WorldWideScience

Sample records for synthesis structural studies

  1. Synthesis and structural characterization of lithium

    Indian Academy of Sciences (India)

    synthesis and characterization of two new iminophos- phonamine ligands ... structures. 2.3 General synthetic method for ligands (1 and 2) ... 2.3b General method for the Synthesis of ligands ...... studies are currently underway in our laboratory.

  2. Synthesis and structural studies of copper sulfide nanocrystals

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper(II dithiocarbamate single molecule precursors. The optical studies of the as-prepared copper sulfide nanoparticles were carried out using UV–Visible and photoluminescence spectroscopy. The absorption spectra show absorption band edges at 287 nm and exhibit considerable blue shift that could be ascribed to the quantum confinement effects as a result of the small crystallite sizes of the nanoparticles and the photoluminescence spectra show emission curves that are red shifted with respect to the absorption band edges. The structural studies were carried out using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The XRD patterns revealed the formation of hexagonal structure of covellite CuS with estimated crystallite sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microsphere on the surfaces and EDS spectra confirmed the presence of CuS nanoparticles. Keywords: CuS, Dithiocarbamate, Nanoparticles, Electron microscopy, AFM

  3. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  4. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  5. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  6. Structural synthesis of parallel robots

    CERN Document Server

    Gogu, Grigore

    This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators.  This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1.  Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...

  7. Synthesis for Structure Rewriting Systems

    Science.gov (United States)

    Kaiser, Łukasz

    The description of a single state of a modelled system is often complex in practice, but few procedures for synthesis address this problem in depth. We study systems in which a state is described by an arbitrary finite structure, and changes of the state are represented by structure rewriting rules, a generalisation of term and graph rewriting. Both the environment and the controller are allowed to change the structure in this way, and the question we ask is how a strategy for the controller that ensures a given property can be synthesised.

  8. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  9. Synthesis of C-di-saccharidic compounds by radical cyclisation. Study of biological, structural and dynamic properties

    International Nuclear Information System (INIS)

    Rubinstenn, Gilles

    1996-01-01

    The synthesis of carbohydrate mimics and particularly of C-disaccharides, molecules in which the inter-glycosidic oxygen atom has been replaced by a methylene group, has become, this past two decades, an important challenge in organic chemistry. In the first chapter we present the synthesis of C-disaccharides from the neutral series by a silaketal tethering. The key step of this C-glycosylation is a radical macro-cyclisation. This strategy is applied to the synthesis of two analogues of natural, biologically active, products, the lactose and the Lewis x tri-saccharide. The biological activity of this mimetics is then evaluated. A new tethering strategy, based on the use of phosphorus III compounds, is applied, in the second chapter, to the building of C-disaccharides of the 2'-amino 2'- deoxy series. The third chapter deals with the structural and dynamics study of the C-glycosides prepared in chapter 1 by Nuclear Magnetic Resonance. A new methodology, studying the dipolar relaxation along an effective field, generated through an off-resonance RF field, allowed the precise measurement of longitudinal and transverse cross-relaxation rates. Structural and dynamics parameter thus derived are used as restraints for molecular modeling. The results of this study are then compared to those of the biological tests. (author) [fr

  10. Structural Studies of Silver Nanoparticles Obtained Through Single-Step Green Synthesis

    Science.gov (United States)

    Prasad Peddi, Siva; Abdallah Sadeh, Bilal

    2015-10-01

    Green synthesis of silver Nanoparticles (AGNP's) has been the most prominent among the metallic nanoparticles for research for over a decade and half now due to both the simplicity of preparation and the applicability of biological species with extensive applications in medicine and biotechnology to reduce and trap the particles. The current article uses Eclipta Prostrata leaf extract as the biological species to cap the AGNP's through a single step process. The characterization data obtained was used for the analysis of the sample structure. The article emphasizes the disquisition of their shape and size of the lattice parameters and proposes a general scheme and a mathematical model for the analysis of their dependence. The data of the synthesized AGNP's has been used to advantage through the introduction of a structural shape factor for the crystalline nanoparticles. The properties of the structure of the AGNP's proposed and evaluated through a theoretical model was undeviating with the experimental consequences. This modus operandi gives scope for the structural studies of ultrafine particles prepared using biological methods.

  11. Structural study of the controlled hydrothermal synthesis of LiMn2O4 and LixMnyO2

    DEFF Research Database (Denmark)

    Christiansen, Troels Lindahl; Jensen, Kirsten Marie Ørnsbjerg; Shen, Yanbin

    , a layered structure, which can also be described as a defective spinel structure. Here, we show that both LiMn2O4 and LixMnyO2 nanoparticles can be synthesized from a simple, low-temperature hydrothermal synthesis. By tuning a single synthesis parameter (Li-concentration) each of the 2 structures...

  12. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  13. Ultrafast Hydro-Micromechanical Synthesis of Calcium Zincate: Structural and Morphological Characterizations

    Directory of Open Access Journals (Sweden)

    Vincent Caldeira

    2017-01-01

    Full Text Available Calcium zincate is a compound with a large panel of application: mainly known as an advantageous replacement of zinc oxide in negative electrodes for air-zinc or nickel-zinc batteries, it is also used as precursor catalyst in biodiesel synthesis and as antifungal compound for the protection of limestone monuments. However, its synthesis is not optimized yet. In this study, it was elaborated using an ultrafast synthesis protocol: Hydro-Micromechanical Synthesis. Two other synthesis methods, Hydrochemical Synthesis and Hydrothermal Synthesis, were used for comparison. In all cases, the as-synthesized samples were analyzed by X-ray diffraction, scanning electron microscopy, and LASER diffraction particle size analysis. Rietveld method was used to refine various structural parameters and obtain an average crystallite size, on a Hydro-Micromechanical submicronic sample. X-ray single crystal structure determination was performed on a crystal obtained by Hydrochemical Synthesis. It has been shown that regardless of the synthesis protocol, the prepared samples always crystallize in the same crystal lattice, with P21/c space group and only differ from their macroscopic textural parameters. Nevertheless, only the Hydro-Micromechanical method is industrially scalable and enables a precise control of the textural parameters of the obtained calcium zincate.

  14. Superheavy Element Synthesis and Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.

    2009-01-01

    The search for the next closed proton and neutron shells beyond 2 08P b has yielded a number of exciting results in terms of the synthesis of new elements [1,2,3]. The superheavy elements (SHE), however, are a nuclear structure phenomenon. They owe their existence to the quantum mechanical origin of shell correction energies without which they would not be bound. In recent years the development of efficient experimental set-ups including separators and advanced particle and photon detection arrangements allowed for more and more detailed nuclear structure studies for nuclei at and beyond Z=100. A review of those recent achievements is given in ref. [4]. Among the most interesting features is the observation of K-isomeric states. Experimentally about 14 cases have been identified in the region of Z>96 as shown in Fig. 1. K-isomers or indications of their existence have been found for almost all even-Z elements in the region Z=100 to 110. We could recently establish and/or confirm such states in the even-even isotopes 2 52,254N o [5]. The heaviest nucleus where such a state was found is 2 70D s with Z=110 as we reported in 2001 [6]. Those nuclear structure studies lay out the grounds for a detailed understanding of these heavy and high-Z nuclear systems, and contribute at the same time valuable information to preparation of strategies to successfully continue the hunt for the localisation of the next spherical proton and neutron shells after 2 08P b. The recent activities for both SHE synthesis and nuclear structure investigations at GSI will be reported.(author)

  15. Synthesis and structure of bis(β-dibenzoyl methanato -O,O') (aquo-O ...

    Indian Academy of Sciences (India)

    Synthesis and structure of bis(β-dibenzoyl methanato -O,O') (aquo-O) dioxouranium (VI) compound ... Keywords. β-diketonates; uranyl ion; adduct compound; crystal structure; hydrogen bonding. 1. Introduction. Structural studies on uranyl ... crystalline product obtained was filtered, washed with ether and dried. The crystal ...

  16. Total synthesis of the proposed structure of trichodermatide A.

    Science.gov (United States)

    Myers, Eddie; Herrero-Gómez, Elena; Albrecht, Irina; Lachs, Jennifer; Mayer, Peter; Hanni, Matti; Ochsenfeld, Christian; Trauner, Dirk

    2014-10-17

    A short total synthesis of the published structure of racemic trichodermatide A is reported. Our synthesis involves a Knoevenagel condensation/Michael addition sequence, followed by the formation of tricyclic hexahydroxanthene-dione and a diastereoselective bis-hydroxylation. The final product, the structure of which was confirmed by X-ray crystallography, has NMR spectra that are very similar, but not identical, to those of the isolated natural product. Quantum chemically computed (13)C shifts agree well with the present NMR measurements.

  17. Stereodivergent Synthesis of 1,3-Syn-Polyol Natural Product for Stereochemical-Based Structure Activity Relationship Studies

    Science.gov (United States)

    Zheng, Jiamin

    The 1,3-syn-diol functionality is very common in many natural products. An important class containing this moiety are the 1,3-syn-polyol/pyranone natural products, which have been isolated from a variety of plant sources, and possess biological activities like plant growth inhibition as well as antifeedant, antifungal, antibacterial, and antitumor properties. The feature of this class is a 6-membered lactone where the lactoe oxygen is part of a 1,3-syn-diol motif. To pursue the 1,3-syn-polyol/pyranone natural products, an iterative hydration of polyene strategy was utilized to provide the 1,3- syn-diol functionality, and asymmetric synthetic strategies were explored to form the requisite stereochemistry. The versatility of the asymmetric approach was demonstrated in the synthesis of eupatorium pyranone and also in an ongoing project aimed at the synthesis of SIA7248. As an outgrowth of our work on the total syntheses of 1,3-syn -polyol natural products inspired a stereo-divergent synthesis of 1,3-syn-polyol natural products and their analogs for stereochemical-based structure-activity relationship (SSAR) studies. To identify the key structural factors important for the anticancer activity of the 1,3-syn-polyol/pyranones, a stereo-divergent 16-member library of pyranone/polyol congeners was designed, synthesized and tested with variations in both stereochemistry and numbers of polyol repeat units. Having access to stereochemical isomers of the biologically active natural products allowed us to design experiments that help illustrate their mechanisms of action.

  18. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    Science.gov (United States)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in

  19. PROSPECTIVE TEACHERS’ COGNITIVE STRUCTURES CONCERNING PROTEIN SYNTHESIS AND THEIR DEGREE OF UNDERSTANDING

    Directory of Open Access Journals (Sweden)

    Cem Gerçek

    2018-02-01

    Full Text Available The purpose of education is to actualise meaningful learning. Therefore, researching the issues on how students process information and how they configure it is important for meaningful learning. The issue of protein synthesis contains a number of abstract topics and concepts. Hence, it is important in biology teaching to be informed of students’ cognitive structures concerning protein synthesis. This research aims to analyse prospective teachers’ cognitive structures about protein synthesis and their degree of understanding the subject. The research group was composed of 17 volunteering prospective teachers who had been chosen through purposeful sampling. The data were collected via semi-structured interviews. Flow maps and content analysis were used in analysing the data. The results demonstrated that prospective teachers had too many misconceptions about protein synthesis and that their knowledge extent and rich connection are inadequate. The prospective teachers’ degree of understanding protein synthesis was divided into three categories. The results obtained in this research suggested that teachers should be careful in teaching the subject of protein synthesis. Students’ prior knowledge and their misconceptions should be determined and content or contexts to facilitate them to learn an abstract subject such as protein synthesis should be presented.

  20. Actinide oxides synthesis in molten chloride. Structural studies and reaction mechanisms

    International Nuclear Information System (INIS)

    Vigier, J.F.

    2012-01-01

    Pyrochemical processes are studied as potential alternatives to hydrochemical processes for spent nuclear fuel treatment. The CEA pyrochemical process led to a molten LiCl-CaCl 2 (30-70% mol) salt at 700 C with solubilized actinides at the oxidation state (III). The study developed in this thesis concerns actinide oxides synthesis in this media for nuclear fuel re-fabrication. This synthesis was done by wet argon sparging. First, this conversion method is described for neodymium (III) and cerium (III) co-conversion. The conversion rates are around 99.9%. The obtained powders contain mixed oxychloride Ce 1-x Nd x OCl as main component, with a small amount of mixed oxide Ce 1-x Nd x O 2-0,5x for the high cerium ratio. A second oxychloride CeIV(Nd 0.7 Ce 0.3 ) III O 3 Cl is obtained in specific conditions and in very low quantity. The structure of this oxychloride is described in this study. The partially oxidative property of the conversion method induces the oxidation of a part of cerium (III) to oxidation state (IV). In the case of uranium (III) conversion by wet argon sparging, all the uranium is oxidized and give the oxide UO 2 as single compound. The conversion rate for this element is over 99.9% in the molten chloride, but significant amount of uranium is lost by volatilization during the conversion. The study shows the oxygen sensitivity of uranium during the conversion, inducing oxidation over the oxidation state (IV), and giving UO 2+x or uranate CaUO 4 . As a consequence, oxygen led to calcium pollution in the precipitate. Finally, the U(III) and Pu(III) co-conversion study shows the highest precipitation sensitivity of uranium (III) in comparison with plutonium (III), responsible of a successive conversion of the two elements, giving an oxide mixture of UO 2 et PuO 2 with quantitative conversion rate. Surprisingly, the conversion of Pu(III) in the same conditions led to a mixture of PuO 2 and PuOCl, characteristic of a partial oxidation from Pu (III) to Pu

  1. Synthesis, structural characterization and quantum chemical studies of silicon-containing benzoic acid derivatives

    Science.gov (United States)

    Zaltariov, Mirela-Fernanda; Cojocaru, Corneliu; Shova, Sergiu; Sacarescu, Liviu; Cazacu, Maria

    2016-09-01

    The present paper is concerned with the synthesis and molecular structure investigation of two new benzoic acid derivatives having trimethylsilyl tails, 4-((trimethylsilyl)methoxy) and 4-(3-(trimethylsilyl)propoxy)benzoic acids. The structures of the novel compounds have been confirmed by X-ray crystallography, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H and 13C NMR). The theoretical studies of molecules were conducted by using the quantum chemical methods, such as Density Functional Theory (DFT B3LYP/6-31 + G**), Hartree-Fock (HF/6-31 + G**) and semiempirical computations (PM3, PM6 and PM7). The optimized molecular geometries have been found to be in good agreement with experimental structures resulted from the X-ray diffraction. The maximum electronic absorption bands observed at 272-287 nm (UV-vis spectra) have been assigned to π → π* transitions, which were in reasonable agreement with the time dependent density functional theory (TD-DFT) calculations. The computed vibrational frequencies by DFT method were assigned and compared with the experimental FTIR spectra. The mapped electrostatic potentials revealed the reactive sites, which corroborated the observation of the dimer supramolecular structures formed in the crystals by hydrogen-bonding. The energies of frontier molecular orbitals (HOMO and LUMO), energy gap, dipole moment and molecular descriptors for the new compounds were calculated and discussed.

  2. Synthesis of Carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH 4 with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  3. Structured synthesis of MEMS using evolutionary approaches

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Achiche, Sofiane

    2008-01-01

    In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-level lumped...

  4. Synthesis of arborescent model polymer structures by living carbocationic polymerization for structure-property studies

    Science.gov (United States)

    Dos Santos Freire, Lucas

    Polyisobutylene is fully saturated, therefore exhibits outstanding chemical, oxidative and thermal stability,1 which makes it ideally suitable as a model to study mechanical and viscoelastic properties of elastomers, and to correlate properties with structure. The main objective of this dissertation was to develop a fundamental understanding of the mechanism of the synthesis of arborescent (hyperbranched) polyisobutylene (arbPIB) by inimer-type (initiator-monomer) living carbocationic polymerization. The strategy for the effective synthesis of arbPIBs consists of copolymerizing the 4-(2-methoxyisopropyl)styrene (IUPAC name: p-vinylcumyl methyl ether) (IB) via controlled/living carbocationic polymerization using TiCl4 coinitiator. In situ FTIR monitoring showed that the self-condensing vinyl polymerization (SCVP) of MeOIM is possible, and that when copolymerizing MeOIM and IB, a nearly alternating structure and multiple end groups are obtained. arbPIB was synthesized and the repeatability of the polymerization was demonstrated. It was found that higher branching was obtained with increasing [MeOIM] and that branching did not further increase if additional IB was added after the MeOIM had reacted completely. No evident changes were observed when switching solvents from Hx/MeCl to a MeCHx/MeCl mixture. Branching parameters showed that arbPIBs have a behavior between polydisperse stars and polycondensates with the number of branches increasing linearly with molecular weight. Novel arbPIB-based block copolymers (TPEs) were synthesized and it was found that copolymers with low Tg short end blocks and less than 5 mol% of a second monomer exhibit thermoplastic elastomeric properties. The materials were strongly reinforced when compounded with carbon black. arbPIB-b-PS are prospective biomaterials and the establishment of reliable methods for evaluating their short and long term properties is a subject of great importance. A dynamic fatigue testing methodology was developed

  5. Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pashkova, E.V. [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Solovyova, E.D., E-mail: solovyovak@mail.ru [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Kotenko, I.E., E-mail: Hab2420@yahoo.com [National Technical University of Ukraine ' KPI' , Pr. Pobedy, 37, Kyiv-57 (Ukraine); Kolodiazhnyi, T.V., E-mail: kolodiazhnyi.taras@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Belous, A.G., E-mail: belous@ionc.kar.net [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine)

    2011-10-15

    The conditions of the synthesis of carbonate-hydroxide precursors (pH of FeOOH precipitation and heat treatment regimes) were studied in terms of their effect on the fractal structure and physical-chemical properties of precursors. Phase transformations which occur during the synthesis of nanosize M-type barium hexaferrite (BHF) were studied as well. The first structural level of precursors' aggregation for mass fractals, the correlation between fractal dimension and precursors' activity during the synthesis of BHF were determined. Synthesis parameters for the precursors with the optimal fractal structure were determined. These data permit an enhancement of the filtration coefficient of the precipitates by a factor of 4-5, obtaining substantial decrease in the temperature required for synthesis of a single-phase BHF, and monodispersed plate-like nanoparticles (60 nm diameter) with the shape anisotropy and good magnetic characteristics (saturation magnetization (M{sub s})=68,7 emu/g and coercitivity (H{sub c})=5440 Oe). - Highlights: > The nanosize M-type BHF obtained by precipitation of hydroxicarbonates technique. > Optimal fractal structure of a precursor for nanosize M-type BHF has been determined. > The precursor precipitated at pH 4.3 allows getting monodisperse particles of BHF.

  6. Ionothermal synthesis, crystal structure, and magnetic study of Co2PO4OH isostructural with caminite.

    Science.gov (United States)

    Wang, Guangmei; Valldor, Martin; Spielberg, Eike T; Mudring, Anja-Verena

    2014-03-17

    A new framework cobalt(II) hydroxyl phosphate, Co2PO4OH, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of Co2PO4F competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain well-crystallized, single phase Co2PO4OH. Single-crystal X-ray diffraction analyses reveal Co2PO4OH crystallizes with space group I41/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, V = 358.63(10) Å(3), and Z = 4). Astonishingly, it does not crystallize isotypically with Co2PO4F but rather isotypically with the hydroxyl minerals caminite Mg1.33[SO4(OH)0.66(H2O)0.33] and lipscombite Fe(2–y)PO4(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing ∞(1){CoO(6/2)} octahedra chains to form a three-dimensional framework structure. The compound Co2PO4OH was further characterized by powder X-ray diffraction, Fourier transform–infrared, and ultraviolet–visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co2PO4OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state.

  7. Synthesis and structure of two-dimensional transition-metal dichalcogenides

    KAUST Repository

    Shi, Yumeng; Zhang, Hua; Chang, Wen-Hao; Shin, Hyeon Suk; Li, Lain-Jong

    2015-01-01

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

  8. Synthesis and structure of two-dimensional transition-metal dichalcogenides

    KAUST Repository

    Shi, Yumeng

    2015-07-13

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

  9. synthesis and structures

    Indian Academy of Sciences (India)

    Priya Saxena

    2017-08-29

    Aug 29, 2017 ... to a single crystal X-ray diffraction study for 1, 2 and 4-7. Keywords. Sterically .... 2.2b Mono-Schiff base 2: A suspension of I (1.00 g,. 2.27 mmol) and ...... bridge Crystallographic Data Centre, CCDC, 12 Union. Road, Cambridge .... H-C 2014 Rational design and synthesis of porous poly- mer networks: ...

  10. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  11. Synthesis and structural characterization of a calcium coordination ...

    Indian Academy of Sciences (India)

    Synthesis and structural characterization of a calcium coordination polymer based on a μ3-bridging. tetradentate binding mode of glycine. SUBRAMANIAN NATARAJAN*a, BIKSHANDARKOIL R. SRINIVASANb , J. KALYANA SUNDARa, K. RAVIKUMARc , R.V. KRISHNAKUMARd , J. SURESHe,. aSchool of Physics, ...

  12. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  13. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline–3-hydroxy-4-methoxybenzaldehyde

    International Nuclear Information System (INIS)

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S.; Rai, R.N.

    2012-01-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV–Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: ► Novel organic complex was synthesized using Green or solvent free synthesis. ► Phase diagram study provided the information to identify the worthy composition of novel complex. ► The single crystal of the sufficient size was grown from the ethanol solution. ► Crystal analysis suggested that the covalent bond is formed between the two parent compounds. ► The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  14. The extended evolutionary synthesis: its structure, assumptions and predictions

    Science.gov (United States)

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  15. Synthesis of silicon nanowires and novel nano-dendrite structures

    International Nuclear Information System (INIS)

    Sinha, Saion; Gao Bo; Zhou, Otto

    2004-01-01

    We report a study on the effects of various parameters on the synthesis of silicon nanowires (5--50 nm in diameter) by pulsed laser ablation. A novel silicon nanodendrite structure is observed by changing some of the growth parameters abruptly. This growth mechanism is explained by a qualitative model. These nanodendrites show a promise of being used as a template in fabricating nanocircuits. Thermal quantum confinement effects were also observed on the silicon nanowires and have been reported

  16. MWW-type titanosilicate synthesis, structural modification and catalytic applications to green oxidations

    CERN Document Server

    Wu, Peng; Xu, Le; Liu, Yueming; He, Mingyuan

    2013-01-01

    This book provides a comprehensive review of a new generation of selective oxidation titanosilicate catalysts with the MWW topology (Ti-MWW) based on the research achievements of the past 12 years. It gives an overview of the synthesis, structure modification and catalytic properties of Ti-MWW. Ti-MWW can readily be prepared by means of direct hydrothermal synthesis with crystallization-supporting agents, using dual-structure-directing agents and a dry-gel conversion technique. It also can be post-synthesized through unique reversible structure transformation and liquid-phase isomorphous subst

  17. How best to structure interdisciplinary primary care teams: the study protocol for a systematic review with narrative framework synthesis.

    Science.gov (United States)

    Wranik, W Dominika; Hayden, Jill A; Price, Sheri; Parker, Robin M N; Haydt, Susan M; Edwards, Jeanette M; Suter, Esther; Katz, Alan; Gambold, Liesl L; Levy, Adrian R

    2016-10-04

    Western publicly funded health care systems increasingly rely on interdisciplinary teams to support primary care delivery and management of chronic conditions. This knowledge synthesis focuses on what is known in the academic and grey literature about optimal structural characteristics of teams. Its goal is to assess which factors contribute to the effective functioning of interdisciplinary primary care teams and improved health system outcomes, with specific focus on (i) team structure contribution to team process, (ii) team process contribution to primary care goals, and (iii) team structure contribution to primary care goals. The systematic search of academic literature focuses on four chronic conditions and co-morbidities. Within this scope, qualitative and quantitative studies that assess the effects of team characteristics (funding, governance, organization) on care process and patient outcomes will be searched. Electronic databases (Ovid MEDLINE, Embase, CINAHL, PAIS, Web of Science) will be searched systematically. Online web-based searches will be supported by the Grey Matters Tool. Studies will be included, if they report on interdisciplinary primary care in publicly funded Western health systems, and address the relationships between team structure, process, and/or patient outcomes. Studies will be selected in a three-stage screening process (title/abstract/full text) by two independent reviewers in each stage. Study quality will be assessed using the Mixed Methods Assessment Tool. An a priori framework will be applied to data extraction, and a narrative framework approach is used for the synthesis. Using an integrated knowledge translation approach, an electronic decision support tool will be developed for decision makers. It will be searchable along two axes of inquiry: (i) what primary care goals are supported by specific team characteristics and (ii) how should teams be structured to support specific primary care goals? The results of this evidence

  18. The crystal structure of escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis

    International Nuclear Information System (INIS)

    Sanishvili, R.; Beasley, S.; Skarina, T; Glesne, D; Joachimiak, A; Edwards, A; Savchenko, A.; Univ. Health Network; Univ. of Toronto

    2004-01-01

    The crystal structure of Escherichia coli MoaB was determined by multiwavelength anomalous diffraction phasing and refined at 1.6 Angstrom resolution. The molecule displayed a modified Rossman fold. MoaB is assembled into a hexamer composed of two trimers. The monomers have high structural similarity with two proteins, MogA and MoeA, from the molybdenum cofactor synthesis pathway in E. Coli, as well as with domains of mammalian gephyrin and plant Cnx1, which are also involved in molybdopterin synthesis. Structural comparison between these proteins and the amino acid conservation patterns revealed a putative active site in MoaB. The structural analysis of this site allowed to advance several hypothesis which can be tested in further studies

  19. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shutesh, E-mail: shutesh.k@onsemi.com [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia); ON Semiconductor Package Innovation and Development Center, 70450 Seremban (Malaysia); Haseeb, A.S.M.A.; Johan, Mohd Rafie [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-15

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1{sup ¯}11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications.

  20. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    International Nuclear Information System (INIS)

    Krishnan, Shutesh; Haseeb, A.S.M.A.; Johan, Mohd Rafie

    2014-01-01

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1 ¯ 11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications

  1. Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Ri-Ming Huang

    2014-12-01

    Full Text Available Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.

  2. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  3. Synthesis of lever-blade dampers with enhanced mechanical structure

    Directory of Open Access Journals (Sweden)

    Igor I. Sydorenko

    2015-03-01

    Full Text Available Since the torsion bar represents just an elastic element, the energy dissipation in suspensions problem is highly relevant for its application. Currently in quality of a dissipation device in torsion suspension are used the hydraulic dampers with movable members reciprocating translational motion respectively to the housing or lever-type hydraulic shock absorbers of piston and vane types, with the movable member’s rotational movement respectively to the housing. These dampers are implementing only throttle-valve performance type, associated with these devices’ functional capacities and depending on design constraints. The paper presents a synthesis of innovative lever-blade dampers, whose performance is not related to the value of working chambers inner pressure. Their essential peculiarity relates to the mechanical control loop presence in the structure that determines a close relationship between the performance and the value of the shock absorber movable element displacement relatively to the body. In the process of synthesis carried out tested are the appropriate methods, built on the basis of technical systems’ modeling with modified kinematic graphs. The synthesis results are shown in the form of two structurally implemented samples. Performed is a comparative analysis of the samples with their basic performance determining.

  4. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    International Nuclear Information System (INIS)

    Luis, R. Fernandez de; Urtiaga, M.K.; Mesa, J.L.; Rojo, T.; Arriortua, M.I.

    2009-01-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {Ni/Bpy/VO} and {Ni/Bpe/VO} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  5. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  6. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1, 3, 4-oxadiazole- 2-thiones as potential urease inhibitors. ... Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme.

  7. Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucleotide.

    Science.gov (United States)

    Coppola, Teresa; Varra, Michela; Oliviero, Giorgia; Galeone, Aldo; D'Isa, Giuliana; Mayol, Luciano; Morelli, Elena; Bucci, Maria-Rosaria; Vellecco, Valentina; Cirino, Giuseppe; Borbone, Nicola

    2008-09-01

    A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.

  8. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S. [Department of Chemistry, Centre of Advance Study, Banaras Hindu University, Varanasi-221005 (India); Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advance Study, Banaras Hindu University, Varanasi-221005 (India)

    2012-06-15

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: Black-Right-Pointing-Pointer Novel organic complex was synthesized using Green or solvent free synthesis. Black-Right-Pointing-Pointer Phase diagram study provided the information to identify the worthy composition of novel complex. Black-Right-Pointing-Pointer The single crystal of the sufficient size was grown from the ethanol solution. Black-Right-Pointing-Pointer Crystal analysis suggested that the covalent bond is formed between the two parent compounds. Black-Right-Pointing-Pointer The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  9. New Diethyl Ammonium Salt of Thiobarbituric Acid Derivative: Synthesis, Molecular Structure Investigations and Docking Studies

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2015-11-01

    Full Text Available The synthesis of the new diethyl ammonium salt of diethylammonium(E-5-(1,5-bis(4-fluorophenyl-3-oxopent-4-en-1-yl-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity value of 0.229.

  10. Combustion synthesis and structural characterization of Li–Ti mixed

    Indian Academy of Sciences (India)

    Combustion synthesis and structural characterization of Li–Ti mixed nanoferrites ... were prepared by combustion method at lower temperatures compared to the ... first time at low temperatures, using PEG which acts as a new fuel and oxidant.

  11. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    Science.gov (United States)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  12. Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics

    International Nuclear Information System (INIS)

    Cui Chunxiang; Liu Debao; Shen Yutian; Sun Jinbin; Meng Fanbin; Wang Ru; Liu Shuangjin; Greer, A.L.; Chen, S.K.; Glowacki, B.A.

    2004-01-01

    Single-crystal MgB 2 nanoparticles, with diameters in the range 20-100 nm, have been synthesized in situ in the sample chamber of an X-ray diffractometer. The reaction kinetics are analyzed and related to the atomic-level structure of the particles as observed by high-resolution electron microscopy. Synthesis conditions may have a significant influence on microstructure and superconducting properties

  13. Synthesis and X-ray structure of the dysprosium(III) complex derived ...

    African Journals Online (AJOL)

    Synthesis and X-ray structure of the dysprosium(III) complex derived from the ligand 5-chloro-1 ... Bulletin of the Chemical Society of Ethiopia ... synthesized and its crystal structure determined by single X-ray diffraction at room temperature.

  14. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  15. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R. Fernandez de; Urtiaga, M.K. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Mesa, J.L.; Rojo, T. [Dpto. Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Arriortua, M.I. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain)], E-mail: maribel.arriortua@ehu.es

    2009-07-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {l_brace}Ni/Bpy/VO{r_brace} and {l_brace}Ni/Bpe/VO{r_brace} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  16. Comparative study between bioapatite and synthetic hydroxyapatite obtained by chemical precipitation and mechanochemical synthesis

    International Nuclear Information System (INIS)

    Quispe M, J.; Moreno, M.; Montano, J.; Pillaca, M.; Guzman, A.; Cavero, A.; Arce, M.

    2009-01-01

    A comparative study between the inorganic component of a human bone tissue with respect of apatite synthesized by chemical precipitation, mechanochemical synthesis and a sample of commercial hidroxyapatite are shown. The samples were studied by X-ray diffraction, atomic absorption spectroscopy and Fourier transform infrared spectroscopy. The results show similar structural characteristics among all samples identifying that sample prepared by mechanochemical synthesis is a kind of hydroxyapatite which has substitutions of carbonate in its crystalline structure, similar to the inorganic component of bone tissue. (author).

  17. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  18. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  19. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  20. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  1. Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A

    DEFF Research Database (Denmark)

    Nielsen, Daniel S; Hoang, Huy N; Lohman, Rink-Jan

    2012-01-01

    The first total synthesis and three-dimensional solution structure are reported for sanguinamide A, a thiazole-containing cyclic peptide from the sea slug H. sanguineus. Solution phase fragment synthesis, solid phase fragment assembly, and solution macrocyclization were combined to give (1) in 10......% yield. Spectral properties were identical for the natural product, requiring revision of its structure from (2) to (1). Intramolecular transannular hydrogen bonds help to bury polar atoms, which enables oral absorption from the gut....

  2. Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite

    Science.gov (United States)

    Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.

    2018-04-01

    A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.

  3. Studies toward the synthesis of Amaryllidaceae alkaloids from Morita-Baylis-Hillman adducts: a straightforward synthesis of functionalized dihydroisoquinoline-5(6H)-one core

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Elizandra C.S.; Coelho, Fernando [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: coelho@iqm.unicamp.br

    2007-07-01

    We disclose herein our results concerning a study aiming at the synthesis of the highly substituted carbon skeleton of alkaloids isolated from plants of the Amaryllidaceae family. The total synthesis of the functionalized dihydroisoquinoline-5(6H)-one core, which is the bottom part of the structure of alkaloids isolated from this botanic family, is described, using Morita-Baylis-Hillman adducts as substrate. This compound should be a useful and valuable intermediate for the total synthesis of alkaloids isolated from Amaryllidaceae. (author)

  4. Studies toward the synthesis of Amaryllidaceae alkaloids from Morita-Baylis-Hillman adducts: a straightforward synthesis of functionalized dihydroisoquinoline-5(6H)-one core

    International Nuclear Information System (INIS)

    Lopes, Elizandra C.S.; Coelho, Fernando

    2007-01-01

    We disclose herein our results concerning a study aiming at the synthesis of the highly substituted carbon skeleton of alkaloids isolated from plants of the Amaryllidaceae family. The total synthesis of the functionalized dihydroisoquinoline-5(6H)-one core, which is the bottom part of the structure of alkaloids isolated from this botanic family, is described, using Morita-Baylis-Hillman adducts as substrate. This compound should be a useful and valuable intermediate for the total synthesis of alkaloids isolated from Amaryllidaceae. (author)

  5. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    Science.gov (United States)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  6. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  7. Synthesis of carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of carbon neocarcinostatin (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, one has seen the necessity to generate new synthesis processes of these materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither impurities. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arc discharge, in a gas mixture He-CH 4 with 34% at.Ni/10.32%at.Y like catalyst; to a frequency of 42 k Hz and low power (300 W). This method benefits the agglomeration of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the type of obtained NEC and by X-ray diffraction analysis and Raman spectroscopy to determine the purity of the samples. The NFC are relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of the plasma using the Swan band to determine the temperature. (Author)

  8. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  9. β-Telluroacroleins and β-tellurovinyl ketones: synthesis, reactions and structure

    International Nuclear Information System (INIS)

    Sadekov, I.D.

    2002-01-01

    Data on synthesis, reactivity, spectral characteristics and structure of new telluroorganic synthons, i.e. β-tellurovinylcarbonyl compounds, were generalized and systematized. Synthesis and reactions of β-telluroacroleins and similar cations were considered individually for each type of β-tellurovinylcarbonyl compounds. Special attention was paid to the use of the compounds for preparing tellurium-containing heterocycles. Reactions characteristics of carbonyl groups and tellurium-containing substituents, as well as transformation, as a result of which β-tellurovinylcarbonyl compounds and products of their reactions form tellurium-containing heterocycles, were discussed [ru

  10. Chemical synthesis and structure elucidation of bovine κ-casein (1-44)

    International Nuclear Information System (INIS)

    Bansal, Paramjit S.; Grieve, Paul A.; Marschke, Ronald J.; Daly, Norelle L.; McGhie, Emily; Craik, David J.; Alewood, Paul F.

    2006-01-01

    The caseins (α s1 , α s2 , β, and κ) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine κ-casein, the protein which maintains the micellar structure of the caseins. κ-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro 8 to Arg 34 . This is First report which demonstrates extensive secondary structure within the casein class of proteins

  11. Structure-based synthesis from natural products to drug prototypes

    International Nuclear Information System (INIS)

    Hanessian, S.

    2009-01-01

    X-Ray crystallographic data available from complexes of natural and synthetic molecules with the enzyme thrombin has aided to the design and synthesis of truncated and hybrid molecules exhibiting excellent inhibition in vitro. The vital importance of natural products for the well-being of man has been known lor millennia. Their therapeutic benefits to alleviate pain or cure diseases continue to rank natural products among the primary sources of potential drugs. Great advances have been made in the methods of isolation, identification, and structure elucidation of some of the most complex natural products in recent years. The advent of molecular biology and genetic mapping has also aided in our understanding of the intriguing biosynthetic pathways leading to various classes of therapeutically relevant antibiotic, anticancer, and related natural products. Elegant and practical methodology has been developed leading to the total synthesis of virtually every class of medicinally important natural product. In some cases, natural products or their chemically modified congeners have been manufactured by total synthesis on an industrial level which is a testament to the ingenuity of process chemists. In spite of their potent activities HI enzymatic ox receptor-mediated assays, not all natural products are amenable to being developed as marketable drags. In many instances unfavorable pharmacological effects cannot be overcome without drastic structural and functional modifications, which may also result in altered efficacy. Structure modification through truncation, functional group variations, isosteric replacements, and skeletal rigidifications aided by molecular modeling, X ray crystallography of protein targets, or NMR data are valid objectives in the context of small molecule drug discovery starting with bioactive natural products. A large proportion of these pertain to chemotherapeutic agents against cancer

  12. An Introduction to Zeolite Synthesis Using Imidazolium-Based Cations as Organic Structure-Directing Agents.

    Science.gov (United States)

    Vinaches, Paloma; Bernardo-Gusmão, Katia; Pergher, Sibele B C

    2017-08-06

    Zeolite synthesis is a wide area of study with increasing popularity. Several general reviews have already been published, but they did not summarize the study of imidazolium species in zeolite synthesis. Imidazolium derivatives are promising compounds in the search for new zeolites and can be used to help understand the structure-directing role. Nearly 50 different imidazolium cations have already been used, resulting in a variety of zeolitic types, but there are still many derivatives to be studied. In this context, the purpose of this short review is to help researchers starting in this area by summarizing the most important concepts related to imidazolium-based zeolite studies and by presenting a table of recent imidazolium derivatives that have been recently studied to facilitate filling in the knowledge gaps.

  13. One-step synthesis and structural features of CdS/montmorillonite nanocomposites.

    Science.gov (United States)

    Han, Zhaohui; Zhu, Huaiyong; Bulcock, Shaun R; Ringer, Simon P

    2005-02-24

    A novel synthesis method was introduced for the nanocomposites of cadmium sulfide and montmorillonite. This method features the combination of an ion exchange process and an in situ hydrothermal decomposition process of a complex precursor, which is simple in contrast to the conventional synthesis methods that comprise two separate steps for similar nanocomposite materials. Cadmium sulfide species in the composites exist in the forms of pillars and nanoparticles, the crystallized sulfide particles are in the hexagonal phase, and the sizes change when the amount of the complex for the synthesis is varied. Structural features of the nanocomposites are similar to those of the clay host but changed because of the introduction of the sulfide into the clay.

  14. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  15. Synthesis, spectroscopy, thermal studies and supramolecular ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectroscopy, thermal studies and supramolecular structures of two .... J = 9 Hz), 8∙13 (d, 2H, J = 9 Hz), 7∙69 (s, 1H), 7∙04. (s, 2H). ... 1H NMR (D2O): δ (in ppm); 8∙05 (d, 2H, ..... 86∙33 (2). 86∙92(1). 87∙08(2). V (Ε3). 553∙1(6). 573∙71(5). 561∙56(14). 557∙5(3) .... Mn, Co and Ni complexes.28–30 The observed inter-.

  16. Synthesis, structural and optical properties of nanoparticles (Al, V ...

    Indian Academy of Sciences (India)

    The synthesis by the sol–gel method, structural and optical properties of ZnO, Zn0.99Al0.01O (AlZ),. Zn0.9V0.1O (VZ) ... drops of the resulting suspension containing the synthesized .... ZnO films on silicon substrate, they thought that this emis-.

  17. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    Science.gov (United States)

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  18. Synthesis, structural and ferromagnetic properties of La1–x Kx ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Synthesis, structural and ferromagnetic properties of La1–KMnO3 (0.0≤ 0.25) phases by solution combustion method ... Structural parameters were determined by the Rietveld refinement method using powder XRD data. Parent ... The ratio of the Mn3+/Mn4+ was determined by the iodometric titration.

  19. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    Science.gov (United States)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  20. Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand

    Science.gov (United States)

    Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid

    2017-09-01

    Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.

  1. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    Science.gov (United States)

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society

  2. Synthesis and Structural Studies of Nanocrystalline Cd Zn Fe O

    African Journals Online (AJOL)

    NICO

    The synthesis of Cd0.3Zn0.7Fe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic ... pure and doped spinel ferrite nanopowders. ... K. Kalimuthu, S.C. Rangasamy and M. Rakkiyasamy,. 91.

  3. Wall grid structure for interior scene synthesis

    KAUST Repository

    Xu, Wenzhuo

    2015-02-01

    We present a system for automatically synthesizing a diverse set of semantically valid, and well-arranged 3D interior scenes for a given empty room shape. Unlike existing work on layout synthesis, that typically knows potentially needed 3D models and optimizes their location through cost functions, our technique performs the retrieval and placement of 3D models by discovering the relationships between the room space and the models\\' categories. This is enabled by a new analytical structure, called Wall Grid Structure, which jointly considers the categories and locations of 3D models. Our technique greatly reduces the amount of user intervention and provides users with suggestions and inspirations. We demonstrate the applicability of our approach on three types of scenarios: conference rooms, living rooms and bedrooms.

  4. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  5. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  6. Structural, optical and morphological studies of undoped and Zn ...

    Indian Academy of Sciences (India)

    Structural, optical and morphological studies of undoped and Zn-doped CdSe QDs via aqueous route synthesis. N THIRUGNANAM D GOVINDARAJAN ... Undoped and Zn-doped CdSe quantum dots (QDs) were successfully synthesized by the chemical precipitation method. The structural, optical and morphological ...

  7. Some structural aspects that are relevant for synthesis of planetary gear trains

    Energy Technology Data Exchange (ETDEWEB)

    Rajasri, I. [Pathfinder Engineering College, Hanamkonda (India); Gupta, A.V.S.S.K.S. [JNTU, Hyderabad (India); Rao, Y.V.D. [BITS-Pilani. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Gear Trains are typically used in various mechanisms including wind turbines and robots to transmit specified motion and/or torque between two or more shafts and wind turbines need drives and overdrives that amplify the speed of turbine shaft and provide high speed at generator shaft. Planetary gear trains (PGT) are compact, easy to build and operate. Therefore PGTs are most suitable for such drives including over drives. Graph theory used in synthesis of the PGTs is also useful to identify various possible structural aspects of the PGTs. Generation of PGTs is followed by the test for isomorphism in PGTs generated. In this context various structural aspects relevant for the synthesis of PGTs is described. (Author)

  8. Nitridomanganates of alkaline-earth metals. Synthesis, structure, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, Alexander

    2016-12-02

    The main goal of the present work was the synthesis of alkaline-earth nitridomanganates (AE{sub x}Mn{sub y}N{sub z}) with extended anionic structures and the characterization of their electronic and magnetic properties. Up to now, only compounds with isolated nitridomanganate anions have been reported in the discussed ternary systems. A systematic exploratory synthesis, employing high-temperature treatment of AE nitrides and Mn under controlled N2 pressure, yielded more than ten new nitridomanganates. Their crystal structures contain anionic building blocks of different dimensionalities, ranging from isolated species to three-dimensional frameworks. In general, the formation of Mn-rich compositions was found to be driven by the emergence of Mn-Mn interactions, which creates a link between nitridometalates and transition-metal-rich binary nitrides. The obtained nitridomanganates display a plethora of interesting phenomena, such as large spin-orbit coupling, magnetic frustration, quenching of magnetism due to Mn-Mn interactions, and metal-insulator transition.

  9. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    International Nuclear Information System (INIS)

    Mathe, N R; Scriba, M R; Coville, N J; Olivier, J E

    2014-01-01

    Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared to conventional methods. In this work, microwave-irradiation was used to produce platinum-cobalt (Pt-Co) and platinum-nickel (Pt-Ni) nanoparticles for use as electrocatalysts in the methanol oxidation reaction. High resolution TEM imaging and EELS studies revealed that these bimetallic nanoparticles form islands or hetero-structures

  10. Synthesis of Structures Related to Antifreeze Glycoproteins

    OpenAIRE

    Fyrner, Timmy

    2005-01-01

    In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzo...

  11. Synthesis of polyaryl rigid-core carbosilane dendrimers for supported organic synthesis

    NARCIS (Netherlands)

    Wander, M.; Hausoul, P.J.C.; Sliedregt, L.A.J.M.; van Steen, B.J.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    Carbosilane dendrimers can be used as soluble supports for organic synthesis, since their structure allows separation of excess reagents from the supported products, eventually yielding products of high purity and in high yield, as in solid-phase organic synthesis (SPOS). In previous studies often

  12. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Ramos, Pablo [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Silva, Pedro S. Pereira, E-mail: psidonio@pollux.fis.uc.pt [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Chamorro-Posada, Pedro [Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, 47011 Valladolid (Spain); Silva, Manuela Ramos [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Milne, Bruce F. [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Nogueira, Fernando [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2015-06-15

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac){sub 3}(bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect.

  13. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    International Nuclear Information System (INIS)

    Martín-Ramos, Pablo; Silva, Pedro S. Pereira; Chamorro-Posada, Pedro; Silva, Manuela Ramos; Milne, Bruce F.; Nogueira, Fernando; Martín-Gil, Jesús

    2015-01-01

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac) 3 (bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect

  14. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0824-z. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole. I RAMA∗ and R SELVAMEENA. PG and Research Department of Chemistry, Seethalakshmi Ramaswami College,. Tiruchirappalli 620 002 ...

  15. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties

    International Nuclear Information System (INIS)

    Palma-Ramírez, D.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Dorantes-Rosales, H.; Ramírez-Meneses, E.; Rodríguez, E.

    2015-01-01

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO 4 is presented. • Microwave energy can replace the energy by convection for obtaining CePO 4 . • CePO 4 demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO 4 morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO 4 ) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO 4 nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO 4 with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO 4 can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic

  16. Synthesis and Studies of Sulfur-Containing Heterocyclic Molecules for Molecular Electronics

    DEFF Research Database (Denmark)

    Mazzanti, Virginia

    This work describes the synthesis and studies of sulfur containing π conjugated heterocycles, which are considered interesting motifs in the field of molecular electronics. The first project, which is covered in Chapter 1, concerns the functionalization of tetracycle dibenzo[bc,fg][1,4]dithiapent......This work describes the synthesis and studies of sulfur containing π conjugated heterocycles, which are considered interesting motifs in the field of molecular electronics. The first project, which is covered in Chapter 1, concerns the functionalization of tetracycle dibenzo[bc,fg][1......,4]dithiapentalene (DDP). Attempts to prepare the S-O analog are also discussed. Chapter 2, focuses upon the studies performed on DDP and other sulfur containing π conjugated organic molecules. Organic Field Effect Transistor devices were fabricated and their performances were evaluated. Chapter 3 entails...... the synthesis of dimeric structures of redox active system tetrathiafulvalene (TTF). Molecules with different conjugation pathways bridging two TTFs were synthesized and studied using CV and DPV in order to probe the electronic interaction between these two redox units. The last aspect of this thesis, which...

  17. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  18. Post-Structuralism and Politics: towards Postmodern Balkan Studies

    OpenAIRE

    Sanja LAZAREVIC RADAK

    2015-01-01

    Although post-structuralism, on the first sight, lacks political dimension, its application to social problems expose the potential of political engagement. First, it comes from interviving linguistics and humanities, that inspired new understanding of the relationship between structure and power. While emerging from cultural studies and therefore from synthesis of history and literary criticism, studies on the Balkan, point out a role of mental images, stereotypes, discourses and therefore, ...

  19. Synthesis and structural determination of twisted MoS2 nanotubes

    International Nuclear Information System (INIS)

    Santiago, P.; Schabes-Retchkiman, P.; Ascencio, J.A.; Mendoza, D.; Perez-Alvarez, M.; Espinosa, A.; Reza-SanGerman, C.; Camacho-Bragado, G.A.; Jose-Yacaman, M.

    2004-01-01

    In the present work we report the synthesis of MoS 2 nanotubes with diameters greater than 10 nm using a template method. The length and properties of these nanotubes are a direct result of the preparation method. High-resolution transmission electron microscopy is used to study the structure of these highly curved entities. Molecular dynamics simulations of MoS 2 nanotubes reveal that one of the stable forms of the nanotubes is a twisted one. The twisting of the nanotubes produces a characteristic contrast in the images, which is also studied using simulation methods. The analysis of the local contrast close to the perpendicular orientation shows geometrical arrays of dots in domain-like structures, which are demonstrated to be a product of the atomic overlapping of irregular curvatures in the nanotubes. The configuration of some of the experimentally obtained nanotubes is demonstrated to be twisted with a behavior suggesting partial plasticity. (orig.)

  20. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  1. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods

    Science.gov (United States)

    Palmero, Paola

    2015-01-01

    Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029

  2. Total Synthesis of (-)-Doliculide, Structure-Activity Relationship Studies and Its Binding to F-Actin

    NARCIS (Netherlands)

    Matcha, Kiran; Madduri, Ashoka V. R.; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K. H.; Minnaard, Adriaan J.

    2012-01-01

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have

  3. Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides

    Science.gov (United States)

    Könst, Zef A.; Szklarski, Anne R.; Pellegrino, Simone; Michalak, Sharon E.; Meyer, Mélanie; Zanette, Camila; Cencic, Regina; Nam, Sangkil; Voora, Vamsee K.; Horne, David A.; Pelletier, Jerry; Mobley, David L.; Yusupova, Gulnara; Yusupov, Marat; Vanderwal, Christopher D.

    2017-11-01

    The lissoclimides are unusual succinimide-containing labdane diterpenoids that were reported to be potent cytotoxins. Our short semisynthesis and analogue-oriented synthesis approaches provide a series of lissoclimide natural products and analogues that expand the structure-activity relationships (SARs) in this family. The semisynthesis approach yielded significant quantities of chlorolissoclimide (CL) to permit an evaluation against the National Cancer Institute's 60-cell line panel and allowed us to obtain an X-ray co-crystal structure of the synthetic secondary metabolite with the eukaryotic 80S ribosome. Although it shares a binding site with other imide-based natural product translation inhibitors, CL engages in a particularly interesting and novel face-on halogen-π interaction between the ligand's alkyl chloride and a guanine residue. Our analogue-oriented synthesis provides many more lissoclimide compounds, which were tested against aggressive human cancer cell lines and for protein synthesis inhibitory activity. Finally, computational modelling was used to explain the SARs of certain key compounds and set the stage for the structure-guided design of better translation inhibitors.

  4. Photonic crystals based on opals and inverse opals: synthesis and structural features

    International Nuclear Information System (INIS)

    Klimonsky, S O; Abramova, Vera V; Sinitskii, Alexander S; Tretyakov, Yuri D

    2011-01-01

    Methods of synthesis of photonic crystals based on opals and inverse opals are considered. Their structural features are discussed. Data on different types of structural defects and their influence on the optical properties of opaline materials are systematized. The possibilities of investigation of structural defects by optical spectroscopy, electron microscopy, microradian X-ray diffraction, laser diffraction and using an analysis of Kossel ring patterns are described. The bibliography includes 253 references.

  5. One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent

    OpenAIRE

    Meng, Lingqian; Mezari, Brahim; Goesten, Maarten G.; Hensen, Emiel J. M.

    2017-01-01

    Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster...

  6. Ionothermal synthesis and crystal structures of metal phosphate chains

    International Nuclear Information System (INIS)

    Wragg, David S.; Le Ouay, Benjamin; Beale, Andrew M.; O'Brien, Matthew G.; Slawin, Alexandra M.Z.; Warren, John E.; Prior, Timothy J.; Morris, Russell E.

    2010-01-01

    We have prepared isostructural aluminium and gallium phosphate chains by ionothermal reactions in 1-ethyl-3-methylimidazolium bromide and 1-ethylpyridinium bromide under a variety of conditions. The chains can be prepared as pure phases or along with three dimensional framework phases. The chains are favoured at shorter heating times and the crystallinity can be improved by addition of transition metal acetates and amines which are not included in the final structure. The chain can be prepared with or without the presence of hydrofluoric acid. - Graphical abstract: Chain structures prepared from ionic liquid solvents under a wide variety of synthesis conditions.

  7. 3-cyanoindole-based inhibitors of inosine monophosphate dehydrogenase: synthesis and initial structure-activity relationships.

    Science.gov (United States)

    Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Chen, Ping; Norris, Derek; Watterson, Scott H; Ballentine, Shelley K; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-10-20

    A series of novel small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH), based upon a 3-cyanoindole core, were explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SAR), derived from in vitro studies, for this new series of inhibitors is given.

  8. Study of the synthesis of ammonia over technetium catalysts

    International Nuclear Information System (INIS)

    Spetsyn, V.I.; Mikhailenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    The catalytic properties of technetium in the synthesis of ammonia have been studied in the present work. Technetium catalysts according to specific yield surpass all know catalysts for the synthesis of ammonia. The enhanced catalytic activity of technetium compared to manganese and rhenium is apparently explained by the presence of the radioactivity of 99 Tc. The processes of adsorption, orientation of the adsorbed molecules, and their binding energies can differ during radiation action. Irradiation of the carrier, occurring through #betta#-emission of 99 Tc, with doses of 4-8 x 10 3 rad/day, increased the number of defects in the crystal structure where stabilization of technetium atoms was possible. The existence of charged centers can cause an increase in the dissociative chemisorption of nitrogen, which is the limiting stage of the process. Technetium catalysts possess a stable catalytic activity and do not require its restoration for several months. Results suggest that the use of technetium as a catalyst for the synthesis of ammonia has real advantages and potential possibilities

  9. Innovative synthesis of meso-structured YSZ using V2O5 complex fluids as a template

    International Nuclear Information System (INIS)

    Guiot, Camille; Grandjean, Stephane; Batail, Patrick

    2008-01-01

    Full text of publication follows: Within the framework of generation IV nuclear reactors, the prospect of a closed fuel cycle generate a need for new advanced materials integrating the actinides jointly. Researches are conducted on fuel material precursors synthesized by soft chemistry processes, which allow a fine control of the homogeneity and ordering at a nano-scale[1]. In a view to meso-structure an inorganic matrix, recent studies[2,3] have highlighted the potential of mineral liquid crystals as templates in new soft chemistry synthesis routes. The studies presently exposed relate to an original synthesis of an inorganic-inorganic hybrid material consisting in a main zirconia matrix tem plated by ribbon-like vanadium pentoxide. After eliminating the V 2 O 5 template, the obtained solid is to be a meso-porous material with ordered pores, and becomes a prime choice material, for example to immobilize actinides. The zirconia matrix has been chosen for its ability to host actinides, which are surrogated by neodymium. It is also a preliminary material for the study of the synthesis of uranium oxide based materials, thus preventing from the drawbacks of working with radioactive materials. The vanadium pentoxide is used as a template since it structure itself as ribbon-like mineral liquid crystals that can be aligned in weak magnetic field; consequently, the final material may be structured at a nano-scale over a macroscopic range. Since the shape of vanadium oxide in solution is very sensitive to the ionic strength of the medium and the pH, the real challenge is to establish a synthesis protocol which is compatible with the presence of vanadium pentoxide, remaining in its ribbon-like liquid crystal form. References: [1] Masson, M.; Grandjean, S.; Lacquement, J.; Bourg, S.; Delauzun, J. M.; Lacombe, J.; Nuclear Engineering and Design, 236 (5-6),516 (2006). [2] Camerel, F.; Gabriel, J.-C.P.; Batail, P.; Adv. Funct. Mater., 13 (5), 377 (2003). [3] Gabriel, J

  10. Synthesis and study of nano-structured cellulose acetate based materials for energy applications; Synthese et etude de materiaux nanostructures a base d'acetate de cellulose pour applications energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F

    2006-12-15

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO{sub 2} supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO{sub 2} are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm{sup -3} together with a meso-porous volume of 3,40 cm{sup 3}.g{sup -1} was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m{sup -1}.K{sup -1}. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  11. Chromium(III) Complex Obtained from Dipicolinic Acid: Synthesis, Characterization, X-Ray Crystal Structure and Electrochemical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Khaled; Rezvani, Ali Reza; Ghasemi, Fatemeh [Univ. of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim [Universiti Sains Malaysia, Penang (Malaysia)

    2013-10-15

    The synthesis, X-ray crystallography, spectroscopic (IR, UV-vis), and electrochemical properties of the title compound, [H{sub 3}O][Cr(dipic){sub 2}] [H{sub 3}O{sup +}.Cl{sup -}] (1), (H{sub 2}dipic = 2,6-pyridinedicarboxylic acid), are reported. This complex crystallizes in the monoclinic space group Cc with a = 14.9006(10) A, b = 12.2114(8) A, c = 8.6337(6) A, α = 90.00 .deg., β = 92.7460(10) .deg., γ = 90.00 .deg., and V = 1569.16(18) A3 with Z = 4. The hydrogen bonding and noncovalent interactions play roles in the stabilization of the structure. In order to gain a better understanding of the most important geometrical parameters in the structure of the complex, atoms in molecules (AIM) method at B3LYP/6-31G level of theory has been employed.

  12. Synthesis and characterization of Al-TON zeolite using a dialkylimizadolium as structure-directing agent

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christian Wittee; Pergher, Sibele Berenice Castella, E-mail: chriswittee@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Villarroel-Rocha, Jhonny [Laboratorio de Solidos Porosos, Instituto de Fisica Aplicada, Universidad Nacional de San Luis, Chacabuco, San Luis (Argentina); Silva, Bernardo Araldi Da; Mignoni, Marcelo Luis [Universidade Regional Integrada, Erechim, RS (Brazil)

    2016-11-15

    In this work, the synthesis of zeolites using 1-butyl-3-methylimidazolium chloride [C{sub 4}MI]Cl as a structure-directing agent was investigated. The organic cation shows effectiveness and selectivity for the syntheses of TON zeolites under different reaction conditions compared to the traditional structure directing agent, 1,8-diaminooctane. The 1-butyl-3-methylimidazolium cation lead to highly crystalline materials and its role as OSDA in our synthesis conditions has been confirmed by characterization techniques. ICP-OES confirms the presence of Al in the samples and {sup 27}Al MAS NMR analysis indicated that aluminum atoms were incorporated in tetrahedral coordination. Scanning electron microscopy indicated that changing the crystallization condition (static or stirring), zeolites with different crystal size were obtained, which consequently affects the textural properties of the zeolites. Moreover, varying some synthesis parameters MFI zeolite can also be obtained. (author)

  13. The in vitro synthesis of β-galactosidase induced in a subcellular structure of Escherichia coli (1961)

    International Nuclear Information System (INIS)

    Nisman, B.; Kayser, A.; Demailly, J.; Genin, C.

    1961-01-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P 1 ). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of β-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [fr

  14. Versatile hydrothermal synthesis of one-dimensional composite structures

    Science.gov (United States)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  15. Microwave-assisted hydrothermal synthesis of CePO{sub 4} nanostructures: Correlation between the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Palma-Ramírez, D. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C.P. 07300 México D.F. (Mexico); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, C.P. 01219 México D.F. (Mexico); Rodríguez, E. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)

    2015-09-15

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO{sub 4} is presented. • Microwave energy can replace the energy by convection for obtaining CePO{sub 4}. • CePO{sub 4} demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO{sub 4} morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO{sub 4}) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO{sub 4} nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO{sub 4} with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO{sub 4} can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic.

  16. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  17. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  18. Spectroscopic studies, theoretical models and structural characterization. II. Synthesis and X-ray powder diffraction of the elpasolites Cs2NaSmCl6

    International Nuclear Information System (INIS)

    Poblete, V.; Acevedo, R.

    1998-01-01

    In this research work, we report the synthesis and structural characterization of the stoichiometric elpasolite Cs 2 NaSmCl 6 . The synthesis was performed under a solid state reaction in nitrogen atmosphere from the chemicals CsCl, NaCl and SmCl 3 weighted stoichiometrically. The best possible crystallization temperature was obtained using thermal studies of the type DTA/TGA (the thermal treatment was allowed to proceed for 2.5 hours at 755 Centigrade, showing a temperature gradient of 10 Centigrade/minute). The structural characterization by powder X-ray diffraction (XDR) indicates that this elpasolite belongs to the Fm 3m (O h 5 ) space group and the optimized structural parameters are as follows: a 0 = 10.8342 Armstrong, V 1271.72 Armstrong 3 , Z=4, M=651.88, D x =3.406 y D exp=3.41 ± 0.01. The profile refinement, using the Rietveld method, allowed us to fit the experimental and the calculated intensities of a total of 32 lines. The above result indicates that the condition R exp 2+ + 3Cl -1 and the counter ions filling the octahedral holes, in full agreement with anti fluorite type crystal. According to the above description, these elpasolite adopt the form (M 1/3 □ 2/3 ) 4 X 2 , where M labels the central metal, X stand for the chlorine ions and □ represent the vacancies, which may accommodate a significant amount of defects without collapsing. This experimental study provides the necessary input to test theoretical models against experimental data. (Author)

  19. C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects

    Science.gov (United States)

    Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan

    Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.

  20. Micro structured reactors for synthesis/decomposition of hazardous chemicals. Challenging prospects for micro structured reaction architectures (4)

    NARCIS (Netherlands)

    Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2004-01-01

    A review. This paper completes a series of four publications dealing with the different aspects of the applications of micro reactor technol. This article focuses on the application of micro structured reactors in the processes for synthesis/decompn. of hazardous chems., such as unsym.

  1. Synthesis by irradiation and mechanism and structural characterization study of high melt strength polypropylene

    International Nuclear Information System (INIS)

    Lugao, Ademar Benevolo

    2004-01-01

    Polypropylene molecular structure is made only by linear molecules interacting by weak forces. The resulting PP has very low melt strength (MS). MS is important to make feasible to process PP by all the transformation technologies based on the free expansion of the melt. The aim of this work was to develop a new process to synthesize PP with crosslinks and/or long chain branches, known as High Melt Strength Polypropylene (HMSPP) and to characterize its structure and synthesis mechanism. HMSPP was obtained by the irradiation of PP under a crosslinking (acetylene) atmosphere or inert or oxidative one, followed by thermal treatment for radical recombination and thermal treatment for annihilation of the remaining radicals under reactive or inert atmosphere. The results from rheological characterization showed that the highest levels of MS were obtained by conducting irradiation and thermal treatments under crosslinking atmospheres. The results for the elucidation of reaction mechanism by electron spin resonance (ESR) showed that acetylene irradiation is effective in promoting the creation of double bonds, based on the formation of polyenil radicals. The results of structural unraveling showed that radiation promotes predominantly the degradation of atactic molecules or molecules with atactic defects. These results support the hypothesis of formation of branched PP molecules based on the reaction of those fragments with the double bonds created in the PP molecules. (author)

  2. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    Science.gov (United States)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  3. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-10-01

    The substitution of hydride anions (H-) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H--Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3-xHx (M = Cr, Ti, V). The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  4. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Directory of Open Access Journals (Sweden)

    Tsukasa Katayama

    2015-10-01

    Full Text Available The substitution of hydride anions (H− into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H−-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3−xHx (M = Cr, Ti, V. The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  5. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  6. Zinc Oxide Nanostructures: From Chestnut Husk-Like Structures to Hollow Nanocages, Synthesis and Structure

    Directory of Open Access Journals (Sweden)

    Domenica Scarano

    2018-03-01

    Full Text Available Tailor-made nanostructured ZnO cages have been catalytically grown on Au and Pt films covering silicon substrates, by a controlled evaporation process, which means an accurate choice of temperatures, times, gas flows (He in the heating, He/air during the synthesis, and Au/Pt film thickness. The effect of the process parameters affecting the morphology and the structure of the obtained materials has been investigated by XRD analysis, scanning electron microscopy (SEM and atomic force microscopy (AFM microscopies, and FTIR spectroscopies. In particular, the role of the synthesis temperature in affecting the size and shape of the obtained ZnO cages has been highlighted. It will be shown that by adopting higher temperatures, the protruding nanowhiskers several microns in length, covering the cages and exhibiting both basal and prismatic faces, change into very thin and narrow structures, with extended prismatic faces, prevailing with respect to the basal ones. At an even higher process temperature, the building up of Au particles aggregates inside and/or anchored to the walls of the hollow cages, without any evidence of elongated ZnO nanostructures will be highlighted. From FTIR spectra information on lattice modes of the investigated ZnO, materials have been obtained.

  7. Synthesis of Photochromic Oligophenylenimines: Optical and Computational Studies

    Directory of Open Access Journals (Sweden)

    Armando I. Martínez Pérez

    2015-03-01

    Full Text Available Phenyleneimine oligomers 4,4'-(((1E,1'E-(((1E,1'E-(1,4-phenylenebis-(azanylylidenebis(methanylylidenebis(2,5-bis(octyloxy-4,1-phenylenebis(methanylyl-idene-bis(azanylylidenedianiline (OIC1MS and 7,7'-(((1E,1'E-(((1E,1'E-((9H-fluorene-2,7-diylbis(azanylylidenebis(methanylylidenebis(2,5-bis(octyloxy-4,1phenylenebis- (methanylylidenebis(azanylylidenebis(9H-fluoren-2-amine (OIC2MS were prepared by means of conventional and mechanochemical synthesis and characterized by FT-IR, 1H- and 13C-NMR techniques. The optical properties of the compounds were studied in solution by using UV-visible spectroscopy, and the optical effects were analyzed as a function of solvent. The results show that OIC2MS exhibits interesting photochromic properties. Furthermore, the structural and electronic properties of the compounds were analyzed by TD-DFT. It was found that the mechanosynthesis is an efficient method for the synthesis of both tetraimines.

  8. Study of the influence in crystallization period in MCM-22 zeolite synthesis

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Santos, E.R.F.; Rodrigues, M.G.F.

    2011-01-01

    The synthesis of MCM-22 is accomplished by hydrothermal treatment and long periods needed for crystallization, with the gradual growth of crystals of 10-14 days. MCM-22 catalyst is studied intensively as promising, with high thermal stability. As part of a line of research focused on the development of zeolite with lowest cost, this study aimed to examine the effect in decreasing the period of crystallization in the synthesis of zeolite MCM-22. The materials were characterized by X-ray diffraction (XRD) spectroscopy, X-ray Energy Dispersive (EDX) and Fourier transform infrared spectroscopy and Fourier transform (FT-IR). By XRD it was observed that the hydrothermal treatment used in the synthesis was effective during periods of crystallization and EDX was observed that the samples have a high percentage of silica and low alumina content, which gives them a high ratio SiO 2 /Al 2 O 3 characteristic of the MWW structure. (author)

  9. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  10. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  11. An Investigation of Porous Structure of TiNi-Based SHS-Materials Produced at Different Initial Synthesis Temperatures

    Science.gov (United States)

    Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.

    2018-02-01

    An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.

  12. Carboranyl tetrahydroisoquinolines. Synthesis and the X-ray structural study of 1-(o-Carboran-1-ylmethyl)-1,2,3,4-Tetrahydroisoquinolines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Dae; Kang, Sang Ook [Korea University, Dept. of Chemistry, Chung-nam (Korea); Lee, Chai-Ho [Wonkwang Univ., Dept. of Chemistry, Jeonbuk (Korea); Lee, Seung-Hoon [National Cancer Center, Kyungi-do (Korea); Lim, Sang-Moo [Korea Cancer Center Hospital, Seoul (Korea); Cho, Sungil [Seoul City Univ., Dept. of Chemical Engineering, Seoul (Korea)

    2001-11-01

    Synthesis of the first fully characterized boronated tetrahydroisoquinolines is reported. Thus, tetrahydroisoquinolines containing 1-(0-carboran-1-ylmethyl)-1,2,3,4-tetrahydroisoquinolines have been synthesized from the corresponding arylethylamines to provide carboranes attached to functional group capable of being covalently incorporated into structures of potential use in boron neutron capture therapy (BNCT). The carboranyl functionalities were attached at the 1-position of the tetrahydroisoquinoline molecule. Experimental details and analytical data leading to the identification of the reported compounds are provided. Additionally, the X-ray diffraction structure of 9b is reported. (author)

  13. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  14. Cell-free protein synthesis for structure determination by X-ray crystallography.

    Science.gov (United States)

    Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo

    2010-01-01

    Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.

  15. Synthesis and Spectroscopic, Thermal and Crystal Structure Studies ...

    African Journals Online (AJOL)

    NICO

    Structure Studies of Hydrazinium Hydrogensuccinate .... SMART and SAINT software packages28 were used for ... were corrected for systematic errors using SADABS29 based on ... T. Premkumar, R. Selvakumar, N.P. Rath and S. Govindarajan,. 86. S. Afr. J. .... 6 D. Gajapathy, S. Govindarajan and K.C. Patil, Thermochim.

  16. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS

    2017-04-03

    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  18. Synthesis and structural characterization of some trisulfide analoges of thiouracil-based antithyroid drugs

    Science.gov (United States)

    Bhabak, Krishna P.; Bhowmick, Debasish

    2012-08-01

    Thiourea-based antithyroid drugs are effectively used for the treatment of hyperthyroidism. In this paper, we describe the synthesis of new trisulfides (11-12) from the commonly used thiourea-based antithyroid drugs such as 6-n-propyl-2-thiouracil (PTU) and 6-methyl-2-thiouracil (MTU) in the reaction with I2/KI system. Structural analysis by single crystal X-ray diffraction studies revealed the stabilization of trisulfides by a lactam-lactim tautomerism facilitating effective intramolecular as well as intermolecular non-covalent interactions. Although the structures of both trisulfides were found to be quite similar, a notable difference in the intermolecular interactions was observed between compounds 11 and 12 leading to different structural patterns. Structural stabilization of these trisulfides by tautomerism followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule.

  19. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    International Nuclear Information System (INIS)

    Caskey, Christopher M.; Holder, Aaron; Christensen, Steven T.; Biagioni, David; Ginley, David S.; Tumas, William; Perkins, John D.; Lany, Stephan; Zakutayev, Andriy; Shulda, Sarah; Diercks, David; Pylypenko, Svitlana; Richards, Ryan M.; Schwartz, Craig P.; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Sun, Wenhao; Orvananos, Bernardo

    2016-01-01

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3 N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  20. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, Christopher M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Colorado School of Mines, Golden, Colorado 80401 (United States); Larix Chemical Science, Golden, Colorado 80401 (United States); Holder, Aaron; Christensen, Steven T.; Biagioni, David; Ginley, David S.; Tumas, William; Perkins, John D.; Lany, Stephan; Zakutayev, Andriy, E-mail: andriy.zakutayev@nrel.gov [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Shulda, Sarah; Diercks, David; Pylypenko, Svitlana; Richards, Ryan M. [Colorado School of Mines, Golden, Colorado 80401 (United States); Schwartz, Craig P.; Nordlund, Dennis [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kukliansky, Alon; Natan, Amir [Tel Aviv University, Tel Aviv-Yafo (Israel); Prendergast, David; Sun, Wenhao [Lawrence Berkeley National Laboratory, Berkley, California 94720 (United States); Orvananos, Bernardo [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); and others

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  1. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki [Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581 (Japan); Fukumura, Tomoteru [CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Miyagi 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  2. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  3. Synthesis of mesomeric betaine compounds with imidazolium-enolate structure

    Directory of Open Access Journals (Sweden)

    Nina Gonsior

    2012-03-01

    Full Text Available The synthesis of a heterocyclic mesomeric betaine by quaternization reaction of 1-butylimidazole and tetrabromo-1,4-benzoquinone is presented. The structure was verified by means of X-ray single-crystal analysis, NMR and IR spectroscopy. Inclusion complexes of the heterocyclic mesomeric betaine with randomly methylated (1.8 β-cyclodextrin were investigated by UV–vis spectroscopy. Furthermore, the reaction conditions were applied to poly(vinylimidazole and 1,4-bis(1H-imidazol-1-ylbutane to obtain functionalized polymer networks and condensate polymers, respectively.

  4. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    Science.gov (United States)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  5. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  6. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  7. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    Science.gov (United States)

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  8. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    International Nuclear Information System (INIS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-01-01

    Graphical abstract: NiWO 4 nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: ► NiWO 4 spherical nanoparticles were synthesized via direct precipitation method. ► Taguchi robust design was used for optimization of synthesis reaction parameters. ► Composition and structural properties of NiWO 4 nanoparticles were characterized. ► EDAX, XRD, SEM, FT-IR, UV–vis and photoluminescence techniques were employed. ► Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO 4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO 4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO 4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV–vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  9. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  10. SYNTHESIS OF THE TECHNICAL CONTROL SYSTEMS WITH VARIABLE STRUCTURE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Change. Also the object as a result of an adverse effect is considered. The formal problem definition of synthesis of hardy management system is considered. Model choice criteria ensemble is set. The rule of choice algorithm implementation on the basis of different reference functions is provided. The conclusion is drawn that in case of preliminary processing of the available prior data it is possible to select reference functions correctly which reflect physical processes more precisely. The mathematical description of a dynamic object on the basis of a differential equation, or its decision is provided. Defini- tion of function of a trend is given. Criteria for selection of model of damage are given. The recommendation of modifica- tion of Demark trends algorithm by means of the sliding Yazvinsky's window and a method of self-organization for in- crease of accuracy of creation of a predictive model of damage is made. It is offered to realize a model choice by means of more complex logical analysis of an observed vector in the appropriate situation. Logic-functional control task definition is given and approach to its decision is formulated. The conclusion about what the task of synthesis management system con- sists of is given. This article describes the method of synthesis of control system with variable structure provides increasing survivability control system in a significant change of the external environment, as well as the object itself from the adverse impacts.

  11. Synthesis and Structure of D3h-Symmetric Triptycene Trimaleimide

    Directory of Open Access Journals (Sweden)

    Anthony Linden

    2010-01-01

    Full Text Available A new D3h symmetric triptycene derivative has been synthesized with the aim of obtaining molecules that are able to assemble into porous structures, and can be used in the development of new ligands. The synthesis involves a Diels-Alder reaction as the key step, followed by an oxidation and the formation of a maleimide ring. Triptycene trimaleimide furnished single crystals which have been analyzed by means of X-ray diffraction.

  12. Relation between structural evolution and effective Ir moments upon applied pressure during synthesis in Ba{sub 3}YIr{sub 2}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Stummer, Hannes; Dey, Tusharkanti; Wurmehl, Sabine; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research, Dresden (Germany)

    2015-07-01

    The intensively investigated material class of Iridium oxide based materials provides a variety of new and unknown combinations of magnetic properties with interesting novel or exotic ground states. These Iridate compounds often appear in a perovskite type structure or a related derivative which are very favorable for crystal structure modifications under high pressure. High pressure synthesis therefore can be used to tune or change the magnetic properties appearing under normal pressure. The Iridate Ba{sub 3}YIr{sub 2}O{sub 9} crystallizes under ambient pressure synthesis in a hexagonal structure and exhibits magnetic ordering below 4 K. A synthesis pressure of 8 GPa advances the material to form a cubic double perovskite structure which is (meta-)stable at ambient pressure. For this high pressure configuration the magnetic ordering is suppressed. We will present our recent results about the systematic high pressure synthesis and characterization of Ba{sub 3}YIr{sub 2}O{sub 9} samples grown under different growth pressure. The main focus will be on the correlation between structural and magnetic properties depending on the applied pressure during the synthesis process.

  13. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    International Nuclear Information System (INIS)

    Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M.

    2015-01-01

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL

  14. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Ngom, B.D. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Park, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nelson Mandela African Institute for Science & Technology, Arusha (Tanzania, United Republic of); Maaza, M., E-mail: Maaza@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2015-10-15

    This contribution reports for the 1st time on the synthesis and the main physical properties of ZnO nanoparticles synthesized by an entirely green physical-chemistral process using Aspalathus linearis's natural extract as an efficient reduction/oxidizing agent. Their structural and optical properties by electron microscopy, X-rays diffraction, Raman and X-rays photoemission spectroscopies as well as room temperature photoluminescence are reported. - Highlights: • 1st time report on synthesis of ZnO nanoparticles by a green process via Aspalathus linearis extract. • A. linearis's natural extract was used as an effective reduction/oxidizing agent. • Wurtzite nature of ZnO nanoparticles was confirmed via XRD, Raman, XPS and PL.

  15. Quaternary Alkylammonium Conjugates of Steroids: Synthesis, Molecular Structure, and Biological Studies

    Directory of Open Access Journals (Sweden)

    Bogumił Brycki

    2015-11-01

    Full Text Available The methods of synthesis as well as physical, spectroscopic (1H-NMR, 13C-NMR, and FT-IR, ESI-MS, and biological properties of quaternary and dimeric quaternary alkylammonium conjugates of steroids are presented. The results were contrasted with theoretical calculations (PM5 methods and potential pharmacological properties (PASS. Alkylammonium sterols exhibit a broad spectrum of antimicrobial activity comparable to squalamine.

  16. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    International Nuclear Information System (INIS)

    Nunes, D.; Livramento, V.; Mateus, R.; Correia, J.B.; Alves, L.C.; Vilarigues, M.; Carvalho, P.A.

    2011-01-01

    Highlights: → The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. → Preservation of nD crystalline structure during high-energy milling was demonstrated. → Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. → Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. → Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  17. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  18. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  19. Synthesis and structures of two new Cu(I) frameworks bearing1,3 ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-016-1100-6. Synthesis and structures of two new Cu(I) frameworks bearing1,3-bis(4-pyridyl)propane and inorganic linkers. ZHAOBO HUa, BO LIb,∗, WENQIANG JUa, YUNING LIANGa and ZILU CHENa,∗. aState Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources,.

  20. Synthesis of Copper-Based Transparent Conductive Oxides with Delafossite Structure via Sol-Gel Processing

    OpenAIRE

    Götzendörfer, Stefan

    2011-01-01

    Starting off with solubility experiments of possible precursors, the present study reveals the whole development of a sol gel processing route for transparent p type semiconductive thin films with delafossite structure right to the fabrication of functional p-n junctions. The versatile sol formulation could successfully be modified for several oxide compositions, enabling the synthesis of CuAlO2, CuCrO2, CuMnO2, CuFeO2 and more. Although several differences in the sintering behaviour of powde...

  1. Synthesis of o-Alkenylated 2-Arylbenzoxazoles via Rh-Catalyzed Oxidative Olefination of 2-Arylbenzoxazoles: Scope Investigation, Structural Features, and Mechanism Studies.

    Science.gov (United States)

    Zhou, Quan; Zhang, Jing-Fan; Cao, Hui; Zhong, Rui; Hou, Xiu-Feng

    2016-12-16

    2-Arylbenzazoles are promising molecules for potential applications in medicine and material areas. Efficient protocols for direct regioselective functionalization of 2-arylbenzoxazoles are in high demand. Herein, we disclose a general method for selective ortho-olefination of 2-arylbenzo[d]oxazoles with alkenes enabled by versatile Cp*Rh(III) in high yields. This protocol features broad functional group tolerance and high regioselectivity. Intermolecular competition studies and kinetic isotope effect experiments imply that the oxidative olefination process occurs via an electrophilic C-H activation pathway. The molecular structure of the m-fluoro-substituted olefination product confirms regioselective C-H activation/olefination at the more hindered site in cases where the meta F atom or heteroatom substituent existed. Apparent torsion angles were observed in the structures of mono- and bis-olefination products, which resulted in distinct different chemical shifts of olefinic protons. Additionally, two gram-scale reactions and further transformation experiments demonstrate that this method is practical for synthesis of ortho-alkenylated 2-arylbenzoxazole derivatives.

  2. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Zhu, Yisi [Materials Science Division, Argonne National Lab, Lemont Illinois 60439; Torres, Jorge [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Lee, Seung Hee [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-786 Korea; Yun, Minhee [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261

    2017-09-05

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellent p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.

  3. A Better Understanding of Protein Structure and Function by the Synthesis and Incorporation of Selenium- and Tellurium Containing Tryptophan Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Helmey, Sherif Samir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Rice, Ambrose Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Hatch, Duane Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Silks, Louis A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Marti-Arbona, Ricardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division

    2016-08-17

    Unnatural heavy metal-containing amino acid analogs have shown to be very important in the analysis of protein structure, using methods such as X-ray crystallography, mass spectroscopy, and NMR spectroscopy. Synthesis and incorporation of selenium-containing methionine analogs has already been shown in the literature however with some drawbacks due to toxicity to host organisms. Thus synthesis of heavy metal tryptophan analogs should prove to be more effective since the amino acid tryptophan is naturally less abundant in many proteins. For example, bioincorporation of β-seleno[3,2-b]pyrrolyl-L-alanine ([4,5]SeTrp) and β-selenolo[2,3-b]pyrrolyl-L-alanine ([6,7]SeTrp) has been shown in the following proteins without structural or catalytic perturbations: human annexin V, barstar, and dihydrofolate reductase. The reported synthesis of these Se-containing analogs is currently not efficient for commercial purposes. Thus a more efficient, concise, high-yield synthesis of selenotryptophan, as well as the corresponding, tellurotryptophan, will be necessary for wide spread use of these unnatural amino acid analogs. This research will highlight our progress towards a synthetic route of both [6,7]SeTrp and [6,7]TeTrp, which ultimately will be used to study the effect on the catalytic activity of Lignin Peroxidase (LiP).

  4. Using a precursor in lamellar structure for the synthesis of uniform ZnS nanocrystals

    KAUST Repository

    Xu, Xinjiang

    2011-11-12

    Uniform ZnS nanocrystals of about 15 nm were prepared through a low temperature hydrothermal approach by treating Zn-PhPO nanosheets with Na 2S aqueous solution. Both the precursor and the final product were studied by the means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The photo-luminescent spectrum of the synthesized ZnS nanocrystals showed their good crystalline nature. Based on this study, the precursor structure-controlling effect was discussed, and in addition, the relevant factors possibly affecting the particle formation and the growth possessed were applied in the discussion to interpret the transformation mechanism. Further research showed that both the structure characters of the precursors and the mass transportation which occurred during the synthesis greatly affected the morphology and organization state of the final products. This research may provide some facts on the structure-controlling approaches along with a general method for the preparation of uniform sulfide nanocrystals. © Springer Science+Business Media B.V. 2011.

  5. Structural and physicochemical studies of two key intermediates and the impurity in the new synthesis route of vitamin MK-7

    Science.gov (United States)

    Łaszcz, Marta; Trzcińska, Kinga; Kubiszewski, Marek; Krajewski, Krzysztof

    2018-05-01

    The MK-7 homologues of vitamin K2 are characterized by the best bioavailability among other K vitamins and act effectively in the treatment of osteoporosis and cardiovascular diseases. In this article comprehensive structural studies of two intermediates 1,4-diethoxy-2-methylnaphtalene (M2) and 1,4-diethoxy-2-methyl-3-[(2E)-3-methyl-4-(phenylsulfonyl)-2-buten-1-yl]naphtalene (M3) from the multi-step synthesis of MK-7 vitamin were described. The compounds crystallize in a monoclinic system in P21/n and P21/c for M2 and M3, respectively. Also, the isomer (2E)-4-chloro-3-methyl-1-(phenylsulfonyl)but-2-ene (M1-E verso) was isolated and the single crystal studies were performed. These three compounds were fully characterized by the 1D and 2D NMR technique as well as by Fourier-transformed infrared and Raman spectroscopies.

  6. Palladium(II)-Stabilized Pyridine-2-Diazotates: Synthesis, Structural Characterization, and Cytotoxicity Studies.

    Science.gov (United States)

    Tskhovrebov, Alexander G; Vasileva, Anna A; Goddard, Richard; Riedel, Tina; Dyson, Paul J; Mikhaylov, Vladimir N; Serebryanskaya, Tatiyana V; Sorokoumov, Viktor N; Haukka, Matti

    2018-02-05

    Well-defined diazotates are scarce. Here we report the synthesis of unprecedented homoleptic palladium(II) diazotate complexes. The palladium(II)-mediated nitrosylation of 2-aminopyridines with NaNO 2 results in the formation of metal-stabilized diazotates, which were found to be cytotoxic to human ovarian cancer cells.

  7. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Thomas P. Vaid

    2017-07-01

    Full Text Available Traditional synthesis of metal–organic frameworks (MOFs involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs, rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  8. Lucifensin, a Novel Insect Defensin of Medicinal Maggots: Synthesis and Structural Study

    Czech Academy of Sciences Publication Activity Database

    Čeřovský, Václav; Slaninová, Jiřina; Fučík, Vladimír; Monincová, Lenka; Bednárová, Lucie; Maloň, Petr; Štokrová, Jitka

    2011-01-01

    Roč. 12, č. 9 (2011), s. 1352-1361 ISSN 1439-4227 R&D Projects: GA ČR GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506 Keywords : antimicrobial peptide * disulfide bridge * lucifensin * solid phase synthesis Subject RIV: CC - Organic Chemistry Impact factor: 3.944, year: 2011

  9. Novel Fluorinated Indanone, Tetralone and Naphthone Derivatives: Synthesis and Unique Structural Features

    Directory of Open Access Journals (Sweden)

    Joseph C. Sloop

    2012-02-01

    Full Text Available Several fluorinated and trifluoromethylated indanone, tetralone and naphthone derivatives have been prepared via Claisen condensations and selective fluorinations in yields ranging from 22–60%. In addition, we report the synthesis of new, selectively fluorinated bindones in yields ranging from 72–92%. Of particular interest is the fluorination and trifluoroacetylation regiochemistry observed in these fluorinated products. We also note unusual transformations including a novel one pot, dual trifluoroacetylation, trifluoroacetylnaphthone synthesis via a deacetylation as well as an acetyl-trifluoroacetyl group exchange. Solid-state structural features exhibited by these compounds were investigated using crystallographic methods. Crystallographic results, supported by spectroscopic data, show that trifluoroacetylated ketones prefer a chelated cis-enol form whereas fluorinated bindone products exist primarily as the cross-conjugated triketo form.

  10. Structure and fertilizer properties of byproducts formed in the synthesis of EDDHA.

    Science.gov (United States)

    Hernández-Apaolaza, Lourdes; García-Marco, Sonia; Nadal, Paloma; Lucena, Juan J; Sierra, Miguel A; Gómez-Gallego, Mar; Ramírez-López, Pedro; Escudero, Rosa

    2006-06-14

    The synthesis of commercial EDDHA produces o,o-EDDHA as the main reaction product, together with a mixture of regioisomers (o,p-EDDHA and p,p-EDDHA) and other unknown byproducts also able to complex Fe3+. These compounds have been obtained by direct synthesis, and their structures have been determined by ESI-MS analysis as oligomeric EDDHA-like products, formed by polysubstitution in the phenolic rings. Short-term experiments show that the iron complexes of samples enriched in these oligomeric byproducts have adequate stability in solution, but a significant amount of them is lost after interaction with soils and soil materials. Mildly chlorotic cucumber plants are able to reduce iron better from o,p-EDDHA/Fe3+ than from the iron complexes of the oligomeric byproducts. In hydroponics, the chlorotic soybean susceptible plants have a lower potential for Fe absorption from these byproducts than from o,o-EDDHA/Fe3+ and from o,p-EDDHA/Fe3+. In the studied conditions, the iron chelates of EDDHA byproducts do not have the long-lasting effect shown by o,o-EDDHA/Fe3+ and present a less efficient fast-action effect than the o,p-EDDHA/Fe3+.

  11. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  12. Total synthesis of the putative structure of the novel triquinane natural product isocapnellenone

    OpenAIRE

    Mehta, Goverdhan; Murthy, Sai Krishna A; Umarye, Jayant D

    2002-01-01

    A total synthesis of the ‘putative structure’ 7, attributed to the novel triquinane sesquiterpene isolated recently from two Buddelia species has been accomplished. The spectral data for 7 is a complete mismatch with those reported for the natural product and warrants a revision of the assigned structure.

  13. Synthesis and Single Crystal Structures of Substituted-1,3-Selenazol-2-amines

    Directory of Open Access Journals (Sweden)

    Guoxiong Hua

    2016-12-01

    Full Text Available The synthesis and X-ray single crystal structures of a series of new 4-substituted-1,3-selenazol-2-amines is reported. The efficient preparation of these compounds was carried out by two-component cyclization of the selenoureas with equimolar amounts of α-haloketones. The selenoureas were obtained from the reaction of Woollins’ reagent with cyanamides, followed by hydrolysis with water. All new compounds have been characterized by IR spectroscopy, multi-NMR (1H, 13C, 77Se spectroscopy, accurate mass measurement and single crystal X-ray structure analysis.

  14. Tomo-synthesis. Bibliographic study report

    International Nuclear Information System (INIS)

    2016-01-01

    Tomo-synthesis is a recent technique for breast imaging. This technique, qualified as 'pseudo-3D', draws the attention of health professionals. Indeed, this technique could offer a gain in sensibility and in specificity in the detection of breast cancers compared to 2D mammography, thanks to the reduction of the tissues' overlapping in particular. Although its place and its clinical indication are not still clearly defined, tomo-synthesis is already used in France. The introduction of this technique within the national breast cancer screening program, seems to be foreseen by the authorities in the coming years. IRSN, in the scope of its mission of evaluation of the dose impact of innovative techniques, is closely interested in this technique and has proceeded in 2015 to a bibliographical review of the state of the art in tomo-synthesis. This review paid specific attention to the following points: conception of the installations, dose, image quality and quality control. it has highlighted several points of attention, which incite IRSN to formulate certain recommendations to accompany the spreading of this new technique in France. Most of the clinical trials validating the use of tomo-synthesis were realized on systems of a single manufacturer. However, manufacturers' strategies of design are heterogeneous. There is no unique technique of tomo-synthesis but several, of which equivalence in terms of technical and clinical performances is not demonstrated. Due to the heterogeneity of the different models available on the French market, IRSN recommends not to extrapolate the results of clinical studies obtained on a specific system but to consolidate them for all the available systems. In many imaging departments, tomo-synthesis is already implemented in addition or in substitution of 2D mammography without any regulatory quality control and periodic technical checks. The European reference standard for quality control of these devices is not yet

  15. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    Science.gov (United States)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  16. Controlled synthesis of Zn0 nanoparticles by bioreduction

    International Nuclear Information System (INIS)

    Canizal, G.; Schabes-Retchkiman, P.S.; Pal, U.; Liu, Hong Bo; Ascencio, J.A.

    2006-01-01

    Synthesis of metallic Zn nanoparticles through bio-reduction methods is reported for the first time. The structure, shape and size of the nanoparticles are critically controlled through the pH used in the sample preparation. High resolution electron microscopy was used in order to determine the structure of individual nanoparticles. Formation of quantum dots and the efficiency of ion reduction in the synthesis process are studied through the optical absorption in colloids. The structure and stability of the Zn clusters (up to 4000 atoms) were determined through the calculation of minimum energy configurations using molecular and quantum mechanics approximations and image simulation. The structure of the obtained nanoparticles was preferentially hexagonal, although multiple twinned and fcc-like structures were identified. The size controlled synthesis of small nanoparticles in the quantum-dot range was demonstrated successfully

  17. Green synthesis and structural control of metal and mineral nanostructures

    DEFF Research Database (Denmark)

    Engelbrekt, Christian

    of nanoparticle formation which, however, entails the development of new methods. Two approaches to the advancement of solution synthesis of gold nanomaterials for energy technology were exploited, namely the development of techniques to study nanoparticle formation and the synthesis of active, composite...... nanomaterials. In the first approach, time-resolved chronopotentiometry, pH, conductivity and turbidity, and ultraviolet-visible light spectroscopy were employed to follow the green synthesis of gold nanoparticles. Several distinct phases were observed with all techniques providing a broad picture...... of the complex processes. Strong indications of sequential reduction were found and details about ligands and surface immobilized molecules disclosed. This platform is a widely available alternative to traditionally used synchrotron techniques. In the second approach, systematic efforts toward size and shape...

  18. Isolation, structure, and synthesis of viridic acid, a new tetrapeptide mycotoxin of Penicillium viridicatum Westling

    International Nuclear Information System (INIS)

    Holzapfel, C.W.; Koekemoer, J.M.; Van Dyk, M.S.

    1986-01-01

    The isolation of a new toxic metabolite, viridic acid, from Penicillium viridicatum Westling is described. The chemical and spectroscopic properties of the compound are interpreted in terms of the tetrapeptide structure (N,N-dimethyl-o-aminobenzoyl)-glycyl-(N'-methyl-L-valyl)-o-aminobenzoic acid. The structure and chirality of viridic acid were confirmed by total synthesis

  19. Quick synthesis of highly aligned or randomly oriented nanofibrous structures composed of C60 molecules via self-assembly

    International Nuclear Information System (INIS)

    Kurosu, Shunji; Fukuda, Takahiro; Maekawa, Toru

    2013-01-01

    Assemblies, which are composed of nanoparticles such as nanofibres, have been intensively studied in recent years. This has particularly been the case in the field of biomedicine, where the aim is to develop efficient methodologies for capturing and separating target biomolecules and cells and/or encouraging bio-chemical reactions, utilizing the extremely high surface area to volume ratio of assemblies. There is an urgent need for the development of a quick synthesis method of forming nanofibrous structures on the surface of biomedical microchips and devices for the investigation of the interactions between biomolecules/cells and the nanostructures. Here, we produce nanofibrous structures composed of C 60 molecules, which are aligned in one direction or randomly oriented, by dissolving C 60 molecules and sulphur in benzene and evaporating a droplet of the solution on a glass substrate under appropriate conditions. The synthesis time is as short as 30 s. Sulphur is extracted and nanofibres are crystallized by leaving them in supercritical carbon dioxide. (paper)

  20. Studies on Synthesis and Structure-Activity Relationship (SAR of Derivatives of a New Natural Product from Marine Fungi as Inhibitors of Influenza Virus Neuraminidase

    Directory of Open Access Journals (Sweden)

    Yongcheng Lin

    2011-10-01

    Full Text Available Based on the natural isoprenyl phenyl ether from a mangrove-derived fungus, 32 analogues were synthesized and evaluated for inhibitory activity against influenza H1N1 neuraminidase. Compound 15 (3-(allyloxy-4-hydroxybenzaldehyde exhibited the most potent inhibitory activity, with IC50 values of 26.96 μM for A/GuangdongSB/01/2009 (H1N1, 27.73 μM for A/Guangdong/03/2009 (H1N1, and 25.13 μM for A/Guangdong/05/2009 (H1N1, respectively, which is stronger than the benzoic acid derivatives (~mM level. These are a new kind of non-nitrogenous aromatic ether Neuraminidase (NA inhibitors. Their structures are simple and the synthesis routes are not complex. The structure-activity relationship (SAR analysis revealed that the aryl aldehyde and unsubstituted hydroxyl were important to NA inhibitory activities. Molecular docking studies were carried out to explain the SAR of the compounds, and provided valuable information for further structure modification.

  1. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II complexes

    Directory of Open Access Journals (Sweden)

    Mustapha C. Mandewale

    2018-02-01

    Full Text Available The quinoline hydrazone ligands were synthesized through multi-step reactions. The 2-hydroxy-3-formylquinoline derivatives (1a–1c were prepared from acetanilide derivatives as starting materials using Vilsmeier–Haack reaction. Then the condensation of 2-hydroxy-3-formylquinoline derivatives with hydrazide derivatives (2a–2c yielded quinoline hydrazone ligands (3a–3i. The synthesis of a new series of Zn(II complexes carried out by refluxing with these quinoline hydrazone ligands (3a–3i is reported. The molecular structures of the ligands (3a–3i and the Zn complexes were characterized by elemental analysis and spectral studies like FT-IR, 1H and 13C NMR, MS, UV–Visible and fluorescence. The preliminary results of antituberculosis study showed that most of the Zn(II complexes 4a–4i demonstrated very good antituberculosis activity while the ligands 3a–3i showed moderate activity. Among the tested compounds 4e and 4g were found to be most active with minimum inhibitory concentration (MIC of 8.00μM and 7.42 μM respectively against Mycobacterium tuberculosis (H37 RV strain ATCC No-27294 which is comparable to “first and second line” drugs used to treat tuberculosis.

  2. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  3. The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis.

    Science.gov (United States)

    Yang, Hua-feng; Xie, Peng-yang; Yu, Hui-you; Li, Xiao-nian; Wang, Jian-guo

    2012-12-28

    The structures and catalytic properties of AuPd clusters supported on carbon nanotubes (CNTs) for H(2)O(2) synthesis have been investigated by means of density functional theory calculations. Firstly, the structures of AuPd clusters are strongly influenced by CNTs, in which the bottom layers are mainly composed of Pd and the top layers are a mix of Au and Pd due to the stronger binding of Pd than Au on CNTs. Especially, it is found that O(2) adsorption on the Pd/CNTs interfacial sites is much weaker than that on the only Pd sites, which is in contrast to transition metal oxide (for example TiO(2), Al(2)O(3), CeO(2)) supported metal clusters. Furthermore, Pd ensembles on the interfacial sites have far superior catalytic properties for H(2)O(2) formation than those away from CNT supports due to the changes in electronic structures caused by the CNTs. Therefore, our study provides a physical insight into the enhanced role of carbon supports in H(2)O(2) synthesis over supported AuPd catalysts.

  4. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery.

    Science.gov (United States)

    Quiliano, Miguel; Pabón, Adriana; Moles, Ernest; Bonilla-Ramirez, Leonardo; Fabing, Isabelle; Fong, Kim Y; Nieto-Aco, Diego A; Wright, David W; Pizarro, Juan C; Vettorazzi, Ariane; López de Cerain, Adela; Deharo, Eric; Fernández-Busquets, Xavier; Garavito, Giovanny; Aldana, Ignacio; Galiano, Silvia

    2018-05-25

    Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC 50 s activity in chloroquine-sensitive and multidrug-resistant strains (IC 50 s antimalarial compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Comparison among structural characteristics of Ce1-xCuxO2 nanocatalysts obtained by two methods of distinct synthesis

    International Nuclear Information System (INIS)

    Neiva, L.S.; Bispo, A.; Santos, P.T.A.; Costa, A.C.F.M.; Gama, L.; Mascarenhas, A.J.S.

    2009-01-01

    The objective this work is to synthesize nano catalysts Ce 1-x Cu x O 2 type by the synthesis methods of the combustion reaction and Pechini. The value of the concentration (x) of the element dope (Cu) varies between 0,1 and 0,5 mols. It intends evaluate that form the synthesis method influences in the physical structural characteristics of this material. nano catalysts were characterized by ray- X diffraction. The results showed nano catalysts formation with a formed structure for the most part by the phase CeO 2 , as it was expected, since this is the hostess matrix of the element dope (Cu). Nano catalysts obtained by the method Pechini presents crystallinity larger deg, according with patterns of ray-X. Thus, it was concluded that synthesis employee method the kind in the methodology, as well as the value of the concentration of the element dope has influence on the final structural characteristics of the developed material. (author)

  6. Synthesis and structure of nanomaterials in the system K2O-Nb2O5-SiO2

    Directory of Open Access Journals (Sweden)

    Georgi Chernev

    2009-06-01

    Full Text Available The aim of the present work is synthesis of ferroelectric nanomaterials, in the K2O-Nb2O5-SiO2 system via solgel method and studying the processes of formation and structure of the synthesized ferroelectric nanomaterials. The structure of synthesized materials has been studied by means of the following methods: EDS, XRD, FT-IR, SEM and AFM. The results obtained showed that the structure of the investigated compositions does not depend on the niobium content and all the samples keep their amorphous nature at room temperature. The surface structure shows random distribution of different kinds of aggregates with dimensions about 200–500 nm. The presence of a hybrid nanostructure with well-defi ned nanounits having special geometry is clearly observed.

  7. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    International Nuclear Information System (INIS)

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de; Marques, Maria Rita; Leite, Carla Braga

    2009-01-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  8. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Exatas e Tecnologia. Dept. de Quimica], e-mail: dlima@nin.ufms.br; Marques, Maria Rita; Leite, Carla Braga [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Biologicas. Dept. de Morfofisiologia

    2009-07-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  9. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Directory of Open Access Journals (Sweden)

    Edson dos Anjos dos Santos

    2009-01-01

    Full Text Available Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H-one (1 and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H-one (2. The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in milimolar range.

  10. Synthesis, structure and electronic structure of a new polymorph of CaGe2

    International Nuclear Information System (INIS)

    Tobash, Paul H.; Bobev, Svilen

    2007-01-01

    Reported are the flux synthesis, the crystal structure determination, the properties and the band structure calculations of a new polymorph of CaGe 2 , which crystallizes with the hexagonal space group P6 3 mc (no. 186) with cell parameters of a=3.9966(9) and c=10.211(4)A (Z=2; Pearson's code hP6). The structure can be viewed as puckered layers of three-bonded germanium atoms, ∼ 2 [Ge 2 ] 2- , which are stacked along the direction of the c-axis in an ABAB-fashion. The germanium polyanionic layers are separated by the Ca cations. As such, this structure is closely related to the structure of the other CaGe 2 polymorph, which crystallizes with the rhombohedral CaSi 2 type in the R3-bar m space group (No. 166), where the ∼ 2 [Ge 2 ] 2- layers are arranged in an AA'BB'CC'-fashion, and are also interspaced by Ca 2+ cations. LMTO calculations suggest that in spite of the formal closed-shell configuration for all atoms and the apparent adherence to the Zintl rules for electron counting, i.e., Ca 2+ [3b-Ge 1- ] 2 ), the phase will be a poor metal due to a small Ca-3d-Ge-4p band overlap. Magnetic susceptibility measurements as a function of the temperature indicate that the new CaGe 2 polymorph exhibits weak, temperature independent, Pauli-paramagnetism

  11. Structural Synthesis of 3-DoF Spatial Fully Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Alfonso Hernandez

    2014-07-01

    Full Text Available In this paper, the architectures of three degrees of freedom (3-DoF spatial, fully parallel manipulators (PMs, whose limbs are structurally identical, are obtained systematically. To do this, the methodology followed makes use of the concepts of the displacement group theory of rigid body motion. This theory works with so-called ‘motion generators’. That is, every limb is a kinematic chain that produces a certain type of displacement in the mobile platform or end-effector. The laws of group algebra will determine the actual motion pattern of the end-effector. The structural synthesis is a combinatorial process of different kinematic chains’ topologies employed in order to get all of the 3-DoF motion pattern possibilities in the end-effector of the fully parallel manipulator.

  12. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  13. Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.

    Science.gov (United States)

    Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H

    2010-11-21

    Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.

  14. Controlled synthesis of Zn{sup 0} nanoparticles by bioreduction

    Energy Technology Data Exchange (ETDEWEB)

    Canizal, G. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Apartado Postal 14-805, C.P. 07730, Mexico D.F. (Mexico); Schabes-Retchkiman, P.S. [Instituto de Fisica, Universidad Nal. Autonoma de Mexico, A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico); Pal, U. [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570 (Mexico); Liu, Hong Bo [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Apartado Postal 14-805, C.P. 07730, Mexico D.F. (Mexico); Ascencio, J.A. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Apartado Postal 14-805, C.P. 07730, Mexico D.F. (Mexico)]. E-mail: ascencio@imp.mx

    2006-06-10

    Synthesis of metallic Zn nanoparticles through bio-reduction methods is reported for the first time. The structure, shape and size of the nanoparticles are critically controlled through the pH used in the sample preparation. High resolution electron microscopy was used in order to determine the structure of individual nanoparticles. Formation of quantum dots and the efficiency of ion reduction in the synthesis process are studied through the optical absorption in colloids. The structure and stability of the Zn clusters (up to 4000 atoms) were determined through the calculation of minimum energy configurations using molecular and quantum mechanics approximations and image simulation. The structure of the obtained nanoparticles was preferentially hexagonal, although multiple twinned and fcc-like structures were identified. The size controlled synthesis of small nanoparticles in the quantum-dot range was demonstrated successfully.

  15. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  16. Synthesis and crystal structure of the new vanadate AgCaVO{sub 4}. Comparison with the arcanite structure

    Energy Technology Data Exchange (ETDEWEB)

    Nenert, Gwilherm [PANalytical B.V., Almelo (Netherlands)

    2017-07-01

    We report the synthesis and the crystal structure of the new vanadate AgCaVO{sub 4} from laboratory powder X-ray data. Contrary to the previously reported AgBVO{sub 4} (B=Mg, Cd), AgCaVO{sub 4} exhibits the arcanite structure (β-K{sub 2}SO{sub 4}). Although it exhibits the same structure than arcanite, significant differences are observed. These differences are explained by deriving the atomic displacement field. The change of connectivity within the structure between β-K{sub 2}SO{sub 4} and AgCaVO{sub 4} results from a rotation of the VO{sub 4} tetrahedra giving rise to a change from a face sharing to an edge sharing octahedral chains. Additionally, the thermal expansion of AgCaVO{sub 4} has been investigated up to 800 C.

  17. Development of a Probabilistic Dynamic Synthesis Method for the Analysis of Nondeterministic Structures

    Science.gov (United States)

    Brown, A. M.

    1998-01-01

    Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of

  18. VHDL for logic synthesis

    CERN Document Server

    Rushton, Andrew

    2011-01-01

    Many engineers encountering VHDL (very high speed integrated circuits hardware description language) for the first time can feel overwhelmed by it. This book bridges the gap between the VHDL language and the hardware that results from logic synthesis with clear organisation, progressing from the basics of combinational logic, types, and operators; through special structures such as tristate buses, register banks and memories, to advanced themes such as developing your own packages, writing test benches and using the full range of synthesis types. This third edition has been substantially rewritten to include the new VHDL-2008 features that enable synthesis of fixed-point and floating-point hardware. Extensively updated throughout to reflect modern logic synthesis usage, it also contains a complete case study to demonstrate the updated features. Features to this edition include: * a common VHDL subset which will work across a range of different synthesis systems, targeting a very wide range of technologies...

  19. Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, Allagui [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Borges, Joao P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Ben Haj Amara, Abdesslam [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Dakhlaoui-Omrani, Amel, E-mail: dakhlaoui_amel@yahoo.fr [Department of Chemistry, Faculty of Sciences and Arts-Khulais, University of Jeddah, Khulais, P. O. Box 355, Postal Code 21921 (Saudi Arabia); Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP 73, 8027 Soliman (Tunisia)

    2017-03-01

    Sub-micrometric Co fibers were prepared via a modified polyol process at 90 °C under an external magnetic field of about 550 Oe, using ethelyne glycol as solvent and hydrazine as reducing agent. The structure, the size and the morphology of the as-elaborated products were highly controlled through properly monitoring the synthesis parameters (amount of NaOH added, the amount of the reducing agent, precursor’ concentration and precursors mixing protocol). The XRD characterization confirmed the formation of pure cobalt powders with either hexagonal compact (hcp) or face-centered-cubic (fcc) structure depending on the concentration of the metal precursor and sodium hydroxide. The scanning electron microscopy observations of the powders shows sub-micrometric fibers with about 0.4–0.6 µm in diameter and a length that could reach 15 µm. Fibers prepared at high reducing ratio were constituted of flower-like spheres that coalesce in the direction of the applied magnetic field. For their high contact surface, these fibers offer new opportunities for catalysis applications. The hysteresis loop measurements show an enhancement of the Hc of the as-obtained fibers compared to their bulk counterparts and permit to confirm the relationship between the structure and the magnetic properties of the materials. - Highlights: • Template free synthesis of cobalt sub-micrometric fibers. • High control of the structure the structure, the size and the morphology of the products through properly monitoring the synthesis parameters. • cobalt sub-micrometric fibers with enhanced magnetic properties compared to bulk cobalt.

  20. N-substituted-piperidines as Novel Anti-alzheimer Agents: Synthesis, antioxidant activity, and molecular docking study

    Directory of Open Access Journals (Sweden)

    Khairia M. Youssef

    2018-06-01

    Full Text Available Design, synthesis and evaluation of new acetylcholinesterase inhibitors by combining carbamoylpiperidine analogs containing nipecotic acid scaffold were described. Then, a series of hybrids have been developed by introducing Free radical scavengers. Molecular modeling was performed and structure activity relationships are discussed. Among the series, most potent compounds showed effective AchE inhibitions, high selectivity over butyrylcholinesterase and high radical scavenging activities. On the basis of this work, the ability of analogs containing nipecotic acid scaffold to serve in the design of N-benzyl-piperidine linked multipotent molecules for the treatment of Alzheimer Disease. Keywords: Synthesis, N-substituted-piperidines, Antioxidant activity, ATP chemiluminescence, Molecular modeling study

  1. Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process

    International Nuclear Information System (INIS)

    Förster, Henning; Wolfrum, Christian; Peukert, Wolfgang

    2012-01-01

    The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.

  2. Synthesis of a hierarchically structured zeolite-templated carbon starting from fly ash-derived zeolite X

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-05-01

    Full Text Available A hierarchically structured zeolite derived from coal fly ash was used as a hard templating agent for the synthesis of a templated carbonaceous material. The samples were characterized using XRD, SEM, TEM, TGA, EDS and BET. The resulting carbon had...

  3. SYNTHESIS, CRYSTAL STRUCTURE AND MAGNETIC ...

    African Journals Online (AJOL)

    Preferred Customer

    Much of the current effort on such extended hybrid metal organic complexes is ... In this paper, we report the synthesis, single crystal X-ray diffraction analysis and ..... with g = 2.0 (0.37 cm3 mol−1 K), and smoothly increases to a value of 0.45 ...

  4. Synthesis, extraction and electronic structure of Ce@C2n

    Science.gov (United States)

    Liu, Bing-Bing; Zou, Guang-Tian; Yang, Hai-Bin; Yu, San; Lu, Jin-Shan; Liu, Zi-Yang; Liu, Shu-Ying; Xu, Wen-Guo

    1997-11-01

    In view of the growing interest in endohedral lanthanide fullerenes, Ce, as a typical+ 4 oxidation state lanthanide element, has been systematically studied. The synthesis, extraction and electronic structure of Ce @ C2n are investigated. Soot containing Ce@C2n was synthesized in high yield by carbonizing CeO2-containing graphite rods and are back-burning the CeC2-enriched cathode deposit in a DC arc plasma apparatus. Ce@C2n dominated by Ce@C82, can be efficiently extracted from the insoluble part of the soot after toluene Soxhlet extraction by pyridine at high temperature and high pressure in a closed vessel. About 60% Ce@C2n(2n = 82, 80, 78, 76) and 35% Ce@C82 can be enriched in the pyridine extract. This fact is identified by desorption electron impact mass spectrometry (DEI MS). The electronic structure of Ce@C2n is analyzed by using X-ray photoemission spectroscopy (XPS) of pyridine-free film. It is suggested that the encapsulated Ce atom is in a charge state close to+ 3 and was effectively protected from reaction with water and oxygen by the enclosing fullerene cage. Unlike theoretical expectation, the electronic state of Ce@C82 is formally described as Ce+3@C3-82.

  5. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    Science.gov (United States)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  6. Studies of the kinetics and mechanisms of ammonia synthesis and hydrodesulfurization on metal single-crystal surfaces

    International Nuclear Information System (INIS)

    Gellman, A.J.; Asscher, M.; Somorjai, G.A.

    1985-01-01

    The authors studied the ammonia synthesis reaction over Fe and Re single crystal surfaces and the hydrodesulfurization of thiophene over the Mo(100) single crystal surface. The studies have been performed using UHV surface science tools with the capability of exposing the surfaces to high pressure, high temperature reaction conditions. The ammonia synthesis reaction was shown to be extremely sensitive to surface structure on both Fe and Re, favoring surfaces with a rough or open topography. The HDS reaction on the Mo(100) surface has been shown to be similar to that on MoS/sub 2/ and appears to proceed via a reaction path that does not produce a strong Mo-S bond as an intermediate species

  7. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  8. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Chirag Rami

    2013-01-01

    Full Text Available Introduction: A practical synthesis of pyrimidinone would be very helpful for chemists because pyrimidinone is found in many bioactive natural products and exhibits a wide range of biological properties. The biological significance of pyrimidine derivatives has led us to the synthesis of substituted pyrimidine. Materials and Methods: With the aim of developing potential antimicrobials, new series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine derivatives namely 2-(5-cyano-6-oxo-4-substituted (aryl-1,6-dihydropyrimidin-2-ylthio-N-substituted (phenyl acetamide (C1-C41 were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR, mass analysis, and proton nuclear magnetic resonance ( 1 H NMR. All the compounds were screened for their antifungal activity against Candida albicans (MTCC, 227. Results and Discussion: Quantitative structure activity relationship (QSAR studies of a series of 1,6-dihydro-pyrimidine were carried out to study various structural requirements for fungal inhibition. Various lipophilic, electronic, geometric, and spatial descriptors were correlated with antifungal activity using genetic function approximation. Developed models were found predictive as indicated by their square of predictive regression values (r 2pred and their internal and external cross-validation. Study reveals that CHI_3_C, Molecular_SurfaceArea, and Jurs_DPSA_1 contributed significantly to the activity along with some electronic, geometric, and quantum mechanical descriptors. Conclusion: A careful analysis of the antifungal activity data of synthesized compounds revealed that electron withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine moiety possess good activity.

  9. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix

    Directory of Open Access Journals (Sweden)

    Oleg V. Mikhailov

    2017-01-01

    Full Text Available The data about of soft template synthesis proceeding in gelatin matrices in [3d-element M(II ion – (N,S- or (N,O,S-ambidentate ligson – mono- or dicarbonyl ligson] systems, have been considered and discussed. The chemical nature of the final products of template synthesis formed under these specific conditions, has been compared with the chemical nature of the final products formed by template synthesis in solutions. It has been noted that in many cases, the nature and chemical composition of these products differ substantially. Specific features of the DFT calculated molecular structures of the macrocyclic compounds that can be formed due to the template synthesis in the systems indicated above, have been discussed, too. The review covers the period 1990–2015.

  10. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2

    International Nuclear Information System (INIS)

    Radev, D.D.; Marinov, M.; Tumbalev, V.; Radev, I.; Konstantinov, L.

    2005-01-01

    Nanometer-sized MgB 2 was prepared via a two-step modification of the mechanically activated self-propagated high-temperature synthesis. The experimental conditions and some structural and phase characteristics of the synthesized product are reported. It is shown that a single-phase material can be prepared after 2 h of intense mechanical treatment of the starting magnesium and boron powders and a synthesis induced at a current-pulse density of 30 A cm -2 . The average size of MgB 2 particles synthesized in this way is 70-80 nm. It is also shown that using the same reagents and the 'classic' high-temperature interaction at 850 deg C with a protective atmosphere of pure Ar, mean particle size of the MgB 2 obtained is 50 μm

  11. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2017-02-01

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles.

  12. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  13. Synthesis of TiO 2 nanostructured reservoir with temozolomide: Structural evolution of the occluded drug

    Science.gov (United States)

    López, T.; Sotelo, J.; Navarrete, J.; Ascencio, J. A.

    2006-10-01

    Sol-gel synthesized nanostructured TiO 2 matrix were produced with different channel sizes, where drug are immersed, producing a reservoir with Temozolomide (TMZ). This drug is particularly important for the treatment of cancer tumors, which are fundamentally a consequence of the uncontrolled reproduction of human cell. In this way the chemotherapy plays an important role in the treatment of both recurrent and newly diagnosed patients. In the handling of brain tumors TMZ has been discovered as a recent and efficient second generation drug employed in the control of advanced brain gliomas, and it is a welcome addition. Its active component binds to the cancerous DNA cells, thus preventing their disordered growth, destroying them. In this work, we report the synthesis of TiO 2 nanostructured reservoir with TMZ, focusing the effort to the understanding of structural effects on the TMZ configuration by using nuclear magnetic resonance, Raman and IR spectroscopy methods. Our results establish that TMZ molecules are quite sensible to chemical processes and it produces the activation of the molecule, which is followed and understood with help of quantum molecular simulation methods. The study of the molecules allows determining the conditions that produce the activation and chemical selectivity of the molecules, which determines the conditions of synthesis. This information gives parameters for the reservoir structural and chemical optimization.

  14. Synthesis of Carbon nano structures by plasma discharge; Sintesis de nanoestructuras de carbono por descarga de plasmaa

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez L, M L

    2007-07-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH{sub 4} with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  15. Coupling Neumann development and component mode synthesis methods for stochastic analysis of random structures

    Directory of Open Access Journals (Sweden)

    Driss Sarsri

    2014-05-01

    Full Text Available In this paper, we propose a method to calculate the first two moments (mean and variance of the structural dynamics response of a structure with uncertain variables and subjected to random excitation. For this, Newmark method is used to transform the equation of motion of the structure into a quasistatic equilibrium equation in the time domain. The Neumann development method was coupled with Monte Carlo simulations to calculate the statistical values of the random response. The use of modal synthesis methods can reduce the dimensions of the model before integration of the equation of motion. Numerical applications have been developed to highlight effectiveness of the method developed to analyze the stochastic response of large structures.

  16. Bourbaki's structure theory in the problem of complex systems simulation models synthesis and model-oriented programming

    Science.gov (United States)

    Brodsky, Yu. I.

    2015-01-01

    The work is devoted to the application of Bourbaki's structure theory to substantiate the synthesis of simulation models of complex multicomponent systems, where every component may be a complex system itself. An application of the Bourbaki's structure theory offers a new approach to the design and computer implementation of simulation models of complex multicomponent systems—model synthesis and model-oriented programming. It differs from the traditional object-oriented approach. The central concept of this new approach and at the same time, the basic building block for the construction of more complex structures is the concept of models-components. A model-component endowed with a more complicated structure than, for example, the object in the object-oriented analysis. This structure provides to the model-component an independent behavior-the ability of standard responds to standard requests of its internal and external environment. At the same time, the computer implementation of model-component's behavior is invariant under the integration of models-components into complexes. This fact allows one firstly to construct fractal models of any complexity, and secondly to implement a computational process of such constructions uniformly-by a single universal program. In addition, the proposed paradigm allows one to exclude imperative programming and to generate computer code with a high degree of parallelism.

  17. Comparative study of synthesis and reduction methods for graphene oxide

    KAUST Repository

    Alazmi, Amira; Rasul, Shahid; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) have congregated much interest as promising active materials for a variety of applications such as electrodes for supercapacitors. Yet, partially given the absence of comparative studies in synthesis methodologies, a lack of understanding persists on how to best tailor these materials. In this work, the effect of using different graphene oxidation-reduction strategies in the structure and chemistry of rGOs is systematically discussed. Two of the most popular oxidation routes in the literature were used to obtain GO. Subsequently, two sets of rGO powders were synthesised employing three different reduction routes, totalling six separate products. It is shown that the extension of the structural rearrangement in rGOs is not just dependent on the reduction step but also on the approach followed for the initial graphite oxidation.

  18. Comparative study of synthesis and reduction methods for graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-05-14

    Graphene oxide (GO) and reduced graphene oxide (rGO) have congregated much interest as promising active materials for a variety of applications such as electrodes for supercapacitors. Yet, partially given the absence of comparative studies in synthesis methodologies, a lack of understanding persists on how to best tailor these materials. In this work, the effect of using different graphene oxidation-reduction strategies in the structure and chemistry of rGOs is systematically discussed. Two of the most popular oxidation routes in the literature were used to obtain GO. Subsequently, two sets of rGO powders were synthesised employing three different reduction routes, totalling six separate products. It is shown that the extension of the structural rearrangement in rGOs is not just dependent on the reduction step but also on the approach followed for the initial graphite oxidation.

  19. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    Science.gov (United States)

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Analysis of random response of structure with uncertain parameters. Combination of substructure synthesis method and hierarchy method

    International Nuclear Information System (INIS)

    Iwatsubo, Takuzo; Kawamura, Shozo; Mori, Hiroyuki.

    1995-01-01

    In this paper, the method to obtain the random response of a structure with uncertain parameters is proposed. The proposed method is a combination of the substructure synthesis method and the hierarchy method. The concept of the proposed method is that the hierarchy equation of each substructure is obtained using the hierarchy method, and the hierarchy equation of the overall structure is obtained using the substructure synthesis method. Using the proposed method, the reduced order hierarchy equation can be obtained without analyzing the original whole structure. After the calculation of the mean square value of response, the reliability analysis can be carried out based on the first passage problem and Poisson's excursion rate. As a numerical example of structure, a simple piping system is considered. The damping constant of the support is considered as the uncertainty parameter. Then the random response is calculated using the proposed method. As a result, the proposed method is useful to analyze the random response in terms of the accuracy, computer storage and calculation time. (author)

  1. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    International Nuclear Information System (INIS)

    Li, Suyi; Wang, K W

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F 2 MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F 2 MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F 2 MC cellular structure can be characterized as a two degree of freedom damped mass–spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F 2 MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F 2 MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F 2 MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F 2 MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells. (paper)

  2. Carbon Nanotubes Advanced Topics in the Synthesis, Structure, Properties and Applications

    CERN Document Server

    Jorio, Ado; Dresselhaus, Mildred S

    2008-01-01

    The carbon nanotubes field has evolved substantially since the publication of the bestseller "Carbon Nanotubes: Synthesis, Structure, Properties and Applications". The present volume builds on the generic aspects of the aforementioned book, which emphasizes the fundamentals, with the new volume emphasizing areas that have grown rapidly since the first volume, guiding future directions where research is needed and highlighting applications. The volume also includes an emphasis on areas like graphene, other carbon-like and other tube-like materials because these fields are likely to affect and influence developments in nanotubes in the next 5 years.

  3. Synthesis, crystal structure and magnetic properties of U2RuGa8

    International Nuclear Information System (INIS)

    Grin', Yu.N.; Rogl', P.; Aksel'rud, L.G.; Pecharskij, V.K.; Yarmolyuk, Ya.P.

    1988-01-01

    Synthesis of a new uranium intermetallic compound of U 2 RuGa 8 composition was conducted. The compound crystallizes in Ho 2 CoGa 8 structural type, met earlier only in compounds of rare earths. Magnetic susceptibility of the compound is rather high and is practically independent of temperature in 80-300 K range. This feature is typical for paramagnetism of electron gas and testifies to the absence of localized magnetic moments on ruthenium and uranium atoms

  4. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  5. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  6. New data structures and algorithms for logic synthesis and verification

    CERN Document Server

    Amaru, Luca Gaetano

    2017-01-01

    This book introduces new logic primitives for electronic design automation tools. The author approaches fundamental EDA problems from a different, unconventional perspective, in order to demonstrate the key role of rethinking EDA solutions in overcoming technological limitations of present and future technologies. The author discusses techniques that improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. Readers will be enabled to accelerate formal methods by studying core properties of logic circuits and developing new frameworks for logic reasoning engines. · Provides a comprehensive, theoretical study on majority and biconditional logic for logic synthesis; · Updates the current scenario in synthesis and verification – especially in light of emerging technologies; · Demonstrates applications to CMOS technology and emerging technologies.

  7. A review: radiolabeled synthesis of pesticides

    International Nuclear Information System (INIS)

    Li Juying; Han Ailiang; Wang Haiyan; Wang Wei; Ye Qingfu

    2010-01-01

    Isotope tracer technique has been widely applied in studies of metabolism, mode action, fate and environmental behavior of pesticides. In such studies, the key point is to obtain suitable radiolabelled compounds. However, the radiotracers, especially the labelled pesticides which are novel compounds with complex structures and longer synthesis routes, are usually unavailable from domestic and /or foreign markets. Therefore, it is essential to explore the synthesis methods of radiolabelled pesticides, which are quite different from the conventional nonradiosynthesis, and are requested to obtain higher yield. This article is a review on current status of choosing the available radionuclide and labelled position, the main synthesis methods and problems in the process of preparing radiolabelled pesticides. (authors)

  8. Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling

    Science.gov (United States)

    Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.

    2009-09-01

    Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.

  9. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D., E-mail: jdfv2009@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Grupo de Ressonância Magnética Nuclear e Química Medicinal

    2017-07-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  10. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    International Nuclear Information System (INIS)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D.

    2017-01-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  11. Application of synthesis methods to two-dimensional fast reactor transient study

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Hirakawa, Naohiro

    1978-01-01

    Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)

  12. Nitrocyclopropanes: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Averina, Elena B; Yashin, N V; Kuznetsova, Tamara S; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-10-31

    State-of-the-art data on the methods of synthesis, properties and transformations of nitro- and- dinitrocyclopropanes of different structure is generalized and described systematically. The attention is focused on stereoselective cyclopropanation methods, new approaches to the synthesis of natural products and their synthetic analogues with diversified biological activities, in particular, of aminocyclopropane acids based on nitrocyclopropanes, and the formation of structures of energetic compounds.

  13. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  14. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  15. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilizati...

  16. 6-Pyruvoyltetrahydropterin synthase orthologs of either a single or dual domain structure are responsible for tetrahydrobiopterin synthesis in bacteria.

    Science.gov (United States)

    Kong, Jin Sun; Kang, Ji-Youn; Kim, Hye Lim; Kwon, O-Seob; Lee, Kon Ho; Park, Young Shik

    2006-09-04

    6-Pyruvoyltetrahydropterin synthase (PTPS) catalyzes the second step of tetrahydrobiopterin (BH4) synthesis. We previously identified PTPS orthologs (bPTPS-Is) in bacteria which do not produce BH4. In this study we disrupted the gene encoding bPTPS-I in Synechococcus sp. PCC 7942, which produces BH4-glucoside. The mutant was normal in BH4-glucoside production, demonstrating that bPTPS-I does not participate in BH4 synthesis in vivo and bringing us a new PTPS ortholog (bPTPS-II) of a bimodular polypeptide. The recombinant Synechococcus bPTPS-II was assayed in vitro to show PTPS activity higher than human enzyme. Further computational analysis revealed the presence of mono and bimodular bPTPS-II orthologs mostly in green sulfur bacteria and cyanobacteria, respectively, which are well known for BH4-glycoside production. In summary we found new bacterial PTPS orthologs, having either a single or dual domain structure and being responsible for BH4 synthesis in vivo, thereby disclosing all the bacterial PTPS homologs.

  17. Proof of the Structure of the Stemodia chilensis Tetracyclic Diterpenoid (+)-19-Acetoxystemodan-12-ol by Synthesis from (+)-Podocarpic Acid: X-ray Structure Determination of a Key Intermediate.

    Science.gov (United States)

    Leonelli, Francesca; Mostarda, Azzurra; De Angelis, Luca; Lamba, Doriano; Demitri, Nicola; La Bella, Angela; Ceccacci, Francesca; Migneco, Luisa M; Marini Bettolo, Rinaldo

    2016-04-22

    The first synthesis of (+)-19-acetoxystemodan-12-ol (1), a stemodane diterpenoid isolated from Stemodia chilensis, is described. The structure was supported by an X-ray crystallographic analysis of intermediate (+)-9a, which confirmed the proposed structure and excluded the structure of (-)-19-hydroxystemod-12-ene as a possible candidate for the Chilean Calceolaria diterpenoid to which the (-)-19-hydroxystemar-13-ene structure (9b) had been erroneously assigned.

  18. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  19. Synthesis and conductivity of heptadecatungstovanadodiphosphoric heteropoly acid with Dawson structure

    Energy Technology Data Exchange (ETDEWEB)

    Tong Xia; Zhu Weiming [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Wu Qingyin, E-mail: qywu@zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Qian Xueyu; Liu Zhen [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Yan Wenfu [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Gong Jian [Key Lab of Polyoxometalate Science, the Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2011-07-21

    A new solid high-proton conductor, heptadecatungstovanadodiphosphoric heteropoly acid H{sub 7}P{sub 2}W{sub 17}VO{sub 62}.28H{sub 2}O with Dawson structure was synthesized by the stepwise acidification and the stepwise addition of element solutions. The optimal proportion of component compounds in the synthesis reaction was given. The product was characterized by chemical analysis, potentiometric titration, IR, UV, XRD, {sup 31}P NMR, TG-DTA and electrochemical impedance spectroscopy (EIS). The results indicate that H{sub 7}P{sub 2}W{sub 17}VO{sub 62}.28H{sub 2}O possesses the Dawson structure. EIS measurements show a high conductivity (3.10 x 10{sup -2} S cm{sup -1} at 26 deg. C and 75% relative humidity), with an activation energy of 32.23 kJ mol{sup -1} for proton conduction. The mechanism of proton conduction for this heteropoly acid is Vehicle mechanism.

  20. Solid‐Phase Synthesis of Structurally Diverse Heterocycles by an Amide–Ketone Condensation/N‐Acyliminium Pictet–Spengler Sequence

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Givskov, Michael Christian; Nielsen, Thomas Eiland

    2012-01-01

    An efficient approach for the solid‐phase synthesis of structurally diverse heterocyclic compounds is presented. Under acidic reaction conditions, peptidic levulinamides undergo intramolecular ketone–amide condensation reactions to form cyclic N‐acyliminium intermediates. In the presence...

  1. An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System

    Science.gov (United States)

    Shokrvash, Hussein; Rad, Rahim Yazdani; Massoudi, Abouzar

    2018-04-01

    Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4-5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.

  2. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  3. Total synthesis of ciguatoxin.

    Science.gov (United States)

    Hamajima, Akinari; Isobe, Minoru

    2009-01-01

    Something fishy: Ciguatoxin (see structure) is one of the principal toxins involved in ciguatera poisoning and the target of a total synthesis involving the coupling of three segments. The key transformations in this synthesis feature acetylene-dicobalthexacarbonyl complexation.

  4. The synthesis of recombinant membrane proteins in yeast for structural studies.

    Science.gov (United States)

    Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M

    2016-02-15

    Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation

    Science.gov (United States)

    Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng

    2018-04-01

    III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.

  6. Synthesis, electrochemical, structural and theoretical study of new derivatives of OABAN and OABAO heterocycles

    Czech Academy of Sciences Publication Activity Database

    Mikysek, T.; Kvapilová, Hana; Doušová, H.; Josefík, F.; Šimůnek, P.; Růžičková, Z.; Ludvík, Jiří

    2017-01-01

    Roč. 455, č. 2 (2017), s. 465-472 ISSN 0020-1693 R&D Projects: GA MŠk LD14129 Institutional support: RVO:61388955 Keywords : boron heterocycles * synthesis * electrochemistry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 2.002, year: 2016

  7. Solid-phase synthesis of yttrium ferrites with structures of perovskite and garnet

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, E V; Shapovalov, A G; Aksel' rod, N L; Pazdnikov, I P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR)

    1980-09-01

    The solid phase synthesis of yttrium ferrites having a perovskite- and garnet-like structure has been investigated in the temperature range from 800 to 1500 deg C and temper times of up to 80 hours by reaction zone simulation and magnetic phase analysis. It is shown that for conversion degrees d<0.15 the reactions are diffusion-controlled. The rate constants and effective diffusion in the formation of YFeO/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ have been determined.

  8. Synthesis, crystal structures and properties of lead phosphite compounds

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Hu, Chun-Li; Xu, Xiang; Kong, Fang; Mao, Jiang-Gao

    2015-01-01

    Here, we report the preparation and characterization of two lead(II) phosphites, namely, Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 through hydrothermal reaction or simple solution synthesis, respectively. A new lead phosphite, namely, Pb_2(HPO_3)_2, crystallizes in the noncentrosymmetric space group Cmc2_1 (no. 36), which features 3D framework formed by the interconnection of 2D layer of lead(II) phosphites and 1D chain of [Pb(HPO_3)_5]_∞. The nonlinear optical properties of Pb_2(HPO_3)(NO_3)_2 have been studied for the first time. The synergistic effect of the stereo-active lone-pairs on Pb"2"+ cations and π-conjugated NO_3 units in Pb_2(HPO_3)(NO_3)_2 produces a moderate second harmonic generation (SHG) response of ∼1.8×KDP (KH_2PO_4), which is phase matchable (type I). IR, UV–vis spectra and thermogravimetric analysis (TGA) for the two compounds were also measured. - Graphical abstract: Two lead phosphites Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 are studied. A new lead phosphite Pb_2(HPO_3)_2 features a unique 3D framework structure and Pb_2(HPO_3)(NO_3)_2 shows a moderate SHG response of ∼1.8×KDP (KH_2PO_4). - Highlights: • A new lead phosphite, Pb_2(HPO_3)_2 is reported. • Pb_2(HPO_3)_2 features a unique 3D framework structure. • NLO property of Pb_2(HPO_3)(NO_3)_2 is investigated. • Pb_2(HPO_3)(NO_3)_2 produces a moderate SHG response of ∼1.8×KDP (KH_2PO_4).

  9. Sustainable processes synthesis for renewable resources

    International Nuclear Information System (INIS)

    Halasz, L.; Povoden, G.; Narodoslawsky, M.

    2005-01-01

    Renewable resources pose special challenges to process synthesis. Due to decentral raw material generation, usually low transport densities and the perishable character of most renewable raw materials in combination with their time dependent availability, logistical questions as well as adaptation to regional agricultural structures are necessary. This calls for synthesis of structures not only of single processes but of the whole value chain attached to the utilisation of a certain resource. As most of the innovative technologies proposed to build on a renewable raw material base face stiff economic competition from fossil based processes, economic optimality of the value chain is crucial to their implementation. On top of this widening of the process definition for synthesis, many processes on the base of renewable resources apply technologies (like membrane separations, chromatographic purification steps, etc.) for which the heuristic knowledge is still slim. This reduces the choice of methods for process synthesis, mainly to methods based on combinatorial principles. The paper investigates applicability as well as impact on technology development of process synthesis for renewable raw material utilisation. It takes logistic considerations into account and applies process synthesis to the case study of the green biorefinery concept. The results show the great potential of process synthesis for technology development of renewable resource utilisation. Applied early in the development phase, it can point towards the most promising utilisation pathways, thus guiding the engineering work. On top of that, and even more important, it can help avoid costly development flops as it also clearly indicates 'blind alleys' that have to be avoided

  10. Multistep continuous-flow synthesis in medicinal chemistry: discovery and preliminary structure-activity relationships of CCR8 ligands.

    Science.gov (United States)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia C; Thiele, Stefanie; Rosenkilde, Mette M; Ritzén, Andreas; Ulven, Trond

    2013-07-08

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49-94%. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure-activity-relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single-digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fixation of CO2 in air: Synthesis and crystal structure of a µ3-CO3 ...

    Indian Academy of Sciences (India)

    Unknown

    Fixation of CO2 in air: Synthesis and crystal structure of a ... from the reaction between copper(I) complexes and dioxygen.2,6,7 ... and co-workers from the reaction of [(L2) ..... followed by water dissociation.13h,24 While fixation of CO2 by ...

  12. The synthesis, structure-toxicity relationship of cisplatin derivatives for the mechanism research of cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Hu, Jing; Wu, Tian-Ming; Li, Hong-Ze; Zuo, Ze-Ping; Zhao, Ying-Lan; Yang, Li

    2017-08-01

    Cisplatin is a widely used antineoplastic drug, while its nephrotoxicity limits the clinical application. Although several mechanisms contributing to nephrotoxicity have been reported, the direct protein targets are unclear. Herein we reported the synthesis of 29 cisplatin derivatives and the structure-toxicity relationship (STR) of these compounds with MTT assay in human renal proximal tubule cells (HK-2) and pig kidney epithelial cells (LLC-PK1). To the best of our knowledge, this study represented the first report regarding the structure-toxicity relationship (STR) of cisplatin derivatives. The potency of biotin-pyridine conjugated derivative 3 met the requirement for target identification, and the preliminary chemical proteomics results suggested that it is a promising tool for further target identification of cisplatin-induced nephrotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  13. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar; Abou-Hamad, Edy; Anjum, Dalaver H.; Gurinov, Andrei; Takanabe, Kazuhiro

    2017-01-01

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method

  14. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  15. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  16. Heuristic Synthesis of Reversible Logic – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Chua Shin Cheng

    2014-01-01

    Full Text Available Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based. All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area.

  17. Structural characterization of birnessite: influence of the way of synthesis; Caracterisation structurale de la birnessite: influence du protocole de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Gaillot, A.C.

    2002-01-15

    Birnessite is a lamellar manganese oxide whose layers are built up of edge sharing MnO{sub 6} octahedra. The presence of hetero-valent Mn cations and/or of vacant sites in these layers leads to a charge deficit compensated for by the presence of hydrated cations in the interlayer space. Because of their high specific area and of their strong oxidative character, these ubiquitous manganese oxides play a fundamental role in the fate of organic and metallic pollutants in the environment, but our imperfect knowledge of their structure limits the understanding and the modeling of this impact. This study aimed at classifying all different kinds of birnessite obtained using existing synthesis protocols according to two relevant criteria: layer symmetry and layer stacking mode, and at determining the structure of several essential varieties using X-ray and electron diffraction. Layers of hydrothermal birnessite contain vacant sites and, as a result, possess an hexagonal symmetry. Their stacking mode is 3R. In high-temperature birnessites, adjacent layers have an opposite orientation, which results in a two-layer polytype. The symmetry of these layers, linked to the origin of the layer charge deficit, depends on the temperature of synthesis. At 800 C the presence of vacant sites results in an hexagonal symmetry (2H polytype). At 1000 C, the layer charge deficit originates from the presence of Mn{sup 3+} cations in the layer lowering the layer symmetry (2O polytype). A variety of chemical and structural heterogeneities was also described in these samples, along with the occurrence of a new type of structural disorder. Finally we proved both the fundamental link between the origin of the layer charge and the layer symmetry, and the influence of physico-chemical parameters during synthesis (temperature, average manganese oxidation degree, nature of the interlayer cation) on the structure of the obtained compound. The chemical and thermal stabilities of these birnessites are

  18. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    International Nuclear Information System (INIS)

    Méndez, Franklin J.; Rivero-Prince, Sayidh; Escalante, Yelisbeth; Villasana, Yanet; Brito, Joaquín L.

    2016-01-01

    Al_2O_3–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al_2O_3 are studied. • Al_2O_3–Al sponges could be used as structured reactors.

  19. Inhibition of acetylcholine synthesis in vitro

    International Nuclear Information System (INIS)

    O-Neill, J.J.; Capacio, B.; Doukas, P.H.; Leech, R.; Ricciardi, F.; Sterling, G.H.

    1986-01-01

    In order to better understand diseases that stem from deficiencies in cholinergic activity, reproducible in vitro and in vivo models displaying cholinergic hypofunction are desirable. This necessitates the availability of specific inhibitors. This paper examines the design, synthesis and evaluation of quinuclidinyl compounds with structural features previously reported, but with certain key differences. Structure activity studies with in vitro assay systems are presented. In a few studies, choline was held constant and acetyl-CoA concentration was varied, but with a constant amount of ( 14 C) - acetyl CoA. Acetylcholine synthesis and CO 2 production from labelled glucose were measured in cerebral cortex slices from male rats after decapitation. The nanomoles of ACh and CO 2 produced from ( 14 C) -glucose were calculated from glucose specific activity. Results are presented

  20. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  1. Tungsten disilicide (WSi{sub 2}). Synthesis, characterization, and prediction of new crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Lukovic, Jelena; Zagorac, Dejan; Zagorac, Jelena; Jordanov, Dragana; Matovic, Branko [Institute of Nuclear Sciences Vinca, Materials Science Laboratory, University of Belgrade (Serbia); Materials Science Laboratory, Center for the Synthesis, Processing and Characterization of Materials for Use in Extreme Conditions, Belgrade (Serbia); Schoen, J. Christian [Materials Science Laboratory, Max Planck Institute for Solid State Research, Stuttgart (Germany); Volkov-Husovic, Tatjana [Faculty of Technology and Metallurgy, Department for Metallurgical Engineering, University of Belgrade (Serbia)

    2017-12-13

    Transition metal silicides have attracted great attention due to their potential applications in microelectronics, ceramics, and the aerospace industry. In this study, experimental and theoretical investigations of tungsten based silicides were performed. Tungsten disilicide (WSi{sub 2}) was synthesized by simple thermal treatment at 1350 C for 4 h in an argon atmosphere. These optimal synthesis conditions were obtained by variation of temperatures and times of heating, and the structure of the final synthesized compound was determined by XRPD analysis. In addition, new modifications for WSi{sub 2} were proposed and investigated using first-principles calculations within density-functional theory (DFT). Both LDA and PBE calculations show excellent agreement with experimental observations and previous calculations for the existing modifications, where available. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  3. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  4. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  5. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing......, but the effect of local IGF-I administration on tendon collagen synthesis in human has not been studied. The purpose of this study was to study whether local injections of IGF-I would have a stimulating effect on tendon collagen synthesis. Twelve healthy nonsmoking men [age 62 ± 1 years (mean ± SEM), BMI 27 ± 1......] participated. Two injections of either human recombinant IGF-I (0.1 mL Increlex©) or saline (control) into each patellar tendon were performed 24-h apart, respectively. Tendon collagen fractional synthesis rate (FSR) was measured by stable isotope technique in the hours after the second injection...

  6. Utilization of plasmas for graphene synthesis

    Science.gov (United States)

    Shashurin, Alexey; Keidar, Michael

    2013-10-01

    Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a honeycomb crystal lattice. Grapheen has tremendous range of potential applications ranging from high-speed transistors to electrochemical energy storage devices and biochemical sensors. Methods of graphene synthesis include mechanical exfoliation, epitaxial growth on SiC, CVD and colloidal suspensions. In this work the utilization of plasmas in synthesis process is considered. Types of carbonaceous structures produced by the anodic arc and regions of their synthesis were studied. Ultimate role of substrate temperature and transformations occurring with various carbonaceous structures generated in plasma discharge were considered. Formation of graphene film on copper substrate was detected at temperatures around the copper melting point. The film was consisted of several layers graphene flakes having typical sizes of about 200 nm. Time required for crystallization of graphene on externally heated substrates was determined. This work was supported by National Science Foundation (NSF Grant No. CBET-1249213).

  7. Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions

    DEFF Research Database (Denmark)

    Kolenko, Yury V.; Zhang, Wei; d'Alnoncourt, Raoul Naumann

    2011-01-01

    Reliable procedures for the controlled synthesis of phase-pure MoVTeNb mixed oxides with M1 structure (ICSD 55097) and tunable crystal dimensions were developed to study the structure sensitivity of the selective oxidation of propane to acrylic acid. A series of powdered M1 catalysts...... catalysts were studied in the selective oxidation of propane to acrylic acid, revealing that active sites appear on the entire M1 surface and illustrating the high sensitivity of catalyst performance on the catalyst synthesis method....

  8. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    Science.gov (United States)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  9. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2002-01-01

    In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report the synthe......In the course of our investigations on new boronic acid based carbohydrate sensors three new boronic acids 3, 7 and 11 containing a ferrocene moiety were synthesised. Their design includes an intramolecular B-N bonding motif in order to facilitate binding at physiological pH. We report...... the synthesis of the compounds and our investigations on glucose complexation as studied by C-13 NMR spectroscopy. The crystal structure of 2,4,6-tris[2-(N-ferrocenylmethyl-N-methylaminomethyl) phenyl] boroxin (13) (boroxin of boronic acid 3) (boroxin = cyclotriboroxane) was obtained and compared...... with structures obtained of 2,4,6-tris[2-(N,N-dimethylaminomethyl)phenyl]boroxin (14) and 2,2-dimethyl-1,3-diyl[2-(N,N-dimethylaminomethyl)phenyl]boronate (15). The structure of 13 shows the existence of intramolecular B-N bonds in the solid phase....

  10. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  11. Synthesis of nanoparticles and nanomaterials biological approaches

    CERN Document Server

    Abdullaeva, Zhypargul

    2017-01-01

    This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate ...

  12. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar

    2017-08-09

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method for a series of transition-MS nanoparticles using thiourea as a reactive precursor without capping agents. This study also reports the synthesis of MS with single metals (Fe, Co, Ni, Cu, and Zn) and quaternary CuGa2In3S8 using the same synthesis protocol. Thiourea first melts to form a molten-state condition to serve as the reaction medium at a relatively low temperature (<200 °C), followed by its thermal decomposition to induce a reaction with the metal precursor to form different MS. This synthesis protocol, owing to its dynamic characteristics, involves the formation of a variety of organic carbon nitride polymeric complexes around the MS particles. Dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy is effective to identify the polymeric compositions and structures as well as their interactions with the MS. These results provided thorough structural descriptions of the MS nanoparticles surrounded by the carbon nitride species derived from thiourea, which may find various applications, including photocatalytic water splitting.

  13. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Science.gov (United States)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  14. The Synthesis and Crystal Structure of Two New Hydrazone Compounds

    Directory of Open Access Journals (Sweden)

    Li-Hua Wang

    2016-05-01

    Full Text Available Two new hydrazone compounds, 4-formylimidazole-4-hydroxybenzhydrazone dihydrate (1 and 2-nitrobenzaldehyde-2-furan formylhydrazone (2, were synthesized via the classical synthesis method. Their structure was determined via elemental analysis and X-ray single crystal diffraction analysis. Compound 1 crystallizes in triclinic, space group P-1 with a = 7.0321(14 Å, b = 7.3723(15 Å, c = 13.008(3 Å, α = 98.66(3°, β = 101.69(3°, γ = 92.25(3°, V = 651.2(2 Å3, Z = 2, Dc = 1.358 g·cm−3, μ = 0.106 mm−1, F(000 = 280, and final R1 = 0.0564, wR2 = 0.1420. Compound 2 crystallizes in monoclinic, space group P21/c with a = 17.3618(9 Å, b = 9.1506(4 Å, c = 15.5801(7 Å, β = 104.532(5°, V = 2396.05(19 Å3, Z = 8, Dc = 1.437 g·cm−3, μ = 0.111 mm−1, F(000 = 1072, and final R1 = 0.0633, wR2 = 0.1649. Compound 1 forms a 2D-layered structure via the interactions of 1D chains and Compound 2 forms a 3D network structure via the interactions of 1D chains.

  15. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  16. Synthesis and luminescence studies of novel rare earth activated lanthanum pentaborate

    International Nuclear Information System (INIS)

    Nagpure, P.A.; Bajaj, N.S.; Omanwar, S.K.; Sonekar, R.P.

    2011-01-01

    The lanthanum pentaborate (LaB 5 O 9 ) is a novel material which exhibits excellent luminescence when doped with rare earth ions. It was prepared by a novel technique which is a slight variation of solution combustion synthesis. The synthesis is based on the exothermic reaction between the fuel (urea) and oxidizer (ammonium nitrate). The structure of the prepared material was confirmed by powder XRD technique. The photoluminescence of rare earth ions (Ce 3+ , Eu 3+ ) and sensitized luminescence of Gd 3+ (Pr 3+ -Gd 3+ and Bi 3+ -Gd 3+ ) in LaB 5 O 9 have been studied. LaB 5 O 9 :Ce 3+ shows broad band UV emission at 317 nm and LaB 5 O 9 :Eu 3+ shows orange red emission. LaB 5 O 9 : Pr 3+ -Gd 3+ and LaB 5 O 9 : Bi 3+ -Gd 3+ exhibit efficient luminescence of Gd 3+ in narrow UVB region at 310 nm. The material (La 0.5 Pr 0.4 )B 5 O 9 :Gd 0.1 exhibits intense narrow band UVB emission at 310 nm and could be a potential candidate for UVB phosphors used in phototherapy lamps. (author)

  17. The synthesis of CuO nanoleaves, structural characterization, and their glucose sensing application

    International Nuclear Information System (INIS)

    Ibupoto, Z. H.; Khun, K.; Willander, M.; Lu, J.

    2013-01-01

    The present study describes the synthesis of well aligned and highly dense polyethylene glycol template assisted cupric oxide (CuO) nanoleaves on the gold coated glass substrate by hydrothermal growth method. The structural study based investigations of CuO nanoleaves were performed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), infrared reflection-absorption spectroscopy (IRAS), and high resolution transmission electron microscopy (HRTEM). The glucose sensor based on the glucose oxidase immobilized CuO nanoleaves electrode detected the wide range of glucose concentrations with good linearity and exhibited high sensitivity of 61.9 ± 2.0 mV/decade. The linear detection range was observed from 1.0 × 10 −5 to 2.0 × 10 −2 M with detection limit of 5.0 × 10 −6 M and a fast response time of less than 5 s was also observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability, and reproducibility.

  18. The synthesis of CuO nanoleaves, structural characterization, and their glucose sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z. H.; Khun, K.; Willander, M. [Department of Science and Technology, Campus Norrkoeping, Linkoeping University, SE-60174 Norrkoeping (Sweden); Lu, J. [Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, 58183 Linkoeping (Sweden)

    2013-03-11

    The present study describes the synthesis of well aligned and highly dense polyethylene glycol template assisted cupric oxide (CuO) nanoleaves on the gold coated glass substrate by hydrothermal growth method. The structural study based investigations of CuO nanoleaves were performed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), infrared reflection-absorption spectroscopy (IRAS), and high resolution transmission electron microscopy (HRTEM). The glucose sensor based on the glucose oxidase immobilized CuO nanoleaves electrode detected the wide range of glucose concentrations with good linearity and exhibited high sensitivity of 61.9 {+-} 2.0 mV/decade. The linear detection range was observed from 1.0 Multiplication-Sign 10{sup -5} to 2.0 Multiplication-Sign 10{sup -2} M with detection limit of 5.0 Multiplication-Sign 10{sup -6} M and a fast response time of less than 5 s was also observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability, and reproducibility.

  19. Total Synthesis of Bryostatins. Development of Methodology for Atom-Economic and Stereoselective Synthesis of the C-ring Subunit

    Science.gov (United States)

    Trost, Barry M.; Frontier, Alison J.; Thiel, Oliver R.; Yang, Hanbiao; Dong, Guangbin

    2012-01-01

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for stereoselective assembly of the C-ring subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the C-ring subunit of bryostatins. PMID:21793057

  20. AutoBayes Program Synthesis System System Internals

    Science.gov (United States)

    Schumann, Johann Martin

    2011-01-01

    This lecture combines the theoretical background of schema based program synthesis with the hands-on study of a powerful, open-source program synthesis system (Auto-Bayes). Schema-based program synthesis is a popular approach toward program synthesis. The lecture will provide an introduction into this topic and discuss how this technology can be used to generate customized algorithms. The synthesis of advanced numerical algorithms requires the availability of a powerful symbolic (algebra) system. Its task is to symbolically solve equations, simplify expressions, or to symbolically calculate derivatives (among others) such that the synthesized algorithms become as efficient as possible. We will discuss the use and importance of the symbolic system for synthesis. Any synthesis system is a large and complex piece of code. In this lecture, we will study Autobayes in detail. AutoBayes has been developed at NASA Ames and has been made open source. It takes a compact statistical specification and generates a customized data analysis algorithm (in C/C++) from it. AutoBayes is written in SWI Prolog and many concepts from rewriting, logic, functional, and symbolic programming. We will discuss the system architecture, the schema libary and the extensive support infra-structure. Practical hands-on experiments and exercises will enable the student to get insight into a realistic program synthesis system and provides knowledge to use, modify, and extend Autobayes.

  1. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  2. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    Science.gov (United States)

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Facile eco-friendly synthesis of 3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-2H-xanthene 1,8(5H,9H)-dione, crystal structure and theoretical study

    Science.gov (United States)

    Tarannum, N.; Singh, M.

    2014-12-01

    New biologically active coumarin derivative, substituted xanthene-dione was synthesized by an easy, facile, cost-effective and efficient method from dimedone and diethylene glycol diacrylate without use of expensive and hazardous catalyst. The synthesis is simple, short, high-yielding and moreover does not require expensive solvents. The compound was characterized by IR, NMR and X-ray crystallography study. DFT (Density Functional Theory) calculations were performed at Becke's three-parameter functional and Lee-Yang-Parr functional (B3LYP) level of calculation and the 6-31G++ basis set was used for ground state geometry optimization. A comparison of the selected bond lengths and bond angles of the crystal structure and theoretically optimized structure by DFT have shown good agreement. The DFT study of electron surface potential (ESP), showed a large intramolecular charge transfer efficiency of the molecule indicating optical activity of xanthene dione.

  4. Synthesis and study of dioxouranium (6) carboxylate complexes with ammonia

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mazo, G.N.; Dunaev, K.M.; Santalova, N.A.

    1980-01-01

    Heterophase synthesis of a series of ammonia complexes of dioxouranium (6) carboxylates namely, UO 2 (HCOO) 2 x2NH 3 , UO 2 (CH 3 COO) 2 x2NH 3 , UO 2 (CH 3 CH 2 OO) 2 x2NH 3 is presented and their properties and structure are studied. Comparison of infrared spectra of dioxouranium (6) carboxylates and their ammonia complexes has shown that NH 3 molecule introduction changes in principle the coordination of azidoligand turning out bridge carboxylate groups into island ones and weakening their bonds with central cations. In spectra of all diammiacates the shift of bands of deformational and valent oscillations of N-H bond in comparison with spectrum of pure ammonia tells about NH 3 coordination with metal. Complexes thermolysis has been studied under iso- and polythermal conditions. General diagram of thermal decay is presented [ru

  5. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    Science.gov (United States)

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  6. Structure, stereochemistry and synthesis of a variety of physiologically active plant phenols

    Energy Technology Data Exchange (ETDEWEB)

    Van Heerden, F R

    1980-01-01

    The medicinal use of various Leguminosae species by the local population led to a phytochemical study of the bark of Dalbergia nitidula, Dalbergia melanoxylon and wood of Acacia fasciculifera. Rotenoid glycoside and three new carbon bonded isoflavone glycosides were isolated from the bark of D. nitidula. The rotenoid glycoside was characterized by means of acid and enzymatic hydrolysis and its absolute configuration was determined with reference to CD comparisons. A kinetic study was done to determine the relative toxidities of the rotenoid glycoside and its aglicone. The identity and the coupling positions of the sugars was confirmed by a C-NMR investigation of the rotenoid and isoflavane glycosides. The structure of heminitidulan, a complex isoflavane from D. nitidula, was confirmed by complete synthesis. Trans- and cis-clovamide, amides made up of L-DOPA and trans- and cis-caffeic acid respectively, and four new analogous deoxyclovamides are present in the bark of D. melanoxylon. For the first time optically pure trans clovamide was obtained by direct synthesis. C-NMR and CD confirmed differentiation between trans- and cisclovamide. The therapeutic value of L-DOPA for Parkinson's Disease implies possible physiological activity for the clovamide. As well as a number of known flavonoids and peltoginoids, a tetracyclic flavonoid (peltoginoid), fasciculiferin, was found in the wood of A. fasciculifera. Although peltoginoids with a D-ring in a fully reduced or oxidised state are known, this is the first natural peltoginoid with the D-ring in an intermediate oxidation state. Fasciculiferol, till now an unknown metabolyte from A. fasciculifera, is a new member of a rare group of natural products that are generally cytotoxic. The relatively drastic reaction conditions necessary for carbocation formation from peltoginol in comparison to the analogous flavon-3, 4-diols, is attributed to steric factors which arise from the rigid conformation of the B-ring of peltoginol.

  7. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    Science.gov (United States)

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C. Justin; Varma, K.B.R. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Joshi, R.K. [Special Center for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2011-11-15

    We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Synthesis of unstable cyclic peroxides for chemiluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Bartoloni, Fernando H.; Oliveira, Marcelo A. de; Augusto, Felipe A.; Ciscato, Luiz Francisco M.L.; Bastos, Erick L.; Baader, Wilhelm J., E-mail: wjbaader@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2012-11-15

    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, a-peroxy lactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time. (author)

  10. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  11. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    International Nuclear Information System (INIS)

    Rubina, M.S.; Kamitov, E.E.; Zubavichus, Ya. V.; Peters, G.S.; Naumkin, A.V.; Suzer, S.; Vasil’kov, A.Yu.

    2016-01-01

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  12. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, M.S.; Kamitov, E.E. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Zubavichus, Ya. V.; Peters, G.S. [National Research center «Kurchatov Institute», Moscow, 123182 Russian Federation (Russian Federation); Naumkin, A.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Suzer, S. [Department of Chemistry, Bilkent University, Ankara, 06800 Turkey (Turkey); Vasil’kov, A.Yu., E-mail: alexandervasilkov@yandex.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation)

    2016-03-15

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  13. Eco-friendly synthesis, physicochemical studies, biological assay and molecular docking of steroidal oxime-ethers

    Science.gov (United States)

    Alam, Mahboob; Lee, Dong-Ung

    2015-01-01

    The aim of this study was to report the synthesis of biologically active compounds; 7-(2′-aminoethoxyimino)-cholest-5-ene (4), a steroidal oxime-ether and its derivatives (5, 6) via a facile microwave assisted solvent free reaction methodology. This new synthetic, eco-friendly, sustainable protocol resulted in a remarkable improvement in the synthetic efficiency (85-93 % yield) and high purity using basic alumina. The synthesized compounds were screened for their antibacterial against six bacterial strains by disc diffusion method and antioxidant potential by DPPH assay. The binding capabilities of a compound 6 exhibiting good antibacterial potential were assessed on the basis of molecular docking studies and four types of three-dimensional molecular field descriptors. Moreover the structure-antimicrobial activity relationships were studied using some physicochemical and quantum-chemical parameters with GAMESS interface as well as WebMO Job Manager by using the basic level of theory. Hence, this synthetic approach is believed to provide a better scope for the synthesis of steroidal oxime-ether analogues and will be a more practical alternative to the presently existing procedures. Moreover, detailed in silico docking studies suggested the plausible mechanism of steroidal oxime-ethers as effective antimicrobial agents. PMID:27330525

  14. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  15. Synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yang; Zhuang, Yan; Guo, Sheng-Ping [Yangzhou Univ., Jiangsu (China). College of Chemistry and Chemical Engineering

    2017-03-01

    The synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5} are reported. It is synthesized by high-temperature solid-state reaction and crystallizes in the monoclinic space group P2{sub 1}/c (no. 14) with the unit cell parameters a=4.8860(5), b=7.5229(8), c=9.9587(10) Aa, and β=91.709(3) . Its crystal structure features a polyanion-type layer (GeBO{sub 5}){sup 3-} constructed by BO{sub 4} and GeO{sub 4} tetrahedra connected alternatingly. Eu{sup 3+} ions are located in cavities and are coordinated by eight O atoms. Various structures of the related compounds REMM'O{sub 5} (RE=rare earth metal; M=Si, Ge, and Sn; M'=B, Al, and Ga) are also discussed.

  16. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  17. Using framework-based synthesis for conducting reviews of qualitative studies.

    Science.gov (United States)

    Dixon-Woods, Mary

    2011-04-14

    Framework analysis is a technique used for data analysis in primary qualitative research. Recent years have seen its being adapted to conduct syntheses of qualitative studies. Framework-based synthesis shows considerable promise in addressing applied policy questions. An innovation in the approach, known as 'best fit' framework synthesis, has been published in BMC Medical Research Methodology this month. It involves reviewers in choosing a conceptual model likely to be suitable for the question of the review, and using it as the basis of their initial coding framework. This framework is then modified in response to the evidence reported in the studies in the reviews, so that the final product is a revised framework that may include both modified factors and new factors that were not anticipated in the original model. 'Best fit' framework-based synthesis may be especially suitable in addressing urgent policy questions where the need for a more fully developed synthesis is balanced by the need for a quick answer. Please see related article: http://www.biomedcentral.com/1471-2288/11/29.

  18. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  19. Modal analysis of blade bending and torsional shaft coupling by component mode synthesis

    International Nuclear Information System (INIS)

    Vare, C.

    1995-10-01

    The Acoustics and Vibration Mechanics Branch of EDF's Research and Development Division is in charge of performing finite element calculations, for the study of the vibratory behaviour of nuclear components. Due to the size and the geometrical complexity of some of these components, EDF has developed sub-structure synthesis methods for modal analysis of large structures. Both Craig-Bampton's and Mac Neal's methods have been implemented in the general mechanics code of EDF: the Aster Code. Craig-Bampton sub-structure synthesis approach was used to study the coupling between blade bending and torsional shaft of a turbine generator set. Four sub-structures were defined to make the calculation: a generator, a low pressure rotor, a high pressure rotor and a blade. The results of the modal calculation, show good agreement with the experimental measurements (error < 1 %). It shows the accuracy of component mode synthesis methods. (author). 6 refs., 7 figs

  20. Structural and Biochemical Characterization of Chlamydia trachomatis Hypothetical Protein CT263 Supports That Menaquinone Synthesis Occurs through the Futalosine Pathway*

    Science.gov (United States)

    Barta, Michael L.; Thomas, Keisha; Yuan, Hongling; Lovell, Scott; Battaile, Kevin P.; Schramm, Vern L.; Hefty, P. Scott

    2014-01-01

    The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5′-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5′-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m−1 s−1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5′-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection. PMID:25253688

  1. Synthesis and optical study of heat-treated ZnO nanopowder for ...

    Indian Academy of Sciences (India)

    In this research article synthesis of ZnO nanopowder is presented by a ... samples in terms of crystalline structure, optical properties and perhaps most ... C for different times (4, 6, 8, 10 and. 12 h). ... were performed by θ/2θ scans in the 2θ angular range of 20–95 .... pure and good quality single-phase wurtzite ZnO nano-.

  2. Structure-Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YM-254890, Targeting the Gq Protein

    DEFF Research Database (Denmark)

    Zhang, Hang; Xiong, Xiao-feng; Boesgaard, Michael W

    2017-01-01

    that specifically inhibit signaling mediated by the Gq subfamily. In this study we exploit a newly developed synthetic strategy for this compound class in the design, synthesis, and pharmacological evaluation of eight new analogues of YM-254890. These structure-activity relationship studies led to the discovery...

  3. Fused 1,2,3-Dithiazoles: Convenient Synthesis, Structural Characterization, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Lidia S. Konstantinova

    2016-05-01

    Full Text Available A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13 featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential.

  4. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Moreira, Eduardo Ceretta [Laboratório de Espectroscopia, Universidade Federal do Pampa, Campus Bagé, Bagé 96400-970 (Brazil); Dias, Fábio Teixeira; Neves Vieira, Valdemar das [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Brandt, Iuri Stefani; Cas Viegas, Alexandre da; Pasa, André Avelino [Laboratório de Filmes Finos e Superfícies, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis 88.040-900 (Brazil)

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{sub 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.

  5. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2.

    Science.gov (United States)

    Schroeder, Christina I; Rash, Lachlan D; Vila-Farrés, Xavier; Rosengren, K Johan; Mobli, Mehdi; King, Glenn F; Alewood, Paul F; Craik, David J; Durek, Thomas

    2014-01-20

    Mambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid-sensing ion channels (ASICs). The 57-residue polypeptide mambalgin-2 (Ma-2) was synthesized by using a combination of solid-phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three-finger toxin fold reminiscent of functionally unrelated snake toxins. Electrophysiological analysis of Ma-2 on wild-type and mutant ASIC1a receptors allowed us to identify α-helix 5, which borders on the functionally critical acidic pocket of the channel, as a major part of the Ma-2 binding site. This region is also crucial for the interaction of ASIC1a with the spider toxin PcTx1, thus suggesting that the binding sites for these toxins substantially overlap. This work lays the foundation for structure-activity relationship (SAR) studies and further development of this promising analgesic peptide. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Studies towards a total synthesis of tagetitoxin

    OpenAIRE

    Mahoney, Brian

    2017-01-01

    Tagetitoxin was first isolated over thirty five years ago and a total synthesis has not been achieved to date. A vast amount of research has been carried out on the biological activity of tagetitoxin with hundreds of literature reports. However, very few papers have been published regarding the synthesis and within this thesis we will explore a number of synthetic pathways some towards tagetitoxin. The first chapter reviews previous developments regarding the total synthesis of...

  7. Structural and magnetic studies of tin doped α-Fe{sub 2}O{sub 3} (α-Sn{sub x}Fe{sub 2-x}O{sub 3}) nanoparticles prepared by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bindu, K.; Nagaraja, H. S., E-mail: hosakoppa@gmail.com [Material Research Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore-575 025, Karnataka (India); Chowdhury, P. [Nanomaterials Research Laboratory, Surface Engineering Division, National Aerospace Laboratories, Council of Scientific and Industrial Research, Bangalore-560 017, Karnataka (India); Ajith, K. M. [Computational Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore-575 025, Karnataka (India)

    2016-05-06

    Hematite (α-Fe{sub 2}O{sub 3}) doped with tetravalent ions have potential applications in various fields such as gas sensors, memories, energy storage devices because of their electrical and magnetic properties. Microwave assisted synthesis was used to prepare Tin doped α-Fe{sub 2}O{sub 3} [α-Sn{sub x}Fe{sub 2-x}O{sub 3}]. The structural and morphological studies were investigated using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). XRD patterns revealed that α-Fe{sub 2}O{sub 3} and α-Sn{sub x}Fe{sub 2-x}O{sub 3} were having rhombohedral structure. The compositional study was done by Energy dispersive X-ray Spectroscopy (EDS). The magnetic properties were studied by Vibrating Sample Magnetometry (VSM). Results shows that the prepared samples were found to be antiferromagnetic in nature and the results are discussed in detail.

  8. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  9. Synthesis, Spectral and Anthelmintic Activity Studies on Some Novel Imidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Rajiv Dahiya

    2008-01-01

    Full Text Available Present study describes the synthesis of a novel series of 3,5-diiodo-4-(5-nitro-1H-2-imidazolylbenzoyl amino acids and di/tri/tetrapeptides using diisopropylcarbodiimide/dicyclohexylcarbodiimide (DIPC/DCC as coupling agents and N-methylmorpholine/triethylamine (NMM/TEA as bases. Structure elucidation of all the newly synthesized compounds was done by elemental analysis and IR, 1H NMR, 13C NMR and mass spectral data. Synthesized imidazolopeptides were screened for their anthelmintic activity and found to possess moderate to good bioactivity against earthworms Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus eugeniea when compared to reference drugs - albendazole and mebendazole at dose level of 2 mg mL−1.

  10. Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS

    Science.gov (United States)

    Lu, Duo; Wörmann, Mirka E.; Zhang, Xiaodong; Schneewind, Olaf; Gründling, Angelika; Freemont, Paul S.

    2009-01-01

    Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn2+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine–glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. PMID:19168632

  11. Wall grid structure for interior scene synthesis

    KAUST Repository

    Xu, Wenzhuo; Wang, Bin; Yan, Dongming

    2015-01-01

    We present a system for automatically synthesizing a diverse set of semantically valid, and well-arranged 3D interior scenes for a given empty room shape. Unlike existing work on layout synthesis, that typically knows potentially needed 3D models

  12. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  13. Synthesis, microstructure and thermal expansion studies

    Indian Academy of Sciences (India)

    Abstract. We report on the synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 ( = 0.00 to 1.00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures ...

  14. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Şen, Murat; Hayrabolulu, Hande

    2012-01-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M ¯ c ), effective crosslink density (ν e ) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M ¯ c values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed. - Highlights: ► Radiation synthesis and characterisation of AAcNa/LBG super absorbent polymers described. ► Influences of the DN on the swelling and network properties were examined. ► Molecular weight between crosslinks and effective crosslink density of SAPs were calculated. ► Suitability of rheology technique for the characterisation of hydrogels were demonstrated.

  15. Synthesis, Crystal Structure and DFT Studies of a New Dinuclear Ag(I-Malonamide Complex

    Directory of Open Access Journals (Sweden)

    Saied M. Soliman

    2018-04-01

    Full Text Available The synthesis and structural aspects of a new dinuclear silver (I complex with malonamide type ligand (L is reported. Each Ag ion in the [Ag2L2(NO32]·H2O complex is coordinated to two ligands, L, each acting as a bridged ligand via its two pyridine arms; Ag(I acts as a connector between them. Two types of Ag-ligands close contacts were detected: Ag–N1, Ag–N4 from the two L units, and Ag–O5, Ag—O6 from the two nitrate anions, wherein both the nitrate ions are inside the cage formed by the [Ag2L2] unit. The coordination geometry around each Ag(I is a distorted tetrahedron. The [Ag2L2(NO32] complex units are connected by weak intermolecular C—H…O interactions. The different intermolecular interactions were quantified using Hirshfeld surface analysis. Using two DFT methods (B3LYP and WB97XD, the nature and strength of the Ag–N and Ag–O interactions were described using atoms in molecules (AIM and natural bond orbital (NBO analyses. Topological parameters indicated that the strength of the two Ag–N bonds was similar, while that of the two Ag–O interactions were significantly different. Moreover, the Ag–N interactions have a predominant covalent character, while the Ag–O interactions are mainly ionic. The NBO analysis indicated that the most important anti-bonding Ag-orbital in these interactions has an s-orbital character.

  16. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.

    Science.gov (United States)

    Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R

    2017-07-13

    We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.

  17. Synthesis, reactivity and structural studies of carboranyl thioethers and disulfides

    Czech Academy of Sciences Publication Activity Database

    Laromaine, A.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Benakki, R.; Grüner, Bohumír; Vinas, C.

    -, č. 10 (2005), s. 1785-1795 ISSN 1477-9226 Grant - others:Generalitat de Catalunya(ES) 2001/SGR/0033 Keywords : molecular structure * crystal structure * closo-carboranes Subject RIV: CA - Inorganic Chemistry Impact factor: 3.003, year: 2005

  18. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    Cappa, F.

    2014-01-01

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13 C- and 15 N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13 C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [ 13 C]-acetic acid, [ 13 C]-formaldehyde, [ 13 C]-allyl alcohol and [ 13 C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this

  19. Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.

    Science.gov (United States)

    Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang

    2015-02-07

    The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.

  20. Synthesis, characterization and structural refinement of polycrystalline uranium substituted zirconolite

    International Nuclear Information System (INIS)

    Shrivastava, O.P.; Narendra Kumar; Sharma, I.B.

    2005-01-01

    Ceramic precursors of Zirconolite (CaZrTi 2 O 7 ) family have a remarkable property of substitution Zr 4+ cationic sites. This makes them potential material for nuclear waste management in 'synroc' technology. In order to simulate the mechanism of partial substitution of zirconium by tetravalent actinides, a solid phase of composition CaZr 0.95 U 0.5 Ti 2 O 7 has been synthesized through ceramic route by taking calculated quantities of oxides of Ca, Ti and nitrates of uranium and zirconium respectively. Solid state synthesis has been carried out by repeated pelletizing and sintering the finely powdered oxide mixture in a muffle furnace at 1050 degC. The polycrystalline solid phase has been characterized by its typical powder diffraction pattern. Step analysis data has been used for ab initio calculation of structural parameters. The uranium substituted zirconolite crystallizes in monoclinic symmetry with space group C2/c (15). The following unit cell parameters have been calculated: a =12.4883(15), b =7.2448(5), c 11.3973(10) and β = 100.615(9)0. The structure was refined to satisfactory completion. The Rp and Rwp are found to be 7.48% and 9.74% respectively. (author)

  1. Synthesis, growth, and studies (crystal chemistry, magnetic chemistry) of actinide-based intermetallic compounds and alloys with a 1.1.1 stoichiometry

    International Nuclear Information System (INIS)

    Kergadallan, Yann

    1993-01-01

    The first part of this research thesis reports the study of the synthesis and reactivity of intermetallic compounds with a 1.1.1 stoichiometry. It presents the thermal properties of 1.1.1 compounds: general presentation of physical transitions, and of solid solutions and formation heat, application to actinides (reactivity analysis from phase diagrams, techniques of crystal synthesis and crystal growth. It describes experimental techniques: synthesis, determination of fusion temperature by dilatometry, methods used for crystal growth, characterisation techniques (metallography, X ray diffraction on powders, dilatometry). It discusses the obtained results in terms of characterisation of synthesised samples, of crystal growth, and of measurements of fusion temperature. The second part addresses crystal chemistry studies: structure of compounds with a 1.1.1 stoichiometry (Laves structures, Zr, Ti and Pu compounds), techniques of analysis by X-ray diffraction (on powders and on single crystals), result interpretation (UNiX compounds, AnTAl compounds with T being a metal from group VIII, AnTGa compounds, AnNiGe compounds, distance comparison, structure modifications under pressure). The third part concerns physical issues. The author addresses the following topics: physical properties of intermetallic 1.1.1 compounds (magnetism of yttrium phases, behaviour of uranium-based Laves phases, analysis of pseudo-binary diagrams, physical characteristics of uranium-based 1.1.1 compounds, predictions of physical measurements), analysis techniques (Moessbauer spectroscopy, SQUID for Superconducting Quantum Interference Device), and result interpretation

  2. Diagnosing the Quality of High School Students' and Pre-Service Chemistry Teachers' Cognitive Structures in Organic Chemistry by Using Students' Generated Systemic Synthesis Questions

    Science.gov (United States)

    Hrin, Tamara; Milenkovic, Dušica; Segedinac, Mirjana

    2018-01-01

    The importance of well elaborated cognitive structures in a science knowledge domain has been noted in many studies. Therefore, the main aim of this particular study was to employ a new diagrammatic assessment approach, students' generated systemic synthesis questions (SSynQs), to evaluate and compare the quality of high school students' and…

  3. Local structure studies of Fe{sub 2}TeO{sub 6} using x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com [Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Yadav, A. K. [Atomic & Molecular Physics Division Bhabha Atomic Research Centre, Mumbai – 400 094 (India)

    2016-05-23

    In the present study, we have performed EXAFS measurements on powder samples of Fe{sub 2}TeO{sub 6} (FTO) to probe the local structure surrounding at the Fe site. The structural parameters (atomic coordination and lattice parameters) of FTO used for simulation of theoretical EXAFS spectra of the samples have been obtained from Rietveld refined structure on synchrotron X-ray Diffraction (SXRD) data. Quite similar and satisfactory structural parameters have been obtained from both the study, indicating goodness of synchrotron structural analysis over EXAFS analysis. SXRD and EXAFS results shows absence of any secondary phase proves current synthesis superior over reported techniques.

  4. Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (-)-11β-Hydroxycurvularin.

    Science.gov (United States)

    Choe, Hyeonjeong; Pham, Thuy Trang; Lee, Joo Yun; Latif, Muhammad; Park, Haeil; Kang, Young Kee; Lee, Jongkook

    2016-03-18

    The first total synthesis and structure revision of (-)-11β-hydroxycurvularin (1b), a macrolide possessing a β-hydroxyketone moiety, were accomplished. The β-hydroxyketone moiety in this natural product was introduced by cleavage of the N-O bond in an isoxazoline ring that was formed diastereoselectively in a 1,5-remote stereocontrolled fashion by employing intramolecular nitrile oxide cycloaddition.

  5. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  6. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Gyergyek, Saso; Makovec, Darko; Kodre, Alojz; Arcon, Iztok; Jagodic, Marko; Drofenik, Miha

    2010-01-01

    The Co-ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 o C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 o C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (∼CoFe 2 O 4 ) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (∼Co 0.6 Fe 2.4 O 4 ). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe 2 O 4 , the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles' composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic

  7. Synthesis, structural and physico-chemical studies of the monocrystal superconductor oxides Hg Ba2 Can-1 Cun O2n+2+δ

    International Nuclear Information System (INIS)

    Viallet-Guillen, Virginie

    1998-01-01

    The thesis presents the synthesis and the structural and physico-chemical properties of the mercury-based monocrystal superconductor oxides. The results reported in the first chapter refer to the first three members of the mercury cuprate series Hg-1201, Hg-1212 and Hg-1223. In the second chapter detailed results concerning the structure of these compounds are given highlighting the features common to all cuprates and pointing out the peculiarities of mercury phases. The third chapter presents the phase diagrams (δ, T, p(O 2 )) of the compounds HgBa 2 CuO 4+δ and HgBa 2 Ca 2 Cu 3 O 8+δ obtained by thermogravimetry under controlled atmosphere between 150 deg.C and 500 deg.C and thermodynamic equilibrium conditions. In the case of Hg-1201, the critical temperature shows a variation close to a parabolic law, with an optimal Tc of 96 K (δ≅0.10) while in Hg-1223 the Tc increases linearly with the O content up to the optimal Tc of 135 K (δ≅0.19) and decreases only by 2 K in the over-doped regime. Finally, in the fourth chapter different physical properties are reviewed. The obtained monocrystals allowed studying the resistive transitory anisotropy, the torque, the specific heat, the nuclear magnetic resonance and the Raman diffusion

  8. Trends in computerized structural analysis and synthesis; Proceedings of the Symposium, Washington, D.C., October 30-November 1, 1978

    Science.gov (United States)

    Noor, A. K. (Editor); Mccomb, H. G., Jr.

    1978-01-01

    The subjects considered are related to future directions of structural applications and potential of new computing systems, advances and trends in data management and engineering software development, advances in applied mathematics and symbolic computing, computer-aided instruction and interactive computer graphics, nonlinear analysis, dynamic analysis and transient response, structural synthesis, structural analysis and design systems, advanced structural applications, supercomputers, numerical analysis, and trends in software systems. Attention is given to the reliability and optimality of the finite element method, computerized symbolic manipulation in structural mechanics, a standard computer graphics subroutine package, and a drag method as a finite element mesh generation scheme.

  9. Nanoparticle synthesis of zinc peroxide: structural and morphological characterization for bactericidal applications

    International Nuclear Information System (INIS)

    Colonia, Roberto; Martinez, Vanessa C.; Solis, Jose L.; Gomez, Monica M.

    2013-01-01

    Zinc peroxide (ZnO 2 ) nanoparticles were synthesized by sol-gel technique. The chemicals used for the synthesis were zinc acetate di-hydrate (Zn(CH 3 COO) 2. 2H 2 O) and hydrogen peroxide (H 2 O 2 ) at 30 % in an aqueous solution with sonication. The structure of the ZnO 2 nanoparticles was characterized by X-ray diffraction. While the morphology and the cluster size were determined using scanning and transmission electron microscopy. For a preliminary evaluation of the bactericidal properties of the ZnO 2 , the material was exposed to Staphylococcus aureus, Escherichia coli y Bacillus subtili, and the nanoparticles presented good bactericidal properties. (author)

  10. Synthesis of [14C]Zolpidem

    International Nuclear Information System (INIS)

    Allen, J.; Tizot, A.

    1986-01-01

    The synthesis of [ 14 C]Zolpidem, a new hypnotic agent having a non-benzodiazepine structure, is described. This compound was synthesised in a 64% overall radiochemical yield from potassium [ 14 C]cyanide and with a specific radioactivity of 56 mCi/mmol. It was used for pharmacokinetic and drug metabolism studies. (author)

  11. Synthesis and processing of structural and intracellular proteins of two enteric coronaviruses

    International Nuclear Information System (INIS)

    Sardinia, L.M.

    1985-01-01

    The synthesis and processing of virus-specific proteins of two economically important enteric coronaviruses, bovine enteric coronavirus (BCV) and transmissible gastroenteritis virus (TGEV), were studied at the molecular level. To determine the time of appearance of virus-specific proteins, virus-infected cells were labeled with 35 S-methionine at various times during infection, immunoprecipitated with specific hyperimmune ascitic fluid, and analyzed by SDS-polyacrylamide gel electrophoresis. The peak of BCV protein synthesis was found to be at 12 hours postinfection (hpi). The appearance of all virus-specific protein was coordinated. In contrast, the peak of TGEV protein synthesis was at 8 hpi, but the nucleocapsid proteins was present as early as 4 hpi. Virus-infected cells were treated with tunicamycin to ascertain the types of glycosidic linkages of the glycoproteins. The peplomer proteins of both viruses were sensitive to inhibition by tunicamycin indicating that they possessed N-linked carbohydrates. The matrix protein of TGEV was similarly affected. The matrix protein of BCV, however, was resistant to tunicamycin treatment and, therefore, has O-linked carbohydrates. Only the nucleocapsid protein of both viruses is phosphorylated as detected by radiolabeling with 32 P-orthophosphate. Pulse-chase studies and comparison of intracellular and virion proteins were done to detect precursor-product relationships

  12. Studies on synthesis of diamond at high pressure and temperature

    Science.gov (United States)

    Kailath, Ansu J.

    Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first

  13. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag 24 Au(SR) 18 ] − Nanocluster

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-11-27

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]- cluster (SR: thiolate) using a pure [Ag25(SR)18]- cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25-xAux(SR)18]-, x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18]- reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level.

  14. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations

    DEFF Research Database (Denmark)

    Logadottir, Ashildur; Nørskov, Jens Kehlet

    2003-01-01

    In this paper we present DFT studies of all the elementary steps in the synthesis of ammonia from gaseous hydrogen and nitrogen over a ruthenium crystal. The stability and configurations of intermediates in the ammonia synthesis over a Ru(0001) surface have been investigated, both over a flat...... surface and over a stepped surface. The calculations show that the step sites on the surface are much more reactive than the terrace sites. The DFT results are then used to study the mechanism of promotion by alkalies over the Ru(0001) and to determine the rate-determining step in the synthesis of ammonia...

  15. Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties

    Directory of Open Access Journals (Sweden)

    Matasebia T. Munie

    2011-10-01

    Full Text Available Supramolecular coordination polymers with wavelike structures have been synthesized by self-assembly and their structures analyzed using the sine trigonometric function. Slow evaporation of a methylene chloride-methanol solution of a 1:1 molar mixture of [M(tmhd2], where M = Co or Ni, and quinoxaline; a 1:2:1 molar mixture of [M(acac2], where M = Co or Ni, 2,2,6,6-tetramethyl-3,5-heptadione and quinoxaline; or a 1:2:1 molar mixture of [Co(acac2], dibenzoylmethane, and quinoxaline, yielded the crystalline coordination polymers. In the presence of the nitrogenous base, ligand scrambling occurs yielding the most insoluble product. The synthesis and structures of the following wavelike polymers are reported: trans-[Co(DBM2(qox]n·nH2O (2, trans-[Co(tmhd2(qox]n (3, trans-[Ni(tmhd2(qox]n (4, where DBM− = dibenzoylmethanate, tmhd− = 2,2,6,6-tetramethyl-3,5-heptadionate, and qox = quinoxaline. The wavelike structures are generated by intramolecular steric interactions and crystal packing forces between the chains. Some of the tert-butyl groups show a two-fold disorder. The sine function, φ = A sin 2πx/λ, where φ = distance (Ǻ along the polymer backbone, λ = wavelength (Ǻ, A = amplitude (Ǻ, x = distance (Ǻ along the polymer axis, provides a method to approximate and visualize the polymer structures.

  16. Synthesis and structure of the unligated carbene of chromium

    Energy Technology Data Exchange (ETDEWEB)

    Billups, W.E.; Souchan Chang; Hauge, R.H.; Margrave, J.L. (Rice Univ., Houston, TX (United States))

    1993-04-14

    Complexes with metal-carbon double bonds have found applications as intermediates in many important catalytic reactions including cyclopropanation of alkenes by diazoalkanes, Fischer-Tropsch synthesis, olefin metathesis, Ziegler-Natta polymerization, alkane activation, and in the decomposition of transition metal alkyl complexes. However, complexes with the simplest carbene, CH[sub 2], coordinated to the metal center are relatively rare. In this paper the authors report the synthesis and characterization of the simple unligated carbene of chromium by FTIR matrix isolation spectroscopy. 7 refs., 3 figs., 4 tabs.

  17. A comparative study: Greener vs conventional synthesis of 4H-pyrimido[2,1-b]benzothiazoles via Biginelli reaction

    Science.gov (United States)

    Agarwal, Shikha; Agarwal, Dinesh Kr.; Kalal, Priyanka; Gandhi, Divyani

    2018-05-01

    Multicomponent reactions (MCRs) have been discovered as a powerful method for the synthesis of organic molecules, since the products are formed in a single step and the building blocks with diverse range of complexity can be obtained from easily available precursors. This strategy has become important in drug designing and discovery in the context of synthesis of biologically active compounds. In the today's scenario, MCRs are influenced by greener conditions as a powerful alternative over the conventional synthesis. In the last few years, a number of scientific publications have been appeared in the literature depicting the synthesis of pyrimidobenzothiazoles via greener routes which clearly states its importance in pharmaceutical chemistry for the drug development. Our article describes the synthesis of substituted pyrimidobenzothiazoles via one pot multicomponent reaction with structural diversity through conventional and greener pathways using different catalysts, ionic liquids, agar, resins etc.

  18. Total synthesis and structural validation of cyclodepsipeptides solonamide A and B

    DEFF Research Database (Denmark)

    Kitir, Betül; Baldry, Mara; Ingmer, Hanne

    2014-01-01

    , autoinducing peptide I (AIP-I). To enable more comprehensive studies, we embarked on the chemical synthesis of solonamides A and B. The key synthetic steps were formation of the (R)-β-hydroxy-fatty-acids by stereo-selective aldol reactions and a cyclative macrolactamization, which proceeded under highly dilute...

  19. Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazolines

    Directory of Open Access Journals (Sweden)

    Richard Hoogenboom

    2010-09-01

    Full Text Available The synthesis of well-defined polymer architectures is of major importance for the development of complex functional materials. In this contribution, we discuss the synthesis of a range of multifunctional star-shaped tosylates as potential initiators for the living cationic ring-opening polymerization (CROP of 2-oxazolines resulting in star-shaped polymers. The synthesis of the tosylates was performed by esterification of the corresponding alcohols with tosyl chloride. Recrystallization of these tosylate compounds afforded single crystals, and the X-ray crystal structures of di-, tetra- and hexa-tosylates are reported. The use of tetra- and hexa-tosylates, based on (dipentaerythritol as initiators for the CROP of 2-ethyl-2-oxazoline, resulted in very slow initiation and ill-defined polymers, which is most likely caused by steric hindrance in these initiators. As a consequence, a porphyrin-cored tetra-tosylate initiator was prepared, which yielded a well-defined star-shaped poly(2-ethyl-2-oxazoline by CROP as demonstrated by SEC with RI, UV and diode-array detectors, as well as by 1H NMR spectroscopy.

  20. Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route

    Institute of Scientific and Technical Information of China (English)

    Xi Wang; Yi-Jun Yang; Ying Ma; Jian-Nian Yao

    2013-01-01

    As one type of promising candidates fot environmental and energy-related systems,multi-shelled transition metal oxide hollow structures (MS-TMOHSs) have drawn great scientific and technical interest in the past few years.This article highlights recent advances in one-pot solution synthesis of MS-TMOHSs.We begin it with an overview of synthetic strategies that have been exploited to achieve these peculiar structures.We then focus on one-pot solution approaches in the following four sections:i) soft templates directed growth; ii) Ostwald ripening; iii) controlled etching; and iv) gas bubble assisted growth.After giving a brief discussion on the unique properties and applications of these multi-shelled hollow structures,we conclude this review with the general challenges and the potential future directions of this exciting area of research.

  1. The structure, stereochemistry and synthesis of a variety of physiologically active plant phenols

    International Nuclear Information System (INIS)

    Van Heerden, F.R.

    1980-03-01

    The medicinal use of various Leguminosae species by the local population led to a phytochemical study of the bark of Dalbergia nitidula, Dalbergia melanoxylon and wood of Acacia fasciculifera. Rotenoid glycoside and three new carbon bonded isoflavone glycosides were isolated from the bark of D. nitidula. The rotenoid glycoside was characterized by means of acid and enzymatic hydrolysis and its absolute configuration was determined with reference to CD comparisons. A kinetic study was done to determine the relative toxidities of the rotenoid glycoside and its aglicone. The identity and the coupling positions of the sugars was confirmed by a C-NMR investigation of the rotenoid and isoflavane glycosides. The structure of heminitidulan, a complex isoflavane from D. nitidula, was confirmed by complete synthesis. Trans- and cis-clovamide, amides made up of L-DOPA and trans- and cis-caffeic acid respectively, and four new analogous deoxyclovamides are present in the bark of D. melanoxylon. For the first time optically pure trans clovamide was obtained by direct synthesis. C-NMR and CD confirmed differentiation between trans- and cisclovamide. The therapeutic value of L-DOPA for Parkinson's Disease implies possible physiological activity for the clovamide. As well as a number of known flavonoids and peltoginoids, a tetracyclic flavonoid (peltoginoid), fasciculiferin, was found in the wood of A. fasciculifera. Although peltoginoids with a D-ring in a fully reduced or oxidised state are known, this is the first natural peltoginoid with the D-ring in an intermediate oxidation state. Fasciculiferol, till now an unknown metabolyte from A. fasciculifera, is a new member of a rare group of natural products that are generally cytotoxic. The relatively drastic reaction conditions necessary for carbocation formation from peltoginol in comparison to the analogous flavon-3, 4-diols, is attributed to steric factors which arise from the rigid conformation of the B-ring of peltoginol

  2. The Synthesis of Peculiar Structure of Springlike Multiwall Carbon Nanofibers/Nanotubes via Mechanothermal Method

    Directory of Open Access Journals (Sweden)

    Sahebali Manafi

    2012-01-01

    Full Text Available Mechanothermal (MT method is one of the methods used for large-scale production of carbon nanotubes/nanofibers. The different peculiar morphologies of carbon allotropes are introduced with an extraordinary structure for the first time by MT method. In this paper, the influence of milling time and annealing temperature on the crystallinity and morphology of the synthesized nanopowders was investigated. Surprisingly, in this investigation, we report the synthesis of springlike multiwalled carbon nanofibers (S-MWCNFs by a two-step annealing of milled graphite in an Ar atmosphere. On the other hand, the MT method could be used for the preparation of suitable structures with applications in nanocomposite materials, which is an important task in the era of nanotechnology.

  3. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  4. Synthesis of CdS hollow/solid nanospheres and their chain-structures by membrane technique

    International Nuclear Information System (INIS)

    Duan Shumin; Wu Qingsheng; Jia Runping; Liu Xinbo

    2008-01-01

    CdS hollow/solid nanospheres and their chain-structures were successfully synthesized through supporting liquid membrane (SLM) system with bio-membrane. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, and photoluminescence (PL) spectroscopy have been used for the characterization of the products. The average diameters of CdS solid/hollow spheres are about 10, 40 nm, respectively. The wall of the hollow spheres is about 5 nm. CdS products are all cubic face-centered structure with the cell constant a = 5.830 A. We also explore the morphology, structure and possible synthesis mechanism. A possible template mechanism has been proposed for the production of the hollow CdS nanocrystals, that is, CdS nanoparticles grow along the non-soakage interface between CHCl3 and reactant solution. During this process, the organic functional groups were crucial to the control of crystal morphologies

  5. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit.

    Science.gov (United States)

    Trost, Barry M; Frontier, Alison J; Thiel, Oliver R; Yang, Hanbiao; Dong, Guangbin

    2011-08-22

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A multi-paradigm language for reactive synthesis

    Directory of Open Access Journals (Sweden)

    Ioannis Filippidis

    2016-02-01

    Full Text Available This paper proposes a language for describing reactive synthesis problems that integrates imperative and declarative elements. The semantics is defined in terms of two-player turn-based infinite games with full information. Currently, synthesis tools accept linear temporal logic (LTL as input, but this description is less structured and does not facilitate the expression of sequential constraints. This motivates the use of a structured programming language to specify synthesis problems. Transition systems and guarded commands serve as imperative constructs, expressed in a syntax based on that of the modeling language Promela. The syntax allows defining which player controls data and control flow, and separating a program into assumptions and guarantees. These notions are necessary for input to game solvers. The integration of imperative and declarative paradigms allows using the paradigm that is most appropriate for expressing each requirement. The declarative part is expressed in the LTL fragment of generalized reactivity(1, which admits efficient synthesis algorithms, extended with past LTL. The implementation translates Promela to input for the Slugs synthesizer and is written in Python. The AMBA AHB bus case study is revisited and synthesized efficiently, identifying the need to reorder binary decision diagrams during strategy construction, in order to prevent the exponential blowup observed in previous work.

  7. Gadolinium (III) 2-benzoyl-1,1,3,3-tetracyanopropenide diacetate. Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Sergey V.; Kayukov, Yakov S.; Grigor' ev, Arthur A. [Department of Chemistry and Pharmaceutics, I.N. Ul' yanov Chuvash State University, Cheboksary (Russian Federation); Tafeenko, Victor A. [Department of Chemistry, Lomonosov Moscow State University (Russian Federation)

    2018-02-15

    2-Acyl-1,1,3,3-tetracyanopropenides (ATCN) is a stable organic salts, containing the carbonyl group in addition to the tetracyanoallyl (TCA) fragment in the anion. TCA anions are known as bridging ligands with variable denticity with potential application in organic electronics and as a ionic liquids components. In this communication we reporting the synthesis and crystal structure of gadolinium(III) 2-benzoyl-1,1,3,3-tetracyanopropenide diacetate - the first lanthanide ATCN. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The importance of control considerations for heat exchanger network synthesis: a case study

    Directory of Open Access Journals (Sweden)

    S.G. Oliveira

    2001-06-01

    Full Text Available Cost optimization in the synthesis decision tree often leads to a reduced degree of freedom which degrades the process’s ability to reject disturbances as a consequence of low controllability. In fact, Heat Exchanger Networks (HENs obtained by traditional synthesis procedures that ignore controllability aspects must be evaluated in this context a posteriori. The aim of this work was to develop a procedure that includes RGA and SVD measures of controllability, which are solely based on steady state information, thereby freeing the synthesis procedure of the cumbersome dynamic analysis. When a structure is defined during a traditional HEN synthesis procedure, a degree of freedom analysis is approached as a simulation problem. Next, an optimization is performed, since new variables are usually added to increase the degree of freedom of the HEN in order to render it controllable. A key point in the proposed procedure is the inference of controllability based on the proposed controllability measures, which also provide a control scheme by pairing controlled and manipulated variables during the process design. A HEN reported in the literature is used to illustrate the proposed procedure. The steady state simulator Aspen Plus and the dynamic simulator Aspen Dynamics (Aspentech, Inc. were employed.

  9. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.

    2014-02-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass-ITO substrates without the intermediate of metal catalyst, template or chemical etching. Kinetic of growth and effects of gas pressure and substrate temperature were studied by depositing ZnO films on P type Si (1 0 0) substrates with different deposition parameters. The optimized growth parameters were found as: 10 mTorr oxygen pressure, 600 C substrate temperature, and deposition duration equal or higher than 10 min. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Photoluminescence (PL) measurements were used to investigate structural, microstructural and optical properties of ZnO Nanowall networks produced. They exhibit a non-uniform size high quality honeycomb structure with low deep level defects. © 2013 Elsevier B.V.

  10. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  11. Synthesis and structural characterization of amorphous alloys of the Fe-Ni-B type

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez B, J.; Garcia S, I.

    2004-01-01

    It was prepared the alloy FeNiB for chemical reduction, using four p H values (5, 6, 7 and 7.5). To p H=6 partially oxidized particles were obtained, between 16 and 20%. In the synthesis to other p H values, the obtained particles were highly oxidized (65-90%) according to the X-ray diffraction results, in all the preparations the particles were partially crystallized, with crystal size that varied between 4 and 10 nm. The structure of these particles can be consider that they are formed by a nucleus due to the alloy and an oxide armor recovering it. (Author)

  12. Regioselective synthesis of isoxazole-mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies

    DEFF Research Database (Denmark)

    Kankala, Shravankumar; Kankala, Ranjith Kumar; Gundepaka, Prasad

    2013-01-01

    Regioselective synthesis of isoxazole-mercaptobenzimidazole hybrids and their efficiency in in vivo analgesic and anti-inflammatory activity was described. A comparison of structure-activity relationship for there compounds was also emphasized....

  13. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.; Boulfrad, Samir; Jabbour, Ghassan E.; Doghè che, Elhadj Hadj

    2014-01-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass

  14. Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F

    Energy Technology Data Exchange (ETDEWEB)

    Green, Robert L., E-mail: rgreen@flpoly.org [Chemistry, Florida Polytechnic University, Lakeland, FL 33805 (United States); Avdeev, Maxim [Australian Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Vogt, Thomas [NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2017-06-15

    The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphical abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.

  15. Microwave heating in solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg; Shelton, Anne Pernille Tofteng; Malik, Leila

    2012-01-01

    synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(a)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially...... relevant for sequences which might form ß-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating...... in microwave heating for peptide synthesis, with a focus on systematic studies and general protocols, as well as important applications. The assembly of ß-peptides, peptoids and pseudopeptides are also evaluated in this critical review (254 references)....

  16. Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-08-19

    A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.

  17. Synthesis, Structural and Antioxidant Studies of Some Novel N-Ethyl Phthalimide Esters

    Science.gov (United States)

    Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-01-01

    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity. PMID:25742494

  18. Synthesis and computer-aided structural investigation of potentially photochromic spirooxazines

    International Nuclear Information System (INIS)

    Chi, L.

    2000-03-01

    Quantum mechanical methods, PPP-MO and ZINDO, were used to predict the electronic spectra of the ring-opened forms and ring-closed forms respectively of a series of spirooxazines. Molecular mechanics was used to optimise the molecular geometry and to calculate the molecular final energy (steric energy) using the MM2 force field method. An all-valence-electron quantum mechanical method was employed to calculate the heats of formation using AM1 parameters, and the data were used to provide a measure of the stability of the molecules. This computer-aided structural investigation has provided an enhanced understanding of the spirooxazine system and methods with the potential to predict photochromic behaviour have emerged. The synthesis of a series of heterocyclic analogues of the well-known spironaphthoxazines based on quinolines, coumarin and pyrazolones were attempted. The properties of the compounds obtained were correlated with the results of the calculations. (author)

  19. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  20. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  1. Synthesis of Zn{sup 2+} substituted maghemite nanoparticles and investigation of their structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M. [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Shatooti, S. [Department of Physics, Razi University, Kermanshah 67149-67346 (Iran, Islamic Republic of); Jafarzadeh, M., E-mail: mjafarzadeh1027@yahoo.com [Faculty of Chemistry, Razi University, Kermanshah 67149-67346 (Iran, Islamic Republic of); Niyaifar, M. [Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Mohammadpour, H. [Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Amiri, Sh. [Department of Physics, Razi University, Kermanshah 67149-67346 (Iran, Islamic Republic of)

    2015-05-15

    Maghemite and Zn{sup 2+} substituted maghemite (γ-Fe{sub 2−y} Zn{sub 3y/2}O{sub 3}, y=0.0, 0.11, 0.24, 0.36, 0.50 and 0.66) nanoparticles were prepared by coprecipitation method. The effect of Zn{sup 2+} substitution on the structural, morphological and magnetic properties of the nanoparitcles were studied by different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), magnetometry, magnetic thermogravimetry and Mössbauer spectroscopy. The results of XRD showed that all samples have spinel structure with an increase in lattice parameter by increasing the content of Zn{sup 2+}. FTIR spectra were proved the synthesis of maghemite and Zn{sup 2+} substituted maghemite with appearance of the related absorption bands and band shift upon Zn{sup 2+} substitution. Morphological studies by FESEM demonstrated that the nanoparticles were uniform and spherical with average particle size in range of 20–24 nm. Room temperature magnetic measurements showed that as Zn{sup 2+} content increases, saturation magnetization initially increase up to 75.34 emu/g for y=0.11 and then decrease to 3.65 emu/g for y=0.66, due to substitution of magnetic Fe{sup 3+} by non-magnetic Zn{sup 2+}. Decrease in Curie temperature of the samples, from 510 for maghemite to 250 °C for y=0.36, by increasing the Zn{sup 2+} substitution was a result of reduction of superexchange interactions between different sites. Then, the Curie temperature increased up to 680 °C for y=0.66 which was due to migration of some Zn{sup 2+} ions from A to B sites in the structure of spinel. Room temperature Mössbauer spectra exhibited that the sample with y=0.0 was superparamagnetic, while by increasing the content of Zn{sup 2+}, relaxation effect increased by weakening of A–B exchange interaction. - Highlights: • Synthesis of Zn{sup 2+}-substituted maghemite via co-precipitation/oxidation method. • Increase in lattice

  2. Synthesis and structure-activity relationship studies of furan-ring fused chalcones as antiproliferative agents.

    Science.gov (United States)

    Saito, Yusuke; Kishimoto, Maho; Yoshizawa, Yuko; Kawaii, Satoru

    2015-02-01

    As part of our continuing investigation of flavonoid derivatives as potential anticancer substances, the synthesis of 25 cinnamoyl derivatives of benzofuran as furan-fused chalcones was carried-out and these compounds were further evaluated for their antiproliferative activity towards HL60 promyelocytic leukemia cells. In comparison with 2',4'-dihydroxychalcone, attachment of a furan moiety on the A-ring enhanced activity by more than twofold. Benzofurans may be useful in the design of biologically active flavonoids. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Formation of rod type structures of CaSO4: Ce,P,Dy TLD phosphor using different synthesis routes

    International Nuclear Information System (INIS)

    Atone, M.S.; Wani, J.A.; Dhoble, S.J.

    2011-01-01

    Effect of Ce and P co-activation in CaSO 4 : Dy, standard TLD phosphor prepared by different synthesis root techniques and it's structural morphology is reported first time in this paper. We have already reported the sensitization of luminescence in CaSO 4 : Dy with phosphorous (P) and cerium (Ce) ions separately via acid distillation route. In the current investigation, we have doped these impurities (Ce, P, Dy) simultaneously in CaSO 4 host lattice. We have employed a well known chemical precipitation method and modified acid distillation method and have attempted to analyse the surface morphology resulted from these two synthesis routes. Chemical precipitation usually takes place at room temperature and in this way allows the reaction to take place silently. In case of acid distillation method we have reduced the synthesis temperature to 493K which is considerably less than 653K employed in previously reported literature. In case of precipitation method particle shape seems to be spherical and particle size is around one micro range or in the neighbourhood of nanorange. However, in the case of modified acid distillation method particles have shaped in to rod like structures and particle size again falls in the micro range. The photoluminescence intensity of the phosphor prepared by chemical precipitation method is weak as compared to the phosphor prepared by modified acid distillation method. Both the phosphors prepared by different methods have shown characteristic transitions of dopants. The emission spectra of prepared phosphors at 309 nm and 329 nm of Ce 3+ ions overlap well with excitation of Dy 3+ ions. Thermoluminescence (TL) property of both phosphors is again good though certain variation is observed in case of phosphor prepared by modified acid distillation method which shows rod like structure of phosphor. This variation in TL may be attributed to change in surface morphology (formation of rod type structure of particles) of the phosphor. (author)

  4. Aperture synthesis observations of NH3 in OMC-1 - Filamentary structures around Orion-KL

    International Nuclear Information System (INIS)

    Murata, Yasuhiro; Kawabe, Ryohei; Ishiguro, Masato; Morita, Kohichiro; Kasuga, Takashi

    1990-01-01

    Aperture synthesis observations of the Orion molecular cloud 1 (OMC-1) have been made in NH 3 (1, 1) and (2, 2) emission at 23.7 GHz, using the Nobeyama Millimeter Array (NMA), and obtained 16 arcsec resolution maps for OMC-1 and 8 arcsec resolution maps for the Orion-KL region. Filamentary structures extending over 0.5 pc from the Orion-KL region to the north and northwest directions were found. These structures are associated with the H2 finger structures and Herbig-Haro objects which are located at the blue-shifted side of the bipolar molecular outflow. The results suggest that these filaments are ambient molecular cloudlets with shocked surfaces caused by the strong stellar wind from the Orion-KL region. The 8 arcsec resolution NH 3 (2, 2) maps show the extended features around the hot core of Orion-KL. These extended features correspond to the rotating disk and shocked shell associated with the bipolar molecular outflow. 37 refs

  5. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure

    International Nuclear Information System (INIS)

    Liu, Hongyan; Guo, Yiping; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di

    2013-01-01

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe 2 O 4 replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g −1 at 10 mV s −1 in comparison with ZFO powder of 137.3 F g −1 , attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors

  6. Synthesis and processing of nanostructured materials

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented

  7. Combustion synthesis of LaFeO3 sensing nanomaterial

    International Nuclear Information System (INIS)

    Zaza, F.; Serra, E.; Pallozzi, V.; Pasquali, M.

    2014-01-01

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO 3

  8. Synthesis of RP 48497, an Impurity of Eszopiclone

    Directory of Open Access Journals (Sweden)

    Mao-Sheng Cheng

    2008-08-01

    Full Text Available Abstract: RP 48497 is a photodegradation product of eszopiclone, a non-benzodiazepine sedative-hypnotic used in the treatment of insomnia. We report herein the first synthesis of RP 48497 via reduction, chlorination, and recyclization of 6-(5-chloropyridin-2-yl-7-hydroxy-6,7-dihydropyrrolo[3,4-b]pyrazin-5-one (3, a key intermediate in the synthesis of eszopiclone. The structure of RP 48497 was confirmed by its 1H-NMR and MS data. The mechanism of the reduction step in the synthesis of RP 48497 was also studied and the key parameters were determined. These findings should be important for quality control purposes in the manufacture of eszopiclone.

  9. Directing factors affecting the synthesis of a MFI-type zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Vinaches, P.; Pergher, S.B.C. [Universidade Federal de Rio Grande do Norte (UFRN), RN (Brazil); Lopes, C.W. [Institute of Chemical Technology, Mumbai (India); Gomez-Hortiguela, L. [Instituto de Catalisis y Petroleoquimica, Madrid (Spain); Finger, P.H.; Silva, B.A. da; Dallago, R.M.; Mignoni, M.L. [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)

    2016-07-01

    Full text: Zeolites are crystalline tectosilicates constituted by (TO4) tetrahedra connected through the oxygens of their vertices. The importance of these materials is that their properties differ, due to their variable compositions and structures, leading to the possibility of applying them into different industries, for example, as catalyst in petroleum industry or sensors in quality control. One of the big questions in this area is about the understanding of the chemistry that directs to one or another type of zeolite. Another important question is the search of new zeolitic structures for new applications. One approach to answer both is the study of the structure-directing agents, which are inorganic or organic molecules used in the synthesis of zeolites. New and already-used molecules have been studied within different synthesis conditions and different techniques, as characterization or computational studies. And several attempts of rationalization were and, still, will be performed. In this research, an imidazolium-based compound was studied in hydrothermal zeolite synthesis as organic structure-directing agent (OSDA). The products were obtained with Si/Al or Si/(Al+Zn) compositions, proved by ICP data. X-ray diffractograms showed two different zeolitic types: MFI and TON. It was observed that when Zn was present in the synthesis gel, pure MFI phases were able to appear. But in his absence, the products were all mixtures of MFI and TON zeolites. It was also possible to distinguish both phases by SEM micrographs, as MFI had brick-like shape and TON appeared as needles. The obtained zeolites were stable until 900°C minimum, as tested by a TG/DTG/DSC experiment. To prove that the chosen OSDA directed these structures, a CHN analysis was performed, resulting in integrity of the molecules inside the zeolitic pores and cavities. Finally, a rationale about the location and conformation of the OSDA was needed to understand these experimental results. So, it was

  10. Directing factors affecting the synthesis of a MFI-type zeolite

    International Nuclear Information System (INIS)

    Vinaches, P.; Pergher, S.B.C.; Lopes, C.W.; Gomez-Hortiguela, L.; Finger, P.H.; Silva, B.A. da; Dallago, R.M.; Mignoni, M.L.

    2016-01-01

    Full text: Zeolites are crystalline tectosilicates constituted by (TO4) tetrahedra connected through the oxygens of their vertices. The importance of these materials is that their properties differ, due to their variable compositions and structures, leading to the possibility of applying them into different industries, for example, as catalyst in petroleum industry or sensors in quality control. One of the big questions in this area is about the understanding of the chemistry that directs to one or another type of zeolite. Another important question is the search of new zeolitic structures for new applications. One approach to answer both is the study of the structure-directing agents, which are inorganic or organic molecules used in the synthesis of zeolites. New and already-used molecules have been studied within different synthesis conditions and different techniques, as characterization or computational studies. And several attempts of rationalization were and, still, will be performed. In this research, an imidazolium-based compound was studied in hydrothermal zeolite synthesis as organic structure-directing agent (OSDA). The products were obtained with Si/Al or Si/(Al+Zn) compositions, proved by ICP data. X-ray diffractograms showed two different zeolitic types: MFI and TON. It was observed that when Zn was present in the synthesis gel, pure MFI phases were able to appear. But in his absence, the products were all mixtures of MFI and TON zeolites. It was also possible to distinguish both phases by SEM micrographs, as MFI had brick-like shape and TON appeared as needles. The obtained zeolites were stable until 900°C minimum, as tested by a TG/DTG/DSC experiment. To prove that the chosen OSDA directed these structures, a CHN analysis was performed, resulting in integrity of the molecules inside the zeolitic pores and cavities. Finally, a rationale about the location and conformation of the OSDA was needed to understand these experimental results. So, it was

  11. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R

    2007-06-01

    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  12. Study on transfer-free graphene synthesis process utilizing spontaneous agglomeration of catalytic Ni and Co metals

    International Nuclear Information System (INIS)

    Miyoshi, Makoto; Mizuno, Masaya; Banno, Kazuya; Kubo, Toshiharu; Egawa, Takashi; Soga, Tetsuo

    2015-01-01

    Transfer-free graphene synthesis process utilizing metal agglomeration phenomena was investigated by using carbon films deposited on Ni or Co catalyst metals on SiO 2 /Si substrates. As a result of metal agglomeration at high temperatures, multilayer graphene films appeared to be formed directly on SiO 2 films. The microscopic Raman mapping study revealed that graphene films were preferentially synthesized around areas where metal films disappeared at an early stage of agglomeration, and that they finally covered almost the whole surface. It was also found that the synthesized graphene films tended to have better structural qualities and lower layer numbers with the increase in the starting metal thicknesses regardless of the kinds of catalyst metals. Raman study also showed that they had good two-dimensional uniformity in the structural quality. (paper)

  13. Design and synthesis study of the thermo-sensitive poly (N-vinylpyrrolidone-b- N, N-diethylacrylamide).

    Science.gov (United States)

    Zhang, Xiayun; Yang, Zhongduo; Xie, Dengmin; Liu, Donglei; Chen, Zhenbin; Li, Ke; Li, Zhizhong; Tichnell, Brandon; Liu, Zhen

    2018-01-01

    The reversible addition fragmentation chain transfer (RAFT) polymerization method was adopted here to prepare a series of thermo-sensitive copolymers, poly (N,N-diethyl- acrylamide-b-N-vinylpyrrolidone). Their structures, molecular weight distribution and temperature sensitivity performances were characterized by the nuclear magnetic resonance ( 1 HNMR), the gel permeation chromatography (GPC) and the fluorescence spectrophotometer, respectively. It has been identified that the synthesis reaction of the block copolymer was living polymerization. The thermo-sensitivity study suggested that N-vinylpyrrolidone (NVP), played a key role on the lower critical solution temperature (LCST) performance.

  14. Synthesis and intramolecular cyclizationof thiosemicarbazide morpholilacetic acid

    Directory of Open Access Journals (Sweden)

    Moldyr Dyusebaeva

    2015-12-01

    Full Text Available The paper gives details on the synthesis of four new, potentially biologically active compounds based on amorpholineheterocycle structure. By alkylation of morpholine with ethyl bromoacetate, a morfolilacetic acid ethyl ester was synthesized. Its reaction with hydrazine hydrate led to the hydrazide. We developed the method for synthesis and studied cyclization of thiosemicarbazide morfolilaceticacidin in alkaline medium with formation of bisgeterocyclic system. The possibility of the existence of this compound in two tautomeric forms: thione and thiol, i.e. a 3- (1'-morpholyl-methyl -1,2,4-triazole-5-thione and 3- (1-morpholyl-1'-methyl -5-mercapto-1,2,4-triazole was described. In neutral medium, one product was obtained. According to spectral data, it is attributed to the structure of 3-(1'-morpholil-methyl-1,2,4-triazole-5-thione. Structure of newly synthesized compounds is confirmed by IR and 1H-NMR spectra and data of elemental analysis. These compounds are potentially biologically active substances and are promising for further research.

  15. Synthesis of (/sup 14/C)Zolpidem

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.; Tizot, A.

    1986-04-01

    The synthesis of (/sup 14/C)Zolpidem, a new hypnotic agent having a non-benzodiazepine structure, is described. This compound was synthesised in a 64% overall radiochemical yield from potassium (/sup 14/C)cyanide and with a specific radioactivity of 56 mCi/mmol. It was used for pharmacokinetic and drug metabolism studies.

  16. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization.

    Science.gov (United States)

    Feyen, Fabian; Cachoux, Frédéric; Gertsch, Jürg; Wartmann, Markus; Altmann, Karl-Heinz

    2008-01-01

    Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These

  17. Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies.

    Science.gov (United States)

    Cirillo, Giuseppe; Spataro, Tania; Curcio, Manuela; Spizzirri, U Gianfranco; Nicoletta, Fiore Pasquale; Picci, Nevio; Iemma, Francesca

    2015-03-01

    Thermo-responsive hydrogel films, synthesized by UV-initiated radical polymerization, are proposed as delivery devices for non-steroidal anti-inflammatory drugs (Diclofenac sodium and Naproxen). N-isopropylacrylamide and N,N'-ethylenebisacrylamide were chosen as thermo-sensitive monomer and crosslinker, respectively. Infrared spectroscopy was used to assess the incorporation of monomers into the network, and the network density of hydrogel films was found to strictly depend on both feed composition and film thickness. Calorimetric analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the range 32.8-36.1°C. Equilibrium swelling studies around the LCST allowed the correlation between the structural changes and the temperature variations. The mesh size, indeed, rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C. The analysis of both 3D-network structure, release kinetics and diffusional constraints at different temperatures was evaluated by mathematical modelling. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis of hydroxyapatite and structural refinement by X-ray diffraction

    International Nuclear Information System (INIS)

    Araujo, Jorge Correa de

    2007-01-01

    A sample of hydroxyapatite was synthesized and its crystalline structure was analyzed by X-ray diffraction by means of the Rietveld method. Two functions were used to fit the peak profiles, modified Voigt (TCHZ) and Pearson VII. The occupational factors and lattice parameters obtained by both models show that the sample does not contain relevant cationic substitutions. The interatomic distances from Ca1 to oxygens O1, O2 and O3 were adequate for a pure hydroxyapatite without defect at site Ca1. Besides, the use of multiple lines in planes (300) and (002) associated with the model Pearson VII resulted in good agreement with the TCHZ model with respect to the size-strain effects with an ellipsoidal shape of crystallites. In conclusion, the procedures adopted in the synthesis of hydroxyapatite produced a pure and crystalline material. The experimental results of transmission electron microscopy confirmed the predicted shape of crystals. (author)

  19. The optimisation study of tbp synthesis process by phosphoric acid

    International Nuclear Information System (INIS)

    Amedjkouh, A.; Attou, M.; Azzouz, A.; Zaoui, B.

    1995-07-01

    The present work deals with the optimisation study of TBP synthesis process by phosphoric acid. This way of synthesis is more advantageous than POCL3 or P2O5 as phosphatant agents. these latters are toxic and dangerous for the environnement. The optimisation study is based on a series of 16 experiences taking into account the range of variation of the following parameters : temperature, pressure, reagents mole ratio, promoter content. the yield calculation is based on the randomisation of an equation including all parameters. the resolution of this equation gave a 30% TBP molar ratio. this value is in agreement with that of experimental data

  20. Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite

    International Nuclear Information System (INIS)

    Ursachi, Irina; Vasile, Aurelia; Ianculescu, Adelina; Vasile, Eugeniu; Stancu, Alexandru

    2011-01-01

    Highlights: → A quick and facile route for the synthesis of iron oxide/MCM-41 nanocomposite. → Magnetic nanoparticles were stabilized inside the pores of mesoporous silica MCM-41. → The pore size of MCM-41 dictates the properties of iron oxide nanoparticles. → The procedure provides a narrow size distribution of magnetic nanoparticles. - Abstract: Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 deg. C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption-desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g -1 . An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.

  1. The in vitro synthesis of {beta}-galactosidase induced in a subcellular structure of Escherichia coli (1961); Synthese in vitro de {beta}-galactosidase induite dans une structure subcellulaire d'Escherichia coli (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Nisman, B; Kayser, A; Demailly, J; Genin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P{sub 1}). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of {beta}-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [French] L'isopropylthiogalactoside (IPTG), inducteur de la 3-galactosidase, permet la synthese in vitro de cette enzyme dans la structure subcellulaire (P{sub 1}) isolee a partir des bacteries d'Escherichia coli K 12, inductibles mais non induites. L'incorporation d'acides amines radioactifs, stimulee par la presence d'inducteur, a ete etudiee au cours de la synthese de l'enzyme. Le saccharose supprime l'induction de la 3-galactosidase. La presence du represseur specifique dans la structure etudiee est consideree. (auteurs)

  2. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  3. Studies on the synthesis of silicoaluminophosphates and silicophosphates

    International Nuclear Information System (INIS)

    Han, Xue Song

    2002-01-01

    In this work, the study was carried out in the following two categories: a) Direct synthesis: SAPO 4 -5 and SiPO 4 -5 synthesis using various anionic templates was carried out, the synthesis was tested under different conditions; various gel compositions and different gel preparation methods were optimised. b) Modification: As-synthesised SAPO 4 -5 or AIPO 4 -5 was dealuminated by SiCl 4 or (NH 4 ) 2 SiF 6 . And P incorporation into SSZ-24 framework was also studied. SAPO 4 -5 with different silicon content in the framework was synthesised using sulphonate and sulphate species as surfactant in a hexanol/aqueous duo phase media. By using sulphonate and sulphate species as surfactants, the silicon content in the empirical formula of SAPO 4 -5 was increased to 0.511 while silicon content in the reaction gel being broadened to SiO 2 =3.0. By controlling the silicon content in the reaction gel, the silicon content in SAPO 4 -5 was controlled. SAPO 4 -15 was synthesised using tetraethyl/butyl ammonium toluene-4-sulphonate as template. SiPO 4 -15 was also synthesised by using tetraethyl ammonium toluene-4-sulphonate as template. The framework had positive charge regions contributed by Si-O-P bonding. The as-synthesised samples were analysed and characterised by using X-ray diffraction, X-ray fluorescence, Thermogravimetric analysis and Differential thermal analysis, Scanning electron microscopy etc. techniques. (author)

  4. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  5. Precursor/product studies of macrophage synthesis of nitrite, nitrate and N-nitrosamines

    International Nuclear Information System (INIS)

    Iyengar, R.; Marletta, M.A.

    1987-01-01

    Previous experiments showed that nitrite, nitrate and N-nitrosamine synthesis was carried out by both stimulated macrophages (M phi) and a number of M phi cell lines. Here the authors report the precursor to NO 2 - , NO 3 - , and the source of the nitrosating agent. Previous kinetic studies established a time lag for NO 2 - /NO 3 - synthesis during which protein synthesis required for product formation occurred. Medium change after the protein synthesis phase showed that L-arginine was the only amino acid essential for the synthesis. Other precursors were homoarginine, arginine methyl ester, arginine infinity-hydroxamate, argininamide and the peptide arginine-aspartate. Glutamine, citrulline, ornithine, hydroxylamine and D-arginine were among some of the non-precursors. Canavanine though not a precursor inhibited arginine-derived NO 2 -/NO 3 - synthesis while D-arginine had no effect. When 15 N-arginine (guanido- 15 N 2 , 95%) was used, GC/MS results showed that all the NO 2 - /NO 3 - synthesized was derived exclusively from these two guanido nitrogens. Similar labeling experiments carried out in the presence of morpholine showed that the isotopic enrichment of N-nitrosomorpholine was the same as that of NO 2 - /NO 3 - synthesized, suggesting that the nitrosating agent is a common intermediate. In conclusion, NO 2 - /NO 3 - and N-nitrosomorpholine synthesis by stimulated macrophages is derived specifically from the two guanido nitrogens of arginine

  6. Microwave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts

    Directory of Open Access Journals (Sweden)

    Meisam Hasanpoor

    2017-01-01

    Full Text Available In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed existence of Al-O band and bio-functional groups, originated from plant extract. Morphology and size of nanoparticles were investigated using scanning electron microscopy, transmission electron microscopy and atomic force microscopy techniques. It was observed that nanoparticles have near-spherical shape. Average size of clusters of nanoparticles varied with different routes from of 60 nm to 300 nm. AFM images showed that Individual nanoparticles were less than 10 nm.

  7. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis, Crystal Structure, and Topology-Symmetry Analysis of a New Modification of NaIn[IO3]4

    Science.gov (United States)

    Belokoneva, E. L.; Karamysheva, A. S.; Dimitrova, O. V.; Volkov, A. S.

    2018-01-01

    Crystals of new iodate NaIn[IO3]4 were prepared by the hydrothermal synthesis. The unit cell parameters are a = 7.2672(2) Å, b = 15.2572(6) Å, c = 15.0208(6) Å, β = 101.517(3)°, sp. gr. P21/ c. The formula was determined during the structure determination and refinement of a twinned crystal based on a set of reflections from the atomic planes of the major individual. The refinement with anisotropic displacement parameters was performed for both twin components to the final R factor of 0.050. The In and Na atoms are in octahedral coordination formed by oxygen atoms. The oxygen octahedra are arranged into columns by sharing edges, and the columns are connected by isolated umbrella-like [IO3]- groups to form layers. The new structure is most similar to the isoformular iodate NaIn[IO3]4, which crystallizes in the same sp. gr. P21/ c and is structurally similar, but has a twice smaller unit cell and is characterized by another direction of the monoclinic axis. The structural similarity and difference between the two phases were studied by topologysymmetry analysis. The formation of these phases is related to different combinations of identical one-dimensional infinite chains of octahedra.

  9. Two-dimensional tantalum disulfide: controlling structure and properties via synthesis

    Science.gov (United States)

    Zhao, Rui; Grisafe, Benjamin; Krishna Ghosh, Ram; Holoviak, Stephen; Wang, Baoming; Wang, Ke; Briggs, Natalie; Haque, Aman; Datta, Suman; Robinson, Joshua

    2018-04-01

    Tantalum disulfide (TaS2) is a transition metal dichalcogenide (TMD) that exhibits phase transition induced electronic property modulation at low temperature. However, the appropriate phase must be grown to enable the semiconductor/metal transition that is of interest for next generation electronic applications. In this work, we demonstrate direct and controllable synthesis of ultra-thin 1T-TaS2 and 2H-TaS2 on a variety of substrates (sapphire, SiO2/Si, and graphene) via powder vapor deposition. The synthesis process leads to single crystal domains ranging from 20 to 200 nm thick and 1-10 µm on a side. The TaS2 phase (1T or 2H) is controlled by synthesis temperature, which subsequently is shown to control the electronic properties. Furthermore, this work constitutes the first demonstration of a metal-insulator phase transition in directly synthesized 1T-TaS2 films and domains by electronic means.

  10. Template-Assisted Synthesis and Characterization of Passivated Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Al-Omari IA

    2010-01-01

    Full Text Available Abstract Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided.

  11. Synthesis and Crystal Structures of Ni(II)/(III) and Zn(II) Complexes with Schiff Base Ligands

    International Nuclear Information System (INIS)

    Koo, Bon Kweon

    2013-01-01

    Coordination polymers are of great interest due to their intriguing structural motifs and potential applications in optical, electronic, magnetic, and porous materials. The most commonly used strategy for designing such materials relies on the utilization of multidentate N- or Odonor ligands which have the capacity to bridge between metal centers to form polymeric structures. The Schiff bases with N,O,S donor atoms are an useful source as they are readily available and easily form stable complexes with most transition metal ions. Schiff bases are also important intermediates in synthesis of some bioactive compounds and are potent anti-bacterial, anti-fungal, anticancer and antiviral compounds. In this work, the Schiff bases, Hapb and Hbpb, derived from 2-acetylpyridene or 2-benzoylpyridine and benzhydrazide were taken as trifunctional (N,N,O) monobasic ligand (Scheme 1). This ligand is of important because the π-delocalization of charge and the configurational flexibility of their molecular chain can give rise to a great variety of coordination modes. Although many metal.Schiff base complexes have been reported, the 1D, 2D, and 3D networks of coordination polymers linked through the bridging of ligands such as dicyanamide, N(CN) 2 - as coligand have been little published. In the process of working to extend the dimensionality of the metal-Schiff base complexes using benzilic acid as a bridging ligand, we obtained three simple metal (II)/(III) complexes of acetylpyridine/2-benzoyl pyridine based benzhydrazide ligand. Therefore, we report here the synthesis and crystal structures of the complexes

  12. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  13. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    International Nuclear Information System (INIS)

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko

    2012-01-01

    Introduction: A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods: The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α- 14 C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results: There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (− 32%), but not in the median (− 14%) and dorsal (− 3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+ 41%) and ventral (+ 43%) hippocampus, visual (+ 38%), auditory (+ 65%) and parietal (+ 37%) cortex, and the substantia nigra pars compacta (+ 56%). There were no significant changes in the 5-HT synthesis rates in the median (+ 11%) and lateral (+ 24%) part of the caudate-putamen, nucleus accumbens (+ 5%), VTA (+ 16%) or frontal cortex (+ 6%). Conclusions: The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors.

  14. The effect of ionizing radiation on hemoglobin synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, S

    1972-01-01

    The effect of ionizing radiation on hemoglobin synthesis was studied and its effect on the quality of protein was discovered. The biological effects due to the changes in the structure of protein were also observed. The results of the experiments are presented.

  15. Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices

    OpenAIRE

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-01-01

    We report the synthesis and structural studies of ZnS and CdS nanoparticles in polyvinylpyrrolidone (PVP), poly(vinyl alcohol) (PVA), and poly(methyl methacrylate) (PMMA) matrices. The metal sulfides/polymer nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, electronic spectroscopy (UV-Vis), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The particle sizes as calculated from the absorption spectra were in agree...

  16. Epitope-Targeting of Tertiary Protein Structure Enables Target-Guided Synthesis of a Potent in Cell Inhibitor of Botulinum Neurotoxin**

    OpenAIRE

    Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M.; Das, Samir; Nag, Arundhati; Agnew, Heather D.; Heath, James R.

    2015-01-01

    Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ ...

  17. Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms.

    Science.gov (United States)

    Park, Gi Tae; Jo, Donghui; Ahn, Nak Ho; Cho, Jung; Hong, Suk Bong

    2017-07-17

    The structure-directing effects of a series of polymethylimidazolium cations with different numbers of methyl groups as organic structure-directing agents (OSDAs) in the synthesis of aluminophosphate (AlPO 4 )-based molecular sieves in both fluoride and hydroxide media are investigated. On the one hand, among the OSDAs studied here, the smallest 1,3-dimethylimidazolium and the largest 1,2,3,4,5-pentamethylimidazolium cations were found to direct the synthesis of a new variant of the triclinic chabazite (CHA)-type AlPO 4 material, designated AlPO 4 -34(t) V , and the one-dimensional small-pore silicoaluminophosphate (SAPO) molecular sieve STA-6 in hydroxide media, respectively. On the other hand, the intermediate-sized 1,2,3,4-tetramethylimidazolium cation gave SSZ-51, a two-dimensional large-pore SAPO material, in fluoride media. Synchrotron powder X-ray diffraction and Rietveld analyses reveal that as-made AlPO 4 -34(t) V contains penta-coordinated framework Al species connected by hydroxyl groups, as well as tetrahedral framework Al, which contrasts with the distortions arising from the two F - or OH - bridges between octahedral Al atoms in all already known AlPO 4 -34 materials. The presence of Al-OH-Al linkages in this triclinic AlPO 4 -34 molecular sieve has been further corroborated by thermal analysis, variable-temperature IR,27Al magic-angle spinning NMR, and dispersion-corrected density functional theory calculations.

  18. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  19. Combustion synthesis of LaFeO{sub 3} sensing nanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E. [ENEA-Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Pallozzi, V.; Pasquali, M. [Department of Basic and Applied Sciences for Engineering, La Sapienza University, Via A. Scarpa 14/16, 00161 Rome (Italy)

    2015-06-23

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO{sub 3}.

  20. Synthesis of derivatives of tetronic acid and pulvinic acid. Total synthesis of norbadione A

    International Nuclear Information System (INIS)

    Mallinger, A.

    2008-11-01

    When vegetables like mushrooms are contaminated by radioactive caesium 137, this radioactive caesium is associated to norbadione A, a natural pigment present in two mushroom species and which can be used as a caesium decorporation agent or maybe as protection agent against ionizing radiations. Within this perspective, this research report describes the biosynthesis and the structure and properties of the norbadione A and of pulvinic acids (physicochemical properties, anti-oxidizing properties). Then, it presents the various tetronic acids (3-acyl-, 3-alkyl-, 3-alkoxy-, 3-aryl-tetronic acids and non 3-substituted tetronic acids), their synthesis path as they are described in the literature, and presents a new synthesis approach using a tandem reaction (with different esters or hydroxy esters) and the synthesis of tetronic acids. The author also proposes a new synthesis way for methyl pulvinates, and finally reports the work on the development of a total synthesis of the norbadione A

  1. Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals

    Science.gov (United States)

    Andrew, Fartisincha P.; Ajibade, Peter A.

    2018-03-01

    Dithiocarbamates are versatile ligands able to stabilize wide range of metal ions in their various oxidation states with the partial double bond character of Csbnd N and Csbnd S of thioureide moiety. Variation of the substituents attached to the nitrogen atom of dithiocarbamate moiety generates various intermolecular interactions, which lead to different structural arrangement in the solid state. The presence of bulky substituents on the N atom obviates the supramolecular aggregation via secondary Msbnd S interactions whereas smaller substituents encourage such aggregation that results in their wide properties and applications. Over the past decades, the synthesis and structural studies of metal complexes of dithiocarbamates have received considerable attention as potential anticancer agents with various degree of DNA binding affinity and cytotoxicity and as single molecule precursors for the preparation of semiconductor nanocrystals. In this paper, we review the synthesis, structural studies, anticancer potency and the use of alkyl-phenyl dithiocarbamate complexes as precursors for the preparation of semiconductor nanocrystals. The properties of these compounds and activities are ascribed to be due to either the dithiocarbamate moieties, the nature or type of the substituents around the dithiocarbamate backbone and the central metal ions or combination of these factors.

  2. Synthesis and reactivity of triscyclopentadienyl uranium (III) and (IV) complexes

    International Nuclear Information System (INIS)

    Berthet, J.C.

    1992-01-01

    The reactions of (RC 5 H 4 ) 3 U with R=trimethylsilylcyclopentadienyl or tertiobutylcyclopentadienyl are studied for the synthesis of new uranium organometallic compounds. Reactions with sodium hydride are first described uranium (III) anionic hydrides obtained are oxidized for synthesis of stable uranium (IV) organometallic hydrides. Stability of these compounds is discussed. Reactivity of these uranium (III) and (IV) hydrides are studied. Formation of new binuclear compounds with strong U-O and U-N bonds is examined and crystal structure are presented. Monocyclooctatetraenylic uranium complexes are also investigated

  3. Structure, reactivity and synthesis of piramidines and their derivates (dihidroperimidines and perimidinones); Estructura, reactividad y sintesis de perimidinas y de sus derivados (dihidroperimidinas y perimifinonas)

    Energy Technology Data Exchange (ETDEWEB)

    Claramunt, R.M.; Dotor, J.; Elguero, J. [Departamento de Quimica Organica, Facultad de Ciencias, UNED, Madrid (Spain)

    1995-12-01

    This review reports 346 references dealing with structure, reactivity and synthesis of pyrimidines and their derivatives (mainly 2,3-dihidroperimidines, 2-perimidinones and perimidinium salts). Special emphasis has been made on spectroscopy and structural properties as well as on reactivity. 346 refs.

  4. Structure and synthesis of a new library of N,N-Bis-[1,2,4]triazol-1-ylmethyl-amino compounds

    Czech Academy of Sciences Publication Activity Database

    Al Bay, H.; Touzani, R.; Taleb, M.; Benchat, N.-e.; El Bali, B.; Dušek, Michal; Fejfarová, Karla; El Kadiri, S.

    2010-01-01

    Roč. 40, č. 18 (2010), s. 2767-2779 ISSN 0039-7911 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : amines * crystal structure * chemical synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.937, year: 2010

  5. Total synthesis of ciguatoxin CTX3C: a venture into the problems of ciguatera seafood poisoning.

    Science.gov (United States)

    Hirama, Masahiro

    2005-01-01

    After a twelve-year struggle, the total synthesis of ciguatoxin CTX3C has been achieved. Annually, more than 20,000 people worldwide suffer from ciguatera seafood poisoning. The extremely small amounts of the causative neurotoxin, ciguatoxin, in fish hampered the isolation, structural elucidation, detailed biological study, and preparation of anti-ciguatoxin antibodies for detecting these toxins. The large (3 nanometers long) and complicated molecular structure of ciguatoxins hindered chemists from completing a total synthesis. The chemical synthesis of CTX3C, determination of the absolute configuration, and synthesis-based preparation of the monoclonal antibodies as well as the effect of synthetic CTX3C on voltage-sensitive sodium channels are outlined. (c) 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  6. Synthesis and crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E., E-mail: gerzon@ula.ve [Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Quintero, Eugenio; Tovar, Rafael; Grima-Gallardo, Pedro; Quintero, Miguel [Centro de Estudio de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of)

    2014-11-15

    Highlights: • New quaternary compound. • Synthesis from solid state reaction. • Crystal structure. • Rietveld refinement. - Abstract: The crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}, belonging to the system I–II{sub 2}–III–VI{sub 4}, was characterized by Rietveld refinement using X-ray powder diffraction data. The powder pattern was composed by 84.5% of the principal phase AgFe{sub 2}GaTe{sub 4} and 15.5% of the secondary phase FeTe. This material crystallizes with stannite structure in the tetragonal space group I-42m (N° 121), Z = 2, unit cell parameters a = 6.3409(2) Å, c = 12.0233(4) Å, V = 483.42(3) Å{sup 3}, and is isostructural with CuFe{sub 2}InSe{sub 4}.

  7. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  8. Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Mirna Pereira [Laboratório de Biomateriais, P" 2CEM/UFS, Av. Marechal Rondon, s/n, São Cristóvão 49100-000, Sergipe (Brazil); Dulce de Almeida Soares, Gloria [Dep. de Eng. Metal. e de Materiais, COPPE/UFRJ, CP 68505, Rio de Janeiro 21941-972 (Brazil); Dentzer, Joseph; Anselme, Karine [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR7361, Université de Haute-Alsace, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Sena, Lídia Ágata de; Kuznetsov, Alexei [Divisão de Metrologia de Materiais, Inmetro, Av. N. Sra. das Graças, 50, Duque de Caxias 25250-020, Rio de Janeiro (Brazil); Santos, Euler Araujo dos, E-mail: euler@ufs.br [Laboratório de Biomateriais, P" 2CEM/UFS, Av. Marechal Rondon, s/n, São Cristóvão 49100-000, Sergipe (Brazil)

    2016-04-01

    Samples of crystalline hydroxyapatite (HA) with and without the addition of individual Mg{sup 2+}, Mn{sup 2+} and Sr{sup 2+} ions and samples with the addition of all three ions simultaneously were prepared using the precipitation method in an aqueous medium. Chemical, structural, spectroscopic and thermophysical analyses of the synthesized samples were conducted. The obtained results indicate that Sr{sup 2+} ions were easily incorporated into the HA crystal structure, whereas it was difficult to incorporate Mg{sup 2+} and Mn{sup 2+} ions into the HA lattice when these ions were individually introduced into the samples. The synthesis of HA with Mg{sup 2+} or Mn{sup 2+} ions is characterized by the formation of HA with a low concentration of doping elements that is outweighed by the amount of these atoms present in less biocompatible phases that formed simultaneously. However, the incorporation of Sr{sup 2+} along with Mg{sup 2+} and Mn{sup 2+} ions into the samples allowed for the synthesis of HA with considerably higher concentrations of Mg{sup 2+} and Mn{sup 2+} in the crystal lattice. - Graphical abstract: Sr{sup 2+} ions were easily incorporated into the HA lattice, whereas Mg{sup 2+} and Mn{sup 2+} ions were hardly retained in the HA structure after heating to 1000 °C when they were individually incorporated in the samples. Nevertheless, co-substitution with Sr{sup 2+} ions allowed for better fixation of the Mg{sup 2+} and Mn{sup 2+} ions into the HA lattice. - Highlights: • Mg{sup 2+} and Mn{sup 2+} ions have a great difficulty being stabilized in the apatite lattice. • Sr{sup 2+} ions can stabilize Mg{sup 2+} and Mn{sup 2+} in the hydroxyapatite structure. • Except for Mn{sup 2+}, Sr{sup 2+} and Mg{sup 2+} obstruct the release of CO{sub 2}.

  9. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  10. Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.

    Science.gov (United States)

    Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A

    2016-10-01

    The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.

  11. Methodology in structural determination and synthesis of insect pheromone

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Lin

    1991-01-01

    Full Text Available By means of ethereal washing of insect pheromone glands of female moths, GC-MS detection along with microchemical reactions and electroantennogram (EAG survey, six economically important insect species were targeted for pheromone identification. The discovery of a natural pheromone inhibitor, chemo-selectivity and species isolation by pheromone will be described. The modified triple bond migration and triethylamine liganded vinyl cuprate were applied for achiral pheromone synthesis in double bond formation. Some optically active pheromones and their stereoisomers were synthesized through chiral pool or asymmetric synthesis. Some examples of chiral recognition of insects towards their chiral pheromones will be discussed. A CaH2 and silica gel catalyzed Sharpless Expoxidation Reaction was found in shortening the reaction time.

  12. Low-temperature synthesis and structural properties of ferroelectric K 3WO 3F 3 elpasolite

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-06-01

    Low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 has been prepared by chemical synthesis. Structural and chemical properties of the final product have been evaluated with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Structure parameters of G2-K 3WO 3F 3 are refined by the Rietveld method from XRD data measured at room temperature (space group Cm, Z = 2, a = 8.7350(3) Å, b = 8.6808(5) Å, c = 6.1581(3) Å, β = 135.124(3) Å, V = 329.46(3) Å 3; RB = 2.47%). Partial ordering of oxygen and fluorine atoms has been found over anion positions. Mechanism of ferroelectric phase transition in A 2BMO 3F 3 oxyfluorides is discussed.

  13. Hydrothermal synthesis and crystal structure of CsFe23(HPO4)2(PO4)(H2O)

    International Nuclear Information System (INIS)

    Anisimova, N.Yu.; Ilyukhin, A.B.; Chudinova, N.N.; Serafin, M.

    2001-01-01

    The double acid iron-cesium orthophosphate CsFe 2 3 (HPO 4 ) 2 (PO 4 )(H 2 O) was prepared by hydrothermal synthesis (from the Fe 2 O 3 , Cs 2 CO 3 and H 3 PO 4 mixture at 290 Deg C during 1 h following by cooling to 25 Deg C). Its crystal structure (a = 5.021(3), b = 15.80(1), c = 13.646(8), β 94.49(4) Deg, sp. gr. P2 1 /n, Z = 4) was analyzed by X-ray diffraction. The structure is formed by the orthophosphate tetrahedrons and the FeO 6 octahedrons, the water molecule is coordinated by the iron atom [ru

  14. Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers

    Directory of Open Access Journals (Sweden)

    Tze Han Sum

    2016-09-01

    Full Text Available Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.

  15. Synthesis method validation for Super-Phenix 1 start-up core studies

    International Nuclear Information System (INIS)

    Pipaud, J.Y.; Gastaldo, G.; Giacometti, C.

    1980-09-01

    This paper aims at presenting the systematic studies performed in order to check and to improve the synthesis method wich is used to optimize the configuration of the SUPER-PHENIX 1 start-up core versus the diluent subassembly location and the control rod ring insertion. A special attention is paid to the choice of the trial functions when the two rod rings have different insertion depths. Present limits of the synthesis method are given and further improvements are indicated

  16. Synthesis, structure-activity relationship, and pharmacological profile of analogs of the ASIC-3 inhibitor A-317567.

    Science.gov (United States)

    Kuduk, Scott D; Di Marco, Christina N; Bodmer-Narkevitch, Vera; Cook, Sean P; Cato, Matthew J; Jovanovska, Aneta; Urban, Mark O; Leitl, Michael; Sain, Nova; Liang, Annie; Spencer, Robert H; Kane, Stefanie A; Hartman, George D; Bilodeau, Mark T

    2010-01-20

    The synthesis, structure-activity relationship (SAR), and pharmacological evaluation of analogs of the acid-sensing ion channel (ASIC) inhibitor A-317567 are reported. It was found that the compound with an acetylenic linkage was the most potent ASIC-3 channel blocker. This compound reversed mechanical hypersensitivity in the rat iodoacetate model of osteoarthritis pain, although sedation was noted. Sedation was also observed in ASIC-3 knockout mice, questioning whether sedation and antinociception are mediated via a non-ASIC-3 specific mechanism.

  17. Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography.

    Science.gov (United States)

    Englmeier, Robert; Pfeffer, Stefan; Förster, Friedrich

    2017-10-03

    Mitochondria maintain their own genome and its corresponding protein synthesis machine, the mitochondrial ribosome (mitoribosome). Mitoribosomes primarily synthesize highly hydrophobic proteins of the inner mitochondrial membrane. Recent studies revealed the complete structure of the isolated mammalian mitoribosome, but its mode of membrane association remained hypothetical. In this study, we used cryoelectron tomography to visualize human mitoribosomes in isolated mitochondria. The subtomogram average of the membrane-associated human mitoribosome reveals a single major contact site with the inner membrane, mediated by the mitochondria-specific protein mL45. A second rRNA-mediated contact site that is present in yeast is absent in humans, resulting in a more variable association of the human mitoribosome with the inner membrane. Despite extensive structural differences of mammalian and fungal mitoribosomal structure, the principal organization of peptide exit tunnel and the mL45 homolog remains invariant, presumably to align the mitoribosome with the membrane-embedded insertion machinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Protein synthesis in the rat brain: a comparative in vivo and in vitro study in immature and adult animals

    International Nuclear Information System (INIS)

    Shahbazian, F.M.

    1985-01-01

    Rates of protein synthesis of CNS and other organs were compared in immature and adult rats by in vivo and slice techniques with administration of flooding doses of labeled precursor. The relationship between synthesis and brain region, cell type, subcellular fraction, or MW was examined. Incorporation of [ 14 C]valine into protein of CNS regions in vivo was about 1.2% per hour for immature rats and 0.6% for adults. For slices, the rates decreased significantly more in adults. In adult organs, the highest synthesis rate in vivo was found in liver (2.2% per hour) followed by kidney, spleen, lung, heart, brain, and muscle (0.5% per hour). In immature animals synthesis was highest in liver and spleen (2.5% per hour) and lowest in muscle (0.9% per hour). Slices all showed lower rates than in vivo, especially in adults. In vivo, protein synthesis rates of immature neurons and astrocytes and adult neurons exceeded those of whole brain, while that in adult astrocytes was the same. These results demonstrate a developmental difference of protein synthesis (about double in immature animals) in all brain cells, cell fractions and most brain protein. Similarly the decreased synthesis in brain slices - especially in adults, affects most proteins and structural elements

  19. Synthesis and characterization of polypyrrole and its application for solar cell

    Science.gov (United States)

    Almuntaser, Faisal M. A.; Majumder, Sutripto; Baviskar, Prashant K.; Sali, Jaydeep V.; Sankapal, B. R.

    2017-08-01

    In this report, the fabrication of a solar cell device with the structures FTO/PPy/PTh/ZnO/Al was performed using wet chemical synthesis methods in open environment. The cost-effective methods like CBD, SILAR, and spin coating have been used for the synthesis. The effect of thickness of PPy active layer on the device performance is investigated. Features such as structural, morphological, and chemical bonding of the layers have been investigated using X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy and are discussed herein. Effects of PPy thickness on current-voltage characteristics have been studied under dark and illumination at 1 Sun (100 mW/cm2, AM 1.5 G) condition to study the solar cell performance.

  20. Synthesis of MoS{sub 2} ribbons and their branched structures by chemical vapor deposition in sulfur-enriched environment

    Energy Technology Data Exchange (ETDEWEB)

    Mahyavanshi, Rakesh D., E-mail: rmahyavanshi@gmail.com [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Sharma, Kamal P. [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kondo, Masuharu; Dewa, Takeshita [Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kawahara, Toshio [Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan); Tanemura, Masaki [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2017-07-01

    Highlights: • We demonstrate synthesis of monolayer MoS{sub 2} ribbons and their branched structures. • Unidirectional, bi and tri-directional growth of ribbons from the nucleation point are obtained. • Unidirectional and other branched structures can be synthesized controlling the composition of MoO{sub 3} and sulfur vapor. • The ribbons possess uneven edge structures with angles of 60° and 120°, indicating molybdenum and sulfur terminations. - Abstract: Here, we demonstrate the synthesis of monolayer molybdenum disulfide (MoS{sub 2}) ribbons and their branched structures by chemical vapor deposition (CVD) in sulfur-enriched environment. The growth of the MoS{sub 2} ribbons, triangular and other crystals significantly depends on the exposure of sulfur and concentration of molybdenum oxide (MoO{sub 3}) vapor on the substrate surface. The width and length of the synthesized ribbons is around 5–10 and 50–100 μm, respectively, where the width reduces from the nucleation point toward the end of the ribbon. Unidirectional, bi and tri-directional growth of ribbons from the nucleation point with an angle of 60° and 120° were obtained attributing to crystallographic growth orientation of MoS{sub 2} crystals. The directional growth of dichalcogenides ribbons is a significant challenge, our process shows that such unidirectional and other branched structures can be achieved by controlling the stoichiometric composition of MoO{sub 3} and sulfur exposure on the substrate surface. Interestingly, all the individual and branched ribbons possess uneven abundant edge structures, where the edges are formed with angles of 60° and 120°, indicating variation in molybdenum and sulfur edge terminations. The directional growth of MoS{sub 2} ribbons with defined edge structures in particular CVD condition can open up new possibilities for electronic and electrochemical applications.

  1. Synthesis, electronic structure, elastic properties, and interfacial behavior of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Oliver

    2017-08-01

    Boron-rich solids are commonly characterized by icosahedral clusters, where 12 B atoms form an icosahedron, giving rise to outstanding mechanical and transport properties. However, broader applications are limited due to the high synthesis temperature required to obtain the icosahedra-based crystalline structure. Utilizing high power pulsed magnetron sputtering (HPPMS), the deposition temperature may be lowered as compared to direct current magnetron sputtering by enhanced surface diffusion. Therefore, HPPMS was utilized to investigate the influence of the substrate temperature on the structural evolution of B-rich Al-Y-B thin films. The formation of the intended AlYB{sub 14} phase together with the (Y,Al)B{sub 6} impurity phase, containing 1.8 at.% less B than AlYB{sub 14}, was observed at a growth temperature of 800 C and hence 600 C below the bulk synthesis temperature. Based on density functional theory (DFT) calculations it is inferred that minute compositional variations may lead to formation of competing phases, such as (Y,Al)B{sub 6}. Furthermore, 800 C still limits the usage significantly. Therefore, quantum mechanical material design was applied to identify phases with even higher phase stabilities compared to AlYB{sub 14}. Phase stability of T{sub 0.75}Y{sub 0.75}B{sub 14} (T= Sc, Ti, V, Y, Zr, Nb, Si) critically depends on the exact magnitude of charge transferred by T and Y to the B icosahedra. The highest phase stabilities have been identified for Sc{sub 0.75}Y{sub 0.75}B{sub 14}, Ti{sub 0.75}Y{sub 0.75}B{sub 14}, and Zr{sub 0.75}Y{sub 0.75}B{sub 14}. ln combination with Young's modulus values up to 517 GPa these phases are very interesting from a wear-resistance point of view. Still high synthesis temperatures limit the use of such systems onto technologically relevant substrate materials. However, amorphous B-rich solids, which can be synthesized without additional heating, exhibit attractive mechanical and electrical properties. Within these

  2. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  3. Optimal Distributed Controller Synthesis for Chain Structures: Applications to Vehicle Formations

    OpenAIRE

    Khorsand, Omid; Alam, Assad; Gattami, Ather

    2012-01-01

    We consider optimal distributed controller synthesis for an interconnected system subject to communication constraints, in linear quadratic settings. Motivated by the problem of finite heavy duty vehicle platooning, we study systems composed of interconnected subsystems over a chain graph. By decomposing the system into orthogonal modes, the cost function can be separated into individual components. Thereby, derivation of the optimal controllers in state-space follows immediately. The optimal...

  4. Boron-based nanostructures: Synthesis, functionalization, and characterization

    Science.gov (United States)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  5. New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin

    International Nuclear Information System (INIS)

    Efthimiadou, E. K.; Tapeinos, C.; Bilalis, P.; Kordas, G.

    2011-01-01

    Amphiphilic block copolymers are well established as building blocks for the preparation of micellar drug carriers. The functional polymer micelles possess several advantages, such as high drug efficiency, targeted delivery, and minimized cytotoxicity. The synthesis of block copolymers using nano-structured templates has emerged as a useful and versatile approach for preparing drug carriers. Here, we report the synthesis of a smart polymeric compound of a diblock PLA-Lys-b-PEG copolymer containing doxorubicin. We have synthesized functionalized diblock copolymers, with lysinol, poly(lactide) and monomethoxy poly(ethylene glycol) via thermal ring-opening polymerization and a subsequent six-step substitution reaction. A variety of spectroscopic methods were employed here to verify the product of our synthesis. 1 H-Nuclear magnetic resonance and Fourier transform infrared studies validated the expected synthesis of copolymers. Doxorubicin is chemically loaded into micelles, and the ex vitro release can be evaluated either in weak acidic or in SBF solution by UV–vis spectroscopy. Dynamic light scattering, thermo gravimetric analysis, and size exclusion chromatography have also been used.

  6. Evolution of a practical total synthesis of ciguatoxin CTX3C.

    Science.gov (United States)

    Inoue, Masayuki; Hirama, Masahiro

    2004-12-01

    More than 20 000 people suffer annually from ciguatera seafood poisoning in subtropical and tropical regions. The extremely low content of the causative neurotoxins, designated as ciguatoxins, in fish has hampered their isolation, detailed biological study, and preparation of anti-ciguatoxin antibodies for detecting these toxins. Ciguatoxins consist of 12 trans-fused polycyclic ethers, ranging from six- to nine-membered, and include a spirally attached five-membered cyclic ether at one end. The large (3 nm in length) and complicated molecular structure of ciguatoxins has impeded chemists from completing their total synthesis. In 2001, we achieved the first total synthesis of ciguatoxin CTX3C by assembly of four structural fragments. Since then, protocols to combine the fragments have significantly improved in terms of overall stereoselectivity, efficiency, and practicality. In this Account, we describe recently evolved methodologies for the total synthesis of CTX3C.

  7. Study of various synthesis techniques of nanomaterials

    Science.gov (United States)

    Patil, Madhuri; Sharma, Deepika; Dive, Avinash; Mahajan, Sandeep; Sharma, Ramphal

    2018-05-01

    Development of synthesis techniques of realizing nano-materials over a range of sizes, shapes, and chemical compositions is an important aspect of nanotechnology. The remarkable size dependent physical & chemical properties of particles have fascinated and inspired research activity in this direction. This paper describes some aspects on synthesis and characterization of particles of metals, metal alloys, and oxides, either in the form of thin films or bulk shapes. A brief discussion on processing of thin-films is also described.

  8. Isolation, structural determination, synthesis and quantitative determination of impurities in Intron-A, leached from a silicone tubing.

    Science.gov (United States)

    Chan, Tze-Ming; Pramanik, Birendra; Aslanian, Robert; Gullo, Vincent; Patel, Mahesh; Cronin, Bart; Boyce, Chris; McCormick, Kevin; Berlin, Mike; Zhu, Xiaohong; Buevich, Alexei; Heimark, Larry; Bartner, Peter; Chen, Guodong; Pu, Haiyan; Hegde, Vinod

    2009-02-20

    Investigation of unexpected levels of impurities in Intron product has revealed the presence of low levels of impurities leached from the silicone tubing (Rehau RAU-SIK) on the Bosch filling line. In order to investigate the effect of these compounds (1a, 1b and 2) on humans, they were isolated identified and synthesized. They were extracted from the tubing by stirring in Intron placebo at room temperature for 72 h and were enriched on a reverse phase CHP-20P column, eluting with gradient aqueous ACN and were separated by HPLC. Structural elucidation of 1a, 1b and 2 by MS and NMR studies demonstrated them to be halogenated biphenyl carboxylic acids. The structures were confirmed by independent synthesis. Levels of extractable impurities in first filled vials of actual production are estimated to be in the range of 0.01-0.55 microg/vial for each leached impurity. Potential toxicity of these extractables does not represent a risk for patients under the conditions of clinical use.

  9. solvent-free synthesis of azomethines, spectral correlations

    African Journals Online (AJOL)

    B. S. Chandravanshi

    attention of organic and medicinal chemists [2, 3]. ... Spectroscopic data is very useful for studying the ground state equilibrium of ... determines the structure of unsaturated systems, such as E- or Z, s-cis and .... The IR and NMR spectra of selective ... The proposed mechanism for the synthesis of E- imines in presence of ...

  10. The TosMIC approach to 3-(oxazol-5-yl) indoles: application to the synthesis of indole-based IMPDH inhibitors.

    Science.gov (United States)

    Dhar, T G Murali; Shen, Zhongqi; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-11-18

    A modified approach to the synthesis of 3-(oxazolyl-5-yl) indoles is reported. This method was applied to the synthesis of series of novel indole based inhibitors of inosine monophosphate dehydrogenase (IMPDH). The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  11. An Evolutionary Approach for Robust Layout Synthesis of MEMS

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Goodman, Erik

    2005-01-01

    The paper introduces a robust design method for layout synthesis of MEM resonators subject to inherent geometric uncertainties such as the fabrication error on the sidewall of the structure. The robust design problem is formulated as a multi-objective constrained optimisation problem after certain...... assumptions and treated with multiobjective genetic algorithm (MOGA), a special type of evolutionary computing approaches. Case study based on layout synthesis of a comb-driven MEM resonator shows that the approach proposed in this paper can lead to design results that meet the target performance and are less...

  12. Combustion synthesis and structural characterization of Li–Ti mixed ...

    Indian Academy of Sciences (India)

    pared by combustion method at lower temperatures compared to the conventional high temperature sintering for ... Li–Ti mixed ferrites; combustion synthesis; hysteresis. 1. ... Quantum model - VSM 6000) at an applied field of ±10 kOe.

  13. Conducting polymers doped with a mineral phase: structural and electrical study

    International Nuclear Information System (INIS)

    González, C P; Montaño, A M; Estrada, S; Ortiz, C

    2013-01-01

    This work reports the results obtained of a series of novel doped conducting polymers (CPs) of polyaniline/hematite (PANI/HEM), which were synthesized in acidic aqueous solution by the in situ chemical oxidative polymerization, using ammonium peroxydisulfate as oxidant reagent. The synthesis was carried out with 20, 40 y 60 % (weight percent) contents of hematite (HEM) at 8 and 14 h of polymerization times (tP). These composites were structurally characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). An electrochemical analysis was made by Electrochemical impedance spectroscopy (EIS). Results of this study allow to evaluate the influence of hematite on the improvement of the structural properties and in the increase of the electric conductivity (sac) of the doped polymers compared to CPs without dopant agents

  14. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    Science.gov (United States)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  15. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    International Nuclear Information System (INIS)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin; Bae, Joonwon

    2013-01-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol–gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  16. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul, 151-742 (Korea, Republic of); Bae, Joonwon [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of)

    2013-06-28

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  17. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Science.gov (United States)

    Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin

    2013-06-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.

  18. Synthesis of Polycyclic Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tuan Hoang [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  19. Synthesis of carbide fuels from nano-structured precursors: impact on carbo-reduction and physico-chemical properties

    International Nuclear Information System (INIS)

    Saravia, Alvaro

    2015-01-01

    The classical way classically used for manufacturing carbide fuels consists of carbo-reducing at high temperature (1600 C) and under primary vacuum a mixture of AnO 2 and graphite powders. These conditions are disadvantageous for the synthesis of mixed (U,Pu)C carbides on account of plutonium volatilization. Therefore, one of the main aims of these studies is to decrease the carbo-reduction temperature. The experiments focused mainly on the lowering of the uranium oxide temperature. This result has been obtained with the use of uranium oxide and carbon nano-structured precursors. To achieve this goal colloidal suspensions of uranium oxide have been prepared and stabilized by cellulosic ethers. Cellulosic ethers are both stabiliser for uranium oxide nanoparticles and carbon source for carbo-reduction. It has been shown that these precursors are more efficient for carbo-reduction than the standard precursors: a reduction of 300 C of carbo-reduction temperature has been obtained. The impact of these precursors on carbo-reduction and on physico-chemical properties as well as the structural and microstructural characterizations of the obtained carbides have been carried out. (author) [fr

  20. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  1. Design, synthesis, and characterization of 0-D, 1-D, and 2-D Zinc–Adeninate coordination assemblies

    Energy Technology Data Exchange (ETDEWEB)

    An, Ji Hyun [Dept. of Chemistry Education, Seoul National University, Seoul (Korea, Republic of); Geib, Steven J. [Dept. of Chemistry, University of Pittsburgh, Pittsburgh (United States); Kim, Myung Gil [Dept. of Chemistry, Chungang University, Seoul (Korea, Republic of)

    2015-08-15

    In this study, we demonstrate the synthesis and characterization of zinc– adeninate coordination polymers with 0-D, 1-D, and 2-D structures. We describe methods for controlling the structure of these materials by applying different synthetic conditions and discuss their structural relationships. 0-D, 1-D, and 2-D zinc–adeninate coordination polymers with the same metal–adeninate coordination mode were synthesized and characterized. By controlling the temperature, a material with 0-D macrocycle or 1-D chain coordination polymer was prepared. A replacement of pyridine with bipyridine formed 2-D sheet structure by connecting 1-D chains with each other. They exhibited an interesting relationship between synthetic methods and structures. Further study of metal–adeninate coordination chemistry will render a precise control of the structure in synthesis and will open a new venue to new materials with fascinating properties.

  2. Arene-Inserted Extended Germa[n]pericyclynes: Synthesis, Structure, and Phosphorescence Properties.

    Science.gov (United States)

    Tanimoto, Hiroki; Mori, Junta; Ito, Shunichiro; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Tanaka, Kazuo; Chujo, Yoshiki; Kakiuchi, Kiyomi

    2017-07-26

    This report describes the synthesis and characterization of arene-inserted extended (ArEx) germa[n]pericyclynes composed of germanium and 1,4-diethynylbenzene units. These novel cyclic germanium-π unit materials were synthesized with diethynylbenzene and germanium dichloride. X-ray crystallographic analysis revealed their structures, and the planar conformation of ArEx germa[4]pericyclyne along with the regular aromatic rings. UV/Vis absorption spectra and fluorescence emission spectra showed considerably unique and highly improved character compared to previously reported germa[n]pericyclynes. Even in the absence of transition metal components, phosphorescence emissions were observed, and the emission lifetimes were dramatically improved. ArEx germa[n]pericyclynes showed high photoluminescence quantum yields, whereas low photoluminescence quantum yields were observed for acyclic compounds. Density functional theory calculations show delocalized orbitals between skipped alkyne units through a germanium tether, and an increase in the HOMO energy level, leading to a small HOMO-LUMO energy gap. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of size reduction on the structure and magnetic properties of core-shell Ni3Si/silica nanoparticles prepared by electrochemical synthesis

    Czech Academy of Sciences Publication Activity Database

    Pigozzi, G.; Mukherji, D.; Elerman, Y.; Strunz, Pavel; Gilles, R.; Hoelzel, M.; Barbier, B.; Schmutz, P.

    2014-01-01

    Roč. 584, JAN (2014), s. 119-127 ISSN 0925-8388 Institutional support: RVO:61389005 Keywords : intermetallics * nanostructured materials * transition metal alloys and compounds * electrochemical synthesis * crystal structure * magnetic measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  4. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  5. Nanosize Fe x O y @SBA-3: A Comparative Study Between Conventional and Microwave Assisted Synthesis.

    Science.gov (United States)

    Barik, Sunita; Badamali, Sushanta K; Sahoo, Sagarika; Behera, Nandakishor; Dapurkar, Sudhir E

    2018-01-01

    The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.

  6. Early steps in protein synthesis and their regulation: a background study related to the biological effects of radiation. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Zamecnik, P.C.

    1975-01-01

    The proposed program is an interwoven effort to study the details of the mechanism of protein synthesis in normal living systems and their alterations in the presence of oncogenic RNA viruses using the avian myeloblastosis virus as a model. Emphasis will be placed on determining the role of the primary structure of the viral RNA and of other factors required for the production of viral proteins in a cell-free system. Continued studies of the initial steps of protein synthesis where much specificity is determined by the tRNA: tRNA synthetase interactions will be carried out using biochemical and genetic techniques. (U.S.)

  7. Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation

    Science.gov (United States)

    Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho

    2015-06-01

    Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.

  8. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  9. Synthesis, X-ray crystal structure and theoretical calculations of antileishmanial neolignan analogues

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N., E-mail: nahum@ufpa.b [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2010-07-01

    The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)

  10. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  11. Synthesis, X-ray crystal structure and theoretical calculations of antileishmanial neolignan analogues

    International Nuclear Information System (INIS)

    Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N.; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G.

    2010-01-01

    The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)

  12. Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

    Directory of Open Access Journals (Sweden)

    M. Jafar-Tafreshi

    2012-12-01

    Full Text Available Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO33.9H2O and ammonium sulfate ((NH42SO4. The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were characterized by both X- ray diffraction and FTIR measurements. These two analyses determined the temperature at which the aluminum sulfate is converted to γ-alumina nano particles. The specific surface area and pore size distribution for  γ-alumina nano particles were determined by BET measurement. TEM measurement confirmed the size of the particles obtained by XRD and BET analyses.

  13. Ribosomal history reveals origins of modern protein synthesis.

    Directory of Open Access Journals (Sweden)

    Ajith Harish

    Full Text Available The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17 and the oldest substructure (the ribosomal ratchet in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  14. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  15. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.

    Science.gov (United States)

    Zan, Guangtao; Wu, Qingsheng

    2016-03-16

    In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    OpenAIRE

    Tsukasa Katayama; Akira Chikamatsu; Hideyuki Kamisaka; Yuichi Yokoyama; Yasuyuki Hirata; Hiroki Wadati; Tomoteru Fukumura; Tetsuya Hasegawa

    2015-01-01

    The substitution of hydride anions (H−) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained durin...

  17. Effect of the composition on the structure of Cr-Al-C investigated by combinatorial thin film synthesis and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, R.; Sun, Z.; Music, D.; Schneider, J.M. [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)

    2004-11-01

    The effect of the chemical composition on the structure of Cr-Al-C was studied by combinatorial thin film synthesis. By changing the Cr/C ratio from 1.72 to 3.48 and the Cr/Al ratio from 1.42 to 4.18 the formation of Cr{sub 2}AlC, Cr{sub 2}Al and Cr{sub 23}C{sub 6} phases was observed. Furthermore, based on X-ray diffraction a single phase Cr{sub 2}AlC composition region is identified in the Cr-Al-C phase diagram. Throughout the studied composition range the lattice parameters of Cr{sub 2}AlC were independent of the chemical composition. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Method

    DEFF Research Database (Denmark)

    Huy, L.T.; Tam, L.T.; Phan, V.N.

    2016-01-01

    In the present work, magnetic manganese ferrite/silver (MnFe2O4-Ag) composite nanoparticles were synthesized by wet chemistry method. This synthesis process consists of two steps: first, the seed of manganese ferrite nanoparticles (MnFe2O4 NPs) was prepared by a coprecipitationmethod; second......, growth of silver nanoparticles (AgNPs) on the MnFe2O4 seed by modified photochemical reaction. We have conducted systematically the effects of synthesis parameters such as pH value, synthesis time, precursor salts concentration, mass ratio and stabilizing agents on the structure and magnetic properties......-prepared MnFe2O4-Ag magnetic nanocomposites display excellent properties of high crystallinity, long-term aggregation stability in aqueous medium, large saturation magnetization in the range of 15-20 emu/g, and small sizes of Ag-NPs similar to 20 nm. These exhibited properties made the MnFe2O4-Ag...

  19. Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract

    Directory of Open Access Journals (Sweden)

    Siavash Iravani

    2013-01-01

    Full Text Available Recently, development of reliable experimental protocols for synthesis of metal nanoparticles with desired morphologies and sizes has become a major focus of researchers. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles. The objectives of this study were production of silver nanoparticles using Pinus eldarica bark extract and optimization of the biosynthesis process. The effects of quantity of extract, substrate concentration, temperature, and pH on the formation of silver nanoparticles are studied. TEM images showed that biosynthesized silver nanoparticles (approximately in the range of 10–40 nm were predominantly spherical in shape. The preparation of nano-structured silver particles using P. eldarica bark extract provides an environmentally friendly option, as compared to currently available chemical and/or physical methods.

  20. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, A.K.; Viswanath, V.; Janu, V.C.

    2009-01-01

    Zinc oxide nanoparticles were synthesized using chemical method in alcohol base. During synthesis three capping agents, i.e. triethanolamine (TEA), oleic acid and thioglycerol, were used and the effect of concentrations was analyzed for their effectiveness in limiting the particle growth. Thermal stability of ZnO nanoparticles prepared using TEA, oleic acid and thioglycerol capping agents, was studied using thermogravimetric analyzer (TGA). ZnO nanoparticles capped with TEA showed maximum weight loss. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization of ZnO nanoparticles. Particle size was evaluated using effective mass approximation method from UV-vis spectroscopy and Scherrer's formula from XRD patterns. XRD analysis revealed single crystal ZnO nanoparticles of size 12-20 nm in case of TEA capping. TEA, oleic acid and thioglycerol capped synthesized ZnO nanoparticles were investigated at room temperature photoluminescence for three excitation wavelengths i.e. 304, 322 and 325 nm, showing strong peaks at about 471 nm when excited at 322 and 325 nm whereas strong peak was observed at 411 for 304 nm excitation.

  1. Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration.

    Science.gov (United States)

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G

    2009-11-01

    Protein modifications in which the epsilon-amino group of lysyl residues is incorporated into a 2-(omega-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina ('wet AMD') and geographic retinal atrophy ('dry AMD'). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, for example, through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy.

  2. Synthesis, crystal structure and electrical properties of A-site cation ordered BaErMn2O5 and BaErMn2O6

    International Nuclear Information System (INIS)

    Świerczek, Konrad; Klimkowicz, Alicja; Zheng, Kun; Dabrowski, Bogdan

    2013-01-01

    In this paper, we report on a synthesis procedure, structural and electrical properties of BaErMn 2 O 5 and BaErMn 2 O 6 , A-site double perovskites having layered arrangement of Ba and Er cations. These materials belong to a family of BaLnMn 2 O 5+δ oxides, which up to now were successfully synthesized for Ln=Y and La–Ho lanthanides. Up to our knowledge, this is the first report on the successful synthesis of BaErMn 2 O 5 and BaErMn 2 O 6 , yielding>95 wt% of the considered compounds. Structural characterization of the materials is given at room temperature, together with in situ XRD studies, performed during oxidation of BaErMn 2 O 5 in air, at elevated temperatures up to 500 °C. A complex structural behavior was observed, with oxidation process of BaErMn 2 O 5 occurring at around 300 °C. The oxidized BaErMn 2 O 6 shows a structural phase transition at about 225 °C. Results of structural studies are supported by thermogravimetric measurements of the oxidation process, performed in air, as well as reduction process, preformed in 5 vol% of H 2 in Ar. Additionally, isothermal oxidation/reduction cycles were measured at 500 °C, showing interesting properties of BaErMn 2 O 5+δ , from a point of view of oxygen storage technology. Electrical conductivity of BaErMn 2 O 5 is of the order of 10 −4 S cm −1 at room temperature and shows activated character on temperature with activation energy E a =0.30(1) eV. Positive sign of Seebeck coefficient for this material indicates holes as dominant charge carriers. Oxidized BaErMn 2 O 6 possesses much higher electrical conductivity, almost 0.2 S cm −1 at room temperature. Additional, about 10-fold increase of electrical conductivity, occurring in the vicinity of 225 °C for this material, can be associated with phase transition from charge/orbital-ordered insulator COI(CE) to paramagnetic metal PM phase. The highest conductivity for BaErMn 2 O 6 was measured near 500 °C and is almost equal to 40 S cm −1 , while

  3. Synthesis and properties of ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan; Guo, Yiping, E-mail: ypguo@sjtu.edu.cn; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di, E-mail: zhangdi@sjtu.edu.cn

    2013-09-20

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g{sup −1} at 10 mV s{sup −1} in comparison with ZFO powder of 137.3 F g{sup −1}, attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors.

  4. Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

    Directory of Open Access Journals (Sweden)

    Ujjwala Gaware

    2012-01-01

    Full Text Available Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies.

  5. Synthesis, properties, structure and thermochemistry of hexa-aqua-tris (N,N-dimethylformamide) lanthanide tri fluoro methane sulfonates

    International Nuclear Information System (INIS)

    Araujo Melo, D.M. de.

    1989-01-01

    Addition compounds between several lanthanide salts and dimethylformamide (DMF) have been described in the literature. This thesis reports the synthesis and characterization of the compounds of general composition Ln (C H 3 SO 3 ) 3 . 3 DMF.6 H 3 O) (Ln = La - Ho) and Ln (C H 3 SO 3 ) 3 DMF.6 H 2 O (Ln = Er - Lu). The structure of the neodymium compound, isomorphous with the series, is also described. The enthalpy variations were determined by solution calorimetry. (author)

  6. Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig (Turkey); Kom, Mustafa [Department of Surgery, Faculty of Veterinary Medicine, Firat University, 23119 Elazig (Turkey); Eroksuz, Yesari [Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23119 Elazig (Turkey); Dorozhkin, Sergey V. [Kudrinskaja square 1-155, Moscow 123242 (Russian Federation); Ates, Tankut [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Ozercan, Ibrahim H. [Department of Pathology, School of Medicine, Firat University, 23119 Elazig (Turkey); Tatar, Cengiz; Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey)

    2015-10-01

    The objective of this study is to present a detailed report related to the synthesis and characterization of strontium substituted hydroxyapatites. Based on this purpose, hydroxyapatite (HAp) bioceramics with different amounts of strontium (e.g., 0, 0.45, 0.90, 1.35, 1.80 and 2.25 at.%) were prepared using a sol–gel method. The effects of Sr substitution on the structural properties and biocompatibility of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques, in vitro and in vivo tests. All the samples composed of the nanoparticles ranging from 21 to 27 nm. The presence of Sr at low levels influenced the crystal size, crystallinity degree, lattice parameters and volume of the unit cell of the HAp. Both in vitro conditions and soaking period in simulated body fluid (SBF) significantly affected these properties. Especially, the (Ca + Sr)/P molar ratio gradually decreases with increasing soaking period in SBF. Animal experiments revealed the bone formation and osseointegration for all samples, and as compared with other groups, more reasonable, were observed for the sample with the lowest Sr content. - Highlights: • Sr content affects the structural properties of hydroxyapatite. • Bone formation and osseointegration are observed for all the samples. • In vitro conditions cause a significant change in the (Ca + Sr)/P ratio.

  7. Synthesis of LaNiO{sub 3} perovskite by the modified proteic gel method and study of catalytic properties in the syngas production

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose C.; Mesquita, Maria E.; Pedrosa, Anne M. Garrido, E-mail: annemgp@ufs.br, E-mail: annemgp@yahoo.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Quimica e Engenharia Quimica; Souza, Marcelo J.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Engenharia Quimica; Ruiz, Juan A.C. [Centro de Tecnologias do Gas e Energias Renovaveis (CTGAS-ER), Natal, RN (Brazil). Laboratorio de Processamento do Gas; Melo, Dulce M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias Exatas e da Terra. Depaertamento de Quimica

    2012-10-15

    This work describes a study on the synthesis of LaNiO{sub 3} perovskites via the modified proteic gel method, varying collagen content and on the catalytic activity of LaNiO{sub 3} and LaNiO{sub 3}/Al{sub 2}O{sub 3} in the syngas (CO + H{sub 2}) production. X-ray diffraction patterns revealed the formation of perovskite structure in all samples prepared by proteic gel synthesis method, varying collagen content and after calcination at 700 deg C for 2 h. LaNiO{sub 3}/Al{sub 2}O{sub 3} catalyst prepared by the impregnation method showed diffraction peaks due to the perovskite structure and to the support (Al{sub 2}O{sub 3}). This catalyst presented: specific surface of 46.1 m{sup 2} g{sup -1}, two reduction peaks in the temperature programmed reduction (TPR) profile and 46% of methane conversion (by the partial oxidation of methane using oxygen) after 18 h of reaction. (author)

  8. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  10. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Motamedi, Hossein [Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Mayer, Peter [LMU München Department Chemie, Butenandtstr 5-13, D-81377 München (Germany); Bruno, Giuseppe [Dipartimento di Chimica Inorganica, Università di Messina, Vill. S. Agata, Salita Sperone 31, 98166 Messina (Italy); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2017-05-15

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers

  11. Structure and stoichiometry

    International Nuclear Information System (INIS)

    Gai, P.L.

    1992-01-01

    Structural and stoichiometric variations and their role in superconducting properties of bulk cuprate ceramics are elucidated. Atomic structure and chemistry of defect microstructures, including vacancy and interstitial defects, weak-link problems, structural modulations and coherent intergrowths leading to new structures are studies and quantitatively interpreted. They are shown to play a critical role in controlling hole concentration, critical currents and flux pinning. These phenomena underpin the solid state chemistry which determines the physical properties of the nonstoichiometric oxide superconductors. In this paper technological implications, synthesis of related novel materials and recent developments are discussed

  12. Synthesis of Zinc Diethyldithiocarbamate (ZDEC) and Structure Characterization using Decoupling 1H NMR

    International Nuclear Information System (INIS)

    Sujarit, Jenjira; Phutdhawong, Weerachai

    2003-10-01

    A synthesis of zinc diethyldithiocarbamate (ZDEC) has been studied. The optimization mole ratio of the synthetic process was 2: 2: 2: 1 of diethylamine, carbondisulfide, sodium hydroxide, and zinc chloride. Characterization was carried out mainly by analyzing its spectroscopic properties especially decoupling 1 H NMR technique. ZDEC was obtained in 48.5% yield

  13. Synthesis, structure combined with conformational analysis, biological activities and docking studies of bis benzylidene cyclohexanone derivatives

    Directory of Open Access Journals (Sweden)

    Gehad Lotfy

    2017-07-01

    Full Text Available We report the synthesis and biological evaluation of bis benzylidne cyclohexanone derivatives 2,6-di(4-fluorobenzylidenecyclohexanone 3a and (2E,6E‐2,6‐bis({[4‐(trifluoromethylphenyl]methylidene}cyclohexanone 3b. Compound 3b crystallized in the monoclinic space group P21/n with unit cell parameters a = 29.3527(12 Å, b = 8.3147(3 Å, c = 32.7452(14 Å, β = 112.437(2°, and V = 7386.8(5 Å3, Z = 16, and Rint = 0.072 at T = 100 K. The asymmetric unit contains four independent molecules, each of which has slight differences in the bond lengths and angles. One non-classical C11D–H11F⋯F3A hydrogen bond connects the molecules. Density functional theory was used to optimize the structures and calculate the natural charges, dipole moments, frontier molecular orbitals, and NMR and UV–Vis spectroscopic properties, which are discussed and compared with the experimental data. The synthetic derivatives were evaluated for α-glucosidase inhibitory activity, and we found that compound 3a (IC50 = 96.3 ± 0.51 μM is a potent α-glucosidase inhibitor, showing superior activity to the standard drug acarbose (IC50 = 841 ± 1.73 μM. Compound 3b (IC50 = 7.92 ± 1.3 μg/mL was found to be a potent antileishmanial compound, especially compared to the antileishmanial drugs pentamidine (IC50 = 5.09 ± 0.04 μM and amphotericine B (IC50 = 0.29 ± 0.05 μg/mL. In addition, 3a and 3b have cytotoxic effects against PC3 (prostate cancer, HeLa (cervical cancer, and MCF-3 (breast cancer cell lines. Docking study for compounds activity was performed with Openeye software in order to understanding their pose of interaction in the target receptors.

  14. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    Science.gov (United States)

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  15. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D. (Purdue); (UC); (UIC)

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  16. Effects of anpirtoline on regional serotonin synthesis in the rat brain: an autoradiographic study

    International Nuclear Information System (INIS)

    Watanabe, Arata; Nakai, Akio; Tohyama, Yoshihiro; Nguyen, Khnah Q.; Diksic, Mirko

    2006-01-01

    Anpirtoline has been described as an agonist at 5-HT 1B receptors with a relatively high potency. It also acts as an agonist at 5-HT 1A receptors, but has a lower potency than at the 5-HT 1B sites. There is very little known about the mechanism by which anpirtoline influences regional 5-HT synthesis. The aim of the present study was to investigate the effects of acutely and chronically administered anpirtoline on 5-HT synthesis in the rat brain using the autoradiographic α-[ 14 C]methyl-L-tryptophan method. In the acute study, anpirtoline (2.0 mg/kg) was administered intraperitoneally 30 min before the tracer injection. The control rats were injected with the same volume of saline. In the chronic study, anpirtoline (2 mg/kg per day) was injected subcutaneously in saline once a day for 10 days. There were no significant differences between the plasma-free and total tryptophan concentrations between the anpirtoline treatment and the respective control groups. In the acute experiment, 5-HT synthesis rates in all of the brain areas investigated were significantly decreased by anpirtoline when compared to the saline-treated group. In the chronic anpirtoline experiment, 5-HT synthesis rates of almost all of the projection areas, as well as the raphe nuclei, were normalized or had a tendency to be normalized. These results suggest that it is likely that the terminal 5-HT 1B receptors are involved in the regulation of 5-HT synthesis in the projection areas and that 5-HT synthesis, in the raphe, is likely influenced by anpirtoline's 5-HT 1A and/or 5-HT 1B agonistic properties

  17. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.

    Science.gov (United States)

    Ulvatne, Hilde; Samuelsen, Ørjan; Haukland, Hanne H; Krämer, Manuela; Vorland, Lars H

    2004-08-15

    Most antimicrobial peptides have an amphipathic, cationic structure, and an effect on the cytoplasmic membrane of susceptible bacteria has been postulated as the main mode of action. Other mechanisms have been reported, including inhibition of cellular functions by binding to DNA, RNA and proteins, and the inhibition of DNA and/or protein synthesis. Lactoferricin B (Lfcin B), a cationic peptide derived from bovine lactoferrin, exerts slow inhibitory and bactericidal activity and does not lyse susceptible bacteria, indicating a possible intracellular target. In the present study incorporation of radioactive precursors into DNA, RNA and proteins was used to demonstrate effects of Lfcin B on macromolecular synthesis in bacteria. In Escherichia coli UC 6782, Lfcin B induces an initial increase in protein and RNA synthesis and a decrease in DNA synthesis. After 10 min, the DNA-synthesis increases while protein and RNA-synthesis decreases significantly. In Bacillus subtilis, however, all synthesis of macromolecules is inhibited for at least 20 min. After 20 min RNA-synthesis increases. The results presented here show that Lfcin B at concentrations not sufficient to kill bacterial cells inhibits incorporation of radioactive precursors into macromolecules in both Gram-positive and Gram-negative bacteria.

  18. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  19. Stop Flow Lithography Synthesis and Characterization of Structured Microparticles

    Directory of Open Access Journals (Sweden)

    David Baah

    2014-01-01

    Full Text Available In this study, the synthesis of nonspherical composite particles of poly(ethylene glycol diacrylate (PEG-DA/SiO2 and PEG-DA/Al2O3 with single or multiple vias and the corresponding inorganic particles of SiO2 and Al2O3 synthesized using the Stop Flow Lithography (SFL method is reported. Precursor suspensions of PEG-DA, 2-hydroxy-2-methylpropiophenone, and SiO2 or Al2O3 nanoparticles were prepared. The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process. A patterned photomask with transparent geometric features masks UV light to synthesize the particles. Composite particles with vias were synthesized and corresponding inorganic SiO2 and Al2O3 particles were obtained through polymer burn-off and sintering of the composites. The synthesis of porous inorganic particles of SiO2 and Al2O3 with vias and overall dimensions in the range of ~35–90 µm was achieved. BET specific surface area measurements for single via inorganic particles were 56–69 m2/g for SiO2 particles and 73–81 m2/g for Al2O3 particles. Surface areas as high as 114 m2/g were measured for multivia cubic SiO2 particles. The findings suggest that, with optimization, the particles should have applications in areas where high surface area is important such as catalysis and sieving.

  20. Synthesis of the ABCDEFG ring system of maitotoxin.

    Science.gov (United States)

    Nicolaou, K C; Aversa, Robert J; Jin, Jian; Rivas, Fatima

    2010-05-19

    Maitotoxin (1) continues to fascinate scientists not only because of its size and potent neurotoxicity but also due to its molecular architecture. To provide further support for its structure and facilitate fragment-based biological studies, we developed an efficient chemical synthesis of the ABCDEFG segment 3 of maitotoxin. (13)C NMR chemical shift comparisons of synthetic 3 with the corresponding values for the same carbons of maitotoxin revealed a close match, providing compelling evidence for the correctness of the originally assigned structure to this polycyclic system of the natural product. The synthetic strategy for the synthesis of 3 relied heavily on our previously developed furan-based technology involving sequential Noyori asymmetric reduction and Achmatowicz rearrangement for the construction of the required tetrahydropyran building blocks, and employed a B-alkyl Suzuki coupling and a Horner-Wadsworth-Emmons olefination to accomplish their assembly and elaboration to the final target molecule.

  1. Synthesis and structural study of the transition metal doped rhodium perovskites

    International Nuclear Information System (INIS)

    Ting, J.; Kennedy, B.; Zhang, Z.

    2009-01-01

    Full text: One of the most common structures encountered in solid state chemistry is the perovskite structure. With a general formula of AB0 3, the A-type cations are 12-coordinate within a cubo-octahedral environment, while the B-type cations are 6-coordinate, forming an interconnecting three-dimensional octahedral network with neighbouring oxygen anions. While the ideal perovskite structure is cubic in Pm 3 m, many perovskites exhibit symmetry lowering tilting of the corner-sharing B0 6o ctahedral units as a result of A- and B-type cation size disparity. This is also evident in substituted perovskites, where two cations occupy the smaller octahedral site, AB 1- xB' x0 3' Electronic effects can also lower the symmetry. The two most commonly observed effects are the polarisation of the B-cation with a d 0 electronic configuration and Jahn-Teller distortion where the B-cation has a d 4 or d 9 electronic configuration, such as Mn 3+ or Cu 2+ respectively. Manganese containing perovskites have been shown in some compounds to exhibit long-range orbital ordering, giving rise to interesting properties. Heavier transition metals such as ruthenium and iridium have been previously incorporated into these perovskites as an avenue to regulate the properties of these materials. Two orthorhombic rhodium perovskite structures are presented, LaMn 0 . 5 Rh 0 . 5 O 3 and LaCu 05 Rh 0 . 5 O 3 ' A combination of synchrotron x-ray and neutron powder diffraction has been used to elucidate their structures, and have shown both B- and B'-type cations to be disordered across the same crystallographic site for both compounds. x-ray absorption spectroscopy measurements have been used to provide an insight into the valence states of the cations, which show a valency of +3.5 for rhodium due to an extensive charge delocalisation between copper and rhodium.

  2. Synthesis of allocolchicinoids: a 50 year journey

    International Nuclear Information System (INIS)

    Sitnikov, N S; Fedorov, A Yu

    2013-01-01

    Published data on the stereo- and enantioselective synthesis of allocolchicinoids, which are of interest as antitumour agents, are summarized. The stereochemistry of these compounds is described. Two key approaches to their preparation are considered, namely, the synthesis from natural colchicine and total synthesis from commercially available reagents. Various total syntheses of N-acetylcolchicinol are performed using biaryl oxidative and reductive coupling, cyclopropanation–ring expansion and Nicholas reaction. The synthetic routes to allocolchicine are based on Diels–Alder cycloaddition, combination of metathesis and Diels–Alder reaction and direct catalytic CH-arylation. Analogues of the colchicine site ligands incorporating heteroaromatic rings are briefly considered; their structural features and methods of synthesis are discussed. The bibliography includes 144 references.

  3. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    Science.gov (United States)

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  4. Controlled synthesis of the tricontinuous mesoporous material IBN-9 and its carbon and platinum derivatives

    KAUST Repository

    Zhao, Yunfeng

    2011-08-23

    Controlled synthesis of mesoporous materials with ultracomplicated pore configurations is of great importance for both fundamental research of nanostructures and the development of novel applications. IBN-9, which is the only tricontinuous mesoporous silica with three sets of interpenetrating three-dimensional channel systems, appears to be an excellent model mesophase for such study. The extensive study of synthesis space diagrams proves mesophase transition among the cylindrical MCM-41, tricontinuous IBN-9 and bicontinuous MCM-48, and also allows a more precise control of phase-pure synthesis. On the other hand, rational design of structure-directing agents offers a possibility to extend the synthesis conditions of IBN-9, as well as tailor its pore size. Moreover, an unprecedented helical structure consisting of twisted 3-fold interwoven mesoporous channels is reported here for the first time. The unique tricontinuous mesostructure of IBN-9 has been well-replicated by other functional materials (e.g., carbon and platinum) via a "hard- templating" synthesis route. The obtained carbon material possesses large surface area (∼1900 m2/g), high pore volume (1.56 cm 3/g), and remarkable gas adsorption capability at both cryogenic temperatures and room temperature. The platinum material has an ordered mesostructure composed of highly oriented nanocrystals. © 2011 American Chemical Society.

  5. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haitao [Univ. of California, Berkeley, CA (United States)

    2007-05-17

    In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This methodis first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.

  6. In Situ Studies and Magnetic Properties of the Cmcm Polymorph of LiCoPO4 with a Hierarchical Dumbbell-Like Morphology Synthesized by Easy Single-Step Polyol Synthesis

    Directory of Open Access Journals (Sweden)

    Carlos Alarcón-Suesca

    2016-11-01

    Full Text Available LiCoPO4 (LCP exists in three different structural modifications: LCP-Pnma (olivine structure, LCP-Pn21a (KNiPO4 structure type, and LCP-Cmcm (Na2CrO4 structure type. The synthesis of the LCP-Cmcm polymorph has been reported via high pressure/temperature solid-state methods and by microwave-assisted solvothermal synthesis. Phase transitions from both LCP-Pn21a and LCP-Cmcm to LCP-Pnma upon heating indicates a metastable behavior. However, a precise study of the structural changes during the heating process and the magnetic properties of LCP-Cmcm are hitherto unknown. Herein, we present the synthesis and characterization of LCP-Cmcm via a rapid and facile soft-chemistry approach using two different kinetically controlled pathways, solvothermal and polyol syntheses, both of which only require relatively low temperatures (~200 °C. Additionally, by polyol, method a dumbbell-like morphology is obtained without the use of any additional surfactant or template. A temperature-dependent in situ powder XRD shows a transition from LCP-Cmcm at room temperature to LCP-Pnma and finally to LCP-Pn21a at 575 and 725 °C, respectively. In addition to that, the determination of the magnetic susceptibility as a function of temperature indicates a long-range antiferromagnetic order below TN = 11 K at 10 kOe and 9.1 K at 25 kOe. The magnetization curves suggests the presence of a metamagnetic transition.

  7. Acetyl analogs of combretastatin A-4: synthesis and biological studies.

    Science.gov (United States)

    Babu, Balaji; Lee, Megan; Lee, Lauren; Strobel, Raymond; Brockway, Olivia; Nickols, Alexis; Sjoholm, Robert; Tzou, Samuel; Chavda, Sameer; Desta, Dereje; Fraley, Gregory; Siegfried, Adam; Pennington, William; Hartley, Rachel M; Westbrook, Cara; Mooberry, Susan L; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2011-04-01

    The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Synthesis and tribological properties of antimony N, N-diethanoldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    李丽; 黄可龙; 瞿龙; 舒万艮

    2001-01-01

    Antimony N, N-diethanoldithiocarbamate was synthesized with diethanolamine, antimony trioxide and carbon disulfide. The influences of temperature, reaction time, solvents and their dosages were investigated, and the optimum synthesis conditions were: reaction temperature 15~20 ℃, reaction time 2.5 h, 250 mL CH3OH as solvent and the hot CH3OH as recrystallization solvent. Element analysis, IR, 1HNMR and 13CNMR spectra were used to study its chemical composition and molecular structure. Antimony N, N-diethanol-dithiocarbamate was added in the base oil, and its properties of wear resistance and extreme pressure were studied by FB, FD and WSD. The synthesis product behaves per fectly as wear resistance and extreme pressure additive and its extreme pressure property is superior to its wear resistance property. The mechanism of tribological action was discussed by using XPS and AES spectra, and the reason of good wear resistance and extreme pressure properties is that the synthesis product decompose element C, S and N.

  9. Synthesis, structure and properties of novel epoxy and rubber-modified epoxy impregnated Y-Ba-Cu-O superconductors

    International Nuclear Information System (INIS)

    Low, I.M.; Lim, F.W.; Chisholm, W.

    1992-01-01

    This paper reports the synthesis, structure and properties of novel YBa 2 Cu 3 O 6+x (123) - polymer composites. The polymers used were epoxy and rubber-modified epoxy resins. Superconducting composites with good strength, toughness, hardness and chemical resistance have been successfully fabricated. The presence of polymer(s) does not appear to affect the superconducting (T c ) of about 90 K. Levitation experiments show that the height (z) of the levitating magnet depends on sample thickness, and mass and pole strength of the magnet. A simple image force model best describes the observed dependence of z on the mass and pole strength. Atomic absorption and pH measurements in the corrosion study show that the polymer coating provides an impermeable barrier to the ingress of solvents and a concomitant resistance to phase decomposition. 12 refs., 2 tabs., 5 figs

  10. Iron(iii) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations.

    Science.gov (United States)

    Gajewska, Małgorzata J; Bieńko, Alina; Herchel, Radovan; Haukka, Matti; Jerzykiewicz, Maria; Ożarowski, Andrzej; Drabent, Krzysztof; Hung, Chen-Hsiung

    2016-09-27

    The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(iii) complex with the formula [Fe 10 (bdtbpza) 10 (μ 2 -OCH 3 ) 20 ] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0-300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(iii) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was proved using a broken-symmetry approach within the density functional method at the B3LYP/def2-TZVP(-f)/def2-SVP level of theory.

  11. Facile Synthesis of Novel Coumarin Derivatives, Antimicrobial Analysis, Enzyme Assay, Docking Study, ADMET Prediction and Toxicity Study

    Directory of Open Access Journals (Sweden)

    Shailee V. Tiwari

    2017-07-01

    Full Text Available The work reports the synthesis under solvent-free condition using the ionic liquid [Et3NH][HSO4] as a catalyst of fifteen novel 3-((dicyclohexylamino(substituted phenyl/heteryl-methyl-4-hydroxy-2H-chromen-2-onederivatives 4a–o as potential antimicrobial agents. The structures of the synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, mass spectral studies and elemental analyses. All the synthesized compounds were evaluated for their in vitro antifungal and antibacterial activity. The compound 4k bearing 4-hydroxy-3-ethoxy group on the phenyl ring was found to be the most active antifungal agent. The compound 4e bearing a 2,4-difluoro group on the phenyl ring was found to be the most active antibacterial agent. The mode of action of the most promising antifungal compound 4k was established by an ergosterol extraction and quantitation assay. From the assay it was found that 4k acts by inhibition of ergosterol biosynthesis in C. albicans. Molecular docking studies revealed a highly spontaneous binding ability of the tested compounds to the active site of lanosterol 14α-demethylase, which suggests that the tested compounds inhibit the synthesis of this enzyme. The synthesized compounds were analyzed for in silico ADMET properties to establish oral drug like behavior and showed satisfactory results. To establish the antimicrobial selectivity and safety, the most active compounds 4e and 4k were further tested for cytotoxicity against human cancer cell line HeLa and were found to be non-cytotoxic in nature. An in vivo acute oral toxicity study was also performed for the most active compounds 4e and 4k and results indicated that the compounds are non-toxic.

  12. Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Fengying Dong

    2017-09-01

    Full Text Available This work presents a synthetic route to produce chloramphenicol esters by taking advantage the high enantio- and regio-selectivity of lipases. A series of chloramphenicol esters were synthesized using chloramphenicol, acyl donors of different carbon chain length and lipase LipBA (lipase cloned from Bacillus amyloliquefaciens. Among acyl donors with different carbon chain lengths, vinyl propionate was found to be the best. The influences of different organic solvents, reaction temperature, reaction time, enzyme loading and water content on the synthesis of the chloramphenicol esters were studied. The synthesis of chloramphenicol propionate (0.25 M with 4.0 g L−1 of LipBA loading gave a conversion of ~98% and a purity of ~99% within 8 h at 50 °C in 1,4-dioxane as solvent. The optimum mole ratio of vinyl propionate to chloramphenicol was increased to 5:1. This is the first report of B. amyloliquefaciens lipase being used in chloramphenicol ester synthesis and a detailed study of the synthesis of chloramphenicol propionate using this reaction. The high enzyme activity and selectivity make lipase LipBA an attractive catalyst for green chemical synthesis of molecules with complex structures.

  13. Synthesis and study of the magnetic properties of thallium-based over-doped superconducting compounds

    International Nuclear Information System (INIS)

    Opagiste, C.

    1994-07-01

    The synthesis, structure and magnetic properties of the normal and superconducting states of over-doped Tl 2 Ba 2 Cu O 6±x and Tl 2 Ba 2 Ca Cu 2 O 8±x superconducting compounds, are presented. Synthesis under high pressure using Tl 2 Ba 2 O 5 as a precursor avoids thallium losses and Ba Cu O 2 formation. The entire over-doped region has been investigated (Tc ranging from 0 to 92 K) and the different stability zones for the two crystallographic structures have been explored. The orthorhombic structure is shown to be stoichiometric in cations, while the tetragonal one could present thallium deficiency. Clear correlations have been established between Tc and the lattice parameters for the two phases. It has been observed that the Meissner fraction increased with Tc and that the reversibility domain was more extended for samples having a Tc near the maximal value, which must be linked to the decrease of the anisotropy with over-doping. In the reversible regime, the mixed state is affected by thermal fluctuations around Tc. Evolution of the penetration depth with Tc is examined; it shows that the optimum doped compound (maximal Tc) behaves as a BCS type superconductor. The over-doping results in a penetration depth behaviour which strongly deviates from the standard model (BCS, two fluids). The zero temperature, obtained by extrapolation, seems to be independent of the over-doping. 54 figs., 3 tabs., 168 refs

  14. Studies of selected synthesis procedures of the conducting LiFePO{sub 4}-based composite cathode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ojczyk, W.; Marzec, J.; Swierczek, K.; Zajac, W.; Molenda, J. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Molenda, M.; Dziembaj, R. [Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow (Poland)

    2007-11-15

    In this paper technological aspects of a synthesis of phospho-olivine LiFePO{sub 4} based composite cathode materials for lithium batteries are presented. An effective synthesis route yielding a highly conductive composite cathode material was developed. The structural, electrical and electrochemical properties of these materials were investigated. It was shown that the enhanced conductivity of the cathode material is due to the presence of a thin layer of the reduced material which has metallic properties, which is formed on the grain surfaces of the phospho-olivine. We propose a synthesis route yielding LiFePO{sub 4}/Fe{sub 2}P composite material. (author)

  15. Synthesis and study of the synthetic hydroxyapatite doped with aluminum

    Science.gov (United States)

    Goldberg, M.; Smirnov, V.; Antonova, O.; Konovalov, A.; Fomina, A.; Komlev, V. S.; Barinov, S.; Rodionov, A.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Powders of synthetic hydroxyapatite doped with aluminium (Al) ions in concentrations 0 and 20 mol. % were synthesized by the precipitation method from the nitrate solutions and investigated by atomic emission spectrometry with inductively coupled plasma (AES-ICP), X-ray diffraction (XRD), scanning electron microscopy (SEM), gas absorption and conventional electron paramagnetic resonance (EPR). It is shown that for the chosen synthesis route an introduction of Al provokes formation of highly anisotropic phase, leads to the decrease in the crystallinity while no significant changes in the EPR spectra of the radiation-induced defects is observed. The results could be used for understanding the structural transformations with Al doping of the mineralized materials for geological and biomedical applications.

  16. Text-in-context: a method for extracting findings in mixed-methods mixed research synthesis studies.

    Science.gov (United States)

    Sandelowski, Margarete; Leeman, Jennifer; Knafl, Kathleen; Crandell, Jamie L

    2013-06-01

    Our purpose in this paper is to propose a new method for extracting findings from research reports included in mixed-methods mixed research synthesis studies. International initiatives in the domains of systematic review and evidence synthesis have been focused on broadening the conceptualization of evidence, increased methodological inclusiveness and the production of evidence syntheses that will be accessible to and usable by a wider range of consumers. Initiatives in the general mixed-methods research field have been focused on developing truly integrative approaches to data analysis and interpretation. The data extraction challenges described here were encountered, and the method proposed for addressing these challenges was developed, in the first year of the ongoing (2011-2016) study: Mixed-Methods Synthesis of Research on Childhood Chronic Conditions and Family. To preserve the text-in-context of findings in research reports, we describe a method whereby findings are transformed into portable statements that anchor results to relevant information about sample, source of information, time, comparative reference point, magnitude and significance and study-specific conceptions of phenomena. The data extraction method featured here was developed specifically to accommodate mixed-methods mixed research synthesis studies conducted in nursing and other health sciences, but reviewers might find it useful in other kinds of research synthesis studies. This data extraction method itself constitutes a type of integration to preserve the methodological context of findings when statements are read individually and in comparison to each other. © 2012 Blackwell Publishing Ltd.

  17. Radioautographic study of RNA synthesis in Caenorhabditis elegans (Bergerac variety) oogenesis

    International Nuclear Information System (INIS)

    Starck, Joelle

    1977-01-01

    An original method of incubation allowing the use of radioactive precursor for RNA synthesis study, is described. This in vitro incubation technique offers the advantages of: being simple (it does not require axenic culture as various authors concluded when they attempted nematode labelling); being rapid (in vivo system requires 20 to 24 hours incubation to obtain labelling); being repeatable (the ten different preparations of each of our experiments behave in a very homogeneous way). Then, this technique offers a great interest to study: the kinetic of RNA synthesis in oogonia and oocytes, and also in the rachis, specific to nematodes of which function is poorly understood; the reproduction of this hermaphroditic C. elegans as compared in the wild-type and in the thermosensitive or female sterile mutants

  18. Synthesis and H-1 NMR structural analysis of 11-aryl/heteroarylnaphtha[2,1-b]furans : X-ray crystal structure of 11-(4 '-pyridyl)naphtho[2,1-b]furan

    NARCIS (Netherlands)

    Mashraqui, S.H.; Patil, M.B.; Sangvikar, Y.; Ashraf, M.; Mistry, H.D.; Daub, E.T.H.; Meetsma, A.

    2005-01-01

    Synthesis of biaryl type systems, 11-aryl/heteroarylnaphtho[2,1-b]furans 8-11 has been described with a view to studying the conformational orientation of C-11 aryl/heteroaryl groups. Synthesis of 8-11 was accomplished by a two-step sequence involving O-alkylation of 2-naphthol with appropriate

  19. Synthesis, structure and DFT conformation analysis of CpNiX(NHC) and NiX2(NHC)2 (X = SPh or Br) complexes

    Science.gov (United States)

    Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé

    2017-11-01

    The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.

  20. Synthesis of multicomponent metallic layers during impulse plasma deposition

    Directory of Open Access Journals (Sweden)

    Nowakowska-Langier Katarzyna

    2015-12-01

    Full Text Available Pulsed plasma in the impulse plasma deposition (IPD synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation of new phase of ions and synthesis of metastable materials in a form of coatings which are characterized by amorphous and/or nanocrystalline structure. In this work, the Fe–Cu alloy, which is immiscible in the state of equilibrium, was selected as a model system to study the possibility of formation of a non-equilibrium phase during the IPD synthesis. Structural characterization of the layers was done by means of X-ray diffraction and conversion-electron Mössbauer spectroscopy. It was found that supersaturated solid solutions were created as a result of mixing and/or alloying effects between the layer components delivered to the substrate independently and separately in time. Therefore, the solubility in the Fe–Cu system was largely extended in relation to the equilibrium conditions, as described by the equilibrium phase diagram in the solid state.