat treatment and storage....

  10. Analysis of the competitiveness and development of the thermal solar sector in France. Synthesis

    International Nuclear Information System (INIS)

    KAAIJK, Paul

    2013-10-01

    This synthesis reports a comprehensive study (October 2013) for ADEME, the French office for energy management and sustainable development, which presents an assessment of the present structure of the solar thermal sector in France (and overseas territories): main actors, Research and Development activities, qualification and certification of equipment, distribution, design and education aspects, installation, etc. In the second and third parts of the report, the demand and the perception of the offer by clients are assessed, followed by a presentation of the sector cost structure and a comparison of various competitive systems. In the last part of the synthesis, a diagnostic of the sector is exposed, with propositions and recommendations

  11. Thermal stability analysis of eccentrically stiffened Sigmoid-FGM plate with metal–ceramic–metal layers based on FSDT

    Directory of Open Access Journals (Sweden)

    Pham Hong Cong

    2016-12-01

    Full Text Available This paper researches the thermal stability of eccentrically stiffened plates made of functionally graded materials (FGM with metal–ceramic–metal layers subjected to thermal load. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections with Pasternak type elastic foundations. By applying Galerkin method and using stress function, effects of material and geometrical properties, elastic foundations, temperature-dependent material properties, and stiffeners on the thermal stability of the eccentrically stiffened S-FGM plates in thermal environment are analyzed and discussed.

  12. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    Science.gov (United States)

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol -1 ) than at 0.1MPa (181.7±12.1kJmol -1 ). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm 3 mol -1 . A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcation occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.

  14. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    International Nuclear Information System (INIS)

    Bai Suli; Huang Chengdu; Lv Jing; Li Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N 2 -physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO 2 catalyst showed an enhanced activity, C 5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO 2 catalyst.

  15. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lee

    Full Text Available Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K generated a melting temperature increase of 15.7°C. Thus, this study

  16. Synthesis and Thermal behaviors of 1, 8-Dihydroxy-4, 5-Dinitroanthraquinone Nickel Salt

    Science.gov (United States)

    Wang, Ying-lei; Zhao, Feng-qi; Yi, Jian-hua; Ji, Yue-ping; Wang, Wei; Xu, Si-yu; An, Ting; Gao, Fu-lei

    2017-11-01

    A novel energetic combustion catalyst, 1, 8-dihydroxy-4, 5-dinitroanthraquinone nickel salt (DHDNENi), was firstly synthesized by the process of metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The thermal behavior and non-isothermal decomposition reaction kinetics of DHDNENi were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for DHDNENi is obtained. The self-accelerating decomposition temperature (TSADT) and critical temperature of thermal explosion (Tb) are 574.4K and 593.4K, respectively. The thermal stability of DHDNENi is good.

  17. Synthesis, thermal properties and photoisomerization of trans-[Ru ...

    Indian Academy of Sciences (India)

    chemsci

    Ruthenium nitrosyl complexes; pyridine; X-ray crystallography-thermal analysis; photoinduced ... for 30 min while cooling with liquid nitrogen and then the IR ... details for trans-[Ru(NO)Py2Cl2(H2O)]H2PO4·2H3PO4·H2O (I). Empirical formula. C5H11ClN1.50O7.50P1.50Ru0.50. Formula weight. 344.59. Crystal system.

  18. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols

    International Nuclear Information System (INIS)

    Van de Broek, B; Frederix, F; Bonroy, K; Jans, H; Jans, K; Borghs, G; Maes, G

    2011-01-01

    Gold nanoparticles are ideal candidates for clinical applications if their plasmon absorption band is situated in the near infrared region (NIR) of the electromagnetic spectrum. Various parameters, including the nanoparticle shape, strongly influence the position of this absorption band. The aim of this study is to produce stabilized NIR absorbing branched gold nanoparticles with potential for biomedical applications. Hereto, the synthesis procedure for branched gold nanoparticles is optimized varying the different synthesis parameters. By subsequent electroless gold plating the plasmon absorption band is shifted to 747.2 nm. The intrinsic unstable nature of the nanoparticles' morphology can be clearly observed by a spectral shift and limits their use in real applications. However, in this article we show how the stabilization of the branched structure can be successfully achieved by exchanging the initial capping agent for different alkanethiols and disulfides. Furthermore, when using alkanethiols/disulfides with poly(ethylene oxide) units incorporated, an increased stability of the gold nanoparticles is achieved in high salt concentrations up to 1 M and in a cell culture medium. These achievements open a plethora of opportunities for these stabilized branched gold nanoparticles in nanomedicine.

  19. Plant-Mediated Synthesis of Silver Nanoparticles and Their Stabilization by Wet Stirred Media Milling

    Science.gov (United States)

    Baláž, Matej; Balážová, Ľudmila; Daneu, Nina; Dutková, Erika; Balážová, Miriama; Bujňáková, Zdenka; Shpotyuk, Yaroslav

    2017-02-01

    Within this study, a stable nanosuspension of silver nanoparticles (Ag NPs) was prepared using a two-step synthesis and stabilization approach. The Ag NPs were synthesized from a silver nitrate solution using the Origanum vulgare L. plant extract as the reducing agent. The formation of nanoparticles was finished upon 15 min, and subsequently, stabilization by polyvinylpyrrolidone (PVP) using wet stirred media milling was applied. UV-Vis spectra have shown a maximum at 445 nm, corresponding to the formation of spherical Ag NPs. Infrared spectroscopy was used to examine the interaction between Ag NPs and the capping agents. TEM study has shown the formation of Ag NPs with two different average sizes (38 ± 10 nm and 7 ± 3 nm) after the plant-mediated synthesis, both randomly distributed within the organic matrix. During milling in PVP, the clusters of Ag NPs were destroyed, the Ag NPs were fractionized and embedded in PVP. The nanosuspensions of PVP-capped Ag NPs were stable for more than 26 weeks, whereas for the non-stabilized nanosuspensions, only short-term stability for about 1 week was documented.

  20. Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids.

    Science.gov (United States)

    Stevenson, Julian; Luu, Winnie; Kristiana, Ika; Brown, Andrew J

    2014-08-01

    SM (squalene mono-oxygenase) catalyses the first oxygenation step in cholesterol synthesis, immediately before the formation of the steroid backbone at lanosterol. SM is an important control point in the pathway, and is regulated at the post-translational level by accelerated cholesterol-dependent ubiquitination and proteasomal degradation, which is associated with the accumulation of squalene. Using model cell systems, we report that SM is stabilized by unsaturated fatty acids. Treatment with unsaturated fatty acids such as oleate, but not saturated fatty acids, increased protein levels of SM or SM-N100-GFP (the first 100 amino acids of SM fused to GFP) at the post-translational level and partially overcame cholesterol-dependent degradation, as well as reversing cholesterol-dependent squalene accumulation. Maximum stabilization required activation of fatty acids, but not triacylglycerol or phosphatidylcholine synthesis. The mechanism of oleate-mediated stabilization appeared to occur through reduced ubiquitination by the E3 ubiquitin ligase MARCH6. Stabilization of a cholesterol biosynthetic enzyme by unsaturated fatty acids may help maintain a constant cholesterol/phospholipid ratio.

  1. Biodiesel from “Morelos” Rice: Synthesis, Oxidative Stability, and Corrosivity

    Directory of Open Access Journals (Sweden)

    J. Zuñiga-Díaz

    2018-01-01

    Full Text Available Rice bran is a by-product of great production worldwide and its use for the synthesis of biodiesel does not affect the food chain and therefore it is an excellent alternative for the production of biofuels with low carbon footprint. In this work, the synthesis of biodiesel was carried out from the raw rice bran oil of a kernel variety called “Morelos rice.” The stability and corrosivity characteristics of biodiesel were determined. Biodiesel stability was determined both under storage conditions and under accelerated oxidation conditions, and its corrosivity was evaluated by electrochemical impedance spectroscopy at 110°C under aerated conditions. The results showed that, due to the high instability of the rice bran, its raw oil had a high content of free fatty acids. The synthesized biodiesel showed excellent stability under storage conditions of up to five months, and its oxidative stability was much higher than that established in international standards. On the other hand, biodiesel showed low corrosivity and this was only significant once oxidative degradation began.

  2. Low thermal conductivity CoSb3 materials prepared by rapid synthesis process

    Science.gov (United States)

    Deng, L.; Ni, J.; Qin, J. M.; Ma, H. A.; Jia, X. P.

    2018-02-01

    Nano-particles and defects have effective influence on reducing the lattice thermal conductivity. In this work, a serious of high concentration Te doping bulk polycrystalline materials Co4Sb11.2Te0.8 has been synthesized successfully at different pressures by the high pressure and high temperature (HPHT) method. All samples were characterized by X-ray diffraction. The Seebeck coefficient α, electrical resistivity ρ and thermal conductivity κ were all measured from 373 K to 673 K. It could be observed obviously that, as the synthesis pressure rised, the thermal conductivity of Co4Sb11.2Te0.8 decreased remarkably. The minimum thermal conductivity of 1.36 W m-1 K-1 was obtained by Co4Sb11.2Te0.8 sample synthesized at 3.7 GPa. The corresponding microstructures were also studied by SEM and HRTEM images.

  3. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  4. Synthesis and thermal behavior of polyacrylonitrile/vinylidene chloride copolymer

    Directory of Open Access Journals (Sweden)

    Robson Fleming

    2014-06-01

    Full Text Available Polyacrylonitrile fiber encompasses a broad range of products based on acrylonitrile (AN which is readily copolymerized with a wide range of ethylenic unsaturated monomers giving rise to polymers with different characteristics and applications. Such products can be designed for cost-effective, flame and heat resistant solutions for the textile industry, aircraft and automotive markets. In the present work acrylonitrile was copolymerized with vinylidene chloride (VDC by conventional suspension polymerization process via redox system, with an initial content of 10%/mass of the VDC monomer. The copolymer average molecular weight was obtained by Gel Permeation Chromatography (GPC and by intrinsic viscosity analysis. To control the polymerization process continuously, qualitative and quantitative analysis of the chloride content in the PAN AN/VDC copolymer structure was accomplished by using X-ray fluorescence and potentiometric titration techniques. A good correlation was found between these two techniques, leading to a straightforward verification of VDC in the polymer structure. The thermal behavior of PAN AN/VDC copolymer was performed by Differential Scanning Calorimetry (DSC and Thermogravimetric Analysis (TGA. The results showed that VDC monomers exhibited a nearly stoichiometric reaction with acrylonitrile, copolymerizing about 90% of its initial mass. VDC changed significantly the polyacrylonitrile thermal behavior, decreasing the polymer degradation temperature by about 40-50°C.

  5. Effect of thermal cycling and disinfection on colour stability of denture base acrylic resin.

    Science.gov (United States)

    Goiato, Marcelo C; Dos Santos, Daniela M; Baptista, Gabriella T; Moreno, Amália; Andreotti, Agda M; Bannwart, Lisiane C; Dekon, Stefan F C

    2013-12-01

    The purpose of this study was to investigate the effect of thermal cycling and disinfection on the colour change of denture base acrylic resin. Four different brands of acrylic resins were evaluated (Onda Cryl, QC 20, Classico and Lucitone). All brands were divided into four groups (n = 7) determined according to the disinfection procedure (microwave, Efferdent, 4% chlorhexidine or 1% hypochlorite). The treatments were conducted three times a week for 60 days. All specimens were thermal cycled between 5 and 55°C with 30-s dwell times for 1000 cycles before and after disinfection. The specimens' colour was measured with a spectrophotometer using the CIE L*a*b* system. The evaluations were conducted at baseline (B), after first thermal cycling (T1 ), after disinfection (D) and after second thermal cycling (T2 ). Colour differences (ΔE) were calculated between T1 and B (T1 B), D and B (DB), and T2 and B (T2 B) time-points.   The samples submitted to disinfection by microwave and Efferdent exhibited the highest values of colour change. There were significant differences on colour change between the time-points, except for the Lucitone acrylic resin. The thermal cycling and disinfection procedures significantly affected the colour stability of the samples. However, all values obtained for the acrylic resins are within acceptable clinical parameters. © 2012 John Wiley & Sons A/S and The Gerodontology Society. Published by John Wiley & Sons Ltd.

  6. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Curry, N.; Janikowski, W.; Pala, Zdeněk; Vilémová, Monika; Markocsan, N.

    2014-01-01

    Roč. 23, 1-2 (2014), s. 160-169 ISSN 1059-9630. [International Thermal Spray Conference (ITSC2013). Busan, 13.05.2013-15.05.2013] Institutional support: RVO:61389021 Keywords : atmospheric plasma spray ( APS ) * thermal and phase stability of coatings * thermal barrier coatings (TBCs) * thermal conductivity * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.344, year: 2014 http://link.springer.com/article/10.1007%2Fs11666-013-0014-9/fulltext.html

  7. Comparative study of gum arabic and PVP as stabilizing agents for synthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Silva, Andressa A.; Leal, Jessica; Geraldes, Adriana N.; Lugao, Ademar B.

    2015-01-01

    Use Colloidal metallic nanoparticles such as gold nanoparticles have received a great attention, due in part to their specific properties and potential applications. Control of size and uniformity of nanoparticles is important to prevent aggregation. High-molecular-weight polymers were used as stabilizer agents. Natural polymers, such as gum Arabic, are used as stabilizer because of capping nanoparticles behavior and present advantages such as solubility, non- toxicity and its compatibility for pharmaceutical and biomedical applications. Previous studies showed that the hydrophilic group of Poly(vinyl pyrrolidone) (PVP) caused repulsion on gold nanoparticles surface because steric interactions with polymer, for this reason this kind of polymers could be used as stabilizer agent. The aim of this work is to study the synthesis and stabilization of gold nanoparticles with PVP and gum Arabic using gamma radiation. The results obtained by samples analysis using UV-Visible showed that the gamma irradiation doses influenced the nanoparticles formation by PVP but that is not the case with the GA, because for smaller quantity of Arabic gum in different doses produced and stabilized nanoparticles. The samples were observed for 20 days and showed stability. We have obtained preliminary results showed that the use of radiation is applicable to the formation of gold nanoparticles. (author)

  8. Comparative study of gum arabic and PVP as stabilizing agents for synthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andressa A.; Leal, Jessica; Geraldes, Adriana N.; Lugao, Ademar B., E-mail: andressa_alvess@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Use Colloidal metallic nanoparticles such as gold nanoparticles have received a great attention, due in part to their specific properties and potential applications. Control of size and uniformity of nanoparticles is important to prevent aggregation. High-molecular-weight polymers were used as stabilizer agents. Natural polymers, such as gum Arabic, are used as stabilizer because of capping nanoparticles behavior and present advantages such as solubility, non- toxicity and its compatibility for pharmaceutical and biomedical applications. Previous studies showed that the hydrophilic group of Poly(vinyl pyrrolidone) (PVP) caused repulsion on gold nanoparticles surface because steric interactions with polymer, for this reason this kind of polymers could be used as stabilizer agent. The aim of this work is to study the synthesis and stabilization of gold nanoparticles with PVP and gum Arabic using gamma radiation. The results obtained by samples analysis using UV-Visible showed that the gamma irradiation doses influenced the nanoparticles formation by PVP but that is not the case with the GA, because for smaller quantity of Arabic gum in different doses produced and stabilized nanoparticles. The samples were observed for 20 days and showed stability. We have obtained preliminary results showed that the use of radiation is applicable to the formation of gold nanoparticles. (author)

  9. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    Science.gov (United States)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  10. Thermal stability of formulations of PVC irradiated with γ of 60

    International Nuclear Information System (INIS)

    Martinez P, M.E.; Carrasco A, H.; Castaneda F, A.; Benavides C, R.; Garcia R, S.P.

    2004-01-01

    The industry of cables and wires frequently use cable isolations with base of formulations of PVC, in those that stabilizer has usually been used with the help of heavy metals, as the lead, which is toxic. To solve the problem, from the 2002 one has come studying in combined form in the National Institute of Nuclear Research ININ and the Center of Investigation in Applied Chemistry CIQA, the modifications induced by the radiation in formulations with the help of vinyl poly chloride PVC. In these formulations, prepared with cross linking agent, plastifying industrial grade, stuff and non toxic stabilizers of calcium estearate and zinc industrial grade, it is sought to replace the stabilizer of Pb. For this were irradiated it test tubes of PVC with gamma radiation of cobalt 60 to three different dose in atmospheres of air and argon. Later it was determined their thermal stability at different times of heating and it was measured the Young modulus by means of thermo mechanical analysis. Those results obtained together with other techniques of characterization suggest that the irradiated proposed formulation can substitute the one stabilized with lead. (Author)

  11. Synthesis, characterization and thermal behavior of rare earth amido sulfonates

    International Nuclear Information System (INIS)

    Luiz, Jose Marques; Nunes, Ronaldo Spezia; Matos, Jivaldo do Rosario

    2013-01-01

    Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H 3 NSO 3 ] and suspensions of rare earth hydroxycarbonates [Ln 2 (OH) x (CO 3 ) y .zH 2 O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH 2 SO 3 ) 3 .xH 2 O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H 2 O molecules and NH 2 SO 3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln 2 (SO 4 ) 3 ] and (Ln 2 O 2 SO 4 ), besides formation of their oxides, was determined by thermogravimetry. (author)

  12. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer

    International Nuclear Information System (INIS)

    Sheng, Haitong; Peng, Xuegang; Guo, Hui; Yu, Xiaoyan; Tang, Chengchun; Qu, Xiongwei; Zhang, Qingxin

    2013-01-01

    A novel alkyl-center-trisphenolic-based high-temperature phthalonitrile monomer, namely, 1,1,1-tris-[4-(3,4-dicyanophenoxy)phenyl]ethane (TDPE), was synthesized from 1,1,1-tris-(4-hydroxyphenyl)ethane (THPE) via a facile nucleophilic displacement of a nitro-substituent from 4-nitrophthalonitrile (NPN). The structure of TDPE monomer was characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR), elemental analysis (EA). Curing behaviors of TDPE with 4-(aminophenoxy)phthalonitrile (APPH) were recorded by differential scanning calorimetric (DSC) and it showed a large processing window (122 °C) which is favorable to processing TDPE polymers. The structure of TDPE polymer was discussed and the thermal stabilities of TDPE polymer were evaluated by thermogravimetric analysis (TGA). The TDPE polymer exhibits excellent thermal stability, and mechanism of thermal decompositions was explored. Dynamic mechanical analysis (DMA) revealed that the TDPE polymer has high storage modulus and high glass transition temperature (T g > 380 °C). - Highlights: • A novel high-temperature phthalonitrile polymer was synthesized. • Polymerization mechanism was explored. • The polymer shows excellent thermal stability. • Outstanding mechanical properties was achieved: storage modulus = 3.7 GPa, T g > 380 °C. • Thermal decomposition mechanism was discussed

  13. Thermal and hydrothermal stability of selected polymers in a nuclear reactor environment

    Science.gov (United States)

    Kim, Jinho

    The focus of this study is the development and understanding of polymer based burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs). This material substitution reduces the water displacement penalty at the end of cycle (EOC) currently found with the B4C/Al 2O3 BPRAs that displace moderator water in PWRs. This gives rise to a longer fuel cycle due to the extra moderation from hydrogen in polymer structures. Finding synthetic polymers that endure a severe nuclear reactor circumstance is a challenge. Aside from the proper thermal stability at the range of 350--600°C in the core for a single cycle, the hydrothermal stability at near-critical water condition (350°C, 20.7MPa) is required to maintain the safe and controlled nuclear reaction because a danger comes if water might possibly penetrate inside the burnable poison rod by the failure of zircaloy cladding. There are two approaches to obtain a boron source (burnable position material) in hydrogen containing polymers. One is to utilize the boron source directly by synthesizing boron-containing polymers. A second approach is to find commercial polymers that have an appropriate thermal, hydrothermal, radiational stability and high hydrogen content; and then add an inorganic boron source such as B4C to form a composite material. Poly (diacetylene-siloxane-carborane)s and other silicon based precursor polymers were introduced to observe their thermal and hydrothermal stability. However, we found that the degradation of Si-O-Si, which was presented in the polymer, was an unfavorable disadvantage under near-critical water (350°C, 20.7MPa) even though they formed dense network structures. In addition, the Si-O bond is quite sensitive to variety of reagents, including base and acid. Therefore, the degradation rate might be accelerated by high H+ and OH- ion concentrations at the near-critical water condition. For the second approach, a number of candidate matrix polymers were screened for new

  14. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  15. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Nicula, R., E-mail: radu.nicula@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Crisan, O.; Crisan, A.D.; Mercioniu, I. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Stir, M. [University of Berne, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012 Berne (Switzerland); Vasiliu, F. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2015-02-15

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1{sub 0} FePt and soft magnetic L1{sub 2} Fe{sub 3}Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe{sub 48}Pt{sub 28}Ag{sub 6}B{sub 18} alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe{sub 3}Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1{sub 0} unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1{sub 0} phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T{sub C} = 477 °C. This non-linear behavior above T{sub C} is tentatively linked to a diffusion/segregation mechanism of Ag

  16. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W; Stair, Peter C

    2013-08-20

    Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition-precipitation to control and tune these factors, to establish structure-performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leads to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe

  17. Stability Evaluation of Buildings in Urban Area Using Persistent Scatterer Interfometry -Focused on Thermal Expansion Effect

    Science.gov (United States)

    Choi, J. H.; Kim, S. W.; Won, J. S.

    2017-12-01

    The objective of this study is monitoring and evaluating the stability of buildings in Seoul, Korea. This study includes both algorithm development and application to a case study. The development focuses on improving the PSI approach for discriminating various geophysical phase components and separating them from the target displacement phase. A thermal expansion is one of the key components that make it difficult for precise displacement measurement. The core idea is to optimize the thermal expansion factor using air temperature data and to model the corresponding phase by fitting the residual phase. We used TerraSAR-X SAR data acquired over two years from 2011 to 2013 in Seoul, Korea. The temperature fluctuation according to seasons is considerably high in Seoul, Korea. Other problem is the highly-developed skyscrapers in Seoul, which seriously contribute to DEM errors. To avoid a high computational burden and unstable solution of the nonlinear equation due to unknown parameters (a thermal expansion parameter as well as two conventional parameters: linear velocity and DEM errors), we separate a phase model into two main steps as follows. First, multi-baseline pairs with very short time interval in which deformation components and thermal expansion can be negligible were used to estimate DEM errors first. Second, single-baseline pairs were used to estimate two remaining parameters, linear deformation rate and thermal expansion. The thermal expansion of buildings closely correlate with the seasonal temperature fluctuation. Figure 1 shows deformation patterns of two selected buildings in Seoul. In the figures of left column (Figure 1), it is difficult to observe the true ground subsidence due to a large cyclic pattern caused by thermal dilation of the buildings. The thermal dilation often mis-leads the results into wrong conclusions. After the correction by the proposed method, true ground subsidence was able to be precisely measured as in the bottom right figure

  18. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed.

    Science.gov (United States)

    Solís-Fuentes, Julio A; Camey-Ortíz, Guadalupe; Hernández-Medel, María del Rosario; Pérez-Mendoza, Francisco; Durán-de-Bazúa, Carmen

    2010-01-01

    In this paper, the chemical composition, the main physicochemical properties, phase behavior and thermal stability of rambutan (Nephelium lappaceum L.) seed fat were studied. These results showed that the almond-like decorticated seed represents 6.1% of the wet weight fruit and is: 1.22% ash, 7.80% protein, 11.6% crude fiber, 46% carbohydrates, and 33.4% fat (d.b.). The main fatty acids in the drupe fat were 40.3% oleic, 34.5% arachidic, 6.1% palmitic, 7.1% stearic, 6.3% gondoic, and 2.9% behenic; the refraction, saponification and iodine values were 1.468, 186, and 47.0, respectively. The phase behavior analysis showed relatively simple crystallization and melting profiles: crystallization showed three well-differentiated groups of triglycerides around maximum peaks at +30.8, +15.6 and -18.1 degrees C; the fat-melting curve had a range between -14.5 and +51.8 degrees C with a fusion enthalpy of 124.3 J/g. The thermal stability analyzed in an inert atmosphere of N(2) and in a normal oxidizing atmosphere, showed that in the latter, fat decomposition begins at 237.3 degrees C and concludes at 529 degrees C, with three stages of decomposition. According to these results, rambutan seed fat has physicochemical and thermal characteristics that may become interesting for specific applications in several segments of the food industry.

  19. RP-2 Thermal Stability and Heat Transfer Investigation for Hydrocarbon Boost Engines

    Science.gov (United States)

    VanNoord, J. L.; Stiegemeier, B. R.

    2010-01-01

    A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines. The effect that test duration, operating condition and test piece material have on the overall thermal stability and materials compatibility characteristics of RP-2 were evaluated using copper and 304 stainless steel test sections. The copper tests were run at 1000 psia, heat flux up to 6.0 Btu/in.2-sec, and wall temperatures up to 1180 F. Preliminary results, using measured wall temperature as an indirect indicator of the carbon deposition process, show that in copper test pieces above approximately 850 F, RP-2 begins to undergo thermal decomposition resulting in local carbon deposits. Wall temperature traces show significant local temperature increases followed by near instantaneous drops which have been attributed to the carbon deposition/shedding process in previous investigations. Data reduction is currently underway for the stainless steel test sections and carbon deposition measurements will be performed in the future for all test sections used in this investigation. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-2.

  20. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.

    Science.gov (United States)

    Kahng, Yung Ho; Lee, Sangchul; Park, Woojin; Jo, Gunho; Choe, Minhyeok; Lee, Jong-Hoon; Yu, Hyunung; Lee, Takhee; Lee, Kwanghee

    2012-02-24

    Thermal stability is an important property of graphene that requires thorough investigation. This study reports the thermal stability of graphene films synthesized by chemical vapor deposition (CVD) on catalytic nickel substrates in a reducing atmosphere. Electron microscopies, atomic force microscopy, and Raman spectroscopy, as well as electronic measurements, were used to determine that CVD-grown graphene films are stable up to 700 °C. At 800 °C, however, graphene films were etched by catalytic metal nanoparticles, and at 1000 °C many tortuous tubular structures were formed in the film and carbon nanotubes were formed at the film edges and at catalytic metal-contaminated sites. Furthermore, we applied our pristine and thermally treated graphene films as active channels in field-effect transistors and characterized their electrical properties. Our research shows that remnant catalytic metal impurities play a critical role in damaging graphene films at high temperatures in a reducing atmosphere: this damage should be considered in the quality control of large-area graphene films for high temperature applications.

  1. Degradation mechanism and thermal stability of urea nitrate below the melting point

    Energy Technology Data Exchange (ETDEWEB)

    Desilets, Sylvain, E-mail: sylvain.desilets@drdc-rddc.gc.ca [Defence R and D Canada, Valcartier, 2459 Pie-XI Blvd North, Val-Belair, Quebec, Canada G3J 1X5 (Canada); Brousseau, Patrick; Chamberland, Daniel [Defence R and D Canada, Valcartier, 2459 Pie-XI Blvd North, Val-Belair, Quebec, Canada G3J 1X5 (Canada); Singh, Shanti; Feng, Hongtu; Turcotte, Richard [Canadian Explosives Research Laboratory, 1 Haanel Dr. Ottawa, Quebec, Canada K1A 1M1 (Canada); Anderson, John [Defence R and D Canada, Suffield, Box 4000, stn Main, Medicine Hat, Alberta, Canada T1A 8K6 (Canada)

    2011-07-10

    Highlights: {yields} Decomposition mechanism of urea nitrate. {yields} Spectral characterization of the decomposition mechanism. {yields} Thermal stability of urea nitrate at 50, 70 and 100 {sup o}C. {yields} Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 {sup o}C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, {sup 1}H and {sup 13}C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 {sup o}C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 {sup o}C. The thermal stability of urea nitrate, under extreme storage conditions (50 {sup o}C), was also examined by isothermal nano-calorimetry.

  2. Thermal Stability and Kinetic Study of Isotactic Polypropylene/Algerian Bentonite Nanocomposites Prepared via Melt Blending

    Directory of Open Access Journals (Sweden)

    Fayçal Benhacine

    2014-01-01

    Full Text Available Isotactic polypropylene (iPP/bentonite nanocomposites were prepared via melt blending using bentonite clay originated from Maghnia (Algeria. This clay was, at a first stage, used in its pure form (PBT and then organically modified by Hexadecyl ammonium chloride (OBT. The effect of Maghnia bentonite dispersion on the iPP matrix was investigated by X-ray diffraction (XRD and transmission electronic microscopy (TEM. DSC results evidenced that unmodified or organomodified bentonite can act as a nucleating agent increasing the rate of crystallites formation. Moreover, a thermogravimetry analysis confirmed a significant enhanced thermal stability of IPP/clay nanocomposites compared to pure IPP. The Flynn-Wall-Ozawa and Tang methods were applied to determine the activation energy Ea of the degradation process. The apparent activation energy  Eα of thermal degradation for IPP/clay nanocomposites was much higher than that of virgin iPP. Comparatively to PBT, results indicate that OBT has an important effect on pure iPP thermal stability. Tensile modulus, tensile strength, and elongation at break were also measured and compared with those of pure iPP.

  3. Thermal-hydraulics stability of natural circulation BWR under startup. Flashing effects

    International Nuclear Information System (INIS)

    Hu, Rui; Kazimi, Mujid S.

    2009-01-01

    To help achieve the necessary natural circulation flow, a fairly long chimney is installed in a boiling natural circulation reactor like the ESBWR. In such systems, thermal-hydraulic stability during low pressure start-up should be examined while considering the flashing induced by the pressure drop in the channel and the chimney due to gravity head. In this work, a BWR stability analysis code in the frequency domain, named FISTAB (Flashing-Induced STability Analysis for BWR), was developed to address the issue of flashing-induced instability. A thermal-hydraulics non-homogeneous equilibrium model (NHEM) based on a drift flux formulation along with a lumped fuel dynamics model is incorporated in the work. The vapor generation rate is derived from the mixture energy conservation equation while considering the effect of flashing. The functionality of the FISTAB code was confirmed by comparison to experimental results from SIRIUS-N facility at CRIEPI, Japan. Both stationary and perturbation results agree well with the experimental results. (author)

  4. Effect of thermal and high pressure processing on stability of betalain extracted from red beet stalks.

    Science.gov (United States)

    Dos Santos, Cláudia Destro; Ismail, Marliya; Cassini, Aline Schilling; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Farid, Mohammed

    2018-02-01

    Red beet stalks are a potential source of betalain, but their pigments are not widely used because of their instability. In the present work, the applicability of high pressure processing (HPP) and high temperature short time (HTST) thermal treatment was investigated to improve betalain stability in extracts with low and high concentrations. The HPP was applied at 6000 bar for 10, 20 and 30 min and HTST treatment was applied at 75.7 °C for 80 s, 81.1 °C for 100 s and 85.7 °C for 120 s, HPP treatment did not show any improvement in the betalain stability. In turn, the degradation rate of the control and the HTST thermal treatment at 85.7 °C for 120 s of the sample with high initial betalain concentration were 1.2 and 0.4 mg of betanin/100 ml of extract per day respectively. Among the treatments studied, HTST was considered the most suitable to maintain betalain stability from red beet stalks.

  5. Thermal stability and energy of deactivation of free and immobilized cellobiase

    Directory of Open Access Journals (Sweden)

    L.P.V. Calsavara

    2000-12-01

    Full Text Available Commercial cellobiase has been immobilized in controlled pore silica particles by covalent binding with the silane-glutaraldehyde method with protein and activity yields of 67% and 13.7%, respectively. Thermal stability of the free and immobilized enzyme (IE was determined with 0.2% w/v cellobiose solution, pH 4.8, temperatures from 40 to 70°C for free enzyme and 40 to 75°C for IE. Free cellobiase maintained its activity practically constant for 240 min at temperatures up to 55°C. The IE has shown higher stability retaining its activity in the same test up to 60° C. Half-lives for free enzyme were 14.1, 2.1 and 0.17 h at 60, 65 and 70°C, respectively, whereas the IE at the same temperatures had half-lives of 245, 21.3 and 2.9 h. The energy of thermal deactivation was 80.6 kcal/mol for the free enzyme and 85.2 kcal/mol for the IE, confirming stabilization by immobilization.

  6. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abou-Mesalam, M. M.; El-Shorbagy, M.M.; Shady, S.A.

    2005-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium ceric nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic systems, respectively. The chemical composition of both chromium and cerium titanates were determined by X-ray fluorescence technique and based on the data obtained with other different techniques. We can proposed molecular formula for chromium and cerium titanates as Cr 2 Ti 1 2O27. 13H 2 O and Ce 2 ThO10. 7.46 H 2 O, respectively. Thermal stability of both ion exchangers was investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared to the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were investigated

  7. Box-Behnken experimental design for investigation of stability and thermal conductivity of TiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Lotfizadeh Dehkordi, Babak, E-mail: babakld@siswa.um.edu.my; Ghadimi, Azadeh; Metselaar, Henk S. C., E-mail: h.metselaar@um.edu.my [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering (Malaysia)

    2013-01-15

    The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO{sub 2} water nanofluids. A UV-Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of power of sonication (20-80 %), time of sonication (2-20 min), and volume concentration (0.1-1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO{sub 2} nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.

  8. Box–Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids

    International Nuclear Information System (INIS)

    Lotfizadeh Dehkordi, Babak; Ghadimi, Azadeh; Metselaar, Henk S. C.

    2013-01-01

    The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO 2 water nanofluids. A UV–Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box–Behnken design was implemented to investigate the influence of power of sonication (20–80 %), time of sonication (2–20 min), and volume concentration (0.1–1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO 2 nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.

  9. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  10. Synthesis of cobalt boride nanoparticles using radio frequency thermal plasma

    International Nuclear Information System (INIS)

    Lapitan, Jr. Lorico DS.; Ying Ying Chen; Seesoek Choe; Watanabe, Takayuki

    2012-01-01

    Nano size cobalt boride particles were synthesized from vapor phase using a 30 kw-4 MHz radio frequency (RF) thermal plasma. Cobalt and boron powder mixtures used as precursors in different composition and feed rate were evaporated immediately in the high temperature plasma and cobalt boride nanoparticles were produced through the quenching process. The x-ray diffractometry (XRD) patterns of cobalt boride nanoparticles prepared from the feed powder ratio of 1:2 and 1:3 for Co: B showed peaks that are associated with the Co 2 B and CoB crystal phases of cobalt boride. The XRD analysis revealed that increasing the powder feed rate results in a higher mass fraction and a larger crystalline diameter of cobalt boride nanoparticles. The images obtained by field emission scanning electron microscopy (FE-SEM) revealed that cobalt boride nanoparticles have a spherical morphology. The crystallite size of the particles estimated with XRD was found to be 18-22 nm. (author)

  11. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min‑1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ∼ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  12. Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles

    Science.gov (United States)

    Frenkel, A. I.; Nemzer, S.; Pister, I.; Soussan, L.; Harris, T.; Sun, Y.; Rafailovich, M. H.

    2005-11-01

    Size-controlled synthesis of nanoparticles of less than a few nanometers in size is a challenge due to the spatial resolution limit of most scattering and imaging techniques used for their structural characterization. We present the self-consistent analysis of the extended x-ray absorption fine-structure (EXAFS) spectroscopy data of ligand-stabilized metal nanoclusters. Our method employs the coordination number truncation and the surface-tension models in order to measure the average diameter and analyze the structure of the nanoparticles. EXAFS analysis was performed on the two series of dodecanethiol-stabilized gold nanoparticles prepared by one-phase and two-phase syntheses where the only control parameter was the gold/thiol ratio ξ, varied between 6:1 and 1:6. The two-phase synthesis resulted in the smaller particles whose size decreased monotonically and stabilized at 16Å when ξ was lowered below 1:1. This behavior is consistent with the theoretically predicted thermodynamic limit obtained previously in the framework of the spherical drop model of Au nanoparticles.

  13. Synthesis and stabilization of gold nanoparticles for biotechnological and cosmetics uses

    International Nuclear Information System (INIS)

    Silva, Andressa Alves da

    2016-01-01

    This study focuses on the synthesis and characterization of gold nanoparticles (AuNPs) with reducing agents and stabilizing sodium citrate and gum arabic. The synthesis was carried out by heating and use of gamma radiation source 60 Co in doses 1, 7.5 and 15 kGy. In this context, we studied the properties and stability of AuNPs formed through characterization techniques such as UV- Vis absorption, checking the characteristics of AuNPs bands as well as the physical stability thereof. The samples synthesized with sodium citrate (AuCit) showed wavelengths ranging from 520 to 525 nm and the samples synthesized with gum arabic (AuGA) showed wavelengths between 530 and 540 nm. The dynamic light scattering analysis (DLS) was used to determine the hydrodynamic diameter of nanoparticles formed during a period of three months, demonstrating that AuCit samples showed mean hydrodynamic sizes ranging from 20 to 50 nm while AuGA samples synthesized by heating and the use of gamma radiation had mean hydrodynamic sizes ranging 50 - 115 nm. Analysis of scanning electron microscope with field emission (SEM - FEG) and transmission electron microscopy (TEM) were used to determine the actual size distribution of nanoparticles and their geometric shape. The characterization of the AuGA showed smaller diameters in comparison to the one resulted from the DLS analysis, thus suggesting possible encapsulation of AuNPs. (author)

  14. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  15. Study of thermal stability of Cu{sub 2}Se thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Bohra, Anil, E-mail: anilbohra786@gmail.com; Bhatt, Ranu; Bhattacharya, Shovit; Basu, Ranita; Singh, Ajay; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, B.A.R.C., Trombay, Mumbai – 400085 (India); Ahmad, Sajid [Nuclear Research Laboratory, Astrophysical Sciences Division, B.A.R.C., Zakura, Srinagar– 190006 (India)

    2016-05-23

    Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu{sub 2}Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu{sub 2}Se phase in bare pellet which transforms to pure α-Cu{sub 2}Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed in EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu{sub 2}Se phase.

  16. Study of Thermal Stress Influence on Dimensional Stability of Silicone Molds

    Science.gov (United States)

    Bajčičák, Martin; Šuba, Roland

    2014-06-01

    The paper is focused on the study of temperature influence on dimensional stability of silicone molds used for spin casting of the low melting points alloys. The silicone material denoted as TEKSIL Silicone-GP-S was used to produce samples during experiments. The samples were heated to temperatures in the range from 100 up to 250oC for 30 up to 120 min. Dimensional changes of the samples in the radial and axial directions aa well as their change of weight were evaluated. The results of experiments proved that thermal stress of silicone molds can influence the size and shape of mold cavities. These results can also explain the possible mechanism of degradation process of silicone molds under thermal stress.

  17. A simple hydrothermal route to bimodal mesoporous nanorod {gamma}-alumina with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Han, Dezhi; Xue, Hongxia; Liu, Xinmei; Yan, Zifeng [China Univ. of Petroleum, Qingdao (China). State Key Lab. of Heavy Oil Processing

    2011-12-15

    In the presence of polyethylene glycol, bimodal mesoporous nanorod {gamma}-alumina was successfully synthesized via the thermal decomposition of ammonium aluminium carbonate hydroxide precursor which was prepared via hydrothermal processing with inorganic aluminium salt. The alumina exhibits high surface area (494 m{sup 2}g{sup -1}), large porosity (1.1 m{sup 3}g{sup -1}) and a particular double-pore structure after calcination at 500 C. The smaller pore diameter is concentrated on about 3 nm and the larger one is exhibited in the range of 10 - 38 nm. The scaffold-like aggregation of {gamma}-alumina nanorods endows this novel material with excellent thermal stability. A possible formation mechanism of bimodal mesoporous structure is also proposed in this study. (orig.)

  18. Comparison of thermal stability of grape seed oil with virgin sesame oil

    Directory of Open Access Journals (Sweden)

    Marzieh

    2015-11-01

    Full Text Available Background: Heating causes extensive physical and chemical changes in oil and fats, which can change all physical and chemical characteristics and quality of oil during frying is so critical. This study was aimed to compare the thermal stability of virgin sesame oil and grape seed oil. Methods: The grape seed oil and virgin sesame oil were heated at 180 ° C for 8 hours. Every hour, a sample of the heated oils was taken to determine the changes in acid value, peroxide, anisidine and Totox. Results: Heating the oil caused extensive chemical variations both oils. The acidity index increased over time (p<0.05, there were fluctuations inperoxide value, and anisidine and Totox values also increased during thermal processes (p<0.05. Conclusion: Grape seed oil showed more resistance to heat than sesame oil.

  19. Study of Thermal Stress Influence on Dimensional Stability of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of temperature influence on dimensional stability of silicone molds used for spin casting of the low melting points alloys. The silicone material denoted as TEKSIL Silicone-GP-S was used to produce samples during experiments. The samples were heated to temperatures in the range from 100 up to 250oC for 30 up to 120 min. Dimensional changes of the samples in the radial and axial directions aa well as their change of weight were evaluated. The results of experiments proved that thermal stress of silicone molds can influence the size and shape of mold cavities. These results can also explain the possible mechanism of degradation process of silicone molds under thermal stress.

  20. Linear and nonlinear stability of a thermally stratified magnetically driven rotating flow in a cylinder.

    Science.gov (United States)

    Grants, Ilmars; Gerbeth, Gunter

    2010-07-01

    The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.

  1. Thermal stability and crystallization kinetics of quaternary Sb–Se–Ge–In chalcogenide glasses

    International Nuclear Information System (INIS)

    Sharda, Sunanda; Sharma, Neha; Sharma, Pankaj; Sharma, Vineet

    2014-01-01

    Highlights: • DTA has been carried out on Sb 10 Se 65 Ge 25−y In y alloys under non-isothermal conditions at different heating rates. • E g with In content shows that probability of atoms to jump to lower metastable states increases. • The heating rate dependence of crystallization temperature shows that E c decreases. - Abstract: Thermal analysis plays an important role to know the characteristic behavior of alloys for various applications. Differential thermal analysis has been carried out on Sb 10 Se 65 Ge 25−y In y (y = 0, 3, 6, 9, 12, 15) alloys under non-isothermal conditions at different heating rates. We report the analysis of thermal parameters, viz. glass transition temperature, crystallization temperature and melting temperature. The thermal stability factor, reduced glass transition temperature, and heating rate dependence of glass transition and crystallization peaks have been investigated. The dependence of activation energies of glass transition and crystallization with In content have been discussed in terms of energy barrier and chemical bond approach respectively

  2. Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme

    DEFF Research Database (Denmark)

    Meng-Lund, Helena; Friis, Natascha; van de Weert, Marco

    2017-01-01

    analysis was applied to correlate the descriptors with the experimental results. It was possible to identify descriptors, i.e. amino acids properties, with a positive influence on either transition temperature or aggregation onset time, or both. A high number of hydrogen bond acceptor moieties was the most......A quantitative structure-property relationship (QSPR) between protein stability and the physicochemical properties of excipients was investigated to enable a more rational choice of stabilizing excipients than prior knowledge. The thermal transition temperature and aggregation time were determined...... for lysozyme in combination with 13 different amino acids using high throughput fluorescence spectroscopy and kinetic static light scattering measurements. On the theoretical side, around 200 2D and 3D molecular descriptors were calculated based on the amino acids' chemical structure. Multivariate data...

  3. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  4. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  5. Ferromagnetic and Antiferromagnetic Coupling of Spin Molecular Interfaces with High Thermal Stability.

    Science.gov (United States)

    Avvisati, Giulia; Cardoso, Claudia; Varsano, Daniele; Ferretti, Andrea; Gargiani, Pierluigi; Betti, Maria Grazia

    2018-03-26

    We report an advanced organic spin-interface architecture with magnetic remanence at room temperature, constituted by metal phthalocyanine molecules magnetically coupled with Co layer(s), mediated by graphene. Fe- and Cu-phthalocyanines assembled on graphene/Co have identical structural configurations, but FePc couples antiferromagnetically with Co up to room temperature, while CuPc couples ferromagnetically with weaker coupling and thermal stability, as deduced by element-selective X-ray magnetic circular dichroic signals. The robust antiferromagnetic coupling is stabilized by a superexchange interaction, driven by the out-of-plane molecular orbitals responsible of the magnetic ground state and electronically decoupled from the underlying metal via the graphene layer, as confirmed by ab initio theoretical predictions. These archetypal spin interfaces can be prototypes to demonstrate how antiferromagnetic and/or ferromagnetic coupling can be optimized by selecting the molecular orbital symmetry.

  6. Effect of the thermal stabilization temperature on the change in the texture of polyacrylonitrile fiber

    Science.gov (United States)

    Fazlitdinova, A. G.; Tyumentsev, V. A.

    2015-11-01

    The effect of temperature of isothermal treatment on the change in sizes L 010 of coherent scattering regions and texture of a polyacrylonitrile fiber during its transition to the structure of a thermally stabilized fiber is analyzed using X-ray structure analysis. An increase in the thermostabilization temperature at a constant stretching load stimulates simultaneously a more active increase in size L 010 and texturing of polyacrylonitrile fibers at the initial stage. Active evolution of the phase transformation at temperatures 275-290°C during further thermostabilization is accompanied by a substantial decrease in the texture of the polymer that has not experienced the phase transformation by this instant.

  7. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers

    International Nuclear Information System (INIS)

    Notcutt, Mark; Ma, L.-S.; Ludlow, Andrew D.; Foreman, Seth M.; Ye Jun; Hall, John L.

    2006-01-01

    We perform detailed studies of state-of-the-art laser stabilization to high finesse optical cavities, revealing fundamental mechanical thermal noise-related length fluctuations. We compare the frequency noise of lasers tightly locked to the resonances of a variety of rigid Fabry-Perot cavities of differing lengths and mirror substrate materials. The results are in agreement with the theoretical model proposed in K. Numata, A. Kemery, and J. Camp [Phys. Rev. Lett. 93, 250602 (2004)]. The results presented here on the fundamental limits of FP references will impact planning and construction of next generation ultrastable optical cavities

  8. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    Science.gov (United States)

    Murakami, Shota; Kinoshita, Masahiro

    2016-03-01

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the

  9. Comparison of thermal stability of grape seed oil with virgin sesame oil

    OpenAIRE

    Marzieh; Peyman; Fayegh Moulodi

    2015-01-01

    Background: Heating causes extensive physical and chemical changes in oil and fats, which can change all physical and chemical characteristics and quality of oil during frying is so critical. This study was aimed to compare the thermal stability of virgin sesame oil and grape seed oil. Methods: The grape seed oil and virgin sesame oil were heated at 180 ° C for 8 hours. Every hour, a sample of the heated oils was taken to determine the changes in acid value, peroxide, anisidine and Totox. ...

  10. Effect of adsorbed polyaniline on the thermal stability of iron and arsenic oxides

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2000-06-01

    Full Text Available Iron and arsenic oxide grains are coated with the conducting organic polymer polyaniline. The obtained samples were characterized by infrared spectroscopy, SEM, conducting measurements and thermogravimetry. The thermal stability of both oxides are increased. For As2O3 the sublimation temperature is increased from 165ºC in the pure oxide to 206ºC in the polymer modified sample. The pure Fe3O4 sample exhibits sublimation at 780ºC whereas the polyaniline coated oxide is stable until at least 1000ºC.

  11. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  12. Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2017-01-01

    Full Text Available In order to comprehensively improve the strength, toughness, flame retardancy, smoke suppression, and thermal stability of polypropylene (PP, layered double hydroxide (LDH Ni0.2Mg2.8Al–LDH was synthesized by a coprecipitation method coupled with the microwave-hydrothermal treatment. The X-ray diffraction (XRD, morphology, mechanical, thermal, and fire properties for PP composites containing 1 wt %–20 wt % Ni0.2Mg2.8Al–LDH were investigated. The cone calorimeter tests confirm that the peak heat release rate (pk–HRR of PP–20%LDH was decreased to 500 kW/m2 from the 1057 kW/m2 of PP. The pk–HRR, average mass loss rate (AMLR and effective heat of combustion (EHC analysis indicates that the condensed phase fire retardant mechanism of Ni0.2Mg2.8Al–LDH in the composites. The production rate and mean release yield of CO for composites gradually decrease as Ni0.2Mg2.8Al–LDH increases in the PP matrix. Thermal analysis indicates that the decomposition temperature for PP–5%LDH and PP–10%LDH is 34 °C higher than that of the pure PP. The mechanical tests reveal that the tensile strength of PP–1%LDH is 7.9 MPa higher than that of the pure PP. Furthermore, the elongation at break of PP–10%LDH is 361% higher than PP. In this work, the synthetic LDH Ni0.2Mg2.8Al–LDH can be used as a flame retardant, smoke suppressant, thermal stabilizer, reinforcing, and toughening agent of PP products.

  13. Donor-Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics.

    Science.gov (United States)

    Li, Junli; Zhu, Xiaoguang; Yuan, Tao; Shen, Jiulin; Liu, Jikang; Zhang, Jian; Tu, Guoli

    2017-02-22

    An interface stabilizer based on alkylation-functionalized fullerene derivatives, [6, 6]-Phenyl-C61-butyric acid (3,5-bis(octyloxy)phenyl)methyl ester (PCB-C8oc), was successfully synthesized and applied for the active layer of Organic Photovoltaics (OPVs). The PCB-C8oc can replace part of the phenyl-C61-buty-ric acid methyl ester (PCBM) and be distributed on the interface of poly(3-hexylthiophene) (P3HT) and PCBM to form P3HT/PCBM/PCB-C8oc ternary blends, leading to thermally stable and efficient organic photovoltaics. The octyl groups of PCB-C8oc exhibit intermolecular interaction with the hexyl groups of P3HT, and the fullerene unit of PCB-C8oc are in tight contact with PCBM. The dual functions of PCB-C8oc will inhibit the phase separation between electron donor and acceptor, thereby improving the stability of devices under long-time thermal annealing at high temperature. When doped with 10 wt % PCB-C8oc, the power conversion efficiency (PCE) of the P3HT system decreased from 3.54% to 2.88% after 48 h of thermal treatment at 150 °C, whereas the PCE of the reference device without PCB-C8oc dramatically dropped from 3.53% to 0.73%. When doping 10 or 20 wt % PCB-C8oc, the unannealed P3HT/PCBM/PCB-C8oc device achieved a higher PCE than the P3HT/PCBM device without any annealing following the same fabricating condition. For the PTB7/PCBM-based devices, after adding only 5 wt % PCB-C8oc, the OPVs also exhibited thermally stable morphology and better device performances. All these results demonstrate that the utilization of alkyl interchain interactions is an effective and practical strategy to control morphological evolution.

  14. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    Science.gov (United States)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  15. Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Stackpoole, M.; Bender-Koch, C.

    2000-01-01

    Iron oxide stabilized APC residues from MSWI were heat treated at 600°C and 900°C. The thermal treatments resulted in a change in product stability by forcing a transformation in the mineralogical structures of the products. The treatments, moreover, simulated somewhat the natural aging processes...... that would take place in a stabilized residue. Consequent changes in crystalline structure and heavy metal binding were examined....

  16. Thermal and shape stability of high-index-faceted rhodium nanoparticles: a molecular dynamics investigation.

    Science.gov (United States)

    Zeng, Xiang-Ming; Huang, Rao; Wen, Yu-Hua; Sun, Shi-Gang

    2015-02-28

    Nanosized noble metallic particles enclosed by high-index facets exhibit superior catalytic activity because of their high density of low-coordinated step atoms at the surface, and thus have attracted growing interest over the past decade. In this article, we employed molecular dynamics simulations to investigate the thermodynamic evolution of tetrahexahedral Rh nanoparticles respectively covered by {210}, {310}, and {830} facets during the heating process. Our results reveal that the {210} faceted nanoparticle exhibits better thermal and shape stability than the {310} and {830} faceted ones. Meanwhile, because the {830} facet consists of {210} and {310} subfacets, the stability of the {830} faceted Rh nanoparticle is dominated by the {310} subfacet, which possesses a relatively poor stability. Furthermore, the shape transformation of these nanoparticles occurs much earlier than their melting. Further analyses indicate that surface atoms with higher coordination numbers display lower surface diffusivity, and are thus more helpful for stabilizing the particle shape. This study offers an atomistic understanding of the thermodynamic behaviors of high-index-faceted Rh nanoparticles.

  17. Peptide Dendrons as Thermal-Stability Amplifiers for Immunoglobulin G1 Monoclonal Antibody Biotherapeutics.

    Science.gov (United States)

    Bansal, Rohit; Dhawan, Sameer; Chattopadhyay, Soumili; Maurya, Govind P; Haridas, V; Rathore, Anurag S

    2017-10-18

    Biotherapeutics such as monoclonal antibodies (mAbs) have a major share of the pharmaceutical industry for treatment of life-threatening chronic diseases such as cancer, skin ailments, and immune disorders. Instabilities such as aggregation, fragmentation, oxidation, and reduction have resulted in the practice of storing these products at low temperatures (-80 to -20 °C). However, reliable storage at these temperatures can be a challenge, particularly in developing and underdeveloped countries; hence, lately, there has been a renewed interest in creating formulations that would offer stability at higher temperatures (25 to 55 °C). Most therapeutic formulations contain excipients such as salts, sugars, amino acids, surfactants, and polymers to provide stability to the biotherapeutic, but their efficacy at high temperatures is limited. The current work proposes the use of peptide dendrons of different generations to create formulations that would be stable at high temperature. Among these dendrons, third-generation lysine dendron L6 has been identified to provide the highest stability to mAbs, as demonstrated by a host of analytical techniques such as size-exclusion chromatography (SEC), dynamic light scattering (DLS), Nanoparticle tracking Analysis (NTA), and circular dichroism (CD). The biocompatibility of these dendrons was confirmed by hemolytic activity tests. Non-interference of the dendrons with the activity of the mAb was confirmed using a surface plasmon resonance (SPR) based activity assay. We hope that this study will stimulate utilization of such higher-generation dendrons for enhancing the thermal stability of mAbs.

  18. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  19. Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme.

    Science.gov (United States)

    Meng-Lund, Helena; Friis, Natascha; van de Weert, Marco; Rantanen, Jukka; Poso, Antti; Grohganz, Holger; Jorgensen, Lene

    2017-05-15

    A quantitative structure-property relationship (QSPR) between protein stability and the physicochemical properties of excipients was investigated to enable a more rational choice of stabilizing excipients than prior knowledge. The thermal transition temperature and aggregation time were determined for lysozyme in combination with 13 different amino acids using high throughput fluorescence spectroscopy and kinetic static light scattering measurements. On the theoretical side, around 200 2D and 3D molecular descriptors were calculated based on the amino acids' chemical structure. Multivariate data analysis was applied to correlate the descriptors with the experimental results. It was possible to identify descriptors, i.e. amino acids properties, with a positive influence on either transition temperature or aggregation onset time, or both. A high number of hydrogen bond acceptor moieties was the most prominent stabilizing factor for both responses, whereas hydrophilic surface properties and high molecular mass density mostly had a positive influence on the unfolding temperature. A high partition coefficient (logP(o/w)) was identified as the most prominent destabilizing factor for both responses. The QSPR shows good correlation between calculated molecular descriptors and the measured stabilizing effect of amino acids on lysozyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stability of dye-sensitized solar cells under extended thermal stress.

    Science.gov (United States)

    Yadav, Surendra K; Ravishankar, Sandheep; Pescetelli, Sara; Agresti, Antonio; Fabregat-Santiago, Francisco; Di Carlo, Aldo

    2017-08-23

    In the last few decades, dye-sensitized solar cell (DSC) technology has been demonstrated to be a promising candidate for low cost energy production due to cost-effective materials and fabrication processes. Arguably, DSC stability is the biggest challenge for making this technology appealing for industrial exploitation. This work provides further insight into the stability of DSCs by considering specific dye-electrolyte systems characterized by Raman and impedance spectroscopy analysis. In particular, two ruthenium-based dyes, Z907 and Ru505, and two commercially available electrolytes, namely, the high stability electrolyte (HSE) and solvent-free Livion 12 (L-12), were tested. After 4700 h of thermal stress at 85 °C, the least stable device composed of Z907/HSE showed an efficiency degradation rate of ∼14%/1000 h, while the Ru505/L-12 system retained 96% of its initial efficiency by losing ∼1% each 1000 h. The present results show a viable route to stabilize the DSC technology under prolonged annealing conditions complying with the IEC standard requirements.