WorldWideScience

Sample records for synthesis characterization solvent-extraction

  1. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp.

    Directory of Open Access Journals (Sweden)

    Renil eAnthony

    2015-01-01

    Full Text Available Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (UTEX LB2396. Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. All solvent extracts contained hexadecanoic acid, linoleic acid and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%, cyclohexane (0.14% and hexane (0.11%. This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  2. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Renil [Department of Mechanical Engineering, Ohio University, Athens, OH (United States); Stuart, Ben, E-mail: stuart@ohio.edu [Department of Civil Engineering, Ohio University, Athens, OH (United States)

    2015-01-20

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  3. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    International Nuclear Information System (INIS)

    Anthony, Renil; Stuart, Ben

    2015-01-01

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  4. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  5. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Gao, Xie-Feng; Zhang, Yi-Han

    2015-01-01

    A development of the novel and stable solvent-free ionic MoS 2 nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS 2 from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, 1 H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS 2 nanofluids show that inorganic MoS 2 cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS 2 nanofluids is presented. • The rheological behaviors can be tailored by

  6. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  7. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    Science.gov (United States)

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  8. Diluent effects in solvent extraction. The Effects of Diluents in Solvent Extraction - a literature study

    International Nuclear Information System (INIS)

    Loefstroem-Engdahl, Elin; Aneheim, Emma; Ekberg, Christian; Foreman, Mark; Skarnemark, Gunnar

    2010-01-01

    The fact that the choice of organic diluent is important for a solvent extraction process goes without saying. Several factors, such as e.g. price, flash point, viscosity, polarity etc. each have their place in the planning of a solvent extraction system. This high number of variables makes the lack of compilations concerning diluent effects to an interesting topic. Often the interest for the research concerning a specific extraction system focuses on the extractant used and the complexes built up during an extraction. The diluents used are often classical ones, even if it has been shown that choice of diluent can affect extraction as well as separation in an extraction system. An attempt to point out important steps in the understanding of diluent effects in solvent extraction is here presented. This large field is, of course, not summarized in this article, but an attempt is made to present important steps in the understanding of diluents effects in solvent extraction. Trying to make the information concerning diluent effects and applications more easily accessible this review offers a selected summarizing of literature concerning diluents effects in solvent extraction. (authors)

  9. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  10. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS{sub 2}) nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shu-Ying, E-mail: gushuying@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Gao, Xie-Feng; Zhang, Yi-Han [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2015-01-15

    A development of the novel and stable solvent-free ionic MoS{sub 2} nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS{sub 2} from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, {sup 1}H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS{sub 2} nanofluids show that inorganic MoS{sub 2} cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS{sub 2} nanofluids is presented. • The rheological

  11. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  12. Accelerated Solvent Extraction: An Innovative Sample Extraction Technique for Natural Products

    International Nuclear Information System (INIS)

    Hazlina Ahmad Hassali; Azfar Hanif Abd Aziz; Rosniza Razali

    2015-01-01

    Accelerated solvent extraction (ASE) is one of the novel techniques that have been developed for the extraction of phytochemicals from plants in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yield and enhance the quality of extracts. This technique combines elevated temperatures and pressure with liquid solvents. This paper gives a brief overview of accelerated solvent extraction technique for sample preparation and its application to the extraction of natural products. Through practical examples, the effects of operational parameters such as temperature, volume of solvent used, extraction time and extraction yields on the performance of ASE are discussed. It is demonstrated that ASE technique allows reduced solvent consumption and shorter extraction time, while the extraction yields are even higher than those obtained with conventional methods. (author)

  13. Membrane extraction instead of solvent extraction - what does it give

    International Nuclear Information System (INIS)

    Macasek, F.

    1989-01-01

    Membrane extraction, i.e. separation in double-emulsion systems, is analyzed theoretically as a three-phase distribution process. Its efficiency is evaluated from the point of view of chemical equilibria and diffusion transport kinetics. The main advantages of membrane extraction as compared with solvent extraction are in higher yields (for preconcentration) and higher capacity for recovery of solutes. A pertraction factor and multiplication factor were defined. They are convenient parameters for numerical characterization of solute distribution, system capacity, process economics, and separation kinetics (both at a linear and non-linear extraction isotherm). 17 refs.; 4 figs

  14. A survey of extraction solvents in the forensic analysis of textile dyes.

    Science.gov (United States)

    Groves, Ethan; Palenik, Christopher S; Palenik, Skip

    2016-11-01

    The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  16. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Science.gov (United States)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  17. Solvent extraction of Zn and metals in Zn ores by nonphosphorous solvents

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-07-01

    This bibliography follows a first work on Zn solvent extraction by organo-phosphorous compounds. The other solvents used in Zn extraction, are studied: oxygenated nonphosphorous solvents (ketones, alcohols, carboxylic acids, sulfonates), nitrogenous solvents and hydrocarbons [fr

  18. Solvent extraction studies of RERTR silicide fuels

    International Nuclear Information System (INIS)

    Gouge, Anthony P.

    1983-01-01

    Uranium silicide fuels, which are candidate RERTR fuel compositions, may require special considerations in solvent extraction reprocessing. Since Savannah River Plant may be reprocessing RERTR fuels as early as 1985, studies have been conducted at Savannah River Laboratory to demonstrate the solvent extraction behavior of this fuel. Results of solvent extraction studies with both unirradiated and irradiated fuel are presented along with the preliminary RERTR solvent extraction reprocessing flow sheet for Savannah River Plant. (author)

  19. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  20. Effect of solvent extraction on Tunisian esparto wax composition

    Directory of Open Access Journals (Sweden)

    Saâd Inès

    2016-08-01

    Full Text Available The increase of needs for renewable and vegetable based materials will help to drive the market growth of vegetable waxes. Because of their highly variable composition and physicochemical properties, plant waxes have found numerous applications in the: food, cosmetic, candle, coating, polish etc... The aim of this project is to determine the effect of solvent extraction (petroleum ether and ethanol on Tunisian esparto wax composition. The GC-MS was applied in order to determine the waxes compositions. Then, physicochemical parameters of these two samples of waxes: acid value, saponification value, iodine value and melting point were measured in order to deduct their properties and possible fields of uses. Results showed that esparto wax composition depended on the solvent extraction and that major components of the two samples of waxes were: alkanes, esters of fatty acids and phenols. Furthermore, esparto waxes were characterized by an antioxidant and antibacterial activities but the potential of these activities depended on the solvent of wax extraction.

  1. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    Science.gov (United States)

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  2. Extraction, scrub, and strip test results for the salt waste processing facility caustic side solvent extraction solvent example

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  3. Uranium refining by solvent extraction

    International Nuclear Information System (INIS)

    Kraikaew, J.

    1996-01-01

    The yellow cake refining was studied in both laboratory and semi-pilot scales. The process units mainly consist of dissolution and filtration, solvent extraction, and precipitation and filtration. Effect of flow ratio (organic flow rate/ aqueous flow rate) on working efficiencies of solvent extraction process was studied. Detailed studies were carried out on extraction, scrubbing and stripping processes. Purity of yellow cake product obtained is high as 90.32% U 3 O 8

  4. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    International Nuclear Information System (INIS)

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  5. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    Science.gov (United States)

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  6. Recent solvent extraction experience at Savannah River

    International Nuclear Information System (INIS)

    Gray, L.W.; Burney, G.A.; Gray, J.H.; Hodges, M.E.; Holt, D.L.; Macafee, I.M.; Reif, D.J.; Shook, H.E.

    1986-01-01

    Tributyl phosphate-based solvent extraction processes have been used at Savannah River for more than 30 years to separate and purify thorium, uranium, neptunium, plutonium, americium, and curium isotopes. This report summarizes the advancement of solvent extraction technology at Savannah River during the 1980's. Topics that are discussed include equipment improvements, solvent treatment, waste reduction, and an improved understanding of the various chemistries in the process streams entering, within, and leaving the solvent extraction processes

  7. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n -hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  8. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  9. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    Science.gov (United States)

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  10. Spreadsheet algorithm for stagewise solvent extraction

    International Nuclear Information System (INIS)

    Leonard, R.A.; Regalbuto, M.C.

    1994-01-01

    The material balance and equilibrium equations for solvent extraction processes have been combined with computer spreadsheets in a new way so that models for very complex multicomponent multistage operations can be setup and used easily. A part of the novelty is the way in which the problem is organized in the spreadsheet. In addition, to facilitate spreadsheet setup, a new calculational procedure has been developed. The resulting Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) can be used with either IBM or Macintosh personal computers as a simple yet powerful tool for analyzing solvent extraction flowsheets. 22 refs., 4 figs., 2 tabs

  11. Extraction and Characterization of Cottonseed (Gossypium) Oil

    OpenAIRE

    Efomah Andrew Ndudi; Orhevba Bosede Adelola

    2012-01-01

    This study investigated the extraction and characterization of cottonseed oil using solvent extraction method. Normal hexane was used as solvent in the extraction process. The AOAC method of Analysis was employed in the determination of the chemical, physical and proximate compositions of the oil. The chemical properties of the oil determined include the saponification value, free fatty acid, iodine value, peroxide value and acid value. The physical properties of the oil determined are viscos...

  12. Effect of solvent on the synthesis of SnO_2 nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder; Kumar, Akshay; Kumari, Sudesh; Thakur, Anup

    2016-01-01

    Tin oxide (SnO_2) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO_2 nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO_2 nanoparticles. The XRD analysis showed well crystallized tetragonal SnO_2 nanoparticles. The crystallite size of SnO_2 nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  13. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  14. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D(Cs) results.

  15. Effect of HEH[EHP] impurities on the ALSEP solvent extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Holfeltz, Vanessa E. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA; Campbell, Emily L. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; Peterman, Dean R. [Aqueous Separations and Radiochemistry Department, Idaho National Laboratory, Idaho Falls, ID, USA; Standaert, Robert F. [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Biochemistry & amp, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA; Biology & amp, Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Shull Wollan Center — a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Paulenova, Alena [School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA; Lumetta, Gregg J. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; Levitskaia, Tatiana G. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA

    2017-12-20

    In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalent minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.

  16. Supercritical solvent extraction of oil sand bitumen

    Science.gov (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  17. Proceedings of ISEC 2008, International Solvent Extraction Conference - Solvent Extraction: Fundamentals to Industrial Applications

    International Nuclear Information System (INIS)

    Moyer, Bruce A.

    2008-01-01

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly how this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these

  18. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  19. Solvent extraction of Sr2+ and Cs+ based on hydrophobic protic ionic liquids

    International Nuclear Information System (INIS)

    Luo, Huimin; Yu, Miao; Dai, Sheng

    2007-01-01

    A series of new hydrophobic and protic alkylammonium ionic liquids with bis(trifluoromethylsulfonyl) imide or bis(perfluoroethylsulfonyl)imide as conjugated anions was synthesized in a one-pot reaction with a high yield. In essence our synthesis method involves the combination of neutralization and metathesis reactions. Some of these hydrophobic and protic ionic liquids were liquids at room temperature and therefore investigated as new extraction media for separation of Sr 2+ and Cs + from aqueous solutions. An excellent extraction efficiency was found for some of these ionic liquids using dicyclohexano-18-crown-6 and calix[4]arene-bis(tert-octylbenzo-crown-6) as extractants. The observed enhancement in the extraction efficiency can be attributed to the greater hydrophilicity of the cations of the protic ionic liquids. The application of the protic ionic liquids as new solvent systems for solvent extraction opens up a new avenue in searching for simple and efficient ionic liquids for tailored separation processes. (orig.)

  20. A short review of headspace extraction and ultrasonic solvent extraction for honey volatiles fingerprinting

    Directory of Open Access Journals (Sweden)

    Z. Marijanović

    2009-01-01

    Full Text Available Honey volatiles exhibit a potential role in distinguishing honeys as a function of botanical origin, but heating of honey generates artefacts such as compounds of Strecker degradation and Maillard reaction products. This short review is focused on the most recently applied methods for honey volatiles fingerprinting (without generation of thermal artefacts: headspace extraction (dynamic headspace extraction (DHE, headspace solid-phase microextraction (HS-SPME and ultrasonic solvent extraction (USE. These methods display a varying degree of selectivity and effectiveness depending upon the compounds involved and the extraction conditions. Recent developments of these methods are discussed, with application examples drawn from the literature as well from our own research. Flavour qualities of the honey are very much dependent on the volatile and semivolatile organic compounds present in both the sample matrix and the headspace aroma. Therefore the use of one single technique is not adequate for reliable honey volatiles profiling, but combined use of headspace extraction and ultrasonic solvent extraction could be a useful tool for the characterization of the honey and identification of its botanical source through typical volatile marker compounds.

  1. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  2. Comparative exergy analyses of Jatropha curcas oil extraction methods: Solvent and mechanical extraction processes

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Keat Teong, Lee; JitKang, Lim

    2012-01-01

    Highlights: ► Exergy analysis detects locations of resource degradation within a process. ► Solvent extraction is six times exergetically destructive than mechanical extraction. ► Mechanical extraction of jatropha oil is 95.93% exergetically efficient. ► Solvent extraction of jatropha oil is 79.35% exergetically efficient. ► Exergy analysis of oil extraction processes allow room for improvements. - Abstract: Vegetable oil extraction processes are found to be energy intensive. Thermodynamically, any energy intensive process is considered to degrade the most useful part of energy that is available to produce work. This study uses literature values to compare the efficiencies and degradation of the useful energy within Jatropha curcas oil during oil extraction taking into account solvent and mechanical extraction methods. According to this study, J. curcas seeds on processing into J. curcas oil is upgraded with mechanical extraction but degraded with solvent extraction processes. For mechanical extraction, the total internal exergy destroyed is 3006 MJ which is about six times less than that for solvent extraction (18,072 MJ) for 1 ton J. curcas oil produced. The pretreatment processes of the J. curcas seeds recorded a total internal exergy destructions of 5768 MJ accounting for 24% of the total internal exergy destroyed for solvent extraction processes and 66% for mechanical extraction. The exergetic efficiencies recorded are 79.35% and 95.93% for solvent and mechanical extraction processes of J. curcas oil respectively. Hence, mechanical oil extraction processes are exergetically efficient than solvent extraction processes. Possible improvement methods are also elaborated in this study.

  3. Accelerated solvent extraction (ASE) - a fast and automated technique with low solvent consumption for the extraction of solid samples (T12)

    International Nuclear Information System (INIS)

    Hoefler, F.

    2002-01-01

    Full text: Accelerated solvent extraction (ASE) is a modern extraction technique that significantly streamlines sample preparation. A common organic solvent as well as water is used as extraction solvent at elevated temperature and pressure to increase extraction speed and efficiency. The entire extraction process is fully automated and performed within 15 minutes with a solvent consumption of 18 ml for a 10 g sample. For many matrices and for a variety of solutes, ASE has proven to be equivalent or superior to sonication, Soxhlet, and reflux extraction techniques while requiring less time, solvent and labor. First ASE has been applied for the extraction of environmental hazards from solid matrices. Within a very short time ASE was approved by the U.S. EPA for the extraction of BNAs, PAHs, PCBs, pesticides, herbicides, TPH, and dioxins from solid samples in method 3545. Especially for the extraction of dioxins the extraction time with ASE is reduced to 20 minutes in comparison to 18 h using Soxhlet. In food analysis ASE is used for the extraction of pesticide and mycotoxin residues from fruits and vegetables, the fat determination and extraction of vitamins. Time consuming and solvent intensive methods for the extraction of additives from polymers as well as for the extraction of marker compounds from herbal supplements can be performed with higher efficiencies using ASE. For the analysis of chemical weapons the extraction process and sample clean-up including derivatization can be automated and combined with GC-MS using an online ASE-APEC-GC system. (author)

  4. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scherman, Carl [Savannah River Remediation, LLC., Aiken, SC (United States); Martin, David [Savannah River Remediation, LLC., Aiken, SC (United States); Suggs, Patricia [Savannah River Site (SRS), Aiken, SC (United States)

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  5. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  6. Compressed air-assisted solvent extraction (CASX) for metal removal.

    Science.gov (United States)

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  7. Solvent Extraction of Furfural From Biomass

    Science.gov (United States)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  8. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  9. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Akbar Rostami-Vartooni

    2015-12-01

    Full Text Available In this study, Cu nanoparticles were immobilized on the surface of natural bentonite using Thymus vulgaris extract as a reducing and stabilizing agent. The natural bentonite-supported copper nanoparticles (Cu NPs/bentonite were characterized by FTIR spectroscopy, X-ray diffraction (XRD, X-ray fluorescence (XRF, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, selected area electron diffraction (SAED and Brunauer–Emmett–Teller (BET analysis. Afterward, the catalytic performance of the prepared catalyst was investigated for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP in water. It was found that the Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions.

  10. Solvent Carryover Characterization and Recovery for a 10-inch Single Stage Centrifugal Contactor

    International Nuclear Information System (INIS)

    Lentsch, R.D.; Stephens, A.B.; Leung, D.T.; Baffling, K.E.; Harmon, H.D.; Suggs, P.C.

    2006-01-01

    A test program has been performed to characterize the organic solvent carryover and recovery from centrifugal contactors in the Caustic-side Solvent Extraction (CSSX) process. CSSX is the baseline design for removing cesium from salt solutions for Department of Energy (DOE) Savannah River Site's Salt Waste Processing Facility. CSSX uses a custom solvent to extract cesium from the salt solution in a series of single stage centrifugal contactors. Meeting the Waste Acceptance Criteria at the Defense Waste Processing Facility and Saltstone, as well as plant economics, dictate that solvent loss should be kept to a minimum. Solvent droplet size distribution in the aqueous outlet streams of the CSSX contactors is of particular importance to the design of solvent recovery equipment. Because insufficient solvent droplet size data existed to form a basis for the recovery system design, DOE funded the CSSX Solvent Carryover Characterization and Recovery Test (SCCRT). This paper presents the droplet size distribution of solvent and concentration in the contactor aqueous outlet streams as a function of rotor speed, bottom plate type, and flow rate. It also presents the performance data of a prototype coalescer. (authors)

  11. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Fathordoobady, Farahnaz; Mirhosseini, Hamed; Selamat, Jinap; Manap, Mohd Yazid Abd

    2016-07-01

    The main objective of the present study was to investigate the effect of solvent type and ratio as well as the extraction techniques (i.e. supercritical fluid extraction (SFE) and conventional solvent extraction) on betacyanins and antioxidant activity of the peel and fresh extract from the red pitaya (Hylocereus polyrhizus). The peel and flesh extracts obtained by SFE at 25MPa pressure and 10% EtOH/water (v/v) mixture as a co-solvent contained 24.58 and 91.27mg/100ml total betacyanin, respectively; while the most desirable solvent extraction process resulted in a relatively higher total betacyanin in the peel and flesh extracts (28.44 and 120.28mg/100ml, respectively). The major betacyanins identified in the pitaya peel and flesh extracts were betanin, isobetanin, phyllocactin, butyrylbetanin, isophyllocactin and iso-butyrylbetanin. The flesh extract had the stronger antioxidant activity than the peel extract when the higher proportion of ethanol to water (E/W) was applied for the extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Green solvents and technologies for oil extraction from oilseeds

    OpenAIRE

    Kumar, S. P. Jeevan; Prasad, S. Rajendra; Banerjee, Rintu; Agarwal, Dinesh K.; Kulkarni, Kalyani S.; Ramesh, K. V.

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330?kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to...

  13. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280... HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.280 Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from...

  14. Ultrasound-Assisted Extraction: Effect of Extraction Time and Solvent ...

    African Journals Online (AJOL)

    Purpose: To investigate the influence of extraction conditions assisted by ultrasound on the quality of extracts obtained from Mesembryanthemum edule shoots. Methods: The extraction procedure was carried out in an ultrasonic bath. The effect of two solvents (methanol and ethanol) and two extraction times (5 and 10 min) ...

  15. Cleanup of 7.5% tributyl phosphate/n-paraffin solvent-extraction solvent

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-02-01

    The HM process at the Savannah River Plant uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials which influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands which hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM process first cycle solvent is discussed

  16. Extractability of Lanthanoids(III) into Solvents Contributing to Environmental Protection

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Hara, M.

    1999-01-01

    To perform effective mutual separation of lanthanoids(III) by solvent extraction with avoiding several problems caused by diffusion of organic solvents into air and into water , into commercial available mixed solvents, aliphatic and aromatic solvents consisting of carbon number of 9 to 12, which have high flash points, the extraction of lanthanoid(III) thiocyanates with trioctylphosphine oxide has been measured and the equilibrium constants have been determined across lanthanoid series. Then the extraction constants were compared with those of single solvents, hexane and benzene , widely being used as solvents for liquid-liquid extraction. The extraction constants obtained for the aliphatic mixed solvents are very similar to those for hexane across lanthanoid series. The variation of the constants for aromatic mixed solvents is also similar to that for benzene. The pattern of the variation of the distribution ratio under a constant condition across the series is similar to each other, either using the aliphatic solvents or using aromatic ones, except for in the middle of the series. Accordingly, the use of the high molecular weight mixed aromatic solvents would be recommendable as organic solvents in the mutual separation of lanthanoids from the point of view of safety for fire and health for the people handling the extraction

  17. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  18. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  19. Solvent effects in the synergistic solvent extraction of Co2+

    International Nuclear Information System (INIS)

    Kandil, A.T.; Ramadan, A.

    1979-01-01

    The extraction of Co 2+ from a 0.1M ionic strength aqueous phase (Na + , CH 3 COOH) of pH = 5.1 was studied using thenoyltrifluoroacetone, HTTA, in eight different solvents and HTTA + trioctylphosphine oxide, TOPO, in the same solvents. A comparison of the effect of solvent dielectric constant on the equilibrium constant shows a synergism as a result of the increased hydrophobic character imparted to the metal complex due to the formation of the TOPO adduct. (author)

  20. Solvent-extraction methods applied to the chemical analysis of uranium. III. Study of the extraction with inert solvents

    International Nuclear Information System (INIS)

    Vera Palomino, J.; Palomares Delgado, F.; Petrement Eguiluz, J. C.

    1964-01-01

    The extraction of uranium on the trace level is studied by using tributylphosphate as active agent under conditions aiming the attainment of quantitative extraction by means of a single step process using a number of salting-out agents and keeping inside the general lines as reported in two precedent papers. Two inert solvents were investigated, benzene and cyclohexane, which allowed to derive the corresponding empirical equations describing the extraction process and the results obtained were compared with those previously reported for solvents which, like ethyl acetate and methylisobuthylketone, favour to a more or less extend the extraction of uranium. (Author) 4 refs

  1. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  2. Compound forming extractants, solvating solvents and inert solvents IUPAC chemical data series

    CERN Document Server

    Marcus, Y; Kertes, A S

    2013-01-01

    Equilibrium Constants of Liquid-Liquid Distribution Reactions, Part III: Compound Forming Extractants, Solvating Solvents, and Inert Solvents focuses on the compilation of equilibrium constants of various compounds, such as acids, ions, salts, and aqueous solutions. The manuscript presents tables that show the distribution reactions of carboxylic and sulfonic acid extractants and their dimerization and other reactions in the organic phase and extraction reactions of metal ions from aqueous solutions. The book also states that the inorganic anions in these solutions are irrelevant, since they d

  3. Recovery of acid-degraded tributyl phosphate by solvent extraction

    International Nuclear Information System (INIS)

    Young, G.C.; Holladay, D.W.

    1981-01-01

    During nuclear fuel reprocessing the organic solvent becomes loaded with various acidic degradation products, which can be effectively removed through solvent extraction. Studies have been made with a small bench-scale solvent extraction system to optimize such parameters as pH of aqueous phase, phase ratio, residence time, flow rates, and temperature. The necessary decontamination factors have been obtained for various degradation products during continuous solvent extraction in one stage, with the aqueous phase being recycled. The aqueous phase contains compounds that can be degraded to gases to minimize waste disposal problems

  4. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  5. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    International Nuclear Information System (INIS)

    Bordelon, N.; Huebner, H.; Washburn, K.; Donnelly, K.C.

    1995-01-01

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health

  6. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  7. Double Solvent for Extracting Rare Earth Concentrate

    International Nuclear Information System (INIS)

    Bintarti, AN; Bambang EHB

    2007-01-01

    An extraction process to rare earth concentrate which contain elements were yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), gadolinium (Gd) and dysprosium (Dy) which were dissolved in to nitric acid has been done. The experiment of the extraction by double solvent in batch to mix 10 ml of the feed with 10 ml solvent contained the pair of solvent was TBP and TOA, D2EHPA and TOA, TBP and D2EHPA in cyclohexane as tinner. It was selected a right pairs of solvent for doing variation such as the acidity of the feed from 2 - 6 M and the time of stirring from 5 - 25 minutes gave the good relatively extraction condition to Dy element such as using 10 % volume of TOA in D2EHPA and cyclohexane, the acidity of the feed 3 M and the time stirring 15 minutes produced coefficient distribution to dysprosium = 0.586 and separation factor Dy-Ce = ∼ (unlimited); Dy-Nd = 4.651. (author)

  8. Catalog solvent extraction: anticipate process adjustments

    International Nuclear Information System (INIS)

    Campbell, S.G.; Brass, E.A.; Brown, S.J.; Geeting, M.W.

    2008-01-01

    The Modular Caustic-Side Solvent Extraction Unit (MCU) utilizes commercially available centrifugal contactors to facilitate removal of radioactive cesium from highly alkaline salt solutions. During the fabrication of the contactor assembly, demonstrations revealed a higher propensity for foaming than was initially expected. A task team performed a series of single-phase experiments that revealed that the shape of the bottom vanes and the outer diameter of those vanes are key to the successful deployment of commercial contactors in the Caustic-Side Solvent Extraction Process. (authors)

  9. Full scale solvent extraction remedial results

    International Nuclear Information System (INIS)

    Cash, A.B.

    1992-01-01

    Sevenson Extraction Technology, Inc. has completed the development of the Soil Restoration Unit (initially developed by Terra-Kleen Corporation), a mobile, totally enclosed solvent extraction treatment facility for the removal of organic contaminated media is greater by a closed loop, counter current process that recycles all solvents. The solvents used are selected for the individual site dependant upon the contaminants, such as PCB's, oil, etc. and the soil conditions. A mixture of up to fourteen non-toxic solvents can be used for complicated sites. The full scale unit has been used to treat one superfund site, the Traband Site in Tulsa, Oklahoma, and is currently treating another superfund site, the Pinette's Salvage Yard Site in Washburn, Maine. The full scale Soil Restoration Unit has also been used at a non-superfund site, as part of a TSCA Research and Development permit. The results from these sites will be discussed in brief herein, and in more detail in the full paper

  10. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    Science.gov (United States)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  11. Solvent extraction of gold using ionic liquid based process

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  12. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application

    Science.gov (United States)

    Erjaee, Hoda; Rajaian, Hamid; Nazifi, Saeed

    2017-06-01

    The present study reports green synthesis of silver nanoparticles (AgNPs) at room temperature using aqueous Chamaemelum nobile extract for the first time. The effect of silver nitrate concentration, quantity of the plant extract and the reaction time on particle size was optimized and studied by UV-Vis spectroscopy and dynamic light scattering. The appearance of brownish color with λ max of 422 nm confirmed the formation of AgNPs. Synthesized nanoparticles were further characterized by Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. In addition, antimicrobial activity of the AgNPs against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis was evaluated based on the inhibition zone using the disc-diffusion assay and measurement of minimal inhibition concentration and minimal bactericidal concentration by standard microdilution method. In conclusion, synthesis of nanoparticle with aqueous Chamaemelum nobile extract is simple, rapid, environmentally benign and inexpensive. Moreover, these synthesized nanoparticles exhibit significant antibacterial activity.

  13. Synthesis, characterization and extraction studies of N,N″- bis[1 ...

    Indian Academy of Sciences (India)

    Administrator

    catalysis of many reactions like carbonylation, hydro- formylation ... lopment of selective extractants has expanded the use of solvent ... measurements, ESR and thermal studies of the ..... non-hygroscopic and insoluble in water, methanol.

  14. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available Highly efficient and eco-friendly, one pot synthesis of 1,2,4,5-tetra substituted imidazoles and 2,4,5-trisubstituted imidazoles was reported under solvent free conditions using nanocrystalline silica supported tin oxide (SiO2:SnO2 as a catalyst with excellent yield. The present methodology offers several advantages such as mild reaction conditions, short reaction time, good yield, high purity of product, recyclable catalyst without a noticeable decrease in catalytic activity and can be used for large scale synthesis. The synthesized SiO2:SnO2 nanocrystalline catalyst was characterized by XRD, BET surface area and TEM techniques.

  15. Chemical engineering aspect of solvent extraction in mineral processing

    International Nuclear Information System (INIS)

    Dara, S.S.; Jakkikar, M.S.

    1975-01-01

    Solvent extraction process, types of solvents used, types of extraction, distribution isotherm and McCabe-Thiele diagram for process design, equipment for the process, operating parameters and applications are described. (M.G.B.)

  16. Centrifugal contractors for laboratory-scale solvent extraction tests

    International Nuclear Information System (INIS)

    Leonard, R.A.; Chamberlain, D.B.; Conner, C.

    1995-01-01

    A 2-cm contactor (minicontactor) was developed and used at Argonne National Laboratory for laboratory-scale testing of solvent extraction flowsheets. This new contactor requires only 1 L of simulated waste feed, which is significantly less than the 10 L required for the 4-cm unit that had previously been used. In addition, the volume requirements for the other aqueous and organic feeds are reduced correspondingly. This paper (1) discusses the design of the minicontactor, (2) describes results from having applied the minicontactor to testing various solvent extraction flowsheets, and (3) compares the minicontactor with the 4-cm contactor as a device for testing solvent extraction flowsheets on a laboratory scale

  17. Extracting solid carbonaceous materials with solvents

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-08

    Solvent extraction of solid carbonaceous materials is performed in the presence of powdered catalysts together with alkaline substances. Oxides of nickel or iron or nickel nitrate have been used together with caustic soda or potash solutions or milk of lime. Solvents used include benzenes, middle oils, tars, tetrahydronaphthalene. The extraction is performed at 200 to 500/sup 0/C under pressures of 20 to 200 atm. Finely ground peat was dried and mixed with milk of lime and nickel nitrate and an equal quantity of middle oil. The mixture was heated for 3 h at 380/sup 0/C at 90 atm. 88.5% of the peat was extracted. In a similar treatment brown coal was impregnated with solutions of caustic soda and ferric chloride.

  18. Characterization of molybdenum interfacial crud in a uranium mill that employs tertiary-amine solvent extraction

    International Nuclear Information System (INIS)

    Moyer, B.; McDowell, W.J.

    1983-01-01

    In the present work, samples of a molybdenum-caused green gummy interfacial crud from an operating western US uranium mill have been physically and chemically examined. Formaton of cruds of this description has been a long-standing problem in the use of tertiary amine solvent extraction for the recovery of uranium from low-grade ores (Amex Process). The crud is essentially an organic-continuous dispersion containing about 10 wt % aqueous droplets and about 37 wt % greenish-yellow crystalline solids suspended in kerosene-amine process solvent. The greenish-yellow crystals were found to be a previously unknown double salt of tertiary amine molybdophosphate with three tertiary amine chlorides having the empirical formula (R 3 NH) 3 [PMo 12 O 40 ].3(R 3 NH)Cl. To confirm the identification of the compound, a pure trioctylamine (TOA) analog was synthesized. In laboratory extraction experiments, it was demonstrated that organic-soluble amine molydophosphate forms slowly upon contact of TOA solvent with dilute sulfuric acid solutions containing low concentrations of molybdate and phosphate. If the organic solutions of amine molybdophosphate were then contacted with aqueous NaCl solutions, a greenish-yellow precipitate of (TOAH) 3 [PMo 12 O 40 ].3(TOAH)Cl formed at the interface. The proposed mechanism for the formation of the crud under process conditions involves build up of molybdenum in the solvent, followed by reaction with extracted phosphate to give dissolved amine molybdophosphate. The amine molybdophosphate then co-crystallizes with amine chloride, formed during the stripping cycle, to give the insoluble double salt, which precipitates as a layer of small particles at the interface. The proposed solution to the problem is the use of branched-chain, instead of straight-chain, tertiary amine extractants under the expectation that branching would increase the solubility of the double salt. 2 figures, 5 tables

  19. Solvent extraction of thorium(IV) with dibutyldithiophosphoric acid in various organic solvents

    International Nuclear Information System (INIS)

    Curtui, M.; Haiduc, I.

    1994-01-01

    The extraction of thorium(IV) from perchlorate solutions with di-n-butyldithiophosphoric acid (HBudtp) in various organic solvents occurs through an ion exchange mechanism. The extracted species in the organic phase is an eight-coordinate complex Th(Budtp) 4 . The higher values of the distribution ratio obtained in HBudtp-benzene-water system than in HBudtp-n-butanol-water system are explained by higher solubility of the complex species in nonpolar solvents. The position of the extraction curves in the pH-range lower than 0.7 reduces the complexation of thorium(IV) with Budtp - in the aqueous phase and also the hydrolysis process. (author) 8 refs.; 4 figs.; 1 tab

  20. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  1. Malonamide, phosphine oxide and calix[4]arene functionalized ionic liquids: synthesis and extraction of actinides and lanthanides

    International Nuclear Information System (INIS)

    Ternova, Dariia

    2014-01-01

    Radioactive waste treatment is a crucial problem nowadays. This work was dedicated to the development of the new extracting systems for radionuclides on the basis of 'green' solvents Ionic Liquids (Ils). For this purpose Ils were functionalized with various extracting patterns: phosphine oxide, carbamoyl phosphine oxide groups and malonamide fragment. Also the calix[4]arene platforms were used for the synthesis of functionalized ionic liquids (Fils) and their precursors. The Fils of both types cationic and anionic have been obtained. The synthesized Fils were tested for the liquid-liquid extraction of radionuclides. lt was found that extraction well occurs due to the extracting patterns, however a charge of a modified ion influences extraction.The various extracting experiments and mathematical modelling have been performed to determine the mechanisms of extraction. These studies showed that each extracting system is characterized by a different set of extracting equilibria, based mostly on cationic exchange. (author)

  2. Effect of Various Solvent on the Synthesis of NiO Nanopowders by Simple Sol-Gel Methods and Its Characterization

    Directory of Open Access Journals (Sweden)

    Sherly Kasuma Warda Ningsih

    2015-03-01

    Full Text Available Synthesis of nickel oxide (NiO with various solvents by simple sol-gel process has been done. NiO nanopowders were obtained by using nickel nitrate hexahydrate and sodium hydroxide 5 M were used as precursor and agent precipitator, respectively. The addition of various solvents that used in this research were aquadest, methanol and isopropanol. The powders were formed by drying in the temperature of 100-110 °C for 1 h and after heating at ±450 °C for 1 h. The products were obtained black powders. The products were characterized by Energy Dispersive X-Ray Fluorescence (ED-XRF, X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. The ED-XRF pattern show that composition of NiO produced was 96.9%. The XRD patterns showed NiO forms were in monoclinic structure with aquadest solvent and cubic structure with methanol and isopropanol used. Crystal sizes of NiO particles produced with aquadest, methanol, isopropanol were obtained in the range 37.05; 72.16; 66.04 nm respectively. SEM micrograph clearly showed that powder had a spherical shape with uniform distribution size is 0.1-1.0 µm approximately.

  3. Re-Refining of Waste Lubricating Oil by Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2011-04-01

    Full Text Available Re-refining of waste lubricating oil by solvent extraction is one of the potential techniques. The advantages of solvent extraction technique practically offers from environmental and economic points of view have received due attention. In this paper selection of composite solvent and technique to upgrade the used lubricant oil into base oil has been made. The composite solvent 2-propanol, 1-butanol and butanone have two alcohols that make a binary system reasonably effective. This work also attempts to study the performance of the composite solvent in the extraction process for recovering waste lubricating oil. The key parameters considered were vacuum pressure, temperature and the weight ratio of solvent to waste lubricating oil. The performance was investigated on the PSR (Percentage Sludge Removal and POL (Percent Oil Loss. The best results were obtained using composite solvent 25% 2-propanol, 37% 1-butanol and 38% butanone by a solvent to oil ratio of 6:1 at vacuum pressure 600mmHg and distillation temperature 250oC. The vacuum distilled oil pretreated with the composite solvents was matched to the standard base oil 500N and 150N, found in close agreement and could be used for similar purpose.

  4. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  5. Mechanically-induced solvent-less synthesis of cobalt and nickel complexes of cimetidine

    Directory of Open Access Journals (Sweden)

    Adedibu Clement Tella

    2011-09-01

    Full Text Available Solvent-less synthesis of [Co(CIM2](SO4 and [Ni(CIM2](OAC2 by grinding of CoSO4 and Ni(CH3COO2.4H2O with cimetidine without any solvent is described. The complexes have been characterized by elemental analysis, melting point, AAS, conductivity measurements, TLC, infrared and UV-Vis spectroscopies as well as X-ray powder diffraction. Cimetidine was found to be bidentate or tridentate ligand. Cobalt ion coordinate with cimetidine through the sulphur atom in the thiol group, nitrogen atom of imidazole ring and the nitrogen atom of the secondary amine to give an octahedral geometry with ligand acting as tridentate whereas nickel ion coordinates through the sulphur atom in the thiol group, nitrogen atom of imidazole ring to give tetrahedral structure with ligand acting as bidentate. X-Ray diffraction patterns of the complex were different from that of the ligand suggesting formation of coordination compounds. The method is quick and gives a quantatively yield, without the need for solvents or external heating. Clearly, it can present higher efficiency in terms of materials, energy and time compared to classical solution phase synthesis.

  6. Gas chromatographic analysis of extractive solvent in reprocessing plants

    International Nuclear Information System (INIS)

    Marlet, B.

    1984-01-01

    Operation of a reprocessing plant using the Purex process is recalled and analytical controls for optimum performance are specified. The aim of this thesis is the development of analytical methods using gas chromatography required to follow the evolution of the extraction solvent during spent fuel reprocessing. The solvent at different concentrations, is analysed along the reprocessing lines in organic or aqueous phases. Solvent degradation interferes with extraction and decomposition products are analysed. The solvent becomes less and less efficient, also it is distilled and quality is checked. Traces of solvent should also be checked in waste water. Analysis are made as simple as possible to facilitate handling of radioactive samples [fr

  7. Solvent extraction of irradiated neptunium targets. I. Valence stabilization

    International Nuclear Information System (INIS)

    Thompson, G.H.; Thompson, M.C.

    1977-01-01

    Solvent extraction of 237 Np and 238 Pu from irradiated neptunium is being investigated as a possible replacement for the currently used anion exchange process at the Savannah River Plant. Solvent extraction would reduce separations costs and waste volume and increase the production rate. The major difficulty in solvent extraction processing is maintaining neptunium and plutonium in the extractable IV or VI valence states during initial extraction. This study investigated the stability of these states. Results show that: The extractable M(IV) valence states of neptunium and plutonium are mutually unstable in plant dissolver solution (2 g/l 237 Np, 0.4 g/l 238 Pu, 1.2M Al 3+ , 4.6M NO 3 - , and 1M H + ). The reaction rates producing inextractable species from extractable M(IV) or M(VI) are fast enough that greater than or equal to 99.9 percent extractable species in 237 Np-- 238 Pu mixtures cannot be maintained for a practicable processing period

  8. Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract

    Science.gov (United States)

    Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.

    2017-06-01

    Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.

  9. Solvent extraction of platinum with thiobenzanilide. Separation of platinum from copper

    International Nuclear Information System (INIS)

    Shkil', A.N.; Zolotov, Yu.A.

    1989-01-01

    The solvent extraction of micro concentrations of platinum has been investigated from hydrochloric acid media using thiobenzanilide in the presence of SnCl 2 and KI. In the presence of SnCl 2 platinum is extracted rapidly and to significant completion. Conditions have been developed for the quantitative extraction of platinum. The authors have also examined the solvent extraction of copper(II) using thiobenzanilide, interference due to copper(II) and iron(III) on solvent extraction of platinum, and methods to suppress this interference. A procedure has also been developed for the separation of platinum from copper. Solvent extraction of metals was studied using radioactive isotopes: 197 Pt, 64 Cu, 59 Fe, 198 Au, 109 Pd, 110m Ag

  10. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  11. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco.

    Science.gov (United States)

    Shen, Jinchao; Shao, Xueguang

    2005-11-01

    The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.

  12. Terpenes as Green Solvents for Extraction of Oil from Microalgae

    Directory of Open Access Journals (Sweden)

    Celine Dejoye Tanzi

    2012-07-01

    Full Text Available Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  13. Purity Evaluation of Curcuminoids in the Turmeric Extract Obtained by Accelerated Solvent Extraction.

    Science.gov (United States)

    Yadav, Dinesh K; Sharma, Khushbu; Dutta, Anirban; Kundu, Aditi; Awasthi, Akanksha; Goon, Arnab; Banerjee, Kaushik; Saha, Supradip

    2017-05-01

    Curcuminoids, the active principle of Curcuma longa L, is one of the most researched subjects worldwide for its broad-spectrum biological activities. Being traditionally known for their anticancer properties and issues related to bioavailability, the curcuminoids, including diferuloylmethane (curcumin), have gained special attention. Thus, the current study focused on the purity profiling of curcuminoids when extracted by accelerated solvent extraction, which was run with turmeric rhizome powder (20 g) at 1500 psi and at 50°C, with a static time of 10 min and with three cycles. The performance of ethanol, ethyl acetate, and acetone as extraction solvents was comparatively evaluated. Once extracted, the individual curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were purified by column chromatography, followed by preparative TLC, and the compounds were characterized by spectroscopic and chromatographic techniques. The HPLC method was standardized by using a gradient mobile phase of water and acetonitrile containing 0.1% formic acid. The LODs were calculated as 0.27, 0.33, and 0.42 μg/mL for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respectively. Accuracy (relative percentage error) and precision RSD values of the developed HPLC method were below 5%. The intraday accuracy ranged between -0.9 and -3.63%. The physical yield was the highest in ethanol (8.4%) extraction, followed by ethyl acetate (7.4%) and acetone (6.6%). Maximum purity was recorded in acetone (46.2%), followed by ethanol (43.4%) and ethyl acetate (38.8%), with no significant differences across the individual curcuminoids. This research will be useful for future applications related to the extraction of curcuminoids at a commercial level and to their profiling in food matrixes.

  14. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  15. Synthesis and characterization of activated lithium fluoride with silver

    International Nuclear Information System (INIS)

    Encarnacion E, E. K.; Guerrero S, Z.; Reyes A, J.

    2017-10-01

    The present work shows part of the results obtained in the development of the research that has been carried out since 2015 entitled -Synthesis and characterization of new thermoluminescent materials for the radiation dosimetry and its applications in health-. In the development of this research, the synthesis of crystals of pure lithium fluoride (LiF) and activated with different concentrations of silver (LiF:Ag); synthesized samples are also presented using different temperatures, as well as varying the concentration of the solvent (water-ethanol). The synthesized materials were characterized through different techniques: scanning electron microscopy and X-ray diffraction. Specifically, the results of the calculation of the size of the LiF crystals are presented using the Scherrer equation. Within the results, a dependence on the size of the crystals is highlighted by means of the following factors: the amount of activator in the sample, the temperature at which the sample was synthesized, as well as the amount of solvent in the synthesis. The samples have a simple cubic crystalline phase. (Author)

  16. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    OpenAIRE

    Wadood Taher Mohammed; Raghad Fareed Kassim Almilly; Sheam Bahjat Abdulkareem Al-Ali

    2015-01-01

    This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the ef...

  17. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Wadood Taher Mohammed

    2015-02-01

    Full Text Available This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN and N-methyl – 2 - pyrrolidone (NMP as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450 rpm, temperature (30 , 40 , 45 , and 50 oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5 , catalyst/oxidant ratio(0.125,0.25,0.5,and0.75 , and solvent/simulated diesel fuel ratio(0.5,0.6,0.75,and1 were examined as well as solvent type. The results exhibit that the highest removal of sulfur is 98.5% using NMP solvent while it is 95.8% for ACN solvent. The set of conditions that show the highest sulfur removal is: stirring speed of 350 rpm , temperature 50oC , oxidant/simulated diesel fuel ratio 1 , catalyst/oxidant ratio 0.5 , solvent/simulated diesel fuel ratio 1. These best conditions were applied upon real diesel fuel (produced from Al-Dora refinerywith 1000 ppm sulfur content . It was found that sulfur removal was 64.4% using ACN solvent and 75% using NMP solvent.

  18. Phenolic Content and Antioxidant Activity of Hibiscus cannabinus L. Seed Extracts after Sequential Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Shahid Iqbal

    2012-10-01

    Full Text Available A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L. seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis, while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract, total flavonoid content (2.49 mg RE/g extract, and antioxidant activities (p < 0.05. DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05. As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.

  19. Construction of isotherms in solvent extraction of copper

    Directory of Open Access Journals (Sweden)

    Cvetkovski Vladimir B.

    2009-01-01

    Full Text Available The aim of this work is construction of equilibrium isotherms in solvent extraction. Technological parameters have been predicted for treatment of mine water by solvent extraction and electrowining. Two stages of extractions and one stage of stripping have been predicted for copper recovery by analyzing the equilibrium isotherms. The process was performed on mine water with 2,5 g/dm3 Cu2+, 3 g/dm Fe2+, pH 1,8, using 9 vol% LIX 984N in kerosene (organic solvent, with 95 and 98% stages efficiencies, respectively. This course produced an advanced electrolyte solution, suitable for electrowining and cathodic copper recovery, containing 51 g/dm3 Cu2+ and 160g/dm3 H2SO4 from a 30 g/dm3 Cu and 190 g/dm3 H2SO4.

  20. Analysis of cesium extracting solvent using GCMS and HPLC

    International Nuclear Information System (INIS)

    White, T.L.; Herman, C.C.; Crump, S.L.; Marinik, A.R.; Lambert, D.P.; Eibling, R.E.

    2007-01-01

    A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and trioctylamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results. (author)

  1. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Birdwell, Joseph F. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  2. Leaching and solvent extraction at Mary Kathleen Uranium Ltd

    International Nuclear Information System (INIS)

    Richmond, G.D.

    1978-01-01

    Mary Kathleen Uranium Ltd. recommenced operations in early 1976 following a twelve year period of care and maintenance. Several sections of the plant were modified or completely changed for the second operation. The most important change was the replacement of ion exchange with solvent extraction as the means of purifying and upgrading uranium rich solutions. Most of the problems experienced in the solvent extraction system originate from the leach liquor which has a strong tendency to form stable emulsions. This has been countered by some careful control of leaching conditions and by closer observation of operations in the solvent extraction area. Most problems have now been resolved and plant recoveries are quite satisfactory

  3. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  4. Determining an Efficient Solvent Extraction Parameters for Re-Refining of Waste Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2012-04-01

    Full Text Available Re-refining of vehicle waste lubricating oil by solvent extraction is one of the efficient and cheapest methods. Three extracting solvents MEK (Methyl-Ethyl-Ketone, 1-butanol, 2-propanol were determined experimentally for their performance based on the parameters i.e. solvent type, solvent oil ratio and extraction temperature. From the experimental results it was observed the MEK performance was highest based on the lowest oil percent losses and highest sludge removal. Further, when temperature of extraction increased the oil losses percent also decreased. This is due to the solvent ability that dissolves the base oil in waste lubricating oil and determines the best SOR (Solvent Oil Ratio and extraction temperatures.

  5. Standardization of solvent extraction procedure for determination of uranium in seawater

    International Nuclear Information System (INIS)

    Sukanta Maity; Sahu, S.K.; Pandit, G.G.

    2015-01-01

    Solvent extraction procedure using ammonium pyrolidine dithiocarbamate complexing agent in methyl isobutyl ketone organic phase and acid exchange back-extraction is described for the simultaneous quantitative pre-concentration of uranium in seawater followed by its determination by differential pulse adsorptive stripping voltammetry. Solvent extraction time is optimized for extraction of uranium from seawater. Solvent extraction efficiency for uranium in seawater at different pH was carried out. The method gives a recovery of 98 ± 2 % for 400 mL sample at pH 3.0 ± 0.02, facilitating the rapid and interference free analysis of seawater samples. (author)

  6. Extraction and characterization of coconut (Cocos nucifera L. coir dust

    Directory of Open Access Journals (Sweden)

    A. U. Israel1,

    2011-12-01

    Full Text Available Studies were carried out on the characterization and extraction of coconut coir dust using water, acetone, acetone/water (70/30, (50/50 respectively. The acetone extract of the coir dust was phytochemically screened for tannins, polyphenols,flavanoids, phlobatannins. The moisture, ash, lignin, and cellulose contents of the coir dust were determined bymeasuring the cation exchange capacity (CEC and the pH were found to be 2.39 mmol g-1 and 6.4 respectively. The degree ofswelling of coir dust increased with increased solvent contact time. The percentage extract showed the best solvent systemto be acetone/water (70/30. In all the solvent systems, the smaller the particle size of coir dust, the greater the amount ofextract. The phytochemical screening of the acetone extract indicated significant amount of tannins, flavanoids and otherpolyphenols in coir dust.

  7. Solvent Extraction of Rare Earths by Di-2 Ethylhexyl Phosphoric Acid

    International Nuclear Information System (INIS)

    Srinuttrakul, Wannee; Kranlert, Kannika; Kraikaew, Jarunee; Pongpansook, Surasak; Chayavadhanangkur, Chavalek; Kranlert, Kannika

    2004-10-01

    Solvent extraction has been widely applied for individual rare earth separation because the separation time is rapid and a large quantity of products is obtained. In this work, this technique was utilized to extract mixed rare earths, obtained from monazite digestion process. Di-2-ethylhexyl phosphoric acid (D2EHPA) was used as an extractant. The factors affected the extraction including HNO 3 concentration in mixed rare earth nitrate solution and the amount of D2EHPA were studied. The appropriate concentrations of HNO 3 and D2EHPA were found to be 0.01 and 1.5 M, respectively. From the result of equilibrium curve study, it was observed that heavy rare earths were extracted more efficient than light rare earths. A 6-stage continuous countercurrent solvent extraction was simulated for rare earth extraction. The optimum ratio of solvent to feed solution (S/F) was 2. Because of the high cost of D2EHPA, 1.0 M of D2EHPA was suitable for the rare earth extraction by the continuous countercurrent solvent extraction

  8. Solvent-Free Synthesis of Silver-Nanoparticles and their Use as Additive in Poly (Dicyclopentadiene)

    International Nuclear Information System (INIS)

    Abbas, M.; Kienberger, J.

    2013-01-01

    A solvent-free environmentally benign synthesis of oleylamine capped silver nanoparticles is presented. Upon heating 10 equivalents of oleylamine and silver nitrate at 165 degree C for 30 min followed by a precipitation step using ethanol as the precipitant particles characterized by an Z-average diameter of 63 nm were obtained. Dried particles can be easily redispersed in unpolar solvents or monomers, which pave the way for using them as an antimicrobial additive in polymeric materials. In particular, newly prepared Ag-particles were dispersed in dicyclopentadiene and the mixture was cured using ring opening metathesis polymerization yielding an antimicrobially equipped duroplastic material. (author)

  9. Solvent-extraction purification of neptunium

    International Nuclear Information System (INIS)

    Kyser, E.A.; Hudlow, S.L.

    2008-01-01

    The Savannah River Site (SRS) has recovered 237 Np from reactor fuel that is currently being processed into NpO 2 for future production of 238 Pu. Several purification flowsheets have been utilized. An oxidizing solvent-extraction (SX) flowsheet was used to remove Fe, sulfate ion, and Th while simultaneously 237 Np, 238 Pu, u, and nonradioactive Ce(IV) was extracted into the tributyl phosphate (TBP) based organic solvent. A reducing SX flowsheet (second pass) removed the Ce and Pu and recovered both Np and U. The oxidizing flowsheet was necessary for solutions that contained excessive amounts of sulfate ion. Anion exchange was used to perform final purification of Np from Pu, U, and various non-actinide impurities. The Np(IV) in the purified solution was then oxalate-precipitated and calcined to an oxide for shipment to other facilities for storage and future target fabrication. Performance details of the SX purification and process difficulties are discussed. (authors)

  10. Microfluidic Extraction of Biomarkers using Water as Solvent

    Science.gov (United States)

    Amashukeli, Xenia; Manohara, Harish; Chattopadhyay, Goutam; Mehdi, Imran

    2009-01-01

    A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would

  11. Behaviour of solvent extraction of niobium in nitric acid

    International Nuclear Information System (INIS)

    Lin Cansheng; Huang Meixin; Zhang Xianzi; Zhang Chonghai

    1988-01-01

    The behaviour of solvent extraction of niobium is discussed. The expractants, includding TBP, HDBP, H 2 MBP, TBP irradiated, HDEHP, TTA and Aliquat-7402, are used. The special influence of molybdenum and zirconium on solvent extraction of niobium and the extraction behaviur of niobium with TBP irradiated are described. The effect of fluorine and uranium in aqueous phase on extraction of niobium is mentioned. It is observed that the interfacial crud has not relevance to D Nb , but niobium-95 can be absorbed on it. The species of extractable niobium, extraction mechanism, and the reason brought niobum into organic phase are discussed. Finally, the idea of increasing decontamination factor for niobium is suggested

  12. Extraction of Aromatics from Heavy Naphtha Using Different Solvents

    International Nuclear Information System (INIS)

    EI-Bassuoni, A.A.; Esmael, K.K.

    2004-01-01

    Aromatic hydrocarbons are very important to the petrochemical industry. Among these are benzene, toluene and xylene (BTX), which are basic raw materials for the production of a number of important petrochemicals. There are many processes used to separate aromatic from non aromatic such as fractionation, azeotropic distillation and liquid I liquid extraction, etc. Liquid - liquid extraction is unique, efficiently used for heat sensitive, close boiling components and for separation of components not possible by other unit operations and it could be done at ambient temperature makes it more energy efficient. The choice of solvent depends on the properties and boiling range of the feedstock. Through the years, a lot of selective solvents has been proposed and selected for the physical separation of aromatics in liquid liquid extraction. Among the selection criteria are the stability,. chemical compatibility, availability, environmental hazards and price of the solvent. But the basic solvent properties that make it efficient are selectivity and capacity

  13. Basic research on solvent extraction of actinide cations with diamide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Newly synthesized 4 diamide compounds were tested for solvent extraction of actinide cations. It is obvious that N,N`-dimethyl-N,N`-dihexyl-3-oxapentanediamide (DMDHOPDA) can extract Eu(III), Th(IV), U(VI), Np(V), and Am(III) into organic solvent. Other 3 diamides hardly extract actinide ions, which is supposed that the reasons come from the difference of their chemical structures. In the synergistic extraction with a diamide and thenoyltrifluoroacetone (TTA), all diamides work as a extractant. Furthermore, by examining extracted species, it was confirmed that there are 4 kinds of chemical species of actinides with diamide and TTA. Finally, the mutual separation method of actinide (III), (IV), (V) and (VI) ions by solvent extraction using DMDHOPDA and TTA were developed. (author). 147 refs.

  14. GRINDING SOLVENT-FREE PAAL-KNORR PYRROLE SYNTHESIS ...

    African Journals Online (AJOL)

    Paal-Knorr pyrrole synthesis on smectites as recyclable and green catalysts. Bull. Chem. Soc. .... 1-Propyl-2,5-dimethyl-1H-pyrrole (8a). Oil (reported as oil .... of pyrroles catalyzed by zirconium chloride under solvent-free conditions . Ultrason.

  15. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  16. SYNTHESIS AND CHARACTERIZATION OF BIODEGRDABLE PLASTIC FROM CASAVA STARCH AND ALOE VERA EXTRACT WITH GLYCEROL PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Mery Apriyani

    2016-05-01

    Full Text Available Synthesis and characterizations of Biodegradable Plastic made of Cassava Waste Starch, glycerol, acetic acid and Aloe vera extract has done. The aims of this research are to study the influence of addition of aloe vera extract in plastics mechanics properties, water vapor transmission rate and biodegradation. There are five main steps in this research, extraction of aloe vera, cassava starch preparation from cassava waste, preparations, characterization and biodegradability study of biodegradable plastic. The addition variations of aloe vera extract that used in this research are 0.01; 0.03; 0.05; 0.07 and 0.14 grams. Results showed that the addition of aloe Vera tends to increased biodegrable plastic thickness to 0.01 mm and elongation to 32.07%. However, biodegradable plastic tensile strength tends to decreased to 23.95 Mpa. Optimum tensile strength is 3.90 Mpa and elongation is 34.43%. Optimum water vapor transmission rate is 2.40 g/m2hours. Biodegradation study of biodegradable plastic showed that addition of aloe vera extract doesn’t significantly influence in plastic degradations.

  17. Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline High-Level Tank Waste

    International Nuclear Information System (INIS)

    Bonnesen, Peter V.; Delmau, Laetitia H.; Moyer, Bruce A.; Lumetta, Gregg J.

    2003-01-01

    A series of novel alkylphenoxy fluorinated alcohols were prepared and investigated for their effectiveness as modifiers in solvents containing calix(4)arene-bis-(tert-octylbenzo)-crown-6 for extracting cesium from alkaline nitrate media. A modifier that contained a terminal 1,1,2,2-tetrafluoroethoxy group was found to decompose following long-term exposure to warm alkaline solutions. However, replacement of the tetrafluoroethoxy group with a 2,2,3,3-tetrafluoropropoxy group led to a series of modifiers that possessed the alkaline stability required for a solvent extraction process. Within this series of modifiers, the structure of the alkyl substituent (tert-octyl, tert-butyl, tert-amyl, and sec-butyl) of the alkylphenoxy moiety was found to have a profound impact on the phase behavior of the solvent in liquid-liquid contacting experiments, and hence on the overall suitability of the modifier for a solvent extraction process. The sec-butyl derivative(1-(2,2,3,3-tetrafluoropropoxy)-3- (4-sec-butylphenoxy)-2-propanol) (Cs-7SB) was found to possess the best overall balance of properties with respect to third phase and coalescence behavior, cleanup following degradation, resistance to solids formation, and cesium distribution behavior. Accordingly, this modifier was selected for use as a component of the solvent employed in the Caustic-Side Solvent Extraction (CSSX) process for removing cesium from high level nuclear waste (HLW) at the U.S. Department of Energy's (DOE) Savannah River Site. In batch equilibrium experiments, this solvent has also been successfully shown to extract cesium from both simulated and actual solutions generated from caustic leaching of HLW tank sludge stored in tank B-110 at the DOE's Hanford Site.

  18. Solvent extraction of radionuclides from aqueous tank waste

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Sachleben, R.A.; Moyer, B.A.

    1996-01-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process for the removal of the fission products Tc-99, Sr-90, and Cs-137 from alkaline tank wastes, such as those stored at Hanford and Oak Ridge. As such, this task expands upon FY 1995's successful development of a solvent-extraction and stripping process for technetium separation from at sign e tank-waste solutions. This process has in fact already been extended to include the capability of removing both Tc and Sr simultaneously. In this form, the process has been given the name SRTALK and will be developed further in this program as a prelude to developing a system capable of removing Tc, Sr, and Cs together. Such a system could potentially simplify and improve fission-product removal from tank waste. In addition, it would possess the advantages already inherent in our Tc solvent-extraction process: No required feed adjustment, economical water stripping, low consumption of materials, and low waste volume

  19. Simulation of equilibrium distribution data in a solvent extraction system

    International Nuclear Information System (INIS)

    Mondal, S.; Giriyalkar, A.B.; Singh, A.K.; Singh, D.K.; Hubli, R.C.

    2014-01-01

    In hydrometallurgy, solvent extraction has been proved to be the purification method to recover metal in high-pure form from impure solution. Any solvent extraction process is complex and based on some operating parameters which always lure the scientists to model them. Operating parameters like aqueous to organic volume ratio and concentration of feed are related to required number of stages for a product with specific recovery. So to determine final feed concentration or aqueous to organic volume ratio for a specific extractant concentration, one needs to carry out a number of extraction experiments tediously supported by analysis. Here an attempt is being made to model the distribution of solute between organic and aqueous phases with minimum analytical and experimental support for any system. The model can predict the effect on solvent extraction for a change in the aqueous to organic volume ratio i.e. slope of operating line, percentage loading of solvent, feed concentration, solvent concentration, number of stages and in the process it can help in optimizing conditions for the best result from a solvent extraction system. Uranium-7% TBP in dodecane system was taken up to validate the model. The predicted values of the model was tallied against uranium distribution between aqueous and organic phases in a running mixer settler. The equation for operating line i.e. straight line is derived from O/A=1.5 and considering barren organic contains 2 ppm uranium: y 1 = 0.667x 0 - .002. The extraction isotherm i.e. parabola equation came as : x 1 = 0.003y 0 2 + 0.723y 0 considering three points i.e. (0,0), (13,16.7) (uranium analysis for first stage of mixer-settler) and (25, 30.69) (feed concentration, loading capacity of solvent). Using these two equations the results that were obtained, predicted the solute distribution across different stages exactly as it is in the running mixer settler. Individual isotherms could also be drawn with the predicted results from the

  20. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  1. SYNTHESIS AND CHARACTERIZATION OF CdSe COLLOIDAL QUANTUM DOTS IN ORGANIC SOLVENT

    Directory of Open Access Journals (Sweden)

    Ion Geru

    2014-06-01

    Full Text Available In this paper we present experimental results on preparation and characterization of colloidal CdSe quantum dots in organic solvent. CdSe QDs were synthesized following a modified literature method. CdSe QDs were isolated by adding acetone to the cooled solution followed by centrifugation. CdSe QDs have been characterized by UV-Vis absorption and photoluminescent (PL spectroscopy. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28-2.92 nm which is in good agreement with PL measurements.

  2. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    Science.gov (United States)

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Characterization and Storage Stability Study of Bixin Extracted from Bixa orellana Using Organic Solvent

    Science.gov (United States)

    Husa, N. N.; Hamzah, F.; Said, H. M.

    2018-05-01

    Colorant is one of the additives to give a better appearance or improve the colour of the product. Synthetic colorant has been widely used in industrial due to its readiness in the market and its colour stability. However the arising issues related to the safety, nutrition and also the therapeutic effect has encouraged users to become more concern about the colouring component. Thus, the present research was conducted in order to produce natural colorant called bixin from Bixa orellana or also known as annatto seeds. The study was focusing on the effect of the solvent on the characteristic and concentration of the extracted bixin. While stability of the bixin during different storage condition was determined to further validate the effectiveness of the solvent. The result indicated that methanol and acetone gave darker of the bixin colour as compared to the water. However, the deterioration rate of the bixin in acetone and methanol were faster as compared to the water. The extracted bixin was analysed using Fourier-transform infrared spectroscopy (FTIR) and spectrophotometer analysis. The strong band for the bixin was observed at absorbance range of 1704 – 1740cm-1. The study indicates that the concentration of the extracted bixin was the highest in methanol which gave 817.7 ppm of bixin. Meanwhile, bixin concentration in acetone and water was 602.9 ppm and 477.19 ppm respectively.

  4. Solvent-free microwave extraction of essential oil from Melaleuca leucadendra L.

    Directory of Open Access Journals (Sweden)

    Widya Ismanto Aviarina

    2018-01-01

    Full Text Available Cajuput (Melaleuca leucadendra L. oil is one of potential commodity that provides an important role for the country’s foreign exchange but the extraction of these essential oil is still using conventional method such as hydrodistillation which takes a long time to produce essential oil with good quality. Therefore it is necessary to optimize the extraction process using a more effective and efficient method. So in this study the extraction is done using solvent-free microwave extraction method that are considered more effective and efficient than conventional methods. The optimum yield in the extraction of cajuput oil using solvent-free microwave extraction method is 1.0674%. The optimum yield is obtained on the feed to distiller (F/D ratio of 0.12 g/mL with microwave power of 400 W. In the extraction of cajuput oil using solvent-free microwave extraction method is performed first-order and second-order kinetics modelling. Based on kinetics modelling that has been done, it can be said that the second-order kinetic model (R2 = 0.9901 can be better represent experimental results of extraction of cajuput oil that using solvent-free microwave extraction method when compared with the first-order kinetic model (R2 = 0.9854.

  5. Solvent extraction of radionuclides from aqueous tank waste

    International Nuclear Information System (INIS)

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A.

    1997-01-01

    This task aims toward the development of efficient solvent-extraction processes for the removal of the fission products 99 Tc, 90 Sr, and 137 Cs from alkaline tank wastes. Processes already developed or proposed entail direct treatment of the waste solution with the solvent and subsequent stripping of the extracted contaminants from the solvent into a dilute aqueous solution. Working processes to remove Tc(and SR) separately and Cs separately have been developed; the feasibility of a combined process is under investigation. Since Tc, Sr, and Cs will be vitrified together in the high-level fraction, however, a process that could separate Tc, Sr, and Cs simultaneously, as opposed to sequentially, potentially offers the greatest impact. A figure presents a simplified diagram of a proposed solvent-extraction cycle followed by three possible treatments for the stripping solution. Some degree of recycle of the stripping solution (option a) is expected. Simple evaporation (option c) is possible prior to vitrification; this offers the greatest possible volume reduction with simple operation and no consumption of chemicals, but it is energy intensive. However, if the contaminants are concentrated (option b) by fixed-bed technology, the energy penalty of evaporation can be avoided and vitrification facilitated without any additional secondary waste being produced

  6. Alkali-assisted coal extraction with polar aprotic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Makgato, M.H.; Moitsheki, L.J.; Shoko, L.; Kgobane, B.L.; Morgan, D.L.; Focke, W.W. [SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0002 (South Africa)

    2009-04-15

    Coal extraction experiments were conducted using a coal, containing ca. 10% ash, from the Tshikondeni mine in South Africa. This coal dissolves only to a limited extent in pure polar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP). However, the addition of a strong base, e.g. sodium hydroxide (NaOH) or sodium tert-butoxide increased the degree of coal dissolution in these organic solvents. Depending on the extraction conditions, carbon extraction efficiencies of up to 90% were obtained. Carbon precursor material was recovered from the solution as a gel by precipitation with water. Ash content was reduced from 10% in the coal to less than 1.6% in the coal extracts. Sodium sulfide (Na{sub 2}S) addition further reduced ash content and aided the recovery of carbon precursors that led to graphitizable cokes but the degree of extraction was significantly reduced. (author)

  7. Multiple Solvent Extraction System with Flow Injection Technology.

    Science.gov (United States)

    1981-09-30

    encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction

  8. Synthesis, characterization, and potential use of 2-dodecylcyclobutanone as a marker for irradiated chicken

    International Nuclear Information System (INIS)

    Boyd, D.R.; Crone, A.V.J.; Hamilton, J.T.G.; Hand, M.V.; Stevenson, M.H.; Stevenson, P.J.

    1991-01-01

    The synthesis and characterization of 2-dodecylcyclobutanone is described. Solvent extraction techniques for the isolation of this compound from irradiated minced chicken meat and its detection by selected ion monitoring are outlined. The compound was not detected in either raw or cooked nonirradiated minced chicken meat by the methods used, but its presence was confirmed in the irradiated samples. 2-Dodecylcyclobutanone was detectable for 20 days postirradiation. The dose (4.7 kGy) of irradiation applied was below the recommended upper limit for food (10 kGy), and this compound may have potential as a marker for irradiated chicken meat and for other foods containing lipid

  9. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birdwell, Jr, Joseph F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duncan, Nathan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ensor, Dale [Tennessee Technological Univ., Cookeville, TN (United States); Hill, Talon G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rajbanshi, Arbin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roach, Benjamin D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szczygiel, Patricia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sloop, Jr., Frederick V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stoner, Erica L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Neil J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  10. Metal ion extractant in microemulsions: where solvent extraction and surfactant science meet

    International Nuclear Information System (INIS)

    Bauer, C.

    2011-01-01

    The presented work describes the supramolecular structure of mixtures of a hydrophilic surfactant n-octyl-beta-glucoside (C8G1), and the hydrophobic metal ion extractant tributylphosphate (TBP) in n-dodecane/water as well as in the presence of salts. In the first part, basic solvent extraction system, composed of water, oil and extractant, will be introduced. The focus, however, lies on the extraction of multivalent metal ions from the aqueous phase. During this extraction process and in the following thermodynamic equilibrium, aggregation and phase transition in supramolecular assemblies occur, which are already described in literature. Notably, these reports rest on individual studies and specific conclusions, while a general concept is still missing. We therefore suggest the use of generalized phase diagrams to present the physico-chemical behaviour of (amphiphilic) extractant systems. These phase diagrams facilitated the development of a thermodynamic model based on molecular geometry and packing of the extractant molecules in the oil phase. As a result, we are now in the position to predict size and water content of extractant aggregates and, thus, verify the experimental results by calculation.Consequently, the second part presents a systematic study of the aqueous and organic phase of water/C8G1 and water/oil/TBP mixtures. The focus lies on understanding the interaction between metal ions and both amphiphilic molecules by means of small angle x-ray scattering (SAXS), dynamic light scattering (DLS) and UV-Vis spectroscopy. We confirmed the assumption that extraction of metal ions is driven by TBP, while C8G1 remains passive. In the third and last part, microemulsions of C8G1, TBP, water (and salt) and n-dodecane are characterized by small angle neutron scattering (SANS), and chemical analytics (Karl Fischer, total organic carbon, ICP-OES,...). The co-surfactant behaviour of TBP was highlighted by comparison to the classical n-alcohol (4≤n≤8) co

  11. Microwave-Promoted Synthesis of Sulfonated Metallophthalocyanines and Aggregation in Different Solvents

    Directory of Open Access Journals (Sweden)

    Zhenhua Cheng

    2015-01-01

    Full Text Available Five metallosulfophthalocyanines (Fe, Ni, Zn, Co, and Cu compounds were synthesized by microwave irradiation. Compared to the conventional method of synthesis in terms of reaction time and yields, the microwave-promoted synthesis is preferred with high product yield and short reaction time. All synthesized products were characterized with MALDI-TOF mass spectrum, Fourier transform infrared spectroscopy (FT-IR, ultraviolet-visible spectroscopy (UV-Vis, and X-ray diffraction (XRD. Aggregation behavior of the five metallosulfophthalocyanines (MSPc in different solvents was studied by UV-Vis spectroscopy separately in N,N-dimethyl formamide (DMF and NaOH aqueous solution (5%wt. A redshift of maximum absorption wavelength and deviations from Lambert-Beer law with increasing the concentration were observed. The dimerization equilibrium constants (K of the five MSPc were determined, respectively.

  12. Development of a micro-mixer-settler for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Bijendra Kumar; Sampath, M.; Sivakumar, D.; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Nuclear solvent extraction was traditionally performed with packed columns, pulse columns, mixer-settlers and centrifugal extractors. However for rapid separations at micro-flow level, micro mixer-settlers were desired and in the past, few of them were actually designed and operated in nuclear solvent extraction research. In the current era of micro-reactor and microchannel devices, there is a renewed interest for micro-mixer-settlers for costly solvents and specialty solutes where small flow-rate is not an issue. In this article, development of a simple but effective micro-mixer-settler for nuclear solvent extraction is reported. The developed unit was tested with 30% TBP/n-dodecane/nitric acid system and in both the regimes of mass transfer c → d (mass transfer from continuous phase to dispersed phase, also written as c → d) and d → c (mass transfer from dispersed phase to continuous phase, also written as d → c) nearly 100% efficiency was observed in extraction as well as stripping modes of operation. (author)

  13. Microwave-assisted silica-promoted solvent-free synthesis of ...

    Indian Academy of Sciences (India)

    method using microwave irradiation with an excellent yield. The newly ... Table 1. Silica promoted microwave-assisted solvent-free synthesis of quinazolinone ... Time (min). Yield (%)a ..... thanks SC/ST cell of Bangalore University for research.

  14. Ionic liquid solutions as extractive solvents for value-added compounds from biomass.

    Science.gov (United States)

    Passos, Helena; Freire, Mara G; Coutinho, João A P

    2014-12-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.

  15. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    Science.gov (United States)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  16. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    Directory of Open Access Journals (Sweden)

    Ghahramanloo KH

    2017-07-01

    Full Text Available Kourosh Hasanzadeh Ghahramanloo,1 Behnam Kamalidehghan,2 Hamid Akbari Javar,3 Riyanto Teguh Widodo,1 Keivan Majidzadeh,4 Mohamed Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB, 3Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS, 4Breast Cancer Research Center (BCRC Academic Center for Education, Culture and Research, Tehran, Iran Abstract: The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85% and oleic acid (1.64%–18.97%. Thymoquinone (0.72%–21.03% was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05 higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. Keywords: Nigella sativa L., essential oil extraction, supercritical fluid extraction, solvent extraction, fatty acid composition, thymoquinone, linoleic acid

  17. Solvent extraction of uranium and molybdenum in sulfuric media

    International Nuclear Information System (INIS)

    Duarte Neto, J.

    1980-01-01

    A Solvent extraction process for recovering the uranium and molibdenum from the sulfuric acid solution produced from Figueira ores was developed. The leach solution contains molibdenum with a mean ratio Mo/U = 35%. THe solvent used was a terciary amine-Alamine 336, modified with tridecanol in querosine. An investigation was made to evaluate the variables affecting the extraction and stripping of uranium and molibdenum. The Alamine 336 showed a significant extraction power for uranium and molibdenum. In the stripping step of uranium using acidified sodium cloride it was observed the presence of an insoluble amine-molibdenum-arsenic complex. (author) [pt

  18. Characterization of lecithin isolated from anchovy (Engraulis japonica) residues deoiled by supercritical carbon dioxide and organic solvent extraction.

    Science.gov (United States)

    Lee, Seung-Mi; Asaduzzaman, A K M; Chun, Byung-Soo

    2012-07-01

    Lecithin was isolated and characterized from anchovy (Engraulis japonica) deoiled residues using supercritical carbon dioxide (SC-CO(2)) at a semibatch flow extraction process and an organic solvent (hexane) extraction. SC-CO(2) extraction was carried out to extract oil from anchovy at different temperatures (35 to 45 °C) and pressures (15 to 25 MPa). Extraction yield of oil was influenced by physical properties of SC-CO(2) with temperature and pressure changes. The major phospholipids of anchovy lecithin were quantitatively analyzed by high-performance liquid chromatography. Phosphatidylcholine (PC) (68%± 1.00%) and phosphatidylethanolamine (PE) (29%± 0.50%) were the main phospholipids. Thin layer chromatography was performed to purify the individual phospholipids. The fatty acid compositions of lecithin, PC, and PE were analyzed by gas chromatography. A significant amount of eicosapentaenoic acid and docosahexaenoic acid were present in both phospholipids of PC and PE. Emulsions of lecithin in water were prepared through the use of a homogenizer. Oxidative stability of anchovy lecithin was high in spite of its high concentration of long-chain polyunsaturated fatty acids. Lecithin can be totally metabolized by humans, so is well tolerated by humans and nontoxic when ingested. Lecithin from anchovy contain higher amounts of ω-3 fatty acids especially EPA and DHA, it may have positive outcome to use in food and pharmaceutical industries. © 2012 Institute of Food Technologists®

  19. Selection and Evaluation of Alternative Solvents for Caprolactam Extraction

    NARCIS (Netherlands)

    van Delden, M.L.; Kuipers, N.J.M.; de Haan, A.B.

    2006-01-01

    Because of the strict legislation for currently applied solvents in the industrial extraction of caprolactam, being benzene, toluene and chlorinated hydrocarbons, a need exists for alternative, environmentally benign solvents. An experimental screening procedure consisting of several steps was used

  20. Selection and evaluation of alternative solvents for caprolactam extraction

    NARCIS (Netherlands)

    Delden, van M.L.; Kuipers, N.J.M.; Haan, de A.B.

    2006-01-01

    Because of the strict legislation for currently applied solvents in the industrial extraction of caprolactam, being benzene, toluene and chlorinated hydrocarbons, a need exists for alternative, environmentally benign solvents. An experimental screening procedure consisting of several steps was used

  1. Extraction of pesticides in soil using supercritical carbon dioxide co-solvents

    International Nuclear Information System (INIS)

    Forero, Jose R; Castro, Henry I; Guerrero, Jairo A.

    2009-01-01

    In this study, three organic solvents (ethyl acetate, methanol and acetone) were used as co solvent in supercritical fluid extraction (SFE) of a mixture of pesticides with different physical and chemical properties present in soil. These pesticides were determined by gas chromatography with electronic micro capture detector μECD and nitrogen-phosphorus detector (NPD), coupled in parallel. The extractions were performed on spiked soil samples using supercritical carbon dioxide (CO 2 SC) as the extracting phase to 35 celsius degrade and 14 MPa, using 10 mL of each co solvent and it was found that methanol offers the greatest efficiency in the extraction process obtaining recovery values between 51.24 and 123.50%.

  2. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2017-01-01

    Full Text Available The synthesis of Palladium (Pd nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs using an aqueous extract of aerial parts of Origanum vulgare L. (OV as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs were analyzed using ultraviolet-visible spectroscopy (UV-Vis, Fourier-transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and thermal gravimetric analysis (TGA. Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.

  3. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  4. Ultrasonication-Assisted Solvent Extraction of Quercetin Glycosides from ‘Idared’ Apple Peels

    Directory of Open Access Journals (Sweden)

    Gwendolyn M. Huber

    2011-11-01

    Full Text Available Quercetin and quercetin glycosides are physiologically active flavonol molecules that have been attributed numerous health benefits. Recovery of such molecules from plant matrices depends on a variety of factors including polarity of the extraction solvent. Among the solvents of a wide range of dielectric constants, methanol recovered the most quercetin and its glycosides from dehydrated ‘Idared’ apple peels. When ultra-sonication was employed to facilitate the extraction, exposure of 15 min of ultrasound wavelengths of dehydrated apple peel powder in 80% to 100% (v/v methanol in 1:50 (w:v solid to solvent ratio provided the optimum extraction conditions for quercetin and its glycosides. Acidification of extraction solvent with 0.1% (v/v or higher concentrations of HCl led to hydrolysis of naturally occurring quercetin glycosides into the aglycone as an extraction artifact.

  5. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil.

    Science.gov (United States)

    Mahindrakar, A N; Chandra, S; Shinde, L P

    2014-01-01

    Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Solvent extraction of Sb(III) with malachite green into chloroform

    International Nuclear Information System (INIS)

    Shanbhag, B.S.; Turel, Z.R.

    2002-01-01

    A rapid and selective method for the solvent extraction of Sb(III) using malachite green (C. I. Basic green 4) has been described. Effect of different parameters affecting the extraction coefficient value of Sb(III) such as acidity, time of equilibration, KI concentration, solvents, anions, etc. has been studied. For various elements the separation factor has been evaluated. The stoichiometry of the extracted species has been determined by the method of substoichiometric extraction. The decontamination factor for some elements using substoichiometric quantities of the extracting agent has been evaluated. Radiotracers were employed for the extraction studies. The method elaborated has been employed for the quantitative determination of antimony in normal, benign and cancerous tissues of the human brain. (author)

  7. Synthesis and characterization of nanoparticles capped with medicinal plant extracts

    Science.gov (United States)

    Rekulapally, Sujith R.

    In this study, synthesis, characterization and biological application of series nanometal (silver, Ag) and nanometal oxide (titania, TiO2) were carried out. These nanomaterials were prepared using wet-chemistry method and then coated using natural plant extract. Three medicinal plants, namely Zingiber officinale (Ginger), Allium sativum (Garlic) and Capsicum annuum (Chili) were chosen as grafting agent to decrease the side-effects and increase the efficiency of NPs towards living organism. Extraction conditions were controlled under 60-100 °C for 8 hrs. Ag and TiO2 NPs were fabricated using colloidal chemistry and variables were controlled at ambient condition. The band gap of TiO2 NPs used as disinfectant was also modified through coating the medicinal plant extracts. The medicinal plant extracts and coated NPs were measured using spectroscopic methods. Ultraviolet-visible spectra indicated the Ag NPs were formed. The peak at 410 nm resulted from the electrons transferred from their ground to the excited state. The broadened full width at half maximum (FWHM) suggested the ultrafine particles were obtained. The lipid soluble compounds, phenols, tri-terpenoids, flavanoids, capsaicinoids, flavonoids, carotenoids, steroids steroidal glycosides, and vitamins were determined from the high performance liquid chromatographical analyses. X-ray powder diffraction indicated that the face-centered cubic Ag (PDF: 00-004-0783, a = 4.0862A, a = 90°) and anatase TiO2 (PDF: 01-08-1285, a = 3.7845, c = 9.5143A, a = 90°) were obtained using colloidal chemistry. Bactericidal activity indicated that these core-shelled TiO 2 were effective (MBC=0.6 ppm, within 30 mins) at inactivating Gram-positive and Gram-negative bacteria. It is proposed that the medicinal extracts enhanced the potency of NPs against bacteria. From our previous study, the Ag NPs were highly effective at inactivating both bacteria.

  8. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design.

    Science.gov (United States)

    Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko

    2012-12-01

    The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.

  9. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems

    Directory of Open Access Journals (Sweden)

    Shabnam Sepahpour

    2018-02-01

    Full Text Available This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and the ferric reducing antioxidant power (FRAP assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC. All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83–13.78% and FRAP (84.9–2.3 mg quercetin/g freeze-dried crude extract, followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively, for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract, 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  10. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    Science.gov (United States)

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  11. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    Science.gov (United States)

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (pMonosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in May and October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    During routine maintenance, the coalescers utilized in the Modular Caustic-Side Solvent Extraction Unit (MCU) processing of Salt Batch 6 and a portion of Salt Batch 7 were sampled and submitted to the Savannah River National Laboratory (SRNL) for characterization, for the purpose of identifying solid phase constituents that may be accumulating in these coalescers. Specifically, two samples were received and characterized: A decontaminated salt solution (DSS) coalescer sample and a strip effluent (SE) coalescer sample. Aliquots of the samples were analyzed by XRD, Fourier Transform Infrared (FTIR) Spectroscopy, SEM, and EDS. Other aliquots of the samples were leached in acid solution, and the leachates were analyzed by ICP-AES. In addition, modeling was performed to provide a basis for comparison of the analytical results.

  13. Solvent free one pot synthesis of amidoalkyl naphthols over phosphotungstic acid

    Directory of Open Access Journals (Sweden)

    Divya P. Narayanan

    2017-07-01

    Full Text Available Montmorillonite KSF clay was effectively modified by the encapsulation of phosphotungstic acid into the clay layers via sonication followed by incipient wet impregnation method. The prepared catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM techniques. The catalytic activities of the prepared systems were investigated in the solvent free synthesis of amidoalkyl naphthols by the multicomponent one-pot condensation of an aldehyde, β-naphthol and an amide or urea. Excellent yield, shorter reaction time, easy work-up, and reusability of the catalyst are the main attractions of this green procedure.

  14. Solvent extraction for remediation of manufactured gas plant sites

    International Nuclear Information System (INIS)

    Luthy, R.G.; Dzombak, D.A.; Peters, C.; Ali, M.A.; Roy, S.B.

    1992-12-01

    This report presents the results of an initial assessment of the feasibility of solvent extraction for removing coal tar from the subsurface or for treating contaminated soil excavated at manufactured gas plant (MGP) sites. In situ solvent extraction would involve injection, recovery, and reclamation for reinjection of an environmentally-benign, water-miscible solvent. Accelerated dissolution and removal of coaltar from the subsurface might be desirable as a remedial approach if excavation is not practical (e.g., the site underlies facilities in current use), direct pumping of coal tar is ineffective, and bioremediation is not feasible because of the presence of high concentrations of coal tar. Both laboratory experiments and engineering evaluations were performed to provide a basis for the initial feasibility assessment. Laboratory work included identification and evaluation of promising solvents, measurement of fundamental properties of coal tar-solvent-water systems, and measurement of rates of dissolution of coal tar in porous media into flowing solvent-water solutions. Engineering evaluations involved identification of common hydrogeologic features and contaminant distributions at MGP sites, and identification and evaluation of possible injection-recovery well deployment schemes. A coupled flow-chemistry model was developed for simulation of the in situ process and evaluation of the well deployment schemes. Results indicate that in situsolvent extraction may be able to recover a significant amount of coal tar from the subsurface within a reasonable time frame (on the order of one year or so) provided that subsurface conditions are conducive to process implementation. Some important implementation issues remain to be addressed

  15. Solvent extraction and its practical application for the recovery of copper and uranium

    International Nuclear Information System (INIS)

    Reuter, J.

    1975-01-01

    In recent years solvent extraction has been developed to a stage that allows practical application first for the recovery of uranium and later also for winning copper from low-grade acid-soluble ores. By now it has been realized in several plants with great technical and ecomomic success. Solvent extraction includes the following essential operations: leaching, solvent extraction, back extraction of the organically bonded valuable mineral to an acid, aqueous solution and finally separation of the valuable metal from the final acid by precipitation or electrolytic procedures. Upon assessing the cost of the solvent extraction process for the recovery of copper it turns out that from an economic point of view it is significantly superior to the conventional cementation process. (orig.) [de

  16. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    Science.gov (United States)

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  17. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    Science.gov (United States)

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  18. Solvent extraction of noble metals by formazans

    International Nuclear Information System (INIS)

    Grote, M.; Hueppe, U.; Kettrup, A.

    1984-01-01

    The extraction properties of ion-pairs composed of quaternary ammonium cations and a sulphonated formazan were compared with those of an unsulphonated formazan, for various solvent media. In dichloromethane the combined system behaves as a 'coloured anion-exchanger', with displacement of the sulphonated formazan, whereas in toluene Pd(II) and Ag(I) are extracted as the metal formazan chelates from aqueous medium. The rates of extraction are remarkably higher than with the simple extractants. Because of the higher stability only the simple chelating extraction systems afford satisfactory separation of Pd(II) from excess of Pt(IV) and of Ag(I) from Cu(II). The extracted metals can be stripped and the extractant regenerated. (author)

  19. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    Science.gov (United States)

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  20. Solvent extraction of radionuclides from aqueous tank waste

    International Nuclear Information System (INIS)

    Bonnesen, P.; Sachleben, R.; Moyer, B.

    1996-01-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process to remove the fission products 99 Tc, 90 Sr, and 137 Cs from alkaline tank waste, such as those stored at Hanford and Oak Ridge. As such, this task expands on FY 1995's successful development of a solvent-extraction and stripping process for technetium separation from alkaline tank-waste solutions. This process now includes the capability of removing both technetium and strontium simultaneously. In this form, the process has been named SRTALK and will be developed further in this program as a prelude to developing a system capable of removing technetium, strontium, and cesium

  1. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  2. The Solvent Effectiveness on Extraction Process of Seaweed Pigment

    Directory of Open Access Journals (Sweden)

    Warkoyo Warkoyo

    2011-09-01

    Full Text Available Eucheuma cottonii seaweed is a species of seaweed cultured in Indonesian waters, because its cultivation is relatively easy and inexpensive. It has a wide variety of colors from green to yellow green, gray, red and brown, indicating photosynthetic pigments, such as chlorophyll and carotenoids. An important factor in the effectiveness of pigment extraction is the choice of solvent. The correct type of solvent in the extraction method of specific natural materials is important so that a pigment with optimum quality that is also benefical to the society can be produced. The target of this research is to obtain a high quality solvent type of carotenoid pigment. This research was conducted using a randomized block design with three (3 replications involving two factors namely solvent type (4 levels: aceton, ethanol, petroleum benzene, hexan & petroleum benzene and seaweed color (3 levels: brown, green and red. Research results indicated that each solvent reached a peak of maximal absorbance at  410-472 nm, namely carotenoids. The usage of acetone solvent gave the best pigment quality. Brown, green and red seaweed have pigment content of 1,28 mg/100 g; 0,98 mg/100 g; 1,35 mg/100 g and rendement of 6,24%; 4,85% and 6,65% respectively.

  3. Extraction of europium with thenoyltrifluoroacetone into alcohol, ketone and ester solvents

    International Nuclear Information System (INIS)

    Akiba, K.; Kanno, T.

    1980-01-01

    The effect of solvent has been studied on the extraction of tris-thenoyltrifluoroacetone (TTA) chelate of europium(III). Donor-active solvents (S) greatly promote the extraction owing to the formation of solvate species EuA 3 .mS (m = 1,2). Linear relations were established between the distribution of ratios of europium (Dsub(Eu)) and the partition constants of TTA (Psub(HA)); log Dsub(Eu) (at a definite pA) = a log Psub(HA) + b, where constants a and b were empirically determined for each series of solvents. The regularity is interpreted in terms of dual roles of solvent as donor and as medium. (author)

  4. Parameters Affecting the Synthesis of (Z)-3-hexen-1-yl acetate by Transesterifacation in Organic Solvent

    International Nuclear Information System (INIS)

    Liaquat, M.; Mehmood, T.; Khan, S. U.; Ahmed, Z.; Saeed, M.; Aslam, S.; Khan, J.; Ali, N.; Jahangir, M.; Nawaz, M.

    2015-01-01

    (Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Crude acetone powders extracted lipases from five plant seedlings of rapeseed, wheat, barley, linseed and maize were investigated for their use in the synthesis of flavor esters with vinyl acetate by transesterification in organic solvents. Rape seedlings showed the highest degree of (Z)-3-hexen-1-yl acetate synthesis with a yield of 76 percentage in 72 h. Rape seedling was chosen as promising biocatalyst to evaluate the effects of some of reaction parameters on (Z)-3-hexen-1-yl acetate synthesis using vinyl acetate and (Z)-3-hexen-1-ol at 40 Degree C in n-hexane with 50 g/L enzyme as catalyst. Acetonitrile proved distinctly superior solvent. The percent remaining activity relative to fresh seedlings powders was highest in wheat and barley. Highest ester yield of 80 percentage was obtained with 0.8 M of substrate concentrations within 48 h. Crude rapeseed lipase afforded a conversion 93 percentage of ethyl alcohol. Higher ester yield was achieved within first 24 h with added molecular. The crude rape seedlings lipase is low cost yet effective, showed potential for the production of green note esters industrially. (author)

  5. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  6. Influence of uranyl dibutylphosphate on the UV/VIS spectrophotometric online monitoring of uranium in tributylphosphate/hydrocarbon solvent

    International Nuclear Information System (INIS)

    Creech, E.T.; Rutenberg, A.C.; Smithwick, R.W.; Seals, R.D.

    1984-01-01

    In the uranium recovery process at the Y-12 Plant uranium is recovered from aqueous uranyl solutions by extraction into a solvent consisting of 30% tributylphosphate (TBP) and 70% hydrocarbon solvent. Within this process the uranium is continuously monitored by a UV/VIS absorbance measurement of the uranyl/tributylphosphate complex in the organic phase. The uranium is then further extracted from the organic phase to a final water phase. Dibutylphosphate (DBP), which is a decomposition product of TBP, builds up in the organic solvent. A very strong complex of uranyl/dibutylphosphate is formed which cannot be extracted into the aqueous phase. Prior to this work the uranyl/dibutylphosphate complex absorbance was assumed to be the same as the uranyl tributylphosphate complex. To determine the effect of the presence of uranyl/dibutylphosphate on the continuous UV/VIS monitor required (a) the purification of commercial dibutylphosphate, (b) the synthesis, and (c) the characterization of uranyl/dibutylphosphate

  7. Solvent extraction of indium and gallium complexes with bromopyrogallol red by mixed extractants containing chloroform, a polar organic solvent and monocarboxylic acids

    International Nuclear Information System (INIS)

    Pyatnitskij, I.V.; Lysenko, O.V.; Kolomiets, L.L.

    1987-01-01

    Solvent extraction of indium and gallium complexes with bromopyragallol red (BPR) has been studied using mixed extractants containing chloroform, capronic acid (HL) and 1-pentanol (S) (extractant 1), and chloroform, HL, S and propionic acid (extractant 2). The latter is more selectie and extracts only the indium complex. Optimal conditions have been found for the extraction of In-BRP complex (pH 6.3-6.5; C BPR 1.5x10 -4 M) its composition has been estimated and discussed

  8. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    Science.gov (United States)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  9. Novel Fluorinated Tensioactive Extractant Combined with Flotation for Decontamination of Extractant Residual during Solvent Extraction

    Science.gov (United States)

    Wu, Xue; Chang, Zhidong; Liu, Yao; Choe, Chol Ryong

    2017-12-01

    Solvent-extraction is widely used in chemical industry. Due to the amphiphilic character, a large amount of extractant remains in water phase, which causes not only loss of reagent, but also secondary contamination in water phase. Novel fluorinated extractants with ultra-low solubility in water were regarded as effective choice to reduce extractant loss in aqueous phase. However, trace amount of extractant still remained in water. Based on the high tensioactive aptitude of fluorinated solvent, flotation was applied to separate fluorinated extractant remaining in raffinate. According to the data of surface tension measurement, the surface tension of solution was obviously decreased with the addition of fluorinated extractant tris(2,2,3,3,4,4,5,5-octafluoropentyl) phosphate (FTAP). After flotation, the FTAP dissolved in water can be removed as much as 70%, which proved the feasibility of this key idea. The effects of operation time, gas velocity, pH and salinity of bulk solution on flotation performance were discussed. The optimum operating parameters were determined as gas velocity of 12ml/min, operating time of 15min, pH of 8.7, and NaCl volume concentration of 1.5%, respectively. Moreover, adsorption process of FTAP on bubble surface was simulated by ANSYS VOF model using SIMPLE algorithm. The dynamic mechanism of flotation was also theoretically investigated, which can be considered as supplement to the experimental results.

  10. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products.

    Science.gov (United States)

    Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda

    2018-01-15

    An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Operation of a full cycle of solvent extraction under IMPUREX process conditions

    International Nuclear Information System (INIS)

    Andaur, C.; Falcon, Marcelo F.; Granatelli, Fernado; Russo Analia; Vaccaro, Jorge O.; Gauna, Alberto C.

    1999-01-01

    This work describes a series of experiences performed at the Solvent Extraction Laboratory of the Nuclear Materials and Fuel Unity in Ezeiza Atomic Center. The experiences were mainly focused on the setup and operation of a full cycle of uranium solvent extraction, using IMPUREX process. (author)

  12. Deacidification of Soybean Oil Combining Solvent Extraction and Membrane Technology

    Directory of Open Access Journals (Sweden)

    M. L. Fornasero

    2013-01-01

    Full Text Available The aim of this work was to study the removal of free fatty acids (FFAs from soybean oil, combining solvent extraction (liquid-liquid for the separation of FFAs from the oil and membrane technology to recover the solvent through nanofiltration (NF. Degummed soybean oil containing 1.05 ± 0.10% w/w FFAs was deacidified by extraction with ethanol. Results obtained in the experiences of FFAs extraction from oil show that the optimal operating conditions are the following: 1.8 : 1 w : w ethanol/oil ratio, 30 minutes extraction time and high speed of agitation and 30 minutes repose time after extraction at ambient temperature. As a result of these operations two phases are obtained: deacidified oil phase and ethanol phase (containing the FFAs. The oil from the first extraction is subjected to a second extraction under the same conditions, reducing the FFA concentration in oil to 0.09%. Solvent recovery from the ethanol phase is performed using nanofiltration technology with a commercially available polymeric NF membrane (NF-99-HF, Alfa Laval. From the analysis of the results we can conclude that the optimal operating conditions are pressure of 20 bar and temperature of 35°C, allowing better separation performance: permeate flux of 28.3 L/m2·h and FFA retention of 70%.

  13. New solvent extraction process for zirconium and hafnium

    International Nuclear Information System (INIS)

    Takahashi, M.; Katoh, Y.; Miyazaki, H.

    1984-01-01

    The authors' company developed a new solvent extraction process for zirconium and hafnium separation, and started production of zirconium sponge by this new process in September 1979. The process utilizes selective extraction of zirconium oxysulfate using high-molecular alkyl amine, and has the following advantages: 1. This extraction system has a separation factor as high as 10 to 20 for zirconium and hafnium in the range of suitable acid concentration. 2. In the scrubbing section, removal of all the hafnium that coexists with zirconium in the organic solvent can be effectively accomplished by using scrubbing solution containing hafnium-free zirconium sulfate. Consequently, hafnium in the zirconium sponge obtained is reduced to less than 50 ppm. 3. The extractant undergoes no chemical changes but is very stable for a long period. In particular, its solubility in water is small, about 20 ppm maximum, posing no environmental pollution problems such as are often caused by other process raffinates. At the present time, the zirconium and hafnium separation operation is very stable, and zirconium sponge made by this process can be applied satisfactorily to nuclear reactors

  14. Characterization of sunflower oils obtained separately by pressing and subsequent solvent extraction from a new line of seeds rich in phytosterols and conventional seeds

    Directory of Open Access Journals (Sweden)

    Aguirre Marta R.

    2014-11-01

    Full Text Available In this study we evaluate the chemical composition of sunflower oils obtained separately by pressing and subsequent solvent extraction from a new seeds rich in phytosterols (IASP-18 and conventional seeds (HA-89. Results have shown that the total content of oil was much lower in the IASP-18 (18.1% than in the conventional (37.5% seeds. The extraction yield obtained by pressing was as low as 3% in the IASP-18 seeds and 37.5% in HA-89, while in the solvent extraction it was of the same order (~18 wt% on seeds extracted by pressing for the two types of seeds. No significant changes in the fatty acid composition were found between the oils extracted by the two procedures, but the pressed oils presented significantly lower acidity and larger content of the unsaponifiable fraction. Expressed as free sterols, the total sterols were 37–38% more concentrated in the oils extracted with solvent, reaching amounts of 13 700 and 6500 mg/kg in the IASP-18 and HA-89 oils, respectively. No substantial differences were found in the composition of total sterols analysed as free sterols between the oils extracted with the two procedures, but the contents of free sterols and sterol glycosides were much higher in the oils extracted with solvent.

  15. Optimization of a flow injection analysis system for multiple solvent extraction

    International Nuclear Information System (INIS)

    Rossi, T.M.; Shelly, D.C.; Warner, I.M.

    1982-01-01

    The performance of a multistage flow injection analysis solvent extraction system has been optimized. The effect of solvent segmentation devices, extraction coils, and phase separators on performance characteristics is discussed. Theoretical consideration is given to the effects and determination of dispersion and the extraction dynamics within both glass and Teflon extraction coils. The optimized system has a sample recovery similar to an identical manual procedure and a 1.5% relative standard deviation between injections. Sample throughput time is under 5 min. These characteristics represent significant improvements over the performance of the same system before optimization. 6 figures, 2 tables

  16. Solvent effects on extraction of polycyclic aromatic hydrocarbons in ambient aerosol samples

    Directory of Open Access Journals (Sweden)

    Flasch Mira

    2016-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs in the ambient particulate matter pose one of the most important issues in the focus of environmental management. The concentration of their representative, Benzo(apyrene (BaP, undergoes limitations according to European Union directive. However, a successful control over the pollution levels and their sources is limited by the high uncertainty of analytical and statistical approaches used for their characterization. Here we compare differences in PAH concentrations related to the use of different solvents in the course of ultrasonic extraction of a certified reference material (PM10-like PAH mixture and filter samples of ambient particulate matter collected in Austria for the CG-MS PAH analysis. Using solvents of increasing polarity: Cyclohexane (0,006, Toluene (0,099, Dichloromethane (0,309, Acetone (0,43 and Acetonitrile (0,460, as well as mixtures of those, filters representing high and low concentrations of particulate matter were investigated. Although some scatter of the obtained concentrations was observed no trend related to the polarity of the solvent became visible. Regarding the reproducibility, which can be expected of PAH analysis no significant difference between the different solvents was determined. This result is valid for all compounds under investigation.

  17. Effects of Extraction Solvents on the Quantification of Free Amino Acids in Lyophilised Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Andreea STĂNILĂ

    2018-05-01

    Full Text Available The aim of this work was to test some solvents in order to improve the free amino acids extraction from lyophilised brewer’s yeast. The brewer’ yeast was treated with four types of extraction solvents: Solvent I – acetonitrile 25%/HCl 0.01M (ACN; Solvent II – ethanol 80%; solvent III – HCl 0.05M/deionized water (1/1 volume; Solvent IV – HCl 0.05M/ethanol 80% (1/1 volume. The supernatants were analysed by HPLC-DAD-ESI-MS method. Acetonitrile provided the less quantities and number of amino acids extracted due to its weaker polarity. Solvent II and IV (ethanol, respectively acidified ethanol, which have an increased polarity, extracted 15 amino acids due to the addition of HCl in solvent IV. Solvent III (acidified water proved to be the best extraction solvent for the amino acids from brewer’s yeast providing the separation of 17 compounds: GLN, ASN, SER, GLY, ALA, ORN, PRO, HIS, LYS, GLU, TRP, LEU, PHE, ILE, AAA, HPHE, TYR.

  18. Exploration and characterization of new synthesis methods for C60 colloidal suspensions in water

    Science.gov (United States)

    Hilburn, Martha E.

    Buckminsterfullerene, C60, has been used in the production of several commercial products from badminton racquets and lubricants for their mechanical properties to cosmetics and even dietary supplements for their "antioxidant" properties. Multi-ton production of C60 began in 2003 encouraging serious consideration of its fate in the environment in the case of an accidental release or improper disposal. Although C60 is practically insoluble in water, it readily forms stable aqueous colloidal suspensions (termed nC60) through solvent exchange methods or long-term vigorous stirring in water. Two new solvent exchange methods for synthesizing nC60 are presented. These methods combine key advantages of multiple existing synthesis methods including high yield, narrow particle size distribution, short synthesis time, and an absence of solvents such as tetrahydrofuran that have historically caused problems in laboratory synthesized aggregates. The resulting samples are attractive candidates for use in controlled environmental impact, biological, and toxicity studies. An improved method for quantifying residual solvents in nC60 samples utilizing solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) is also discussed.

  19. Application of Solvent-In-Pulp Technique for Uranium Extraction from Mineralization Granite

    International Nuclear Information System (INIS)

    Ali, M.M.; Hussein, A.E.M.; Youseif, W.M.; El Didamony, A.M.

    2017-01-01

    Investigations on uranium extraction from a representative mineralized granite sample (Gattar granite GII) by solvent-in-pulp (SIP) technique were carried out in the present study. For this purpose, the solvent (tri-butyl amine) (TBA) was mixed with the leaching slurry without prior filtration. The influence of various factors affecting the SIP process, such as contact time, solvent concentration, dilution factor, type of surfactant, surfactant/solid ratio were studied. About 91% uranium extraction efficiency was attained by the application of the chosen extraction SIP conditions. Also, about 96% of the loaded uranium could be stripped by using sulfuric acid as an effective stripping agent

  20. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  1. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  2. Synthesis and Characterization of Furanic Compounds

    Science.gov (United States)

    2013-09-01

    Furanamine. Solvent 2-Furanamine Acetone — Chloroform — Dimethylacetamide (DMAc) — Dimethylsulfoxide ( DMSO ) + Methanol ± Tetrahydrofuran (THF...4 Figure 4. 1 H NMR of 2-Furanamine in D2O solvent ...Spectra for the furanic compounds were obtained in a 0.1%–0.5% deuterated solvent solutions. 3. Synthesis 3.1 General The following monomers and

  3. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    Science.gov (United States)

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Solvent extraction in analytical chemistry of tungsten (Review)

    International Nuclear Information System (INIS)

    Ivanov, V.M.; Busev, A.I.; Sokolova, T.A.

    1975-01-01

    The use of extraction for isolating and concentrating tungsten with subsequent determination by various methods is considered. For tungsten extractants of all types are employed: neutral, basic and acidic. Neutral extractants are used for isolating and concentrating tungsten, basic and acidic ones are employed, as a rule, for the isolation and subsequent determination of tungsten. This type of extractants is highly promising, since, selectively extracting tungsten, they allow its simultaneous determination. Neutral extractants are oxygen-containing solvents, TBP; basic extractants are aniline, pyridine, 1-naphthylamine, trialkylbenzylammoniumanitrate. As acidic reagents use is made of 8-oxyquinoline and its derivatives, oximes and hydroxamic acids, β-diketones, carbaminates. In the extraction radioactive isotope 185 W is employed

  5. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  6. Alternative solvents for natural products extraction

    CERN Document Server

    Chemat, Farid

    2014-01-01

    This book presents a complete picture of the current state-of-the-art in alternative and green solvents used for laboratory and industrial natural product extraction in terms of the latest innovations, original methods and safe products. It provides the necessary theoretical background and details on extraction, techniques, mechanisms, protocols, industrial applications, safety precautions and environmental impacts. This book is aimed at professionals from industry, academicians engaged in extraction engineering or natural product chemistry research, and graduate level students. The individual chapters complement one another, were written by respected international researchers and recognized professionals from the industry, and address the latest efforts in the field. It is also the first sourcebook to focus on the rapid developments in this field.

  7. Simulation of solvent extraction in reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shekhar; Koganti, S B [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-06-01

    A SIMulation Program for Solvent EXtraction (SIMPSEX) has been developed for simulation of PUREX process used in nuclear fuel reprocessing. This computer program is written in double precision structured FORTRAN77 and at present it is used in DOS environment on a PC386. There is a plan to port it to ND supermini computers in future. (author). 5 refs., 3 figs.

  8. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    Science.gov (United States)

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  9. Removal of VOCs from groundwater using membrane-assisted solvent extraction

    International Nuclear Information System (INIS)

    Hutter, J.C.; Vandegrift, G.F.; Nunez, L.; Redfield, D.H.

    1992-01-01

    A membrane-assisted solvent extraction (MASX) system coupled to a membrane-assisted distillation stripping (MADS) system for use in decontaminating groundwater is discussed. Volatile organic compounds (VOCs) are extracted in the MASX using a sunflower oil solvent. In the MADS, VOCs are stripped from the sunflower oil, and the oil is recycled to the MASX. Thermodynamic data for the sunflower oil-water-VOCs system were experimentally collected. Published membrane-mass transfer results along with these data were used to design the MASX and MADS modules

  10. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  11. Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ

    International Nuclear Information System (INIS)

    Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.

    2016-01-01

    Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction

  12. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  13. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  14. “Flash” Solvent-free Synthesis of Triazoles Using a Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Ibtissem Jlalia

    2009-01-01

    Full Text Available A solvent-free synthesis of 1,4-disubstituted-1,2,3-triazoles using neat azides and alkynes and a copper(I polymer supported catalyst (Amberlyst® A21•CuI is presented herein. As it provides the products in high yields and purities within minutes, this method thus being characterized as a "flash" synthesis, and was exemplified through the synthesis of a 24-compound library on a small scale.

  15. Exploiting Sequential Injection on-line Solvent Extraction/Back Extraction with Detection by ETAAS or ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    presents an on-line SI-solvent extraction/back extraction procedure used in connection with detection by either ETAAS or ICPMS. Incorporating two newly designed dual-conical gravitational phase separators, its performance is demonstrated for the determination of various metals in reference materials.......Electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are highly sensitive techniques for trace metal analyses. Nevertheless, separation/preconcentration procedures are often called for in order to overcome their inherent low matrix...... tolerances. With detection by ETAAS, separation/preconcentration by solvent extraction has enjoyed much use. However, this approach is not necessarily the optimal one since introduction of organic eluates directly into the graphite tube might lead to deteriorated reproducibility and lower sensitivity...

  16. Microfluidic process monitor for industrial solvent extraction system

    Science.gov (United States)

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  17. Grinding solvent-free Paal-Knorr pyrrole synthesis on smectites as ...

    African Journals Online (AJOL)

    Journal Home > Vol 32, No 1 (2018) > ... An environmentally benign method for the synthesis of N-substituted pyrroles from one-pot solvent-free ... conditions make this protocol practical, environmentally friendly and economically attractive.

  18. Progress in radiation chemistry of crown ether extractants used for the solvent extraction of "9"0Sr

    International Nuclear Information System (INIS)

    Peng Jing; Yu Chuhong; Cui Zhenpeng; Zhai Maolin

    2011-01-01

    The separation of the long-lived fission products from dissolved nuclear fuel could improve the safe disposal of high-level nuclear wastes and reduce their threaten to human being and environment. Since the extractant system will be exposed to high radiation environment during the solvent extraction of long-lived fission products. The understanding of radiation chemistry of extractants is very important for practical design of extractant system. The radiation chemistry of crown ether systems proposed for use in the solvent extraction of one of fission products "9"0Sr were reviewed based on the study on the radiation stability and radiolysis mechanism of crown ether system. Finally some challenges were suggested. (authors)

  19. Green thermal-assisted synthesis and characterization of novel cellulose-Mg(OH)2 nanocomposite in PEG/NaOH solvent.

    Science.gov (United States)

    Ponomarev, Nikolai; Repo, Eveliina; Srivastava, Varsha; Sillanpää, Mika

    2017-11-15

    Synthesis of nanocomposites was performed using microcrystalline cellulose (MCC), MgCl 2 in PEG/NaOH solvent by a thermal-assisted method at different temperatures by varying time and the amount of MCC. Results of XRD, FTIR, and EDS mapping showed that the materials consisted of only cellulose (CL) and magnesium hydroxide (MH). According to FTIR and XRD, it was found that crystallinity of MH in cellulose nanocomposites is increased with temperature and heating time and decreased with increasing of cellulose amount. The PEG/NaOH solvent has a significant effect on cellulose and Mg(OH) 2 morphology. BET and BJH results demonstrated the effects of temperature and cellulose amount on the pore size corresponding to mesoporous materials. TG and DTG analyses showed the increased thermal stability of cellulose nanocomposites with increasing temperature. TEM and SEM analyses showed an even distribution of MH nanostructures with various morphology in the cellulose matrix. The cellulose presented as the polymer matrix in the nanocomposites. It was supposed the possible interaction between cellulose and Mg(OH) 2 . The novel synthesis method used in this study is feasible, cost-efficient and environmentally friendly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  1. Insight of solvent extraction process: Reassessment of trace level determinations

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouleeswaran, S. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400094 (India); Ramkumar, Jayshree, E-mail: jrk@barc.gov.in [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400094 (India); Basu, M. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400094 (India)

    2016-09-28

    Solvent extraction is hoary yet modern technique with great scope of research due to the various intriguing phenomena in the system. Tri-n-butyl phosphate (TBP) is a well known extractant which has been extensively used for separation of uranium matrix prior to elemental profiling. In this paper, one of the impurities namely Fe is being considered as it posed a challenge to the separation due to its co-extraction with TBP along with uranium. In these studies, for the first time, the existence of cation-cation inner sphere complexes between the UO{sub 2}{sup 2+}and Fe{sup 3+} ions in both aqueous and organic phases have been establisted in addition to the selective separation of iron from uranium sample matrix using only TBP. The data from both spectrophotometric and thermophysical studies corroborated one another confirming the presence of cation-cation interactions (CCIs). The developed solvent extraction with only TBP showed almost no interferences on the iron extraction from matrix uranium and other co-ions like aluminum and copper. This has been the first time application of pure TBP for selective removal of iron from uranium samples. The procedure possessed excellent reproducibility and robustness. - Graphical abstract: Spectrophotometric studies indicate a possibility of cation-cation inner sphere complex formation between the ions (UO{sub 2}{sup 2+} and Fe{sup 3+}) in aqueous phase to a great extent but it is reduced in the organic phase due to the solvation of ions by TBP molecules. These results are corroborated by those of thermophysical studies. Solvent extraction procedure suitably modified to ensure selective and complete removal of iron from uranium matrix prior to its analysis by ICP-OES. The developed methodology was applied to analysis of uranium samples. - Highlights: • The presence of cation – cation inner sphere complexes between UO{sub 2}{sup 2+} and Fe{sup 3+} established. • A decreased tendency in organic layer due to TBP solvation.

  2. Block-copolymer-assisted synthesis of hydroxyapatite nanoparticles with high surface area and uniform size

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Huang, Masataka Imura, Yoshihiro Nemoto, Chao-Hung Cheng and Yusuke Yamauchi

    2011-01-01

    Full Text Available We report the synthesis of hydroxyapatite nanoparticles (HANPs by the coprecipitation method using calcium D-gluconate and potassium hydrogen phosphate as the sources of calcium and phosphate ions, respectively, and the triblock copolymer F127 as a stabilizer. The HANPs were characterized using scanning electron microscopy, x-ray diffraction, and nitrogen adsorption/desorption isotherms. Removal of F127 by solvent extraction or calcination alters the structure of HANPs. The solvent-extracted HANPs were single crystals with their lang001rang axis oriented along the rod axis of the HANP, whereas the calcined HANPs contained two crystal phases that resulted in a spherical morphology. The calcined HANPs had much higher surface area (127 m2 g−1 than the solvent-extracted HANPs (44 m2 g−1.

  3. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation

    International Nuclear Information System (INIS)

    Wei Lu; Fan Youjun; Wang Honghui; Tian Na; Zhou Zhiyou; Sun Shigang

    2012-01-01

    Highlights: ► The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps. ► The as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. ► The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size. - Abstract: The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the electrocatalyst of Pt nanoflowers. The uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps were characterized by SEM, TEM, XRD, XPS and electrochemical tests. The results illustrated that the as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size, which can be applied in shape-controlled synthesis of other noble metal nanoparticles with high catalytic activity.

  4. Recombinant human proinsulin from transgenic corn endosperm: solvent screening and extraction studies

    Directory of Open Access Journals (Sweden)

    C. S. Farinas

    2007-09-01

    Full Text Available Recombinant pharmaceutical proteins are being produced in different systems such as bacteria and mammalian cell cultures. The use of transgenic plants as bioreactors has recently arisen as an alternative system offering many practical and economic advantages. However, finding an optimum strategy for the downstream processing (DSP of recombinant proteins from plants still remains a challenge. In this work, we studied the extraction of recombinant human proinsulin (rhProinsulin produced in the endosperm of transgenic corn seeds. An efficient extraction solvent was selected and the effects of temperature, solvent-to-solid ratio, time, and impeller rotational speed on the extraction were evaluated using an experimental design. After an extraction kinetics study, temperature was further evaluated to maximize rhProinsulin concentration in the extracts and to minimize the native corn components carbohydrates, phenolic compounds, and proteins. A high efficiency condition for extracting rhProinsulin with the selected solvent - 50 mM sodium bicarbonate buffer pH 10.0 and 5 mM DTT - was an extraction time of 2 h at a solvent-to-solid ratio of 10:1 and 25º C. The maximum rhProinsulin concentration in the extracts at that condition was 18.87 mg l-1 or 0.42% of the total soluble protein. These values are within the range in which the production of pharmaceutical proteins in plants can be competitive with other expression systems. The results presented provide information for the development of an additional production platform for the hormone insulin.

  5. Exploiting sequential injection on-line solvent extraction/back extraction with detection by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    presents an on-line SI-solvent extraction/back extraction procedure used in connection with detection by either ETAAS or ICPMS. Incorporating two newly designed dual-conical gravitational phase separators, its performance is demonstrated for the determination of various metals in reference materials.......Electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are highly sensitive techniques for trace metal analyses. Nevertheless, separation/preconcentration procedures are often called for in order to overcome their inherent low matrix tolerance....... With detection by ETAAS, separation/preconcentration by solvent extraction has enjoyed much use. However, this approach is not necessarily the optimal one since introduction of organic eluates directly into the graphite tube might lead to deteriorated reproducibility and lower sensitivity. And for ICPMS...

  6. Cesium Removal from Savannah River Site Radioactive Waste Using the Caustic Side Solvent Extraction (CSSX) Process

    International Nuclear Information System (INIS)

    WALKER, DARREL

    2004-01-01

    Researchers at the Savannah River Technology Center (SRTC) successfully demonstrated the Caustic-Side Solvent Extraction (CSSX) process flow sheet using a 33-stage, 2-cm centrifugal contactor apparatus in two 24-hour tests using actual high level waste. Previously, we demonstrated the solvent extraction process with actual SRS HLW supernatant solution using a non-optimized solvent formulation. Following that test, the solvent system was optimized to enhance extractant solubility in the diluent by increasing the modifier concentration. We now report results of two tests with the new and optimized solvent

  7. Predictive model for ionic liquid extraction solvents for rare earth elements

    International Nuclear Information System (INIS)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-01-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF 3 -ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF 3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests

  8. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    Science.gov (United States)

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  9. Evaluation of extractants and chelating resins in polishing actinide-contaminated waste streams

    International Nuclear Information System (INIS)

    Schreiber, S.B.; Dunn, S.L.; Yarbro, S.L.

    1991-06-01

    At the Los Alamos National Laboratory Plutonium Facility, anion exchange is used for recovering plutonium from nitric acid solutions. Although this approach recovers >99%, the trace amounts of plutonium and other actinides remaining in the effluent require additional processing. We are doing research to develop a secondary unit operation that can directly polish the effluent so that actinide levels are reduced to below the maximum allowed for facility discharge. We selected solvent extraction, the only unit operation that can meet the stringent process requirements imposed; several carbonyl and phosphoryl extractants were evaluated and their performance characterized. We also investigated various engineering approaches for solvent extraction; the most promising was a chelating resin loaded with extractant. Our research now focuses on the synthesis of malonamides, and our goal is to bond these extractants to a resin matrix. 7 refs., 12 figs., 1 tab

  10. The solvent extraction of cerium from sulphate solution - mini plant trials

    International Nuclear Information System (INIS)

    Soldenhoff, K.; Wilkins, D.; Ring, R.

    1998-01-01

    Full text: The Mt. Weld deposit in Western Australia has a complex rare earth mineralisation. The rare earth phosphate minerals, which include monazite, are amenable to conventional caustic cracking followed by hydrochloric acid dissolution of the trivalent rare earths. The presence of the mineral cerianite in the ore, which is unaffected by the alkali attack, results in rejection of a considerable proportion of the cerium to the acid leach residue. The recovery of cerium from a sulphate solution, resulting from the processing of such a residue, is the subject of the current paper. The liquor treated by solvent extraction contained 63 g L -1 rare earths and the cerium to total rare earth ratio was 75%. Other impurities, including Fe and Th, totalled 2000 ppm. A solvent mixture of commercially available extractants in a low aromatic content diluent was used to extract Ce 4+ selectively over the trivalent rare earths. Partial co-extraction of Fe and Th occurred but it was found that these elements were not easily stripped and therefore selective back extraction of cerium was possible. The cerium was stripped from the organic phase by hydrochloric acid and hydrogen peroxide. In continuous counter-current trials two extraction stages and three strip stages were used. In order to produce two grades of strip liquor, stripping was divided into two circuits. The first strip circuit consisting of a single stage, contained proportionally more of the trivalent rare earths. The second strip circuit, consisting of two stages, removed the remaining cerium with proportionally less of the rare earths. A bleed solvent stream was treated for removal of impurities to prevent build-up in the solvent. In the continuous counter current trials, 95% Ce 4+ extraction was achieved and the Ce to total rare earth ratio was upgraded to > 99%

  11. Synthesis and characterization of bisdiglycolamides for comparable extraction of Th"4"+, UO_2"2"+ and Eu"3"+ from nitric acid solution

    International Nuclear Information System (INIS)

    Peng Ren; Ze-Yi Yan; Yang Li; Zuo-Miao Wu; Lei Wang; Yi-Quan Gao; Wang-Suo Wu; Lian-Biao Zhao

    2017-01-01

    The novel ligand N,N,N'''',N''''-tetrabutyl-N''',N'''-(N',N'-diethyl)-ethidene bisdiglycolamide (TBEE-BisDGA) and other eight analogous extractants have been synthesized and characterized by NMR and HRMS. The solvent extraction of Th"4"+, UO_2"2"+ and Eu"3"+ from nitric acid solution using the above BisDGA extractants was investigated in 1-dodecanol at 30 ± 1 deg C. The extractants exhibited higher affinity toward Th"4"+ than UO_2"2"+ and Eu"3"+ in the present system. The maximum value of separation factor SF_T_h_(_I_V_)_/_U_(_V_I_) and SF_T_h_(_I_V_)_/_E_u_(_I_I_I_) is 78.5 and 53.3 respectively for TBEE-BisDGA, 88.1 and 69.5 respectively in the case of TBi-PE-BisDGA at 3 M HNO_3 solution. (author)

  12. Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction

    Science.gov (United States)

    Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief

    2015-12-01

    Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.

  13. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  14. Experiment on the treatment of waste extraction solvent from the molybdenum-99 process

    Energy Technology Data Exchange (ETDEWEB)

    Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien; Wen-Cheng Lee; Tsong-Yang Wei [Division of Chemical Engineering, Institute of Nuclear Energy Research, P.O. Box 3-7, Longtan 32546 Taiwan (China)

    2013-07-01

    In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from the waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)

  15. Microwave-assisted extraction and accelerated solvent extraction with ethyl acetate-cyclohexane before determination of organochlorines in fish tissue by gas chromatography with electron-capture detection.

    Science.gov (United States)

    Weichbrodt, M; Vetter, W; Luckas, B

    2000-01-01

    Focused open-vessel microwave-assisted extraction (FOV-MAE), closed-vessel microwave-assisted extraction (CV-MAE), and accelerated solvent extraction (ASE) were used for extraction before determination of organochlorine compounds (polychlorinated biphenyls, DDT, toxaphene, chlordane, hexachlorobenzene, hexachlorocyclohexanes, and dieldrin) in cod liver and fish fillets. Wet samples were extracted without the time-consuming step of lyophilization or other sample-drying procedures. Extractions were performed with the solvent mixture ethyl acetate-cyclohexane (1 + 1, v/v), which allowed direct use of gel-permeation chromatography without solvent exchange. For FOV-MAE, the solvent mixture removed water from the sample matrix via azeotropic distillation. The status of water removal was controlled during extraction by measuring the temperature of the distillate. After water removal, the temperature of the distillate increased and the solvent mixture became less polar. Only the pure extraction solvent allowed quantitative extraction of the organochlorine compounds. For CV-MAE, water could not be separated during the extraction. For this reason, the extraction procedure for wet fish tissue required 2 extraction steps: the first for manual removal of coextracted water, and the second for quantitative extraction of the organochlorine compounds with the pure solvent. Therefore, CV-MAE is less convenient for samples with high water content. For ASE, water in the sample was bound with Na2SO4. The reproducibility for each technique was very good (relative standard deviation was typically <10%); the slightly varying levels were attributed to deviations during sample cleanup and the generally low levels.

  16. Dynamic materials accounting for solvent-extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants.

  17. Dynamic materials accounting for solvent-extraction systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants

  18. Modifications of the SEPHIS computer code for calculating the Purex solvent extraction system

    International Nuclear Information System (INIS)

    Watson, S.B.; Rainey, R.H.

    1975-12-01

    The SEPHIS computer program was developed to simulate the countercurrent solvent extraction. This report gives modifications in the program which result in improved fit to experimental data, a decrease in computer storage requirements, and a decrease in execution time. Methods for applying the computer program to practical solvent extraction problems are explained

  19. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    Science.gov (United States)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  20. Non-Ideal Behavior in Solvent Extraction

    International Nuclear Information System (INIS)

    Zalupski, Peter

    2011-01-01

    This report presents a summary of the work performed to meet FCR and D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR and D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  1. Non-Ideal Behavior in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Peter Zalupski

    2011-09-01

    This report presents a summary of the work performed to meet FCR&D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR&D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  2. Effects of solvent-extraction contactor selection on flowsheet and facility design

    International Nuclear Information System (INIS)

    Whatley, M.E.

    1982-01-01

    The notion is developed that the selection of a solvent extraction contactor is part of a more general development of principles and philosophy guiding the overall plant design. Specifically, the requirements and constraints placed on the plant by the solvent extraction system must be consistent with those imposed by the other operations, which generally are more expensive and more complicated. Were a conservative philosophy employed throughout the plant, the choice of pulsed columns seem correct. Were the plant intended to employ modern techniques and state-of-the-art technology, particularly in remote maintenance and process control, the selection of centrifugal contactors seems appropriate. The process improvements attainable from employing more stages in a more tightly controlled solvent extraction system seem marginal at present when applied to conventional flowsheets, although the cost-benefit may be attractive in a modern plant. The potential for improvement through major flowsheet modification can not presently be assessed quantitatively

  3. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants

    Directory of Open Access Journals (Sweden)

    Maria Doppler

    2016-06-01

    Full Text Available The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v, with and without the addition of 0.1% (v/v formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem and 57% (ear of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone.

  4. Extraction of Betulin, Trimyristin, Eugenol and Carnosic Acid Using Water-Organic Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Fulgentius N. Lugemwa

    2012-08-01

    Full Text Available A solvent system consisting of ethyl acetate, ethyl alcohol and water, in the volume ratio of 4.5:4.5:1, was developed and used to extract, at room temperature, betulin from white birch bark and antioxidants from spices (rosemary, thyme, sage, and oregano and white oak chips. In addition, under reflux conditions, trimyristin was extracted from nutmeg using the same solvent system, and eugenol from olives was extracted using a mixture of salt water and ethyl acetate. The protocol demonstrates the use of water in organic solvents to extract natural products from plants. Measurement of the free-radical scavenging activity using by 2,2-diphenyl-1-picrylhydrazyl (DPPH indicated that the extraction of plant material using ethyl acetate, ethyl alcohol and water (4.5:4.5:1, v/v/v was exhaustive when carried out at room temperature for 96 h.

  5. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract--A comprehensive study.

    Science.gov (United States)

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml(-1)) were reacted. The results showed that silver nitrate (2mM) and plant extract (10 mg ml(-1)) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO3 ratio of 6:4v/v resulted in the highest conversion efficiency of AgNO3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO3 to synthesize biologically stable AgNPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The solvent extraction of ytterbium from a molten eutectic

    International Nuclear Information System (INIS)

    Lengyel, T.

    1977-01-01

    The paper summarizes the results which were obtained in measurements performed with different binary mixtures of solvents being capable of effectively extracting ytterbium from the molten eutectic lithium nitrate--ammonium nitrate. In the course of elaborating the possible ways of extractive separation of rare earths systematic investigations regarding the individual members of the group are required. The binary solvent mixtures consisted of thenoyl-trifluoracetone (TTA), β-isopropil-tropolone (IPT), tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (HDEHP), 2,2'-bipyridyl (bipy), dibutyl phtalate (DBP) and Amberlite LA-2 (LA-2). The concentration of the central ion was kept at 5x10 -6 M by using Yb-169 of high specific activity as a tracer for the radiometric assay. (T.I.)

  7. Development of Solvent Extraction Approach to Recycle Enriched Molybdenum Material

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brown, M. Alex [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Bowers, Delbert L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Wardle, Kent [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Pupek, Krzysztof Z. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Dzwiniel, Trevor L. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krumdick, Gregory K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory, in cooperation with Oak Ridge National Laboratory and NorthStar Medical Technologies, LLC, is developing a recycling process for a solution containing valuable Mo-100 or Mo-98 enriched material. Previously, Argonne had developed a recycle process using a precipitation technique. However, this process is labor intensive and can lead to production of large volumes of highly corrosive waste. This report discusses an alternative process to recover enriched Mo in the form of ammonium heptamolybdate by using solvent extraction. Small-scale experiments determined the optimal conditions for effective extraction of high Mo concentrations. Methods were developed for removal of ammonium chloride from the molybdenum product of the solvent extraction process. In large-scale experiments, very good purification from potassium and other elements was observed with very high recovery yields (~98%).

  8. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Md. Khalid Hossain

    Full Text Available In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV–Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell’s (DSSC photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric. Keywords: DSSC, Natural dye, TiO2 photoanode, Dye extracting solvent, Dye-adsorption time

  9. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  10. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  11. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    International Nuclear Information System (INIS)

    Rydberg, J.

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs

  12. A prototype study with solvent extraction on industrial scale

    International Nuclear Information System (INIS)

    Hernandez, M.E.

    1990-01-01

    The need for uranium purification has generated the study of different methods in order for purification to be achieved, having had excellent results in the laboratory with ionic exchange methods, extraction by means of solvents and chromatography. Pilot experiments of the ionic exchange method have been performed, using as experimentation equipment the columns of ionic exchange, attaining some results without concreting the objectives. Likewise several experiments in mixer-settlers have been performed for the purification of uranium by the solvent extraction method, where there were serious problems with the formation of a third incontrollable phase, and also, due to the later, low purification of the uranium when distributing from one phase to the other. Knowing these problems brought on by the performed experiments in mixer-setters by groups of researchers interested in this part of the nuclear fuel, the task of designing a prototype of extraction with solvents of the mixer-settler type was undertaken in the project 'Models and simulation of equipment and processes of the refinement and conversion department'. The purification of uranium as uranyl nitrate [UO 2 (NO 3 ) 2 ] was developed, establishing the conditions for the equipment operation, concluding that, with some relatively simple adjustements, it is possible to apply in different areas, taking note of the specific needs of mining, cosmetics, perfume and pharmaceutical areas. (Author)

  13. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  14. CALmsu contactor for solvent extraction with integrated flowrate meters

    International Nuclear Information System (INIS)

    Siddiqui, I.A.; Shah, B.V.; Theyyunni, T.K.

    1994-01-01

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author)

  15. Ionic Liquids as Benign Solvents for the Extraction of Aromatics

    International Nuclear Information System (INIS)

    Hossain, Md. Anwar; Lee, Jeesun; Kim, Dai Hyun; Nguyen, Dinh Quan; Cheong, Minserk; Kim, Hoon Sik

    2012-01-01

    Ionic liquids (ILs) have been extensively investigated as promising alternatives to conventional organic solvents such as sulfolane and N,N-dimethylformamide for the selective extraction of aromatic hydrocarbons from the C 6 -C 10 hydrocarbon mixtures produced from the cracking processes of naphtha and light oils. The most important advantage of ILs over conventional organic solvents is that they are immiscible with aliphatic hydrocarbons, and thus the back extraction of ILs from the raffinate phases and top hydrocarbon-rich layers is not necessary. In this paper, a brief review on the state of the art in the utilization of ILs for aromatics separation is presented

  16. A comparative study of solvent and supercritical Co2 extraction of Simarouba gluaca seed oil

    International Nuclear Information System (INIS)

    Anjaneyulu, B.; Satyannarayana, S.; Kanjilal, S.; Siddaiah, V.; Prasanna Rani, K.N.

    2017-01-01

    In the present study, the supercritical carbon dioxide (Co2) extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar), temperature (50–70 °C) and CO2 flow rate (10–30 g·min-1). The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1) extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1). Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1) was found to be higher than the solvent extracted oil (111 mg·kg-1). The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil. [es

  17. A comparative study of solvent and supercritical CO2 extraction of Simarouba gluaca seed oil

    Directory of Open Access Journals (Sweden)

    B. Anjaneyulu

    2017-09-01

    Full Text Available In the present study, the supercritical carbon dioxide (CO2 extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar, temperature (50–70 °C and CO2 flow rate (10–30 g·min-1. The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1 extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1. Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1 was found to be higher than the solvent extracted oil (111 mg·kg-1. The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil.

  18. Uranium refining by solvent extraction

    International Nuclear Information System (INIS)

    Kraikaew, J.; Srinuttrakul, W.

    2014-01-01

    The solvent extraction process to produce higher purity uranium from yellowcake was studied in laboratory scale. Yellowcake, which the uranium purity is around 70% and the main impurity is thorium, was obtained from monazite processing pilot plant of Rare Earth Research and Development Center in Thailand. For uranium re-extraction process, the extractant chosen was Tributylphosphate (TBP) in kerosene. It was found that the optimum concentration of TBP was 10% in kerosene and the optimum nitric acid concentration in uranyl nitrate feed solution was 4 N. An increase in concentrations of uranium and thorium in feed solution resulted in a decrease in the distribution of both components in the extractant. However, the distribution of uranium into the extractant was found to be more than that of thorium. The equilibration study of the extraction system, UO_2(NO_3)/4N HNO_3 – 10%TBP/Kerosene, was also investigated. Two extraction stages were calculated graphically from 100,000 ppm uranium concentration in feed solution input with 90% extraction efficiency and the flow ratio of aqueous phase to organic phase was adjusted to 1.0. For thorium impurity scrubbing process, 10% TBP in kerosene was loaded with uranium and minor thorium from uranyl nitrate solution prepared from yellowcake and was scrubbed with different low concentration nitric acid. The results showed that at nitric acid normality was lower than 1 N, uranium distributed well to aqueous phase. As conclusion, optimum nitric acid concentration for scrubbing process should not less than 1 N and diluted nitric acid or de-ionized water should be applied to strip uranium from organic phase in the final refining process. (author)

  19. Calculations in solvent extraction of rare earth metals

    International Nuclear Information System (INIS)

    Sadanandam, R.; Sharma, A.K.; Fonseca, M.F.; Hubli, R.C.; Suri, A.K.; Singh, D.K.

    2010-01-01

    The paper deals with calculation of number of countercurrent stages in solvent extraction of rare earths both under total reflux and partial reflux conditions to achieve a given degree of purification and recovery. The use of Fenske's equation normally used for separation by distillation is proposed to calculate the number of stages required under total reflux, replacing relative volatility by separation factor. Kremser's equations for extraction and scrubbing are used to calculate the number of stages in extraction and scrubbing modules under partial reflux conditions. McCabe-Thiele's approach is also adopted to arrive at the number of scrubbing stages. (author)

  20. Solvent Extraction Batch Distribution Coefficients with Savannah River Site Dissolved Salt Cake

    International Nuclear Information System (INIS)

    Walker, D.D.

    2002-01-01

    Researchers characterized high-level waste derived from dissolved salt cake from the Savannah River Site (SRS) tank farm and measured the cesium distribution coefficients (DCs) for extraction, scrub, and stripping steps of the caustic-side solvent extraction (CSSX) flowsheet. The measurements used two SRS high-level waste samples derived entirely or in part from salt cake. The chemical compositions of both samples are reported. Dissolved salt cake waste contained less Cs-137 and more dianions than is typical of supernate samples. Extraction and scrub DCs values for both samples exceeded process requirements and agreed well with model predictions. Strip DCs values for the Tank 46F sample also met process requirements. However, strip DCs values could not be calculated for the Tank 38H sample due to the poor material balance for Cs-137. Potential explanations for the poor material balance are discussed and additional work to determine the cause is described

  1. SYNTHESIS AND CHARACTERIZATION OF NEW HALOGENATED CURCUMINOIDS

    Directory of Open Access Journals (Sweden)

    Eugenio Torres

    2013-12-01

    Full Text Available In this work a novel procedure of synthesis of compounds analogues to curcumin with halogens atoms in its structure is described, which can increase its solubility and biological activity. Four halogenated curcuminoids were obtained with great pharmacological interest, none of them reported in literature before. Synthesis was carried out by means of the aldol condensation assisted by microwaves of halogenated aromatic aldehydes and acetylacetona, using morpholine as basic catalyst, in absence of solvent, and the reaction just needed 1 min. The products were purified by treatment of the reaction mixture with methanol under ultrasound irradiation, followed by chromatographic column. All obtained compounds were characterized by infrared spectroscopy, nuclear magnetic resonance, quantitative elementary analysis and high resolution mass spectrometry. The RMN-1H data demonstrate in all structures of synthesized curcuminoids the enol form is the most favored.

  2. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  3. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  4. Association of solvent extraction and liquid-liquid flotation processes for metal recovery

    International Nuclear Information System (INIS)

    Puget, Flavia P.; Mendonca, Luciano A. de; Massarani, Giulio

    2000-01-01

    From the batch solvent extraction process, in this work it has been carried out a preliminary study aiming the determination of the optimal operating conditions for zirconium recovery (10 ppm) using alamine 336 (tricaprylylamine) as extractor. The results have shown that the extraction takes place instantaneously (5s of manual agitation) and that at pH around 2.0 the extraction efficiency is up to 98-99% for an aqueous/organic phase volumetric ratio of 10. Based on these results, it is proposed to evaluate the possibility of using of a pioneering technology for metal recovery at low concentrations, using a experimental set-up that associates standard solvent extraction process with liquid-liquid flotation process. (author)

  5. Extraction of garlic with supercritical CO2 and conventional organic solvents

    Directory of Open Access Journals (Sweden)

    J. M. del Valle

    2008-09-01

    Full Text Available Garlic (Allium sativum L. and garlic extracts have therapeutical properties that stem from their sulfur-containing compounds, mainly allicin. The main objective of this work was to compare conventional and "premium" garlic extracts in terms of yield and quality, with the latter being obtained using supercritical carbon dioxide (SC-CO2 as the solvent. Yield ranged between 0.65 and 1.0% and increased with extraction pressure (150-400 bar at a constant temperature of 50°C. Extraction temperature (35-60°C, on the other hand, had little effect at a constant pressure of 300 bar. Based on yield and quality considerations, the best extraction conditions using SC-CO2 were 35-50°C and 300-400 bar. A yield of 5.5% was obtained by conventional extraction using ethanol as the solvent, but ethanol appeared to be less selective for valuable components than SC-CO2. The use of fresh garlic resulted in extracts that more closely resembled commercial products, possibly because of thermal and oxidative degradation of valuable microconstituents during drying.

  6. Thermodynamic Description of Synergy in Solvent Extraction: II Thermodynamic Balance of Driving Forces Implied in Synergistic Extraction.

    Science.gov (United States)

    Rey, J; Bley, M; Dufrêche, J-F; Gourdin, S; Pellet-Rostaing, S; Zemb, T; Dourdain, S

    2017-11-21

    In the second part of this study, we analyze the free energy of transfer in the case of synergistic solvent extraction. This free energy of the transfer of an ion in dynamic equilibrium between two coexisting phases is decomposed into four driving forces combining long-range interactions with the classical complexation free energy associated with the nearest neighbors. We demonstrate how the organometallic complexation is counterbalanced by the cost in free energy related to structural change on the colloidal scale in the solvent phase. These molecular forces of synergistic extraction are driven not only by the entropic term associated with the tight packing of electrolytes in the solvent and by the free energy cost of coextracting water toward the hydrophilic core of the reverse aggregates present but also by the entropic costs in the formation of the reverse aggregate and by the interfacial bending energy of the extractant molecules packed around the extracted species. Considering the sum of the terms, we can rationalize the synergy observed, which cannot be explained by classical extraction modeling. We show an industrial synergistic mixture combining an amide and a phosphate complexing site, where the most efficient/selective mixture is observed for a minimal bending energy and maximal complexation energy.

  7. Research on solvent extraction process for reprocessing of Th-U fuel from HTGR

    International Nuclear Information System (INIS)

    Bao Borong; Wang Gaodong; Qian Jun

    1992-05-01

    The unique properties of spent fuel from HTGR (high temperature gas cooled reactor) have been analysed. The single solvent extraction process using 30% TBP for separation and purification of Th-U fuel has been studied. In addition, the solvent extraction process for second uranium purification is also investigated to meet different needs of reprocessing and reproduction of Th-U spent fuel from HTGR

  8. Criticality safety of solvent extraction process

    International Nuclear Information System (INIS)

    Tachimori, Shoichi; Miyoshi, Yoshinori

    1987-01-01

    The article presents some comments on criticality safety of solvent extraction processes. When used as an extracting medium, tributyl phosphate extracts nitric acid and water, in addition to nitrates of U and Pu, into the organic phase. The amount of these chemical species extracted into the organic phase is dependent on and restricted by the concentrations of tributyl phosphate and other components. For criticality control, measures are taken to decrease the concentration of tributyl phosphate in the organic phase, in addition to control of the U and Pu concentrations in the feed water phase. It should be remembered that complexes of tributyl phosphate with nitrates of such metals as Pu(IV), Pu(VI), U(IV) and Th(IV) do not dissolve uniformly in the organic phase. In criticality calculation for solution-handling systems, U and Pu are generally assumed to have a valence of 6 and 4, respectively. In the reprocessing extraction process, however, U and Pu can have a valence of 4, and 3 and 6, respectively. The organic phase and aqueous phase contact in a counter-current flow. U and Pu will be accumulated if they are not brought out of the extraction system by this flow. (Nogami, K.)

  9. PCB extraction from ORNL tank WC-14 using a unique solvent

    International Nuclear Information System (INIS)

    Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

    1995-09-01

    This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60 degrees F but insoluble in water above 90 degrees F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL's Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination

  10. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts

    Directory of Open Access Journals (Sweden)

    Vito Michele Paradiso

    2016-09-01

    Full Text Available This data article refers to the paper “Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection” [1]. A deep eutectic solvent (DES based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO samples (n=65 were submitted to liquid–liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin–Ciocalteu assay. Keywords: Natural deep eutectic solvents, Extra virgin olive oil, Phenolic compounds, UV spectrophotometry

  11. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    Science.gov (United States)

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  12. Developing new chemical tools for solvent extraction

    International Nuclear Information System (INIS)

    Moyer, B.A.; Baes, C.F.; Burns, J.H.; Case, G.N.; Sachleben, R.A.; Bryan, S.A.; Lumetta, G.J.; McDowell, W.J.; Sachleben, R.A.

    1993-01-01

    Prospects for innovation and for greater technological impact in the field of solvent extraction (SX) seem as bright as ever, despite the maturation of SX as an economically significant separation method and as an important technique in the laboratory. New industrial, environmental, and analytical problems provide compelling motivation for diversifying the application of SX, developing new solvent systems, and seeking improved properties. Toward this end, basic research must be dedicated to enhancing the tools of SX: physical tools for probing the basis of extraction and molecular tools for developing new SX chemistries. In this paper, the authors describe their progress in developing and applying the general tools of equilibrium analysis and of ion recognition in SX. Nearly half a century after the field of SX began in earnest, coordination chemistry continues to provide the impetus for important advancements in understanding SX systems and in controlling SX chemistry. In particular, the physical tools of equilibrium analysis, X-ray crystallography, and spectroscopy are elucidating the molecular basis of SX in unprecedented detail. Moreover, the principles of ion recognition are providing the molecular tools with which to achieve new selectivities and new applications

  13. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  14. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    Science.gov (United States)

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of irradiation and extractive solvents on the Thevetia seed oil ...

    African Journals Online (AJOL)

    Oil of irradiated thevetia seeds was extracted with different solvents. The effect of irradiation dosages on the extracted oils was studied by comparing the TLC chromatography of irradiated seed oil with that of non-radiated seeds. Saponification values were also compared.

  16. Solvent extraction studies on cadmium. Pt. 2

    International Nuclear Information System (INIS)

    Alian, A.; Badran, A.; El-Bassiouny, M.S.

    1975-01-01

    An extraction study was performed on tracer concentrations of cadmium, zinc and silver halides in absence and presence of phosphoric acid. A long chain amine (Amberlite LA-2) and an organophosphorus solvent (TBP) have been investigated. Since orthophosphoric acid was found to have a similar role as sulphuric acid, it was interesting to carry out a systematic investigation on the extraction behaviour of the halides of the three elements Cs, Zn and Ag in orthophosphoric acid medium. The separation of Cd from Zn or Ag is frequently encountered in chemical as well as radiochemical analysis. The results presented here give many possibilities for such separation. Amberlite LA-2 was always used as 5 vol% and TBP as 50 vol% in benzene. The presence of phosphoric acid was found to enhance considerably the extraction of most halides. The mechanism of extraction has been discussed in light of the obtained results. (T.G.)

  17. Cellulose nanocrystals from acacia bark-Influence of solvent extraction.

    Science.gov (United States)

    Taflick, Ticiane; Schwendler, Luana A; Rosa, Simone M L; Bica, Clara I D; Nachtigall, Sônia M B

    2017-08-01

    The isolation of cellulose nanocrystals from different lignocellulosic materials has shown increased interest in academic and technological research. These materials have excellent mechanical properties and can be used as nanofillers for polymer composites as well as transparent films for various applications. In this work, cellulose isolation was performed following an environmental friendly procedure without chlorine. Cellulose nanocrystals were isolated from the exhausted acacia bark (after the industrial process of extracting tannin) with the objective of evaluating the effect of the solvent extraction steps on the characteristics of cellulose and cellulose nanocrystals. It was also assessed the effect of acid hydrolysis time on the thermal stability, morphology and size of the nanocrystals, through TGA, TEM and light scattering analyses. It was concluded that the extraction step with solvents was important in the isolation of cellulose, but irrelevant in the isolation of cellulose nanocrystals. Light scattering experiments indicated that 30min of hydrolysis was long enough for the isolation of cellulose nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  19. CALmsu contactor for solvent extraction with integrated flowrate meters

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, I A; Shah, B V; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author). 8 refs., 1 fig.

  20. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  1. Determination of persistent organic pollutants in solid environmental samples using accelerated solvent extraction and supercritical fluid extraction. Exhaustive extraction and sorption/desorption studies of PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, E.

    1998-10-01

    Human activity is constantly causing environmental problems due to production and release of numerous chemicals. A group of compounds of special concern is persistent organic pollutants (POP). These toxic, lipophilic chemicals have a high chemical and biological stability, and tend to accumulate in the lipid phase of living organisms. A major sink for POPs are sediments, and consequently these are important for the distribution of POPs in the aquatic environment. Traditionally, determination of POPs relay on exhaustive extraction using liquid extraction techniques (e.g. Soxhlet extraction developed in the late 19th century) followed by gas chromatographic analysis. Since liquid-solid extraction normally requires large volumes of organic solvents in combination with long extraction times and extract clean-up, there has been an increasing demand for improved technology. This should result in reduced organic solvent consumption and sample preparation time, at the same time improving the environment and cutting costs for POP monitoring. In this thesis two modern techniques with capability of fulfilling at least one of these goals have been investigated: (1) Supercritical Fluid Extraction (SFE), and (2) Accelerated Solvent Extraction (ASE). Polychlorinated biphenyls (PCBs) were chosen as model compounds in all experiments performed on environmental matrices, since they cover a relatively large range of physiochemical parameters. Important parameters influencing the overall extraction efficiency in ASE and SFE, are discussed and illustrated for a large number of sediments. It was demonstrated that, by careful consideration of the experimental parameters, both techniques are capable of replacing old methods such as Soxhlet extraction. ASE is somewhat faster than SFE, but the extracts generated in SFE are much cleaner and can be analyzed without sample clean-up. Consequently the overall sample preparation time may be substantially lower using SFE. However, ASE is important

  2. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions

    Energy Technology Data Exchange (ETDEWEB)

    Damm, Markus [Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz (Austria); Kappe, C. Oliver, E-mail: oliver.kappe@uni-graz.at [Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz (Austria)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Parallel low-volume coffee extractions in sealed-vessel HPLC/GC vials. Black-Right-Pointing-Pointer Extractions are performed at high temperatures and pressures (200 Degree-Sign C/20 bar). Black-Right-Pointing-Pointer Rapid caffeine determination from the liquid phase. Black-Right-Pointing-Pointer Headspace analysis of volatiles using solid-phase microextraction (SPME). - Abstract: A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200 Degree-Sign C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141 {+-} 11 {mu}g caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90 {+-} 11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90 Degree-Sign C, 10 min). In multiple extraction experiments a total of {approx}150 {mu}g caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee

  3. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions

    International Nuclear Information System (INIS)

    Damm, Markus; Kappe, C. Oliver

    2011-01-01

    Highlights: ► Parallel low-volume coffee extractions in sealed-vessel HPLC/GC vials. ► Extractions are performed at high temperatures and pressures (200 °C/20 bar). ► Rapid caffeine determination from the liquid phase. ► Headspace analysis of volatiles using solid-phase microextraction (SPME). - Abstract: A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5–1.5 mL at a maximum temperature/pressure limit of 200 °C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC–MS or LC–MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141 ± 11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90 ± 11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90 °C, 10 min). In multiple extraction experiments a total of ∼150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME

  4. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harman-Ware, Anne E., E-mail: anne.ware@nrel.gov; Sykes, Robert [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Peter, Gary F. [School of Forest Resources and Conservation, University of Florida, Gainesville, FL (United States); Davis, Mark [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  5. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    International Nuclear Information System (INIS)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; Davis, Mark

    2016-01-01

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  6. Improvement of Soybean Oil Solvent Extraction through Enzymatic Pretreatment

    Directory of Open Access Journals (Sweden)

    F. V. Grasso

    2012-01-01

    Full Text Available The purpose of this study is to evaluate multienzyme hydrolysis as a pretreatment option to improve soybean oil solvent extraction and its eventual adaptation to conventional processes. Enzymatic action causes the degradation of the cell structures that contain oil. Improvements in terms of extraction, yield, and extraction rate are expected to be achieved. Soybean flakes and collets were used as materials and hexane was used as a solvent. Temperature, pH, and incubation time were optimized and diffusion coefficients were estimated for each solid. Extractions were carried out in a column, oil content was determined according to time, and a mathematical model was developed to describe the system. The optimum conditions obtained were pH 5.4, 38°C, and 9.7 h, and pH 5.8, 44°C, and 5.8h of treatment for flakes and collets, respectively. Hydrolyzed solids exhibited a higher yield. Diffusion coefficients were estimated between 10-11 and 10-10. The highest diffusion coefficient was obtained for hydrolyzed collets. 0.73 g oil/mL and 0.7 g oil/mL were obtained at 240 s in a column for collets and flakes, respectively. Hydrolyzed solids exhibited a higher yield. The enzymatic incubation accelerates the extraction rate and allows for higher yield. The proposed model proved to be appropriate.

  7. Experiences in running solvent extraction plant for thorium compounds [Paper No. : V-5

    International Nuclear Information System (INIS)

    Gopalkrishnan, C.R.; Bhatt, J.P.; Kelkar, G.K.

    1979-01-01

    Indian Rare Earths Ltd. operates a Plant using thorium concentrates as raw material, employing hydrocarbonate route, for the manufacture of thorium compounds. A small demonstration solvent extraction plant designed by the Chemical Engineering Division, B.A.R.C. is also being operated for the same purpose using a partly purified thorium hydrocarbonate as raw material. In the solvent extraction process, separation of pure thorium is done in mixer settlers using 40% mixture of tri-butyl phosphate in kerosene. Though a comparatively purer raw material of hydrocarbonate than thorium concentrate is used, heavy muck formation is encountered in the extraction stage. Production of nuclear grade thorium oxide has been successful so far as quality is concerned. The quality of thorium nitrate suffers in the yellow colouration and high phosphate content, the former being only partly controlled through the use of pretreated kerosene. When a larger solvent extraction plant is to be designed to use thorium concentrates as raw material, some of the problems encountered will be considered. (author)

  8. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    Directory of Open Access Journals (Sweden)

    Anne-Gaëlle Sicaire

    2015-04-01

    Full Text Available The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil and non-food (bio fuel applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols. Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF as alternative solvent compared to hexane as petroleum solvent.

  10. Sequential extraction of flavonoids and pectin from yellow passion fruit rind using pressurized solvent or ultrasound.

    Science.gov (United States)

    de Souza, Caroline G; Rodrigues, Tigressa Hs; E Silva, Lorena Ma; Ribeiro, Paulo Rv; de Brito, Edy S

    2018-03-01

    Passion fruit rind (PFR) represents 90% of the total fruit weight and is wasted during juice processing. Passion fruit rind is known to contain flavonoids and pectin. An alternative use for this fruit juice industrial residue is to obtain these compounds. This study aimed to verify the influence of pressurized solvent extraction (PSE) or ultrasound assisted extraction (UAE) of flavonoid and pectin in a sequential process. The PSE using ethanol at 60:40 (v/v) yielded a total polyphenol content of 4.67 g GAE kg -1 PFR, orientin-7-O-glucoside (1.57 g kg -1 PFR) and luteolin-6-C-glucoside (2.44 g kg -1 PFR). Pectin yield was 165 g kg -1 PFR, either in PSE or UAE. Pectin characterization indicates that the pectic structure has basically homogalacturonans and galacturonate followed by a galacturonic acid ester unit, with methylation degree of 70%. With this study it can be concluded that mixtures of alcohols with water favor the extraction of bioactive compounds of passion fruit peel. Both PSE and UAE were effective in sequentially extracting flavonoids and pectin. The preferred solvent is ethanol due to its lower toxicity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Optimization Study for Butanol Extraction from Butanol-Water Using Fatty Acid Methyl Ester (FAME) as Solvent

    International Nuclear Information System (INIS)

    Nurul Izzati Ab Rahim; Mohd Irfan Hatim Mohamed Dzahir; Wan Nurul Hidayah Wan Othman

    2015-01-01

    The oil crisis, warned the humanity's depends on oil was not sustainable and recently, there are plenty of renewable resources had been developed. Much attention has been given to the solvent extraction process to separate butanol from butanol-water mixture using fatty acid methyl ester (FAME) as a solvent. In this respect, the use of FAME as a green solvent which are locally available has greater potential for butanol extraction process. Therefore, an experimental work has been carried out to study its feasibility as a potential solvent. A single stage extraction process as performed to evaluate the ability to achieve optimal extract butanol. The extraction process was carried out to evaluate the distribution coefficient of butanol with the effects of other parameters such as reaction temperature (50-70 degree Celsius) and butanol-water mixture to solvent ratio (1:1, 1:1.5, 1:2). The constant parameter is the stirring speed (300 rpm). Response Surface Methodology (RSM) in conjunction with the Central Composition Design (CCD) as employed to statistically evaluate and optimize the butanol extraction process. It was found that the distribution coefficient has achieved an optimum level of 1.92 % at the following conditions: (i) butanol-water mixtures to solvent ratio (1:1.48) and (ii) reaction temperature (62.75 degree Celsius). (author)

  12. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  13. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  14. Solvent extraction of silver(I) from dilute cyanide solutions with 2,4-dihydroxyacetophenone thiosemicarbazone

    International Nuclear Information System (INIS)

    Reddy, A.V.; Reddy, Y.K.; Reddy, G.S.

    1986-01-01

    The solvent extraction of silver(I) was carried out in 0.5M nitric acid in the presence of cyanide by 2,4-dihydroxyacetophenone thiosemicarbazone (DATS). Ethyl acetate was used as a solvent and quantitative recovery was possible with 12.5-fold excess of the reagent in a single extraction. In this medium silver(I) forms a 2:2 complex (metal:ligand) with DATS. The effect of diverse ions on the extraction of silver(I) was investigated. (author)

  15. Extraction of basil leaves (ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method

    Science.gov (United States)

    Tambun, R.; Purba, R. R. H.; Ginting, H. K.

    2017-09-01

    The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.

  16. Extraction and stripping of neodymium (III) and dysprosium (III) by TRUEX solvent

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    McCabe-Thiele diagram for the extraction and stripping of Nd (III) and Dy (III) by TRUEX solvent has been constructed to determine the number of stages required for complete extraction and stripping. (author)

  17. Solvent extraction of rare earth elements by γ-ray spectrometry

    International Nuclear Information System (INIS)

    Sudha Vani, T.J.; Krishna Rao, K.S.V.; Krishna Reddy, L.; Jaya Rami Reddy, M.; Lee, Yong III

    2010-01-01

    Rare earth element (REE) is a mine of new material and has very wide uses in industry. India has second largest abundant resources of rare earths and with its products and exports playing an important part in the world. REEs are important in nuclear energy programs, hence the separation and purification of rare earths is demanded. As well known, the separation between trivalent REEs is one of the most difficult tasks in separation chemistry due to their similar chemical properties. A large number of acidic and neutral organo-phosphorus and sulphur extractants have been widely employed industrially for the solvent extraction separation of REEs. However, these reagents display various shortcomings, such as poor selectivity, third phase formation, etc. In view of the ever increasing demand for high purity REEs as a group or from one another, there is a growing interest in the development of new and more selective solvent extraction reagents

  18. Solvent engineering and other reaction design methods for favouring enzyme-catalysed synthesis

    DEFF Research Database (Denmark)

    Zeuner, Birgitte

    . However, both FAEs catalysed the feruloylation and/or sinapoylation of solvent cation C2OHMIm+, thus underlining the broad acceptor specificity of FAEs and their potential for future solvent reactions. An engineered sialidase from Trypanosoma rangeli, Tr6, catalyses trans-sialylation but the yield......This thesis investigates different methods for improving reaction yields of enzyme-catalysed synthesis reactions. These methods include the use of non-conventional media such as ionic liquids (ILs) and organic solvents as main solvents or as co-solvents as well as the use of more classical reaction...... design methods, i.e. enzyme immobilization and the use of an enzymatic membrane reactor. Two different enzyme classes, namely feruloyl esterases (FAEs) and sialidases are employed. Using sinapoylation of glycerol as a model reaction it was shown that both the IL anion nature and the FAE structure were...

  19. Design of optimal solvent for extraction of bio–active ingredients from six varieties of Medicago sativa

    Directory of Open Access Journals (Sweden)

    Caunii Angela

    2012-10-01

    Full Text Available Abstract Background Extensive research has been performed worldwide and important evidences were collected to show the immense potential of plants used in various traditional therapeutic systems. The aim of this work is to investigate the different extracting solvents in terms of the influence of their polarity on the extracting ability of bioactive molecules (phenolic compounds from the M. sativa flowers. Results The total phenolic content of samples was determined using the Folin Ciocalteu (FC procedure and their antioxidant activity was assayed through in vitro radical decomposing activity using the radical DPPH° assay (IUPAC name for DPPH is (phenyl–(2,4,6–trinitrophenyl iminoazanium. The results showed that water was better than methanol and acetic acid for extracting bioactive compounds, in particular for total phenolic compounds from the flowers of alfalfa. The average content of bioactive molecules in methanol extract was 263.5±1.02 mg GAE/100g of dry weight lyophilized extract. The total phenolic content of the tested plant extracts was highly correlated with the radical decomposing activity. However, all extracts were free–radical inhibitors, but the water extract was more potent than the acetic and the methanol ones. The order of inhibitor effectiveness (expressed by IC50 proved to be: water extract (0.924mg/mL > acetic acid extract (0.154mg/mL > methanol (0.079mg/mL. The profiles of each extract (fingerprint were characterized by FT–MIR spectroscopy. Conclusions The present study compares the fingerprint of different extracts of the M. sativa flowers, collected from the wild flora of Romania. The total phenolic content of the tested plant extracts was highly correlated with the radical decomposing activity. The dependence of the extract composition on the solvent polarity (acetic acid vs. methanol vs. water was revealed by UV–VIS spectrometry and Infrared fingerprint.

  20. Radiation chemistry in solvent extraction: FY2010 Research

    International Nuclear Information System (INIS)

    Mincher, Bruce J.; Martin, Leigh R.; Mezyk, Stephen P.

    2010-01-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR and D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: (1) Development of techniques to measure free radical reaction kinetics in the organic phase. (2) Initiation of an alpha-radiolysis program; (3) Initiation of an effort to understand dose rate effects in radiation chemistry; (4) Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution, and the method to measure OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry of

  1. THERMAL AND SPECTROSCOPIC ANALYSES OF CAUSTIC SIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 16 MOLAR AND 8 MOLAR NITRIC ACID

    International Nuclear Information System (INIS)

    Fondeur, F; David Hobbs, D; Samuel Fink, S

    2007-01-01

    Thermal and spectroscopic analyses were performed on multiple layers formed from contacting Caustic Side Solvent Extraction (CSSX) solvent with 1 M or 3 M nitric acid. A slow chemical reaction occurs (i.e., over several weeks) between the solvent and 1 M or 3 M nitric acid as evidenced by color changes and the detection of nitro groups in the infrared spectrum of the aged samples. Thermal analysis revealed that decomposition of the resulting mixture does not meet the definition of explosive or deflagrating material

  2. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    Science.gov (United States)

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  3. Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara cardunculus L. Leaves.

    Science.gov (United States)

    de Faria, Emanuelle L P; do Carmo, Rafael S; Cláudio, Ana Filipa M; Freire, Carmen S R; Freire, Mara G; Silvestre, Armando J D

    2017-10-30

    In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.

  4. Synthesis and characterization of new biopolymeric microcapsules containing DEHPA-TOPO extractants for separation of uranium from phosphoric acid solutions.

    Science.gov (United States)

    Outokesh, Mohammad; Tayyebi, Ahmad; Khanchi, Alireza; Grayeli, Fatemeh; Bagheri, Ghodrat

    2011-01-01

    A novel microcapsule adsorbent for separation of uranium from phosphoric acid solutions was developed by immobilizing the di(2-ethylhexyl) phosphoric acid-trioctyl phosphine oxide extractants in the polymeric matrix of calcium alginate. Physical characterization of the microcapsules was accomplished by scanning electron microscopy and thermogravimetric techniques. Equilibrium experiments revealed that both ion exchange and solvent extraction mechanisms were involved in the adsorption of [Formula: see text] ions, but the latter prevailed in a wider range of acid concentration. According to the results of kinetics study, at low acidity level, the rate controlling step was slow chemical reaction of [Formula: see text] ions with the microdroplets of extractant, whereas it changed to intraparticle diffusion at higher acid concentration. The study also attempted identification of the diffusion paths of the ions within the microcapsules, and the mechanism of change of mass transfer rate during the uptake process. The prepared microcapsules preserved their entire capacity after three cycles of adsorption, and their breakthrough behaviour was well fitted by a new formula derived from shrinking core model.

  5. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    Science.gov (United States)

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  6. Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products

    Directory of Open Access Journals (Sweden)

    Vahid Vahabi

    2014-08-01

    Full Text Available A rapid and efficient solvent-free one-pot synthesis of coumarin derivatives by Pechmann condensation reactions of phenols with ethyl acetoacetate using FeF3 as a catalyst under microwave irradiation is described. This one-pot synthesis on a solid inorganic support provides the products in good yields. The newly synthesized compounds were systematically characterized by IR, 1H-NMR, 13C-NMR, MS and elemental CHN analyses. The proposed solvent-free microwave irradiation method using the environmentally friendly catalyst FeF3 offers the unique advantages of high yields, shorter reaction times, easy and quick isolation of the products, excellent chemoselectivity, and a one-pot, green synthesis. The products were screened for antimicrobial activity, and the results showed that the compounds reacted against all the tested bacteria.

  7. Modified Dispersive Liquid-Liquid Micro Extraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetable Samples

    International Nuclear Information System (INIS)

    Kin, C.M.; Shing, W.L.

    2016-01-01

    According to International Agency for Research on Cancer (IARC), most of Polycyclic Aromatic Hydrocarbons (PAHs) known as genotoxic human carcinogen and mutagenic. PAHs represent as poorly degradable pollutants that exist in soils, sediments, surface water and atmosphere. A simple, rapid and sensitive extraction method termed modified Dispersive Liquid-Liquid Micro extraction (DLLME) using green solvent was developed to determine PAHs in vegetable samples namely radish, cabbage and cucumber prior to Gas Chromatography Flame Ionization Detection (GC-FID). The extraction method is based on replacing chlorinated organic extraction solvent in the conventional DLLME with low toxic solvent, 1-bromo-3-methylbutane without using dispersive solvent. Several experimental factors such as type and volume of extraction solvents, extraction time, confirmation of 12 PAHs by GC-MS, recovery percentages on vegetable samples and the comparative analysis with conventional DLLME were carried out. Both DLLME were successfully extracted 12 types of PAHs. In modified DLLME, the recoveries of the analytes obtained were in a range of 72.72 - 88.07 % with RSD value below 7.5 % which is comparable to the conventional DLLME. The use of microliter of low toxic extraction solvent without addition of dispersive solvent caused the method is economic and environmental friendly which is fulfill the current requirement, green chemistry based analytical method. (author)

  8. Antifeedant Activty Of Different Organic Solvent Crude Extracts Of ...

    African Journals Online (AJOL)

    The antifeedant activity of different organic solvents (acetone, carbon tetrachloride, chloroform, diethyl ether and ethyl alcohol) crude extracts of latex of Euphorbia hirta (family Euphobiaceae) against Limicolaria aurora was investigated, and compared with a control, using pawpaw, (Carica papaya) as bait, at a concentration ...

  9. Effect of irradiation and extractive solvents on the Thevetia seed oil

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... Oil of irradiated thevetia seeds was extracted with different solvents. The effect of irradiation dosages on the extracted oils was studied by comparing the TLC chromatography of irradiated seed oil with that of non-radiated seeds. Saponification values were also compared. Key words: Thevetia seed, ...

  10. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  11. Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly solvents.

    Science.gov (United States)

    Co, Michelle; Fagerlund, Amelie; Engman, Lars; Sunnerheim, Kerstin; Sjöberg, Per J R; Turner, Charlotta

    2012-01-01

    Antioxidants are known to avert oxidation processes and they are found in trees and other plant materials. Tree bark is a major waste product from paper pulp industries; hence it is worthwhile to develop an extraction technique to extract the antioxidants. To develop a fast and environmentally sustainable extraction technique for the extraction of antioxidants from bark of spruce (Picea abies) and also to identify the extracted antioxidants that are abundant in spruce bark. A screening experiment that involved three different techniques was conducted to determine the best technique to extract antioxidants. The antioxidant capacity of the extracts was determined with DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Pressurised fluid extraction (PFE) turned out to be the best technique and a response surface design was therefore utilised to optimise PFE. Furthermore, NMR and HPLC-DAD-MS/MS were applied to identify the extracted antioxidants. PFE using water and ethanol as solvent at 160 and 180°C, respectively, gave extracts of the highest antioxidant capacity. Stilbene glucosides such as isorhapontin, piceid and astringin were identified in the extracts. The study has shown that PFE is a fast and environmentally sustainable technique, using water and ethanol as solvent for the extraction of antioxidants from spruce bark. Copyright © 2011 John Wiley & Sons, Ltd.

  12. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    Science.gov (United States)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  14. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Washington, A. L. II [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-03

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  15. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    International Nuclear Information System (INIS)

    Washington, A. L. II; Peters, T. B.

    2014-01-01

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material

  16. Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction

    Science.gov (United States)

    Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.

    2017-06-01

    Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N

  17. Removal of petroleum-derived hydrocarbons from contaminated soils by solvent extraction

    International Nuclear Information System (INIS)

    Ladanowski, C.; Petti, L.

    1993-01-01

    Laboratory studies were conducted using hexane for the removal of light crude oil from contaminated sand, peat, and clay soils. The bench-scale process tested consists of three major steps: solvent washing, settling/decantation/filtration of extract, and solvent recycle. The results indicate that the use of solvent extraction for cleanup of oil-contaminated soils is an effective technology at the bench-scale level. Using a 1,000 g batch system, extremely high oil removal efficiencies were obtained from contaminated sand (up to 98.9%) and peat soil (up to 83.9%). The final oil contaminant concentration for sand varied between 0.06% and 0.39%, while that for peat soil varied between 1.52% and 5.21%. The guidelines for the decommissioning and cleanup of sites in Ontario for oil and grease (1 wt %) were met in all instances for the treated sand. Hexane recovery from diesel-contaminated sand and peat soil experiments was ca 81% and 67% respectively. 4 refs., 6 figs., 10 tabs

  18. Examination of the role of CS{sub 2} in the CS{sub 2}/NMP mixed solvents to coal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Hengfu; Wang, Zhicai [School of Chemistry and Chemical Engineering, Anhui University of Technology, 243002 Maanshan Anhui (China); Gao, Jinsheng [Department of Energy Resources and Chemical Engineering, East China University of Science & amp; Technology, 200237 Shanghai (China)

    2006-02-15

    The roles of CS{sub 2} in the CS{sub 2}/NMP mixed solvent to coal extraction and solubilization were investigated in this study. There was little effect of removing of CS{sub 2} from the solutions on the solubilities of UF coal extract and pyridine insoluble (PI) of the extract in the NMP/CS{sub 2} mixed solvent, suggesting that NMP has high enough solubilities to the UF coal extract and PI. Six Argonne different rank coals were extracted with the CS{sub 2}/NMP mixed solvent and NMP, respectively. It was found that the extraction yield difference between NMP and CS{sub 2}/NMP mixed solvent for UF coal is largely deviated from the curve obtained for the other 5 coals, suggesting that the pre-swelling of CS{sub 2} in the mixed solvent may be one of important roles for high extraction yield of UF coal in the CS{sub 2}/NMP mixed solvent. FTIR indicated that there was a strong interaction between CS{sub 2} and NMP in the CS{sub 2}/NMP mixed solvent of 1:1 volume ratio, which made the strong absorbance at 2156 cm{sup -1} in the FTIR spectra, and this interaction may disrupt the dipole based association of NMP thus making the CS{sub 2}/NMP mixed solvent lower viscosity, to penetrate more quickly into the network structure of coal, resulting in the larger solvent partner (NMP) to enter and break the stronger coal-coal interactions. (author)

  19. A new approach to solvent extraction: Electronic pulses shatter water droplets

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Researchers in the Chemical Technology Division of Oak Ridge National Laboratory (ORNL) have invented a device that represents a significant improvement in the area of solvent extraction, which is a widely used technique to recover valuable materials from a liquid stream. Known as the Emulsion Phase Contactor (EPC), the technology uses a pulsed electrical field to enhance recovery of chemicals (either valuable products or pollutants) that are dissolved in water. Because of its higher efficiency, the recovery method can be accomplished in much smaller vessels than those used in conventional solvent extractors, which use mechanical processes to recover chemicals. When water droplets carrying the substance to be extracted are introduced into the EPC, they are shattered by electronic pulses that produce water particles in the 1- to 5-micron size range. These water particles are up to 100 times smaller than those created by mechanical agitation. These tiny particles produce a much greater surface area than can be achieved using chemical agitators, enabling the chemical solvent to extract more material from the water base. In addition, the EPC uses much less power than mechanical methods and has no moving parts; therefore, servicing requirements for the extraction apparatus are expected to be significantly reduced. ORNL researchers initially tested the technology at a very small scale, and evaluated its capabilities in extracting high-value substances such as isotopes, pharmaceuticals, and precious metals. Further work has indicated that the EPC can be applied on a much larger scale to handle more common chemical substances

  20. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2017-01-01

    Full Text Available Rotenone is a biopesticide with an amazing effect on aquatic life and insect pests. In Asia, it can be isolated from Derris species roots (Derris elliptica and Derris malaccensis. The previous study revealed the comparable efficiency of alcohol-based deep eutectic solvent (DES in extracting a high yield of rotenone (isoflavonoid to binary ionic liquid solvent system ([BMIM]OTf and organic solvent (acetone. Therefore, this study intends to analyze the optimum parameters (solvent ratio, extraction time, and agitation rate in extracting the highest yield of rotenone extract at a much lower cost and in a more environmental friendly method by using response surface methodology (RSM based on central composite rotatable design (CCRD. By using RSM, linear polynomial equations were obtained for predicting the concentration and yield of rotenone extracted. The verification experiment confirmed the validity of both of the predicted models. The results revealed that the optimum conditions for solvent ratio, extraction time, and agitation rate were 2 : 8 (DES : acetonitrile, 19.34 hours, and 199.32 rpm, respectively. At the optimum condition of the rotenone extraction process using DES binary solvent system, this resulted in a 3.5-fold increase in a rotenone concentration of 0.49 ± 0.07 mg/ml and yield of 0.35 ± 0.06 (%, w/w as compared to the control extract (acetonitrile only. In fact, the rotenone concentration and yield were significantly influenced by binary solvent ratio and extraction time (P<0.05 but not by means of agitation rate. For that reason, the optimal extraction condition using alcohol-based deep eutectic solvent (DES as a green additive in the extraction medium cocktail has increased the potential of enhancing the rotenone concentration and yield extracted.

  1. Action of solvents on torbanite and the nature of extracted products

    Energy Technology Data Exchange (ETDEWEB)

    Dulhunty, J A

    1943-01-01

    Tests were made on torbanite with polar and nonpolar solvents under various conditions. Torbanite undergoes no change when heated below 250/sup 0/C, but depolymerization of the organic matter, absorption of solvent, and swelling and softening of the torbanite occurred between 250 and 300/sup 0/C, although no appreciable quantity of soluble product was formed. Between 300 and 350/sup 0/C depolymerization continued and more solvent was absorbed, which caused swelling, softening, and partial breakdown of the physical structure of torbanite. The intimate mixture of torbanite and solvent produced a jellylike mass, which could not be filtered. Continued heating between 350 and 400/sup 0/C caused the organic matter to dissolve in the solvent and produced a complete breakdown in the physical structure of the torbanite. The extracts consisted largely of heavy paraffin compounds, including waxes.

  2. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahoba-Sam, Christian [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway); Olsbye, Unni [Department of Chemistry, University of Oslo, Oslo (Norway); Jens, Klaus-Joachim, E-mail: Klaus.J.Jens@usn.no [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway)

    2017-07-14

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO{sub 2}) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  3. Extraction and characterization of seed oil from naturally-grown Chinese tallow trees

    Science.gov (United States)

    Xiao-Qin Yang; Hui Pan; Tao Zeng; Todd F. Shupe; Chung-Yun Hse

    2013-01-01

    Seeds were collected from locally and naturally grown Chinese tallow trees (CTT) and characterized for general physical and chemical properties and fatty acid composition of the lipids. The effects of four different solvents (petroleum ether, hexane, diethyl ether, and 95 % ethanol) and two extraction methods (supercritical carbon dioxide (SC-CO2) and conventional...

  4. Malonamides as new extractants for nuclear waste solutions

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Musikas, C.; Hoel, P.; Nigond, L.; Vitart, X.

    1989-01-01

    Substituted malonamides are able to extract α emitters from radioactive solutions in nitric acid, all the actinides (III, IV, VI) are well extracted and can be easily back extracted. Some problems remain with neptunium and technetium. These solvents are not expensive. For an industrial purpose, synthesis has been optimized, and a proper choice of commercial basic products can decrease the cost. The solvent obtained on a pilot scale (1 kg) was found to be pure enough, it didn't need any additional treatment. Degradation under hydrolysis or radiolysis is not important in the conditions of practical experiment (t 0 C). Degradation products can be washed with NaOH (carboxylic acids) they don't give precipitates or emulsions. Efficiency of the solvent is good compared to CMPO, taking into account the lack of extensive industrial development. Further researches are undertaken in two main directions: optimizing the synthesis and use of aliphatic diluents

  5. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, Murugan; Nagarajan, Sangaraiah; Velan, Poovan Shanmuga; Dinesh, Murugan; Ponnuswamy, Alagusundaram [Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Tamilnadu (India)

    2011-09-15

    A solvent-free microwave-assisted coupling of phosphazenes with acyl chlorides or carboxylic anhydrides in presence of triethylphosphite has been accomplished resulting in a clean synthesis of amides in good yields. Unlike the prevailing time-consuming solution phase methodologies employing chlorinated solvents, benzene (carcinogenic), etc, the present protocol is an eco friendly, rapid and simple approach. (author)

  6. Advanced integrated solvent extraction and ion exchange systems

    International Nuclear Information System (INIS)

    Horwitz, P.

    1996-01-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products 90 Sr, 99 Tc, and 137 Cs from acidic high-level liquid waste and that sorb and recover 90 Sr, 99 Tc, and 137 Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste

  7. Technology of extraction by solvent in pulsed columns

    International Nuclear Information System (INIS)

    Ros, P.

    1992-01-01

    Since its creation, the CEA (Commissariat a l'energie atomique) has produced several separation processes for natural or enriched uranium treatment and the treatment of spent fuels coming from nuclear reactors. Among these technologies, extraction by solvent is broadly used for separation and purification of nuclear matters. This technology can be used for other applications as hydrometallurgy, chemistry, pharmaceutics, depollution, agro-industry

  8. The EED [Emergencies Engineering Division] solvent extraction process for the removal of petroleum-derived hydrocarbons from soil

    International Nuclear Information System (INIS)

    Bastien, C.Y.

    1994-03-01

    Research was conducted to investigate the ability of hexane and natural gas condensate (NGC) to extract three different types of hydrocarbon contaminant (light crude oil, diesel fuel, and bunker C oil) from three types of soil (sand, peat, and clay). A separate but related study determined the efficiency of solvent extraction (using hexane and five other solvents but not NGC) for removal of polychlorinated biphenyls (PCB) from contaminated soil. The process developed for this research includes stages of mixing, extraction, separation, and solvent recovery, for eventual implementation as a mobile solvent extraction unit. In experiments on samples created in the laboratory, extraction efficiencies of hydrocarbons often rose above 95%. On samples from a petroleum contaminated site, average extraction efficiency was ca 82%. Sandy soils contaminated in the laboratory were effectively cleaned of all hydrocarbons tested but only diesel fuel was successfully extracted from peat soils. No significant differences were observed in the effectiveness of hexane and NGC for contamination levels above 3%. Below this number, NGC seems more effective at removing oil from peat while hexane is slightly more effective on clay soils. Sand is equally cleaned by both solvents at all contamination levels. Safety considerations, odor, extra care needed to deal with light ends and aromatics, and the fact that only 26% of the solvent is actually usable make NGC an unfeasible option in spite of its significantly lower cost compared to hexane. For extracting PCBs, a hexane/acetone mixture proved to have the best removal efficiency. 14 refs., 14 figs., 7 tabs

  9. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  10. Solvent extraction of some metal ions by dithiocarbamate types of chemically modified lipophilic chitosan

    International Nuclear Information System (INIS)

    Inoue, K.; Nakagawa, H.; Naganawa, H.; Tachimori, S.

    2001-01-01

    Chitosan is a basic polysaccharide containing primary amino groups with high reactivity. we prepared O,O'-decanoyl chitosan and dithiocarbamate O,O'-decanoyl chitosan; the former was soluble in chloroform and toluene, while latter was soluble not only these diluents but also in some aliphatic diluents such as hexane and kerosene which are employed in commercial scale solvent extraction. Solvent extraction by dithiocarbamate O,O'-decanoyl chitosan in kerosene was tested for some base metal ions from sulfuric acid solution. The sequence of selectivity for these metal ions was found to be as follows: Cu(II) >> Ni(II) > Cd(II) ∼ Fe(III) > Co(II) ∼ Zn(II). Copper(II) was quantitatively extracted at pH > 1 and quantitatively stripped with 2 M sulfuric acid solution. Solvent extraction of silver(I) and gold(III) from hydrochloric acid as well as lanthanides and americium(III) from nitrate solution were also tested. Americium was selectively extracted over trivalent lanthanides, suggesting a high possibility for the final treatment of high level radioactive wastes. (authors)

  11. Driving Forces Controlling Host-Guest Recognition in Supercritical Carbon Dioxide Solvent.

    Science.gov (United States)

    Ingrosso, Francesca; Altarsha, Muhannad; Dumarçay, Florence; Kevern, Gwendal; Barth, Danielle; Marsura, Alain; Ruiz-López, Manuel F

    2016-02-24

    The formation of supramolecular host-guest complexes is a very useful and widely employed tool in chemistry. However, supramolecular chemistry in non-conventional solvents such as supercritical carbon dioxide (scCO2 ), one of the most promising sustainable solvents, is still in its infancy. In this work, we explored a successful route to the development of green processes in supercritical CO2 by combining a theoretical approach with experiments. We were able to synthesize and characterize an inclusion complex between a polar aromatic molecule (benzoic acid) and peracetylated-β-cyclodextrin, which is soluble in the supercritical medium. This finding opens the way to wide, environmental friendly, applications of scCO2 in many areas of chemistry, including supramolecular synthesis, reactivity and catalysis, micro and nano-particle formation, molecular recognition, as well as enhanced extraction processes with increased selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Extraction and characterization of artocarpus integer gum as pharmaceutical excipient.

    Science.gov (United States)

    Farooq, Uzma; Malviya, Rishabha; Sharma, Pramod Kumar

    2014-01-01

    Natural polymers are widely used as excipients in pharmaceutical formulations. They are easily available, cheap and less toxic as compared to synthetic polymers. This study involves the extraction and characterization of kathal (Artocarpus integer) gum as a pharmaceutical excipient. Water was used as a solvent for extraction of the natural polymer. Yield was calculated with an aim to evaluate the efficacy of the process. The product was screened for the presence of Micrometric properties, and swelling index, flow behavior, surface tension, and viscosity of natural polymers were calculated. Using a water based extraction method, the yield of gum was found to be 2.85%. Various parameters such as flow behavior, organoleptic properties, surface tension, viscosity, loss on drying, ash value and swelling index together with microscopic studies of particles were done to characterize the extracted gum. The result showed that extracted kathal gum exhibited excellent flow properties. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. It had a good swelling index (13 ± 1). The pH and surface tension of the 1% gum solution were found to be 6 ± 0.5 and 0.0627 J/m2, respectively. The ash values such as total ash, acid insoluble ash, and water soluble ash were found to be 18.9%, 0.67% and 4% respectively. Loss on drying was 6.61%. The extracted gum was soluble in warm water and insoluble in organic solvents. The scanning electron micrograph (SEM) revealed rough and irregular particles of the isolated polymer. The results of the evaluated properties showed that kathal-derived gum has acceptable pH and organoleptic properties and can be used as a pharmaceutical excipient to formulate solid oral dosage forms.

  13. Physicochemical characterization of microwave assisted synthesis of silver nanoparticles using Aloe Vera (Aloe barbadensis)

    Science.gov (United States)

    Kuponiyi, Abiola John

    Biosynthesis of silver nanoparticles (AgNP) using different biological extracts is gaining recognition for its numerous applications in different disciplines. Although different approaches (physical and chemical) have been used for the synthesis of AgNP, the green chemistry method is most preferable because of its high efficacy, cost effectiveness, and environmental benignity. Aloe Vera (AV) contains chemical compounds (anthraquinones) that are known to possess antibacterial, antivirus and anticancer properties and the extract is a good chemical reduction agent for AgNP. Hence, it was hypothesized that a microwave assisted synthesis will produce highly concentrated, homogeneous, stable and biologically active AgNP. Thus, the main objective of the study was to evaluate the effect of microwave assisted synthesis of AgNP, the effect of pulse laser treatment on size reduction of a microwave synthesized AgNP, and the physicochemical characterization of AgNP synthesized with Aloe Vera water and ethanol extract. The experiment was conducted in two phases. Phase 1 was first conducted to optimize the experimental variables, thus establishing the optimum variables to apply in the second phase. The experiment in Phase 1 was conducted using three-factor factorial experimental design comprised of the following factors: 1) Extraction Solvent, 2) Heating Methods, 3) pH; and their corresponding levels were water and ethanol, conventional and microwave, pH (7, 8, 10 and 12), respectively. All synthesis was conducted at constant temperature of 80°C. Phase II experimental treatments were Laser ablation (0, 5, and 10 min) and Storage time (Week 1, 2 & 3). The Phase I of the results showed that increased AgNP concentrations were significantly (p 0.05) impact the particle size distribution. Hence, the Zeta potential of the particles has values typically ranging between +100 mV to -100 mV, hence indicative of colloidal stability matrix. Furthermore, the Polydispersity indexes of Week 1

  14. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    International Nuclear Information System (INIS)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong

    2013-01-01

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu"2"+, Fe"3"+ and Zn"2"+) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe

  15. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Zirconium and hafnium tetrachloride separation by extractive distillation with molten zinc chloride lead chloride solvent

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1988-01-01

    In an extractive distillation method for separating hafniuim tetrachloride from zirconium tetrachloride of the type wherein a mixture of zirconium and hafnium tetrachlorides is introduced into an extractive distillation column, which extractive distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a molten salt solvent is circulated into the reflux condenser and through the column to provide a liquid phase, and wherein molten salt solvent containing zirconium tetrachloride is taken from the reboiler and run through a stripper to remove zirconium tetrachloride product from the molten salt solvent and the stripped molten salt solvent is returned to the reflux condenser and hafnium tetrachloride enriched vapor is taken as product from the reflux condenser, the improvement is described comprising: the molten salt having a composition of at least 30 mole percent zinc chloride and at least 10 mole percent of lead chloride

  17. A comparison of geochemical features of extracts from coal-seams source rocks with different polarity solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianping; Deng, Chunping; Wang, Huitong

    2009-02-15

    There exists a great difference in group-type fractions and biomarker distributions of chloroform extracts from coals and coal-seams oils, which makes the source identification of coal-seams oils in sedimentary basins rather difficult. The experiment, in which four different polarity solvents, n-hexane, benzene, dichloromethane and chloroform, were used to extract 9 coal-seams source rocks and 3 typical lacustrine source rocks, showed that the yield of extracts increased gradually with increasing solvent polarity. The distribution features of their n-alkanes, isoprenoids and sterane and terpane biomarkers remained, in general, similar, showing no distinct enrichment or depletion for a certain fraction by any solvent. The compositional analysis on n-hexane and chloroform extracts showed that the absolute amount (concentration) of biomarkers was relatively low for the n-hexane extract but comparatively high for the chloroform extract, this difference became great among coal-seams source rocks but small among lacustrine mudstones. The statistical analysis on the relative amount of the 18 major biomarkers in n-hexane and chloroform extracts from 10 source rock samples showed that extracts with a proportional error for the same biomarker of less than 5% (including the analytical error) accounted for 84% while those with a proportional error over 10% amounted to below 5%. This suggested that the outcome of oil-source correlation made by these biomarkers will be independent of variations in amounts of saturates and biomarkers arising from solvent polarity. Therefore, biomarkers obtained from organic-rich source rocks including coals by the extraction with the commonly used chloroform solvent can be applied for the oilsource correlation of coal-seams petroliferous basins.

  18. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    Science.gov (United States)

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  19. Process modifications of obtaining Tc-99m by solvent extraction

    International Nuclear Information System (INIS)

    Leon, A.; Verdera, S.

    1978-01-01

    This paper describes a modification in the process to obtaining Tc-99m by the extraction method of solvent from Mo-99 produced by irradiation. Tc-99m is considered an ideal radionuclide for medical and biological applications

  20. Synthesis and Characterization of Some New Thermal Stable Polymers - Polymerization of N-[4-N´ -(Benzylamino-carbonylphenyl]maleimide

    Directory of Open Access Journals (Sweden)

    B. L. Hiran

    2007-01-01

    Full Text Available This article describes the synthesis and characterization of homopolymer (H-BCPM of N-[4-N'-(benzylamino-carbonyl phenyl] maleimide (N-BACPMI and copolymer (C-BCPM of N-BACPMI with n-butyl acrylate (BA. The new monomer was synthesized from p-aminobenzoic acid, maleic anhydride and benzylamine. The homopolymerization of N-BACPMI is initiated by free radical using AIBN in THF solvent at 65°C. Radical copolymerization of N-BACPMI with BA, initiated by AIBN, was performed in THF solvent using equimolar amount. Effect of the different free radical initiator AIBN, BPO and solvents p-Dioxane, THF, DMF and DMSO was studied. Homopolymer and Copolymer were characterized by intrinsic viscosity, solubility test, FT-IR, 1H-NMR spectral analysis and elemental analysis. Thermal behaviour was studied by Thermo gravimetric analysis.

  1. Extraction, Characterization and Modification of Castor Seed Oil

    Directory of Open Access Journals (Sweden)

    A. D. MOHAMMED

    2006-01-01

    Full Text Available This paper carried out experimental study, through extraction and characterization of both crude and refined castor oil. Normal hexane was used as solvent for the extraction process. The oil produced was refined through degumming, neutralization and bleaching process using local adsorbent (activated clay. The characterization analysis revealed that tested parameters, which include specific gravity, refractive index, acid value, saponification value and iodine value for both crude and refined castor oil produced, were within the ASTM standard specifications. In fact the iodine value obtained (84.8 for the refined oil indicates that the oil could certainly be used as lubricant, hydraulic break fluid and protecting coatings. The oil was modified via sulphation method to produce Turkey – red oil that was tested on wooden material, paper and cloth. The test revealed that the Turkey – red oil produced is suitable to be used as a good dying agent and polish.

  2. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    Science.gov (United States)

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  3. Antioxidant Activities of Methanol Extract and Solvent Fractions of ...

    African Journals Online (AJOL)

    Purpose: To determine the antioxidant activity of methanol extract (ME) and solvent fractions of Avrainvillea erecta as well as their total phenolic and flavonoid contents. Methods: The antioxidant activities of ME as well as its chloroform, butanol, and aqueous fractions (CF, BF and WF, respectively) of A. erecta were ...

  4. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  5. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS

    Directory of Open Access Journals (Sweden)

    H Sadeghi-aliabadi

    2009-10-01

    Full Text Available "nBackground and the purpose of the study: Taxol, a natural antitumor agent, was first isolated from the extract of the bark of Taxus brevifolia Nutt., which is potentially a limited source for Taxol. In the search of an alternative source, optimum and cost benefit extracting solvents, various solvents with different percentage were utilized to extract Taxol from needles of Taxus baccata. "nMethods: One g of the dried needles of Taxus baccata, collected from Torkaman and Noor cities of Iran, was extracted with pure ethanol or acetone and 50% and 20% of ethanol or acetone in water. Solvents were evaporated to dryness and the residues were dissolved in 5 ml of methanol and filtered. To one ml of the filtrate was added 50 μl of cinamyl acetate as the internal standard and 20 μl of the resulting solution was subjected to the HPLC to determine the extraction efficiencies of tested solvents. Five μl of filtrate was also subjected to the LC-MS using water/acetonitrile (10/90 as mobile phase and applying positive electrospray ionization (ESI to identify the authenticity of Taxol. "nResults: Results of this study indicated that Taxol extraction efficiency was enhanced as the percentage of ethanol or acetone was increased. HPLC analysis showed that Taxol could be quantified by UV detection using standard curve. The standard curve covering the concentration ranges of 7.8 - 500 μg/ml was linear (r2= 0.9992 and CV% ranged from 0.52 to 15.36. LC-MS analysis using ESI in positive-ion mode confirmed the authenticity of Taxol (m/z 854; M+H, as well as some adduct ions such as M+Na (m/z 876, M+K (m/z 892 and M+CH3CN+H2O (m/z 913. "nConclusions: The results suggest that 100% acetone is the best solvent for the extraction of Taxol from Taxus baccata needles.

  6. Green synthesis of silver nanoparticles using Stevia leaves extracts

    Science.gov (United States)

    Laguta, Iryna; Stavinskaya, Oksana; Kazakova, Olga; Fesenko, Tetiana; Brychka, Sergey

    2018-02-01

    Three extracts of Stevia rebaudiana (Bertoni) were prepared using different types of raw materials: leaves of plants grown ex situ, leaves of plants grown in vitro, callus culture formed on damaged leaves. Composition of the extracts was studied by means of high-performance liquid chromatography and laser desorption/ionization mass spectrometry; total phenol content was estimated using Folin-Ciocalteau method. Flavonoids and hydroxycinnamic acids were found to be the main groups of phenol antioxidants available in the Stevia leaves, with the amount of these compounds in the extract being dependent on the type of raw material. The reducing properties of phenol compounds identified in the extracts were characterized using quantum chemical method; flavonoids and hydroxycinnamic acids were found to have similar redox parameters. Silver nanoparticles (AgNPs) colloids were synthesized using three Stevia extracts; AgNPs size distribution were characterized by means of scanning electron microscopy. All the extracts revealed significant activity in AgNPs synthesis; the nanoparticles of predominantly spherical shape with the average sizes of 16-25 nm were formed. The reducing properties of the extracts were found to correlate with total phenol content; the activity of extracts from the leaves of plants grown ex situ and from callus culture in Ag+ ions reduction was similar to each other and exceeded the activity of extract from the leaves of plants grown in vitro.

  7. Development of {sup 99m}Tc extraction-recovery by solvent extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Akihiro; Nishikata, Kaori; Izumo, Hironobu; Tsuchiya, Kunihiko; Ishihara, Masahiro [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Tanase, Masakazu; Fujisaki, Saburo; Shiina, Takayuki; Ohta, Akio; Takeuchi, Nobuhiro [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    {sup 99m}Tc is used as a radiopharmaceutical in the medical field for the diagnosis, and manufactured from {sup 99}Mo, the parent nuclide. In this study, the solvent extraction with MEK was selected, and preliminary experiments were carried out using Re instead of {sup 99m}Tc. Two tests were carried out in the experiments; the one is the Re extraction test with MEK from Re-Mo solution, the other is the Re recovery test from the Re-MEK. As to the Re extraction test, and it was clear that the Re extraction yield was more than 90%. Two kinds of Re recovery tests, which are an evaporation method using the evaporator and an adsorption/elution method using the alumina column, were carried out. As to the evaporation method, the Re concentration in the collected solution increased more than 150 times. As to the adsorption/elution method, the Re concentration increased in the eluted solution more than 20 times. (author)

  8. Theoretical Study on the Extraction of Alkaline Earth Salts by 18-Crown-6: Roles of Counterions, Solvent Types and Extraction Temperatures

    Directory of Open Access Journals (Sweden)

    Saprizal Hadisaputra

    2014-07-01

    Full Text Available The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3- have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.

  9. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study

    International Nuclear Information System (INIS)

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D.; Norman, David; Brennan, Mary; Ali, Gul Shad

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml"−"1) were reacted. The results showed that silver nitrate (2 mM) and plant extract (10 mg ml"−"1) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO_3 ratio of 6:4 v/v resulted in the highest conversion efficiency of AgNO_3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO_3 to synthesize biologically stable AgNPs. - Graphical abstract: Aqueous extract from Artemisia absinthium when used in appropriate ratio (shown in Eppendorf tubes and microtiter plate) is highly active in reducing elemental silver to colloidal silver nanoparticles in the 5–20 nm size range (shown in TEM image, bottom left panel; DLS histogram, upper left panel; EDX analysis, bottom right panel). - Highlights: • Artemisia absinthium extract provides excellent reducing potential for biosynthesis of silver

  10. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohammad [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States); Kim, Bosung [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States); Belfield, Kevin D. [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States); College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Norman, David; Brennan, Mary [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States); Ali, Gul Shad, E-mail: gsali@ufl.edu [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States)

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml{sup −1}) were reacted. The results showed that silver nitrate (2 mM) and plant extract (10 mg ml{sup −1}) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO{sub 3} ratio of 6:4 v/v resulted in the highest conversion efficiency of AgNO{sub 3} to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO{sub 3} to synthesize biologically stable AgNPs. - Graphical abstract: Aqueous extract from Artemisia absinthium when used in appropriate ratio (shown in Eppendorf tubes and microtiter plate) is highly active in reducing elemental silver to colloidal silver nanoparticles in the 5–20 nm size range (shown in TEM image, bottom left panel; DLS histogram, upper left panel; EDX analysis, bottom right panel). - Highlights: • Artemisia absinthium extract provides excellent reducing potential for

  11. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    Science.gov (United States)

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  12. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    Science.gov (United States)

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  13. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves

    Directory of Open Access Journals (Sweden)

    Ghadir A. El-Chaghaby

    2014-04-01

    Full Text Available The present work was conducted aiming to evaluate the effect of different solvent extracts on the antioxidant and antibacterial activities of Annona squamosa L. leaves. Four solvents were chosen for the study namely; methanol 80%, acetone 50%, ethanol 50% and boiling water. Acetone and boiling water gave the highest extraction yields as compared to methanol and ethanol. Total phenolic contents of the four extracts were significantly different with acetone being the most efficient solvent and water being the least efficient one. Correlation coefficient between the total antioxidant and total phenolic content was found to be R2 = 0.89 suggesting the contribution of phenolic compounds of the extract by 89% to its total antioxidant activity. The extracts were capable of scavenging H2O2 in a range of 43–54%. Reducing power of the extracts increased by increasing their concentration. The extracts were found to exert low to moderate antibacterial activity compared to a standard antibacterial agent. The bacterial inhibition of the extracts was found to positively correlate with their phenolic contents.

  14. Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-09-01

    Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: Zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  16. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    International Nuclear Information System (INIS)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  17. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  18. Effect tetrahydrofuran as solvent in the synthesis of mullite by the Pechini

    International Nuclear Information System (INIS)

    Braga, A.N.S.; Santos, V.B.; Simoes, V.N.; Neves, G.A.; Lira, H.L.; Menezes, R.R.

    2016-01-01

    Mullite has been considered interesting in recent decades, due to its properties. The reaction mechanisms in the mullite formation may vary according to the precursor and the methods employed. In order to get mullite by a promising chemical synthesis and understudied in its production, this paper aims to synthesize mullite by Pechini method. We investigated the mullite crystallization kinetics from use of tetrahydrofuran as solvent. The samples were characterized by diffraction of X-ray (XRD), thermal analysis and scanning electron microscopy (SEM). The XRD results showed the formation of mullite, but together with the alpha alumina phase. Thermal analysis confirmed the disruption of the polymer chain prior to the formation of crystalline phases, with a total weight loss of 97%. The SEM showed a morphology consists of large aggregates, damaging the properties of refractory and performance of the material. (author)

  19. Ultrasound-Assisted Extraction (UAE and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile

    Directory of Open Access Journals (Sweden)

    Hasanah Mohd Ghazali

    2013-10-01

    Full Text Available The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE and solvent extraction (SE. In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C and ultrasound-assisted extraction (UAE methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively. Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%–74.7%, palmitic (16:0, 14.9%–17.9%, stearic (18:0, 4.50%–5.25%, and linoleic acid (18:2, 3.63%–4.6%. Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO, palmitoyl diolein (POO and stearoyl oleoyl linolein (SOL. In this study, ultrasound-assisted extraction (UAE significantly (p < 0.05 influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE and conditions.

  20. Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Piperine: Extraction of Piperine from Spiked Urine

    Directory of Open Access Journals (Sweden)

    Rachel Marcella Roland

    2016-01-01

    Full Text Available Molecularly imprinted polymer (MIP microspheres for Piperine were synthesized by precipitation polymerization with a noncovalent approach. In this research Piperine was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and 2,2′-azobisisobutyronitrile (AIBN as an initiator and acetonitrile as a solvent. The imprinted and nonimprinted polymer particles were characterized by using Fourier transform infrared spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The synthesized polymer particles were further evaluated for their rebinding efficiency by batch binding assay. The highly selected imprinted polymer for Piperine was MIP 3 with a composition (molar ratio of 0.5 : 3 : 8, template : monomer : cross-linker, respectively. The MIP 3 exhibits highest binding capacity (84.94% as compared to other imprinted and nonimprinted polymers. The extraction efficiency of highly selected imprinted polymer of Piperine from spiked urine was above 80%.

  1. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong [Sichuan University, Chengdu (China)

    2013-08-15

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu{sup 2+}, Fe{sup 3+} and Zn{sup 2+}) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe.

  2. Radiation chemistry in solvent extraction: FY2010 Research

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk

    2010-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: • Development of techniques to measure free radical reaction kinetics in the organic phase. • Initiation of an alpha-radiolysis program • Initiation of an effort to understand dose rate effects in radiation chemistry • Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the •NO3 radical with solvent extraction ligands in organic solution, and the method to measure •OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with •NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry

  3. An investigation of influence of solvent on the degradation kinetics of carotenoids in oil extracts of Calendula officinalis

    Directory of Open Access Journals (Sweden)

    DEJAN BEZBRADICA

    2005-02-01

    Full Text Available The stability of carotenoids was studied in marigold oil extracts prepared with following solvents: Myritol 312®, paraffin oil, almond oil, olive oil, sunflower oil, grape seed oil, and soybean oil. The concentration of the carotenoids was determined by spectroscopic measurement at 450 nm. Degradation rate showed a first order dependence on the concentration of carotenoids with a faster first stage (which lasted 35–50 days, depending on the solvent and a slower second stage. The highest degradation rates were observed in extracts prepared with linoleic acid rich solvents (sunflower oil, soybean oil and grape seed oil, while the lowest were found in oil with saturated fatty acids (Myritol 312® and paraffin oil. These results confirm the connection between the degradation of carotenoids and lipid autoxidation, and suggest that the influence of the oil solvents on the stability of oil extracts of Calendula officinalis is a factor that must be considered when selecting a solvent for the production of marigold oil extracts.

  4. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  5. Aliphatic-aromatic separation using deep eutectic solvents as extracting agents

    NARCIS (Netherlands)

    Rodriguez Rodriguez, Nerea; Fernandez Requejo, Patricia; Kroon, Maaike

    2015-01-01

    The separation of aliphatic and aromatic compounds is a great challenge for chemical engineers. There is no efficient separation process for mixtures with compositions lower than 20 wt % in aromatics. In this work, the feasibility of two different deep eutectic solvents (DESs) as novel extracting

  6. Alternative Carrier Solvents for Pigments Extracted from Spalting Fungi

    Directory of Open Access Journals (Sweden)

    Lauren Pittis

    2018-05-01

    Full Text Available The use of both naturally occurring and synthetic pigmented wood has been prevalent in woodcraft for centuries. Modern manifestations generally involve either woodworkers’ aniline dyes, or pigments derived from a special class of fungi known as spalting fungi. While fungal pigments are more renewable than anilines and pose less of an environmental risk, the carrier required for these pigments—dichloromethane (DCM—is both problematic for humans and tends to only deposit the pigments on the surface of wood instead of evenly within the material. Internal coloration of wood is key to adoption of a pigmenting system by woodworkers. To address this issue, five solvents that had moderate solubility with the pigments extracted from Chlorociboria aeruginosa and Scytalidium cuboideum were identified, in the hopes that a reduction in solubility would result in a greater amount of the pigment deposited inside the wood. Of the tested solvents, acetonitrile was found to produce the highest internal color in ash, Douglas-fir, madrone, mountain hemlock, Port-Orford cedar, Pacific silver fir, red alder and sugar maple. While these carrier solvents are not ideal for extracting the pigments from the fungi, acetonitrile in particular does appear to allow for more pigment to be deposited within wood. The use of acetonitrile over DCM offers new opportunities for possible industrial spalting applications, in which larger pieces of wood could be uniformly pigmented and sold to the end user in larger quantities than are currently available with spalted wood.

  7. Effectivity of Beta vulgaris L. Extract with various Solvent Fractions to Aedes aegypti Larval Mortality

    Directory of Open Access Journals (Sweden)

    Mutiara Widawati

    2013-06-01

    Full Text Available Dengue vector control is mostly done by using plant-based insecticides. Insecticides from the vegetable and fruit extracts of the leaves of plants that contain compounds alkaloids, saponins, flavonoids, tannins, triterpenoids, and polyphenols can be used as an alternative to naturally control Ae. aegypti. The purpose of this study was to determine the effectiveness of the B. vulgaris L. extract larvacide against larvae of Ae. aegypti. The materials that been used was B. vulgaris L. fruit parts which was milled and dried to become a powder form. 800 g of dry powder was extracted by 70% methanol by percolation method with occasional stirring for 3 days. The extract was concentrated using an evaporator. 60 g remaining residue was dissolved in distilled water and re-extracted with diethyl ether, chloroform, and ethyl acetate. Each fraction extract was dried with anhydrous sodium sulfate and the solvent was distilled. The extract was tested qualitatively to determine the content of secondary metabolites. Larvacide test performed by dissolving each extracts in dimetilsulphoxide (DMSO at concentrations of 0.1, 0.5 and 1%. The larvae used was larval of Ae. aegypti age of seven days. Death larvae counted every day for seven days to determine the effect of the contact. Tests carried out at a temperature of 27±1°C by immersing 25 larvae at each concentration of the extract with 50 mL volume and three replications was performed. The data obtained were analyzed further with different test. The results showed that fruit extract contains flavonoids, alkoloid, sterols, triterpenes, saponins and tannins. Highest mortality happened which was 82.5% and the lowest mortality happened with a concentration of 0.1% diethyl ether extract fraction. The extracts that are dissolved in various solvent fractions have not been effective as a larvacide until the highest concentration which was 1%. Methanol and polar solvent extracts of the fruit has a larvacide potency a bit

  8. Refining of yellow cake by solvent extraction. Pakistan status report

    International Nuclear Information System (INIS)

    Yunus, M.; Muzaffar, A.; Qureshi, M.T.; Qazi, N.K.; Khan, J.R.; Chughtai, N.A.; Zaidi, S.M.H.

    1980-01-01

    The paper describes the pilot-plant studies made at the Pakistan Institute of Nuclear Science and Technology, Rawalpindi, on refining yellow cake. The process units mainly consist of digestion and filtration, solvent extraction, precipitation and filtration, and calcining and reduction. Extraction parameters, such as free acidity in terms of nitrate ion concentration, throughputs and AF index, have been studied in some detail. Product of satisfactory chemical purity, as confirmed by spectrochemical analysis, was produced by this method. (author)

  9. Extraction of vitexin from binahong (Anredera cordifolia (Ten.) Steenis) leaves using betaine - 1,4 butanediol natural deep eutectic solvent (NADES)

    Science.gov (United States)

    Mulia, Kamarza; Muhammad, Fajri; Krisanti, Elsa

    2017-03-01

    The leaves of binahong (Anredera cordifolia (Ten) Steenis) contain flavonoids as bioactive substances that have efficacy to treat wounds and diseases caused by bacteria. One of the flavonoids contained in the leaves is 8-glucopyranosyl-4'5'7-trihydroxyflavone or vitexin. Conventional extraction of flavonoids from leaves of binahong has been developed and usually using non-friendly organic solvent. To overcome these problems, a Natural Deep Eutectic Solvent (NADES) is used to replace the conventional organic solvents, as it is an environmentally friendly, non-toxic and high boiling point solvent. In this study, a betaine-based NADES combined with 1,4-butanediol in 1:3 mole ratio was used as the extraction solvent. Vitexin in the extract was analyzed qualitatively and quantitatively using an HPLC. The extraction of vitexin from binahong leaves at room temperature (27 °C) for four hours give yield of 46 ppm, much lower than 200 ppm yield obtained after extraction at 55 °C for 90 minutes. This results showed that (a) NADES consisting of betaine and 1,4 butanediol is a promising green solvent for extraction of vitexin from binahong leaves, and, (b) the extraction can be performed above ambient temperature, as long as it does not exceed the degradation temperature of the bioactive compound extracted.

  10. Chetoui olive leaf extracts: influence of the solvent type on the phenolics and antioxidant activities

    Energy Technology Data Exchange (ETDEWEB)

    Abaza, L.; Ben Youssef, N.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M.

    2011-07-01

    The aim of this study was to investigate the influence of the solvent type on the extraction of phenolics and the antioxidant properties of the extracts obtained from Chetoui olive leaves. Extraction was conducted at room temperature using four solvents: deionized water (ddH2O), 80% methanol (80% MeOH), 70% ethanol (70% EtOH), and 80% acetone. Total phenols and total flavonoids were measured using the Folin-Ciocalteau and aluminum chloride colorimetric methods, respectively. The antioxidant properties have been determined by two scavenging activity methods, DPPH and ABTS. (Author).

  11. Solvent extraction of Southern US tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  12. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    Science.gov (United States)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  13. Extraction of bitter acids from hops and hop products using pressurized solvent extraction (PSE)

    Czech Academy of Sciences Publication Activity Database

    Čulík, J.; Jurková, M.; Horák, T.; Čejka, P.; Kellner, V.; Dvořák, J.; Karásek, Pavel; Roth, Michal

    2009-01-01

    Roč. 115, č. 3 (2009), s. 220-225 ISSN 0046-9750 R&D Projects: GA ČR GA203/08/1536; GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : hops * bitter acids * pressurized solvent extraction Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.000, year: 2009

  14. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy.

    Science.gov (United States)

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-03-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.

  15. Capacitive Imaging For Skin Characterization and Solvent Penetration

    OpenAIRE

    Xiao, P; Zhang, X; Bontozoglou, C

    2016-01-01

    Capacitive contact imaging has shown potential in measuring skin properties including hydration, micro relief analysis, as well as solvent penetration measurements . Through calibration we can also measure the absolute permittivity of the skin, and from absolute permittivity we then work out the absolute water content (or solvent content) in skin. In this paper, we present our latest study of capacitive contact imaging for skin characterization, i.e. skin hydration and skin damages etc. The r...

  16. Cogeneration of biodiesel and nontoxic cottonseed meal from cottonseed processed by two-phase solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junfeng, E-mail: qianjunfeng80@126.co [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China) and College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun Zhi; Shi Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2010-12-15

    In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 deg. C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 deg. C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel.

  17. Cogeneration of biodiesel and nontoxic cottonseed meal from cottonseed processed by two-phase solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Junfeng [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China); College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun, Zhi; Shi, Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2010-12-15

    In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel. (author)

  18. Separation of actinide elements by solvent extraction using centrifugal contactors in the NEXT process

    International Nuclear Information System (INIS)

    Nakahara, Masaumi; Sano, Yuichi; Koma, Yoshikazu; Kamiya, Masayoshi; Shibata, Atsuhiro; Koizumi, Tsutomu; Koyama, Tomozo

    2007-01-01

    Using the advanced aqueous reprocessing system named NEXT process, actinides recovery was attempted by both a simplified solvent extraction process using TBP as an extractant for U, Pu and Np co-recovery and the SETFICS process for Am and Cm recovery from the raffinate. In U, Pu and Np co-recovery experiments a single cycle flow sheet was used under high nitric acid concentration in the feed solution or scrubbing solution. High nitric acid concentration in the feed solution aided Np oxidation not only in the feed solution, but also at the extraction section. This oxidation reaction accomplished Np extraction by TBP with U and Pu. Most of Np could be recovered into the product solution. In the SETFICS process, a TRUEX solvent of 0.2 mol/dm 3 CMPO and 1.4 mol/dm 3 TBP in n-dodecane was employed instead of 0.2 mol/dm 3 CMPO and 1.0 mol/dm 3 TBP in n-dodecane in order to increase the loading of metals. Instead of sodium nitrate, hydroxylamine nitrate was applied to this experimental flow sheet in accordance with a 'salt-free' concept. The counter current experiment succeeded with the Am and Cm product. On the high-loading flow sheet, compared with the previous flow sheet, the flow of the aqueous effluents and spent solvent were expected to decrease by about one half. Two solvent extraction experiments for actinides recovery demonstrated the utility of the flow sheet of these processes in the NEXT process. (author)

  19. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  20. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    Science.gov (United States)

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  1. Greener synthesis of magnetite nanoparticles using green tea extract and their magnetic properties

    Science.gov (United States)

    Karade, V. C.; Waifalkar, P. P.; Dongle, T. D.; Sahoo, Subasa C.; Kollu, P.; Patil, P. S.; Patil, P. B.

    2017-09-01

    The facile green synthesis method has been employed for the synthesis of biocompatible Fe3O4 magnetic nanoparticles (MNPs) using green tea extract. The effective reduction of ferric ions (Fe3+) were done using an aqueous green tea extract where it acts as reducing as well as capping agent. The effect of iron precursor to green tea extract ratio and reaction temperature was studied. The MNPs were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic light scattering and vibrating sample magnetometer. It was observed that the reaction temperature strongly affects the magnetic and structural properties of MNPs. The magnetic measurements study showed that Fe3O4 MNPs are superparamagnetic at 300 K, while at 60 K have ferromagnetic as well as superparamagnetic contributions.

  2. Membrane assisted solvent extraction for rare earth element recovery

    Science.gov (United States)

    Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.

    2018-05-15

    Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.

  3. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    Science.gov (United States)

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  4. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  5. Synthesis of silver nanocubes in a hydrophobic binary organic solvent.

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sun, Y. (Center for Nanoscale Materials)

    2010-01-01

    Synthesis of metal nanoparticles with controlled shapes in hydrophobic solvents is challenging because homogeneous nucleation with high rate in these solvents is favorable for the formation of multiply twinned (MT) nanoparticles with spherical morphology. In this work, we report an inhomogeneous nucleation strategy in a binary hydrophobic solvent mediated by dimethyldistearylammonium chloride (DDAC), resulting in the coexistence of single-crystalline Ag polyhedrons and MT Ag quasi-spheres at the beginning of the reaction. In the consequent step, the MT Ag nanoparticles are selectively etched and dissolved through oxidation by NO{sub 3}{sup -} ions (from the Ag precursor, AgNO{sub 3}) with the assistance of Cl{sup -} ions (from DDAC). The dissolved Ag species are then reduced and deposited on the more stable single-crystalline polyhedrons to form Ag nanocubes. Synergy of the oxidative etching of MT particles and growth of single-crystalline particles leads to Ag nanocubes with high purity when the ripening time is long enough. For example, refluxing a mixing solvent of octyl ether and oleylamine containing AgNO{sub 3} (0.02 M) and DDAC (0.03 M) at 260 C for 1 h results in Ag nanocubes with an average edge length of 34 nm and a purity higher than 95%.

  6. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies.

    Science.gov (United States)

    Pasupuleti, Visweswara Rao; Prasad, T N V; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Ab Rahman, Ismail; Gan, Siew Hua

    2013-01-01

    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.

  7. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  8. Comparison of accelerated solvent extraction and standard shaking extraction for determination of dioxins in foods

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Tobiishi, K.; Ashizuka, Y.; Nakagawa, R.; Iida, T. [Fukuoka Institute of Health and Environmental Sciences, Fukuoka (Japan); Tsutsumi, T.; Sasaki, K. [National Institute of Health Sciences, Tokyo (Japan)

    2004-09-15

    We previously developed a highly sensitive method for determining dioxin content in food using a solvent cut large volume (SCLV) injection system coupled to a cyanopropyl phase capillary column. The SCLV injection system coupled to a 40m-length Rtx-2330 column showed sufficient separation of 2,3,7,8-chlorine substituted isomers, and had at least five-times higher sensitivity than the conventional injection technique. In the current method, a large volume of sample (generally 100g) must be treated collectively in order to attain the desirable limit of detection (LODs) at low ppt levels, namely 0.01pg/g for tetra-CDD and -CDF. The present method allowed the reduction of sample volume from 100g to 20g when such usual LODs are demanded. The SCLV injection technique is expected to improve the efficiency of laboratory performance, especially when it is coupled to an automated extraction method, such as accelerated solvent extraction (ASE). In order to examine the applicability of ASE for the determination of dioxins in food samples, it is important to verify its extraction efficacy against that of the conventional technique. In the present study we examine the applicability of an ASE for the determination of dioxins in food samples, and the method's performance was compared with that of standard conventional shaking extraction (separatory funnel extraction) regarding recovery rates and quantitative determination. It is considered that homogeneous tissue, such as dried seaweed powder or dried milk powder, is suitable for the method's quantitative validation.

  9. Comparison of accelerated solvent extraction and standard shaking extraction for determination of dioxins in foods

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T; Tobiishi, K; Ashizuka, Y; Nakagawa, R; Iida, T [Fukuoka Institute of Health and Environmental Sciences, Fukuoka (Japan); Tsutsumi, T; Sasaki, K [National Institute of Health Sciences, Tokyo (Japan)

    2004-09-15

    We previously developed a highly sensitive method for determining dioxin content in food using a solvent cut large volume (SCLV) injection system coupled to a cyanopropyl phase capillary column. The SCLV injection system coupled to a 40m-length Rtx-2330 column showed sufficient separation of 2,3,7,8-chlorine substituted isomers, and had at least five-times higher sensitivity than the conventional injection technique. In the current method, a large volume of sample (generally 100g) must be treated collectively in order to attain the desirable limit of detection (LODs) at low ppt levels, namely 0.01pg/g for tetra-CDD and -CDF. The present method allowed the reduction of sample volume from 100g to 20g when such usual LODs are demanded. The SCLV injection technique is expected to improve the efficiency of laboratory performance, especially when it is coupled to an automated extraction method, such as accelerated solvent extraction (ASE). In order to examine the applicability of ASE for the determination of dioxins in food samples, it is important to verify its extraction efficacy against that of the conventional technique. In the present study we examine the applicability of an ASE for the determination of dioxins in food samples, and the method's performance was compared with that of standard conventional shaking extraction (separatory funnel extraction) regarding recovery rates and quantitative determination. It is considered that homogeneous tissue, such as dried seaweed powder or dried milk powder, is suitable for the method's quantitative validation.

  10. Solvent-assisted in situ synthesis of cysteamine-capped silver nanoparticles

    Science.gov (United States)

    Oliva, José M.; Ríos de la Rosa, Julio M.; Sayagués, María J.; Sánchez-Alcázar, José A.; Merkling, Patrick J.; Zaderenko, Ana P.

    2018-03-01

    Silver nanoparticles offer a huge potential for biomedical applications owing to their exceptional properties and small size. Specifically, cysteamine-capped silver nanoparticles could form the basis for new anticancer therapies combining the cytotoxic effect of the silver core with the inherent antitumor activity of cysteamine, which inhibit cancer cell proliferation and suppress invasion and metastasis. In addition, the capability of the cysteamine coating monolayer to couple a variety of active principles and targeting (bio)molecules of interest proves key to the tailoring of this platform in order to exploit the pathophysiology of specific tumor types. Nevertheless, the chain length and conformational flexibility of cysteamine, together with its ability to attach to the surface of silver nanoparticles via both the thiol and the amine group, have made the in situ synthesis of these particles an especially challenging task. Herein we report a solvent-assisted in situ synthesis method that solves this problem. The obtained nanoparticles have been fully characterized by UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, electron diffraction measurement, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive x-ray spectroscopy nanoanalysis, and dynamic light scattering measurement. Our synthesis method achieves extremely high yield and surface coating ratio, and colloidal stability over a wide range of pH values including physiological pH. Additionally, we have demonstrated that cysteamine-capped nanoparticles obtained by this method can be conjugated to an antibody for active targeting of the epidermal growth factor receptor, which plays an important role in the pathogenesis and progression of a wide variety of tumors, and induce cell death in human squamous carcinoma cells. We believe this method can be readily extended to combinations of noble

  11. A computer aided solvent extraction process design in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Britto, S.E.; Purandare, H.D.; Lawande, S.V.

    1977-01-01

    A rigorous and conceptual design is attempted of the first step of flowsheet formulation for solvent extraction process for fuel reprocessing plant. The design incorporates three cycles of extraction contractors; the first optimised to maximise Pu recovery while the second and third cycles to maximise fission product decontaminations. There are three basic types of extraction steps in these different cycles requiring painstaking design, namely, extraction-scrub, Pu strip-scrub and simple strip. The extraction system to start with is: U nitrate - Pu nitrate - fission product nitrates - nitric acid - tri-butyl phosphate/diluent. With suitable simplifying assumptions and adopting the concept of discrete equilibrium stagewise operation, simple X-Y operating diagrams could be used. The calculations could therefore be done using McCabe Thiele graphical method. The procedure adopted was to consider the macro-component of U to obtain initial optimum flow sheet details and the number of theoretical stages for each contactor and later to incorporate the behaviour of Pu and fission products. A computer program was written to calculate, for different combinations of nitric acid salting strengths, (1) the U concentration profiles along the contractors and (2) the number of stages needed for various different solvent and aqueous phase flow ratios, using experimentally obtained equilibrium data. The method used is indicated and some samples of results obtained for three types of extraction-scrub operation studied are given. These simplified calculations provided the necessary insight into these difficult operations. (auth.)

  12. Characterization of Catalytic Fast Pyrolysis Oils: The Importance of Solvent Selection for Analytical Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, Jack R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ware, Anne E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-25

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysis by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.

  13. Changes in total phenol, flavonoid contents and anti-Lactobacillus activity of Callisia fragrans due to extraction solvent

    Science.gov (United States)

    Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien

    2018-04-01

    Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.

  14. Synthesis and characterization of "1"3C_3-tristearin

    International Nuclear Information System (INIS)

    Wu Hangyu; Lin Lin; Li Lei; Chen Dazhou

    2011-01-01

    A highly efficient synthesis of "1"3C_3 labeled triglycerides of stearic acids from "1"3C_3-glycerol and stearic acids, by immobilized lipase-catalyzed in solvent-free medium was described. The structure of the product were characterized by fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), mass spectra (MS). The results showed that triglycerides of stearic acids contained three "1"3C atoms. The isotope abundance of "1"3C_3-tristearin was more than 99% and the yield was 80% of "1"3C_3-tristearin through calculation. Chemical purity (> 98%) was obtained by differential scanning calorimetry (DSC). (authors)

  15. Solvent-extraction methods applied to the chemical analysis of uranium. III. Study of the extraction with inert solvents; Metodos de extraccion con disolventes aplicados al analisis quimico del uranio. III. Estudio de la extraccion con disolvente inertes

    Energy Technology Data Exchange (ETDEWEB)

    Vera Palomino, J; Palomares Delgado, F; Petrement Eguiluz, J C

    1964-07-01

    The extraction of uranium on the trace level is studied by using tributylphosphate as active agent under conditions aiming the attainment of quantitative extraction by means of a single step process using a number of salting-out agents and keeping inside the general lines as reported in two precedent papers. Two inert solvents were investigated, benzene and cyclohexane, which allowed to derive the corresponding empirical equations describing the extraction process and the results obtained were compared with those previously reported for solvents which, like ethyl acetate and methylisobuthylketone, favour to a more or less extend the extraction of uranium. (Author) 4 refs.

  16. Solvent Extraction of Copper: An Extractive Metallurgy Exercise for Undergraduate Teaching Laboratories

    Science.gov (United States)

    Smellie, Iain A.; Forgan, Ross S.; Brodie, Claire; Gavine, Jack S.; Harris, Leanne; Houston, Daniel; Hoyland, Andrew D.; McCaughan, Rory P.; Miller, Andrew J.; Wilson, Liam; Woodhall, Fiona M.

    2016-01-01

    A multidisciplinary experiment for advanced undergraduate students has been developed in the context of extractive metallurgy. The experiment serves as a model of an important modern industrial process that combines aspects of organic/inorganic synthesis and analysis. Students are tasked to prepare a salicylaldoxime ligand and samples of the…

  17. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  18. Development of a solvent extraction process for cesium removal from SRS tank waste

    International Nuclear Information System (INIS)

    Leonard, R.A.; Conner, C.; Liberatore, M.W.; Sedlet, J.; Aase, S.B.; Vandegrift, G.F.; Delmau, L.H.; Bonnesen, P.V.; Moyer, B.A.

    2001-01-01

    An alkaline-side solvent extraction process was developed for cesium removal from Savannah River Site (SRS) tank waste. The process was invented at Oak Ridge National Laboratory and developed and tested at Argonne National Laboratory using singlestage and multistage tests in a laboratory-scale centrifugal contactor. The dispersion number, hydraulic performance, stage efficiency, and general operability of the process flowsheet were determined. Based on these tests, further solvent development work was done. The final solvent formulation appears to be an excellent candidate for removing cesium from SRS tank waste.

  19. Solvent extraction as a method of promoting uranium enrichment by chemical exchange

    International Nuclear Information System (INIS)

    Fathurrachman.

    1995-01-01

    This thesis examines a chemical exchange process for uranium enrichment using solvent extraction. The system selected is the isotope exchange for uranium species in the form of uranous and uranyl chloride complexes. Solvent extraction has been studied before by French workers for this application but little was published on this. Much of this present work is therefore novel. The equilibrium data for the extraction of U(IV) as U 4+ and U(VI) as UO 2 2+ from hydrochloric media into an organic phase containing tri-n-octylamine (TOA) in benzene is given. Benzene is used to prevent third phase formation. In 4 M HCl U(VI) was found to be very soluble in the organic phase but U(IV) was virtually insoluble. Most of the equilibrium data has been correlated by the Langmuir isotherm. This thesis also outlines the methodology that has to be used to design a plant based on this process. (author)

  20. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers

    International Nuclear Information System (INIS)

    Du, H.S.; Wood, D.J.; Elshani, Sadik; Wai, C.M.

    1993-01-01

    Thorium and the lanthanides are extracted by α-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed. (author)

  1. Solvent extraction studies on cadmium Part 3

    International Nuclear Information System (INIS)

    Alian, A.; El-Kot, A.

    1976-01-01

    An extraction study was performed on various concentrations of cadmium, zinc and cobalt halides in the presence of sulphuric acid. A long chain amine (Amberlite LA-2) and an organophosphorus solvent (TBP) were used. In most cases the value of the distribution ratio decreases with the increase of metal concentration in the aqueous phase. The various possibilities of chemical and radiochemical separations of cadmium from accompanying metal species are reported: separation of (sup109m)Ag from irradiated Cd targets, separation of (sup115m)In using HDEHP, separation of Cd and Zn from their mixtures. (T.G.)

  2. Extraction and detection of arsenicals in seaweed via accelerated solvent extraction with ion chromatographic separation and ICP-MS detection

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, P.A.; Shoemaker, J.A.; Wei Xinyi; Brockhoff-Schwegel, C.A.; Creed, J.T. [Microbiological and Chemical Exposure Assessment Research Div., Cincinnati, OH (United States)

    2001-01-01

    An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. The effect of the experimentally controllable ASE parameters (pressure, temperature, static time, and solvent composition) on the extraction efficiencies of arsenicals from seaweed was investigated. The extraction efficiencies for ribbon kelp (approximately 72.6%) using the ASE were fairly independent (< 7%) of pressure, static time and particle size after 3 ASE extraction cycles. The optimum extraction conditions for the ribbon kelp were obtained by using a 3 mL ASE cell, 30/70 (w/w) MeOH/H{sub 2}O, 500 psi (1 psi = 7 KPa), ambient temperature, 1 min heat step, 1 min static step, 90% vol. flush, and a 120 s purge. Using these conditions, two other seaweed products produced extraction efficiencies of 25.6% and 50.5%. The inorganic species present in the extract represented 62.5% and 27.8% of the extracted arsenic. The speciation results indicated that both seaweed products contained 4 different arsenosugars, DMA (dimethylarsinic acid), and As(V). One seaweed product also contained As(III). Both of these seaweed products contained an arsenosugar whose molecular weight was determined to be 408 and its structure was tentatively identified using ion chromatography-electrospray ionization-mass spectrometry/mass spectrometry (IC-ESI-MS/MS). (orig.)

  3. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters

    Science.gov (United States)

    Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul

    2018-02-01

    Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.

  4. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  5. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  6. Kinetics studies of solvent extraction of rare earths into DEHPA

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1996-01-01

    The kinetics of rare earth solvent extraction into di(2-ethylhexyl) phosphoric acid have been studied using radiotracers ( 141 Ce, 152 Eu, 153 Gd, 160 Tb and 88 Y) in a modified Lewis cell. The experimental procedure involved continuous monitoring of both aqueous and organic phases using an automated γ- counting system. Using this method, highly reproducible results were obtained without chemical analysis or disturbance of the system. The initial rate extraction was first order with respect to individual rare earth concentration. At low acidities ([H+] < 0.01 M), the extraction rates of rare earths were equal and independent of pH. However, at high acidities, the extraction rate was strongly dependent on pH and varied between the rare earths. Similarly, differences in the extraction rate of individual rare earths were apparent at low DEHPA concentration. (authors)

  7. Hydrolysis studies of thorium using solvent extraction technique

    International Nuclear Information System (INIS)

    Engkvist, I.; Albinsson, Y.

    1992-01-01

    The Swedish concept for final disposal of spent nuclear fuel is focused on a repository in crystalline rock at a depth of 500 m. In order to calculate migration rates from such a repository, chemical speciation becomes important. A method for determining complexation of actinides and lanthanides with inorganic ligands using solvent extraction has been developed. The apparatus used is called AKUFVE and the used technique can measure distribution values in a two liquid phase system in the range 10 -5 to 10 5 , pH 1 to 11. Hydrolysis of thorium has been studied in 1 M NaClO 4 in inert atmosphere. Th-234 separated from U-238 was extracted with 0.01-1 M 2,4-pentanedione (HAa) in toluene. From extraction data, calculations of hydrolysis constants have been made, regarding hydroxide complexes as competing and nonextractable. As a result we conclude that the constant for tri- and tetrahydroxide complexes are overestimated. (orig.)

  8. Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste

    DEFF Research Database (Denmark)

    Razi Parjikolaei, Behnaz; El-Houri, Rime Bahij; Fretté, Xavier

    2015-01-01

    In this work, sunflower oil (SF) and methyl ester of sunflower oil (ME-SF) were introduced as two green solvents for extracting astaxanthin (ASX) from shrimp processing waste. The effects of temperature (25, 45, 70 °C), solvent to waste ratio (3, 6, 9), waste particle size (0.6 and 2.5 mm...

  9. Impurity distribution behavior in caprolactam extraction with environmentally benign mixed solvents

    NARCIS (Netherlands)

    Delden, van M.L.; Drumm, C.; Kuipers, N.J.M.; Haan, de A.B.

    2006-01-01

    In a previous study a solvent mixture of heptane containing 40 mass % heptanol was selected as an alternative in the industrial extraction of caprolactam to replace benzene, toluene, or chlorinated hydrocarbons. This work reports the equilibrium distribution ratio of caprolactam and four model

  10. Interfacing solvent extraction in the recovery of pyrochemical residues at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.; Holcomb, H.P.

    1986-01-01

    The traditional feedstock for plutonium recovery at the Savannah River Plant (SRP) has been spent reactor fuel elements and irradiated targets. Feed sources have included both onsite reactors and a wide variety of domestic and foreign reactors. For the past few years, a growing and increasingly varied mix of unirradiated plutonium residues has been purified through SRP aqueous-based processes. Recently, plutonium residues generated in various chloride salt melts have become a significant offsite source of feed for SRP recovery operations. Impure plutonium metal and plutonium alloys have also been processed. A broader range of molten salt and other high temperature residues is anticipated for the future. The major advantage of solvent extraction for scrap purification is the versatility of the solvent extraction system which allows numerous contaminants to be removed by routine operations. Major concerns are nuclear safety control, corrosion of equipment, and control of releases to the environment. SRP's past, present, and future interfacing of solvent extraction in processing pyrochemical and other plutonium-containing residues is reviewed

  11. Synergistic solvent extraction of Eu(III) and Tb(III) with mixtures of various organophosphorus extractants

    International Nuclear Information System (INIS)

    Reddy, B.V.; Reddy, L.K.; Reddy, A.S.

    1994-01-01

    Synergistic solvent extraction of Eu(III) and Tb(III) from thiocyanate solutions with mixtures of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPNA) and di-2-ethylhexylphosphoric acid (DEHPA) or tributyl phosphate (TBP) or trioctylphosphine oxide (TOPO) or triphenylphosphine oxide (TPhPO) in benzene has been studied. The mechanism of extraction can be explained by a simple chemically based model. The equilibrium constants of the mixed-ligand species of the various neutral donors have been determined by non-linear regression analysis. (author) 13 refs.; 9 figs.; 2 tabs

  12. The SX Solver: A New Computer Program for Analyzing Solvent-Extraction Equilibria

    International Nuclear Information System (INIS)

    McNamara, B.K.; Rapko, B.M.; Lumetta, G.J.

    1999-01-01

    A new computer program, the SX Solver, has been developed to analyze solvent-extraction equilibria. The program operates out of Microsoft Excel and uses the built-in ''Solver'' function to minimize the sum of the square of the residuals between measured and calculated distribution coefficients. The extraction of nitric acid by tributylphosphate has been modeled to illustrate the program's use

  13. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    Science.gov (United States)

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  14. Assessment of the Influence of Soil Characteristics and Hydrocarbon Fuel Cocontamination on the Solvent Extraction of Perfluoroalkyl and Polyfluoroalkyl Substances.

    Science.gov (United States)

    Mejia-Avendaño, Sandra; Munoz, Gabriel; Sauvé, Sébastien; Liu, Jinxia

    2017-02-21

    Sites impacted by the use of aqueous film-forming foams (AFFFs) present elevated concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS). The characterization of the PFAS contamination at such sites may be greatly complicated by the presence of hydrocarbon cocontaminants and by the large variety of PFAS potentially present in AFFFs. In order to further a more comprehensive characterization of AFFF-contaminated soils, the solvent extraction of PFAS from soil was studied under different conditions. Specifically, the impact of soil properties (textural class, organic matter content) and the presence of hydrocarbon contamination (supplemented in the form of either diesel or crude oil) on PFAS recovery performance was evaluated for two extraction methods [methanol/sodium hydroxide (MeOH/NaOH) and methanol/ammonium hydroxide (MeOH/NH 4 OH)]. While both methods performed satisfactorily for perfluoroalkyl acids and fluorotelomer sulfonates, the extraction of newly identified surfactants with functionalities such as betaine and quaternary ammonium was improved with the MeOH/NaOH based method. The main factors that were found to influence the extraction efficiency were the soil properties; a high organic matter or clay content was observed to negatively affect the recovery of the newly identified compounds. While the MeOH/NaOH solvent yielded more efficient recovery rates overall, it also entailed the disadvantage of presenting higher detection limits and substantial matrix effects at the instrumental analysis stage, requiring matrix-matched calibration curves. The results discussed herein bear important implications for a more comprehensive and reliable environmental monitoring of PFAS components at AFFF-impacted sites.

  15. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-01-01

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica microspheres. • Fe 3 O 4 @SiO 2 -MPS@PDES showed higher extraction capacity

  16. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale.

    Science.gov (United States)

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-12-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  17. Evaluation of antimicrobial and antioxidant activities of solvent extracts of Anacyclus pyrethrum L., from Algeria

    Directory of Open Access Journals (Sweden)

    Mohammed El Amine Dib

    2012-11-01

    Full Text Available In the present study, solvent extracts from aerial parts of Anacyclus pyrethrum L. were assessed for their total phenol content, antimicrobial and antioxidant (1,1-diphenyl-2-picrylhydrazyl free radical scavenging and ferric-ion reducing power activities. The amounts of total phenolics and flavonoids in the solvent extracts were determined spectrometrically. (310.78 mg GA/g extract and antioxidant activity (IC50 = 0.056 mg/mL. Increasing the concentration of the extracts resulted in increased ferric reducing antioxidant power for both extracts tested. The methanolic extract exhibited the best antimicrobial activity against three gram-positive bacterium (Listeria monocytogenes: 100%, Bacillus. cereus: 69% and Staphylococcus aureus: 66%, as well as against Candida albicans (81%. Finally, a relationship was observed between the biological activities potential and total phenolic and flavonoid levels of the extract. The results of this study provided an alternative of utilising Anacyclus pyrethrumaerial parts as readily accessible source of natural antioxidant in food cosmetic and pharmaceutical industry

  18. Extraction and characterization of Raphanus Sativus seed oil ...

    African Journals Online (AJOL)

    properties and bioactive ingredients of Raphanus sativus seed oil. Methods: Raphanus sativus seed oil was prepared by traditional solvent extraction (SE), super-critical carbon dioxide extraction (SCE) and sub-critical propane extraction (SPE). The yield, physicochemical properties, fatty acid composition and oxidative ...

  19. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    Science.gov (United States)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  20. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose Extracts

    Directory of Open Access Journals (Sweden)

    Rodolfo Abarca-Vargas

    2016-12-01

    Full Text Available Bougainvillea is widely used in traditional Mexican medicine to treat several diseases. This study was designed to characterize the chemical constituents of B. x buttiana extracts with antioxidant and cytotoxic activities using different solvents. The extraction solvents used were as follows: distilled water (dH2O, methanol (MeOH, acetone (DMK, ethanol (EtOH, ethyl acetate (EtOAc, dichloromethane (DCM, and hexane (Hex (100% at an extraction temperature of 26 °C. Analysis of bioactive compounds present in the B. x buttiana extracts included the application of common phytochemical screening assays, GC-MS analysis, and cytotoxicity and antioxidant assays. The results show that the highest extraction yield was observed with water and methanol. The maximum total phenolic content amount and highest antioxidant potential were obtained when extraction with methanol was used. With the exceptions of water and ethanol extractions, all other extracts showed cytotoxicity ranging between 31% and 50%. The prevailing compounds in water, methanol, ethanol, and acetone solvents were as follows: 4H-pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl (2, 2-propenoic acid, 3-(2-hydrophenyl-(E- (3, and 3-O-methyl-d-glucose (6. By contrast, the major components in the experiments using solvents such as EtOH, DMK, EtOAc, DCM, and Hex were n-hexadecanoic acid (8, 9,12-octadecadienoic acid (Z,Z (12; 9-octadecenoic acid (E- (13, and stigmasta-5,22-dien-3-ol (28.

  1. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    Science.gov (United States)

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Science.gov (United States)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  3. Analytical Methods Development in Support of the Caustic Side Solvent Extraction System

    International Nuclear Information System (INIS)

    Maskarinec, M.P.

    2001-01-01

    The goal of the project reported herein was to develop and apply methods for the analysis of the major components of the solvent system used in the Caustic-Side Solvent Extraction Process (CSSX). These include the calix(4)arene, the modifier, 1-(2,2,3,3- tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol and tri-n-octylamine. In addition, it was an objective to develop methods that would allow visualization of other components under process conditions. These analyses would include quantitative laboratory methods for each of the components, quantitative analysis of expected breakdown products (4-see-butylphenol and di-n-octylamine), and qualitative investigations of possible additional breakdown products under a variety of process extremes. These methods would also provide a framework for process analysis should a pilot facility be developed. Two methods were implemented for sample preparation of aqueous phases. The first involves solid-phase extraction and produces quantitative recovery of the solvent components and degradation products from the various aqueous streams. This method can be automated and is suitable for use in radiation shielded facilities. The second is a variation of an established EPA liquid-liquid extraction procedure. This method is also quantitative and results in a final extract amenable to virtually any instrumental analysis. Two HPLC methods were developed for quantitative analysis. The first is a reverse-phase system with variable wavelength W detection. This method is excellent from a quantitative point of view. The second method is a size-exclusion method coupled with dual UV and evaporative light scattering detectors. This method is much faster than the reverse-phase method and allows for qualitative analysis of other components of the waste. For tri-n-octylamine and other degradation products, a GC method was developed and subsequently extended to GUMS. All methods have precision better than 5%. The combination of these methods

  4. Comparative study on sulphur reduction from heavy petroleum - Solvent extraction and microwave irradiation approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdullahi Dyadya; Isah, Abubakar Garba; Umaru, Musa; Ahmed, Shehu [Department of Chemical Engineering, Federal University of Technology, P.M.B 65, Minna (Nigeria); Abdullahi, Yababa Nma [National Petroleum Investment Management Services (Nigeria National Petroleum Corporation), Lagos (Nigeria)

    2012-07-01

    Sulphur- containing compounds in heavy crude oils are undesirable in refining process as they affect the quality of the final product, cause catalyst poisoning and deactivation in catalytic converters as well as causing corrosion problems in oil pipelines, pumps and refining equipment aside environmental pollution from their combustion and high processing cost. Sulphur reduction has being studied using microwave irradiation set at 300W for 10 and 15minutes and oxidative- solvent extraction method using n- heptane and methanol by 1:1, 1:2 and 1:3 crude- solvent ratios after being oxidized with hydrogen peroxide, H2O2 oxidants. Percentage sulphur removal with n- heptane solvent by 1:1 and 1:2 are 81.73 and 85.47%; but extraction using methanol by different observed ratios gave less sulphur reduction. Indeed when microwave irradiated at 300W for 10 and 15minutes, 53.68 and 78.45% reduction were achieved. This indicates that microwave irradiation had caused oxidation by air in the oven cavity and results to formation of alkyl radicals and sulphoxide from sulphur compound in the petroleum. The prevailing sulphur found in the crude going by FT-IR results is sulphides which oxidized to sulphoxide or sulphones. It is clear that sulphur extraction with heptane is more efficient than microwave irradiation but economically due to demands for solvent and its industrial usage microwave irradiation can serve as alternative substitute for sulphur reduction in petroleum. Sulphur reduction by microwave radiation should be up- scaled from laboratory to a pilot plant without involving extraction column in the refining.

  5. Optimization of co-solvent addition in supercritical fluid extraction of fat with carbon dioxide

    Directory of Open Access Journals (Sweden)

    Ivanov Dušica S.

    2011-01-01

    Full Text Available This investigation is concerned with supercritical fluid extraction (SFE using CO2, as an analytical technique for total fat extraction from food and feed samples. Its most significant advantages are safety, cleanness, and shorter extraction time. The main limitation of this technique includes the difficulty of extracting polar lipids due to the non-polar character of the solvent (CO2 used for the extraction. The influence of ethanol as a co-solvent on the SFE of mash pig feed was investigated in this paper. Total fat content was determined by SFE and Soxhlet method for ten commercially available mesh pig feeds. Yields of the fat extracted by both methods were plotted one against the other and compared. Statistically significant difference (p ≤ 0.05 has been found only between the total fat obtained by the Soxhlet extraction and SFE by pure CO2. Based on the mathematical model, maximum yield of the extracted fat is achieved at an ethanol addition of 0.67 ml/g of sample, when the other parameters are the same as recommended by the producer’s procedure.

  6. Extractables characterization for five materials of construction representative of packaging systems used for parenteral and ophthalmic drug products.

    Science.gov (United States)

    Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank

    2013-01-01

    Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically

  7. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    Science.gov (United States)

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    Science.gov (United States)

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Characterization of Arachis hypogaea L. oil obtained from different extraction techniques and in vitro antioxidant potential of supercritical fluid extraction extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2016-01-01

    Full Text Available Aim: The present investigation was aimed to characterize the fixed oil of Arachis hypogaea L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound assistance extraction, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO 2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high-performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier transform infrared spectrometry (FT-IR fingerprinting. Anti-oxidant activity was also determined using DPPH and superoxide scavenging method. Results: The main fatty acids were oleic, linoleic, palmitic, and stearic acids as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods was superimposable. Conclusion: Analysis reported that the fixed oil of A. hypogaea L. is a good source of unsaturated fatty acid, mainly n-6 and n-9 fatty acid with a significant antioxidant activity of oil obtained from SFE extraction method.

  10. Investigations on synthesis, coordination behaviour and actinide recovery of unexplored phosphine oxides

    International Nuclear Information System (INIS)

    Veerashekhar Goud, E.; Pavankumar, B.B.; Das, Dhrubajyothi

    2016-01-01

    The search for the development of an optimum extractant for effective separation of a particular metal from a mixture is an active field of research in both chemistry and chemical engineering. These extractants find extensive application in extractive metallurgy and in nuclear fuel cycle (for the separation of actinides from other fission products). In the case of the latter, solvent extraction and ion exchange are two widely employed separation techniques. In this connection, the present paper reports synthesis and structural characterization of various new phosphine oxide derivatives. The coordination behavior of these ligands is studied with some selected lanthanides and actinides shows the proposed structures of La(III) and Th(IV) metal complexes. The purity and structural characterization of the ligands and their corresponding metal complexes are analyzed by various analytical and spectroscopic techniques. Additionally, we have applied Density functional theory (DFT) calculations to understand the electronic structure of some metal complexes formed during the extraction process. (author)

  11. Remediation of soils, sediments and sludges by extraction with organic solvents

    NARCIS (Netherlands)

    Noordkamp, E.R.

    1999-01-01

    Remediation of contaminated soils, sediments and sludges by extraction with organic solvents is still in the initial stages of development. So far hardly any scientific research has been carried out into this approach. Therefore, the main objective of the present investigation was to study

  12. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale

    Directory of Open Access Journals (Sweden)

    Maximillan Leite Santos

    2013-12-01

    Full Text Available The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  13. INIBIÇÃO DE SALMONELLA POR EXTRATO DE ALECRIM (Rosmarinus officinalis: OBTENÇÃO DE EXTRATOS DE ALECRIM EM SOLVENTES ORGÂNICOS INHIBITION OF Salmonella BY ROSEMARY (Rosmarinus officinalis EXTRACTS: ORGANIC SOLVENTS ROSEMARY EXTRACT OBTENTION

    Directory of Open Access Journals (Sweden)

    Maria Célia Lopes Torres

    2007-09-01

    Full Text Available

    Com o objetivo de se obter um extrato de alecrim em solvente orgânico, a ser utilizado na inibição de Salmonella, em alimentos, foram testados quatro tipos de solventes, a saber: metanol, etanol, acetona e hexano. Na obtenção dos extratos foi adotada a técnica recomendada para determinação de lipídeos, conforme as NORMAS ANALÍTICAS DO INSTITUTO ADOLFO LUTZ (1976. A análise dos resultados evidenciou um excelente desempenho do metanol, não sendo contudo recomendada a utilização em produtos alimentares em virtude da sua toxidez. Também o etanol apresentou elevados índices de extração, sem os inconvenientes associados ao uso do metanol, sendo por isto o solvente indicado para a continuidade do estudo proposto.

    Aiming to obtain a rosemary extract in organic solvent to be used in Salmonella inhibition, in food, were tested four kinds of solvents, namely: methane alcohol, ethyl alcohol, acetone and hexane. It was used the recommended technique for lipids determination in extracts determination according to the analytic rules used by Instituto Adolfo Lutz. Analysis results showed an excellent performance for methane alcohol, but its use is not recommended in feed products due to its toxicity. Ethyl alcohol presented also elevated extraction indexes without inconvenients associated to methane alcohol use, by this reason being a solvent indicated for continuity to the proposed study.

  14. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    International Nuclear Information System (INIS)

    Pham, Thi Thu Huong; Kim, Tae Hyun; Um, Byung Hwan

    2015-01-01

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l -1 acetic acid and 5.0 g l -1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  15. Preparation of chromatographic and solid-solvent extraction 99mTc generators using gel-type targets

    International Nuclear Information System (INIS)

    Le Van So

    2000-01-01

    We have studied two types of targets zirconium-molybdate (ZrMo) and titanium-molybdate (TiMo) prepared by precipitating reaction between ammonium-molybdate and zirconium-chloride or titanium-chloride solutions, respectively. Other types of targets were also prepared by co-precipitating ZrMo or TiMo with hydrous manganese-dioxide, hydrous silica, and hydrous titanium-dioxide or by impregnated ZrMo or TiMo with Iodate anions. The results on extraction of Tc-99m from neutron irradiated TiMo solid phase using solvents such as MEK, aceton, ethylic ether, chloroform, etc showed that separation yield (SY) of Tc-99m in case of aceton extraction was from 70% to 80% and in other cases non higher than 40%. The Tc-99m elution curves and column kinetic in case of aceton extraction (after evaporation of aceton and recovery of Tc-99m in 0,9% NaCl solution) was superior than in case chromatographic generator using saline eluant. As result obtained, two types of generators were successfully prepared and put into use: Chromatographic generator using titanium-molybdate target as packing material and saline as eluant. Solid-solvent extraction 99m Tc generator using titanium-molybdate target (as solid phase) and aceton as extracting solvent. (author)

  16. Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent

    International Nuclear Information System (INIS)

    Ramadevi, G.; Sreenivas, T.; Navale, A.S.; Padmanabhan, N.P.H.

    2012-01-01

    This paper describes the solvent extraction studies carried out on an acidic low assay uranium bearing leach liquor generated during sulfuric acid leaching of a refractory uranium ore using alamine 336-isodecenol-kerosene reagent combine. The leach liquor has a U 3 O 8 content of about 270 mg/L, free acidity 2.4 N H 2 SO 4 and total dissolved solids concentration of 260 g/L. Process parameteric variation studies indicated strong influence of free acidity of the leach liquor, alamine 336 concentration and aqueous to organic phase ratio on the extraction efficiency of uranium. An extraction efficiency of about 95% was achieved when the free acidity of leach liquor was 1 N H 2 SO 4 or lower, using 2% (v/v) alamine 336 at ambient temperature with an aqueous to organic phase ratio of 1:1. The loading capacity under these conditions was 1.2 g/L of U 3 O 8 . About 98% of the uranium values could be stripped from the loaded organic using 1 N NaCl in 0.2 N H 2 SO 4 . The solvent extraction studies aided in developing a suitable process flowsheet for treating refractory uranium ores which need high acidity during leaching and relatively lower acidity for purification by solvent extraction. (author)

  17. Synthesis and Spectroscopic Characterization of Two Tetrasubstituted Cationic Porphyrin Derivatives

    Directory of Open Access Journals (Sweden)

    Newton M. Barbosa Neto

    2011-07-01

    Full Text Available An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II complex with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by 1H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.

  18. Opportunities for switchable solvents for lipid extraction from wet algal biomass: an energy evaluation

    NARCIS (Netherlands)

    Du, Ying; Schuur, Boelo; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    Algae are considered an important sustainable feedstock for lipid extraction to produce food ingredients, cosmetics, pharmaceutical products and biofuels. Next to the costs for cultivation, this route is especially hindered by the energy intensity of drying algae prior to extraction and solvent

  19. The Extraction Process of Trimethyl Xanthina in Vitro Culture of Callus Camellia Sinensis with ethyl Acetate Solvent

    Directory of Open Access Journals (Sweden)

    Sutini

    2016-01-01

    Full Text Available Trimethyl xanthina is one of the compounds contained bioactive culture in vitro Cammelia sinensis callus which is widely used in the field of food, beverage, agriculture and health industries. The presence of trimethyl xanthina on food, beverages and health is needed in a certain amount depending on the use which is achieved by the user. To get a certain amount of trimethyl xanthina from callus culture of Cammelia sinensis, the extraction process is performed on the water solvent, as well as non-solvent water / organic solvent such as ethyl acetate. The purpose of this study was to obtain profile of trimethyl xanthina in the extraction of Cammelia sinensis callus. The experimental methods used consisted of dissolution, filtration, extraction with water solvent and ethyl acetate, then followed by identification of trimethyl xanthina using HPLC. The results shows the profile form of trimethyl xanthina of Cammelia sinensis callus have similarities with the standard form of trimethyl xanthina.

  20. Coupling a transient solvent extraction module with the separations and safeguards performance model.

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, David W. (Oak Ridge National Laboratory, Oak Ridge, TN); Birdwell, Joseph F. (Oak Ridge National Laboratory, Oak Ridge, TN); Gauld, Ian C. (Oak Ridge National Laboratory, Oak Ridge, TN); Cipiti, Benjamin B.; de Almeida, Valmor F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2009-10-01

    A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  1. Solvent-Free Synthesis of Aryl Iodide Using Nano SiO2/HIO4 as a Reusable Acid Catalyst

    Directory of Open Access Journals (Sweden)

    A. Bamoniri

    2014-07-01

    Full Text Available An efficient and environmentally benign   method for the synthesis of aryl iodides have been developed by diazotization of aromatic amines with NaNO2 and nanosilica periodic acid (nano-SPIA as a green catalyst via grinding followed by a sandmeyer iodination by KI under solvent-free conditions at room temperature. The ensuing aryl diazonium salts supported on nano-SPIA were sufficiently stable to be kept at room temperature in the dry state. This method is a novel, efficient, eco-friendly route for solvent-free synthesis of aryl iodides.

  2. Solvent extraction of no-carrier-added 103Pd from irradiated rhodium target with α-furyldioxime

    International Nuclear Information System (INIS)

    Mahdi Sadeghi; Behrouz Shirazi; Nami Shadanpour

    2006-01-01

    Solvent extraction of no-carrier-added 103 Pd was investigated from irradiated rhodium target with a-furyldioxime in chloroform from diluted hydrochloric acid. Extraction yield was 85.3% for a single extraction from 0.37M HCl and 103 Pd purity was better than 99%. (author)

  3. Silver nanoparticles: green synthesis using Phoenix dactylifera fruit extract, characterization, and anti-oxidant and anti-microbial activities

    Science.gov (United States)

    Shaikh, Anas Ejaz; Satardekar, Kshitij Vasant; Khan, Rummana Rehman; Tarte, Nanda Amit; Barve, Siddhivinayak Satyasandha

    2018-03-01

    Hydro-alcoholic (2:8 v/v) extract of the pulp of Phoenix dactylifera fruit pulp obtained using Soxhlet extraction (70 °C, 6 h) was found to contain alkaloids, sterols, tannins, flavonoids, cardiac glycosides, proteins, and carbohydrates. An aqueous solution (20% v/v) of the extract led to the synthesis of silver nanoparticles (AgNPs) from 0.01 M AgNO3 solution as confirmed by the surface plasmon resonance at 445 nm determined using UV-visible spectroscopy after 24 h. The synthesized AgNPs were found to be mostly spherical and complexed with phytochemicals from the extract. The size of AgNPs ranged from 12.2-140.2 nm with mean diameter of 47.0 nm as characterized by scanning electron microscopy (SEM). The elemental composition of the AgNPs complexed with the phytochemicals was found to be 80.49% silver (Ag), 15.21% carbon (C), and 4.30% oxygen (O) on a weight basis by energy-dispersive spectroscopy (EDS). Using the α,α-diphenyl-β-picrylhydrazyl (DPPH) assay, an anti-oxidant activity of 89.15% for 1 µg L-1 ultrasonically homogenized ethanolic solution of complexed AgNPs was obtained (equivalent to 0.20 mg mL-1 gallic acid solution), while methanolic solution of plant extract possessed an EC50 value of 3.45% (v/v) (equivalent to 0.11 mg mL-1 gallic acid solution). The plant-nanosilver broth was also found to possess effective anti-microbial activity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Candida albicans ATCC 10231 as assessed by the disc diffusion assay. However, the plant extract showed negligible anti-microbial activity.

  4. studies on solvent extraction of free hydrogen cyanide from river water

    African Journals Online (AJOL)

    A method for free and strongly complexed cyanide measurement in river water was developed. Recovery tests from solution with and without river water, using various solvent combinations and background control were investigated to obtain an accurate and precise extraction method for the measurement of hydrogen ...

  5. Structure determination of small molecular phase in coal by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J.; Wang, B.; Ye, C.; Li, W.; Xie, K. [Taiyuan University of Technology, Taiyuan (China)

    2004-04-01

    7 typical Chinese coal samples were extracted by NMP/CS{sub 2} system at around 90{degree}C by Soxhlet method. Compared with results from NMP, a higher coal extraction rate was acquired when NMP + CS{sub 2} solvent system was adopted. Except for anthracite extraction rate of about 20% was acquired, particularly 41% for long flame coal. By using the method of retention index of coal extracts analysis by HPLC, it is found that the polar part with less than six-carbon numbers in coal is the active site for coal reactivity, and the inert site belongs to the aromatic hydrocarbon derivation with 3 aromatic rings. 13 refs., 3 figs., 2 tabs.

  6. Solvent effect on the synthesis of clarithromycin: A molecular dynamics study

    Science.gov (United States)

    Duran, Dilek; Aviyente, Viktorya; Baysal, Canan

    2004-02-01

    Clarithromycin (6- O-methylerythromycin A) is a 14-membered macrolide antibiotic which is active in vitro against clinically important gram-positive and gram-negative bacteria. The selectivity of the methylation of the C-6 OH group is studied on erythromycin A derivatives. To understand the effect of the solvent on the methylation process, detailed molecular dynamics (MD) simulations are performed in pure DMSO, pure THF and DMSO:THF (1:1) mixture by using the anions at the C-6, C-11 and C-12 positions of 2',4''-[ O-bis(TMS)]erythromycin A 9-[ O-(dimethylthexylsilyl)oxime] under the assumption that the anions are stable on the sub-nanosecond time scale. The conformations of the anions are not affected by the presence of the solvent mixture. The radial distribution functions are computed for the distribution of different solvent molecules around the `O-' of the anions. At distances shorter than 5 Å, DMSO molecules are found to cluster around the C-11 anion, whereas the anion at the C-12 position is surrounded by the THF molecules. The anion at the C-6 position is not blocked by the solvent molecules. The results are consistent with the experimental finding that the methylation yield at the latter position is increased in the presence of a DMSO:THF (1:1) solvent mixture. Thus, the effect of the solvent in enhancing the yield during the synthesis is not by changing the conformational properties of the anions, but rather by creating a suitable environment for methylation at the C-6 position.

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  8. Extraction and characterization of radish seed oils using different ...

    African Journals Online (AJOL)

    Purpose: To evaluate the impact of three different extraction methods on oil yield, physicochemical properties and bioactive ingredients of radish seeds. Methods: Radish seed oil was prepared by traditional solvent extraction (SE), supercritical carbon dioxide extraction (SCE) and sub-critical propane extraction (SPE).

  9. Green synthesis of Au nanoparticles using potato extract: stability and growth mechanism

    Science.gov (United States)

    Castillo-López, D. N.; Pal, U.

    2014-08-01

    We report on the synthesis of spherical, well-dispersed colloidal gold nanoparticles of 17.5-23.5 nm average sizes in water using potato extract (PE) both as reducing and stabilizing agent. The effects of PE content and the pH value of the reaction mixture have been studied. Formation and growth dynamics of the Au nanoparticles in the colloids were studied using transmission electron microscopy and UV-Vis optical absorption spectroscopy techniques. While the reductor content and, hence, the nucleation and growth rates of the nanoparticles could be controlled by controlling the PE content in the reaction solution, the stability of the nanoparticles depended strongly on the pH of the reaction mixture. The mechanisms of Au ion reduction and stabilization of Au nanoparticles by potato starch have been discussed. The use of common natural solvent like water and biological reductor like PE in our synthesis process opens up the possibility of synthesizing Au nanoparticles in fully green (environmental friendly) way, and the Au nanoparticles produced in such way should have good biocompatibility.

  10. The simple solutions concept: a useful approach to estimate deviation from ideality in solvent extraction

    International Nuclear Information System (INIS)

    Sorel, C.; Pacary, V.

    2010-01-01

    The solvent extraction systems devoted to uranium purification from crude ore to spent fuel involve concentrated solutions in which deviation from ideality can not be neglected. The Simple Solution Concept based on the behaviour of isopiestic solutions has been applied to quantify the activity coefficients of metals and acids in the aqueous phase in equilibrium with the organic phase. This approach has been validated on various solvent extraction systems such as trialkylphosphates, malonamides or acidic extracting agents both on batch experiments and counter-current tests. Moreover, this concept has been successfully used to estimate the aqueous density which is useful to quantify the variation of volume and to assess critical parameters such as the number density of nuclides. (author)

  11. Solvent extraction of uranium: Towards good practice in design, operation and management

    International Nuclear Information System (INIS)

    Bartsch, P.; Hall, S.; Ballestrin, S.; Hunt, A.

    2014-01-01

    Uranium solvent extraction, USX has been applied commercially for recovery and concentration for over 60 years. Uranium in acidic liquor, which is prepared following ore leaching, solid/liquid separation and clarification, can be treated through a sequence of operations; extraction-scrubbing-stripping, to obtain purified liquor, and hence precipitation of marketable products. USX has dominated the primary uranium industry as the preferred technological route for recovery of uranium into converter grade yellowcake or Uranium Ore Concentrate. The practices of design and operation of USX facilities has found renewed interest as new mines are developed following decades of industry dormancy. Development of the Olympic Dam and Honeymoon operations in Australia has lead to innovative design and operation of pulsed columns technology in applications of solvent extraction. This article seeks to outline principles of design and operation from the practitioner’s perspective. The discussion also reviews historical developments of USX applications and highlights recent innovations. This review is hoped to provide guidance for technical personnel who wish to learn more about good practices that leads to reliable USX performance. (author)

  12. Study on automatic control of high uranium concentration solvent extraction with pulse sieve-plate column

    International Nuclear Information System (INIS)

    You Wenzhi; Xing Guangxuan; Long Maoxiong; Zhang Jianmin; Zhou Qin; Chen Fuping; Ye Lingfeng

    1998-01-01

    The author mainly described the working condition of the automatic control system of high uranium concentration solvent extraction with pulse sieve-plate column on a large scale test. The use of the automatic instrument and meter, automatic control circuit, and the best feedback control point of the solvent extraction processing with pulse sieve-plate column are discussed in detail. The writers point out the success of this experiment on automation, also present some questions that should be cared for the automatic control, instruments and meters in production in the future

  13. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  14. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System

    International Nuclear Information System (INIS)

    Moyer, B.A.; Birdwell, J.F.; Delmau, L. H.; McFarlane, J.

    2008-01-01

    The purpose of this work is to examine the applicability of the Caustic-Side Solvent Extraction (CSSX) process for the removal of cesium from Hanford tank-waste supernatant solutions in support of the Hanford Interim Pretreatment System (IPS). The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. It was confirmed by use of the CSSX model that the higher levels of potassium depress the cesium distribution ratio (DCs), as validated by measurement of DCs values for four of eight specified Hanford waste-simulant compositions. The model predictions were good to an apparent standard error of ±11%. It is concluded from batch distribution experiments, physical-property measurements, equilibrium modeling, flowsheet calculations, and contactor sizing that the CSSX process as currently employed for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds. For the most challenging waste composition, 41 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 5. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated for a new solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 10 mM boric acid. The improved system can meet minimum requirements (DF = 5000 and CF = 5) with 17 stages or more ambitious goals (DF = 40,000 and CF = 15) with 19 stages. Potential benefits of further research and development are identified that would lead to reduced costs, greater

  15. Separation of trivalent actinide from lanthanide by a solvent extraction technique using imidazoledithiocarboxylic acid

    International Nuclear Information System (INIS)

    Miyashita, S.; Yanaga, M.; Okuno, K.; Suganuma, H.; Satoh, I.

    2006-01-01

    The extraction behavior of 241 Am and 152,154 Eu by a solvent extraction technique using imidazoledithiocarboxylic acid (IMD) were investigated. Although the solubility of IMD into organic solvent is very poor, it was improved by the formation of ion pair with hydrophobic cation, such as tetrabutylammonium ion (TBA + ) or tetraoctylammonium ion (TOA + ). The obtained tetrabutylammonium imidazole-dithiocarboxylate (TBA + IMD - ) and tetraoctylammonium imidazoledithiocarboxylate (TOA + TMD - ) are able to solve into various organic solvents, for example cyclohexanone, chloroform and nitrobenzene, but not to solve into nonpolar alkane. The radionuclides of Am(III) and Eu(III) are able to be extracted in the region of 2 eq + IMD - /cyclohexanone and TOA + IMD - /cyclohexanone. The distribution ratio of Am(III) is higher than that of Eu(III) when the organic phase is 0.1 M TBA + IMD - /cyclohexanone and the aqueous phase is 1.0 M (H,Na)NO 3 . The separation factor (Am(III)/Eu(III)) at pH eq =5.5 is ca. 30. In the region of pH>6, the distribution ratios of Am(III) and Eu(III) in the system described above showed constant values, respectively. (author)

  16. Efficient solvent extraction of antioxidant-rich extract from a tropical diatom, Chaetoceros calcitrans (Paulsen Takano 1968

    Directory of Open Access Journals (Sweden)

    Su Chern Foo

    2015-10-01

    Conclusions: Methanol was the recommended solvent for the production of antioxidant rich extract from C. calcitrans. Both carotenoids and phenolic acids were found to be positively correlated to the antioxidant capacities of C. calcitrans. Lead bioactives confirmed by subsequent high performance liquid chromatography studies were fucoxanthin, gallic acid and protocatechuic acid.

  17. Oxidative Desulfurization of Gasoline by Ionic Liquids Coupled with Extraction by Organic Solvents

    OpenAIRE

    Abro, Rashid; Gao, Shurong; Chen, Xiaochun; Yu, Guangren; Abdeltawab, Ahmed A.; Al-Deyab, Salem S.

    2016-01-01

    In this work, desulfurization of real fluidized catalytic cracking (FCC) gasoline was investigated in dual steps; first in oxidative desulfurization (ODS) using imidazolium and pyrrolidonium based Brønsted acidic ionic liquids (ILs) as solvent and catalyst and hydrogen peroxide as oxidant. In second step, extractive desulfurization took place using organic solvents of furfural, furfural alcohol and ethylene glycol. Variety of factors such as temperature, time, mass ratio of oil/ILs and regene...

  18. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols

    International Nuclear Information System (INIS)

    Brykala, M.; Deptula, A.; Rogowski, M.; Lada, W.; Olczak, T.; Wawszczak, D.; Smolinski, T.; Wojtowicz, P.; Modolo, G.

    2014-01-01

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide. (author)

  19. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  20. Characterization of shallot, an antimicrobial extract of allium ascalonicum

    International Nuclear Information System (INIS)

    Amin, M.; Montazeri, E.A.; Mashhadizadeh, M.A.; Sheikh, A.F.

    2009-01-01

    Objective: The objective of this study was characterization of antimicrobial extract of shallot in terms of its stability at different pH, Heat, enzymes and detergents and also determination of its MIC and shelf life. Methodology: Active fraction was determined by column chromatography and agar diffusion test. The amount of carbohydrate and protein in different forms of shallot extract were estimated. Stability of antimicrobial activity of shallot extract at different pH and temperature, solubility in different solvent, determination of shelf life and susceptibility to enzymes and detergents were evaluated. Results: Shallot extract was active against microbes at pH 4-8. Relative activities of shallot extract at temperature -7 to 121 deg. C were 88 to 100 %. Extract of shallot only was soluble in dimethyl sulphoxide, dimethyl formamide and water. The enzymes and detergents used in this study had no effect on antimicrobial activity on water extract of shallot. Relative antimicrobial activity at incubation times of one hour to 6 mounts were 94 to 100 %. Conclusion: In this study antimicrobial properties of shallot were investigated for discovery of a new antibiotic. Based on this the antimicrobial compound can be an effective medicine for treatment of dermatomycosis and other infectious diseases. (author)

  1. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology.

    Science.gov (United States)

    Freitas, Sergio; Merkle, Hans P; Gander, Bruno

    2005-02-02

    The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.

  2. Solvent-extraction and purification of uranium(VI) and molybdenum(VI) by tertiary amines from acid leach solutions

    International Nuclear Information System (INIS)

    La Gamma, Ana M.G.; Becquart, Elena T.; Chocron, Mauricio

    2008-01-01

    Considering international interest in the yellow-cake price, Argentina is seeking to exploit new uranium ore bodies and processing plants. A study of similar plants would suggest that solvent- extraction with Alamine 336 is considered the best method for the purification and concentration of uranium present in leaching solutions. In order to study the purification of these leach liquors, solvent-extraction tests under different conditions were performed with simulated solutions which containing molybdenum and molybdenum-uranium mixtures. Preliminary extraction tests carried out on mill acid-leaching liquors are also presented. (authors)

  3. Solvent Extraction and QSPR of Catecholamines with a Bis(2-ethlhexyl) Hydrogen Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, Kazuharu.; Fujimoto, Yuko.; Ota, Keisuke.; Inoue, Katsutoshi. [Saga University, Saga (Japan). Dept. of Applied Chemistry

    1999-02-01

    In order to develop an effective separation recess for catecholamine (CA), a basic investigation on solvent extraction of dopamine (DA), adrenaline (Ad) and noradrenaline (NA) from hydrochloric acid solution and their stripping is conducted at 30 degree C employing bis(2-ethylhexyl) hydrogen phosphate (D2EHPA) in chloroform, n-hexane and toluene as the organic diluents. From the dependencies of the distribution ratios on the concentrations of reactant species, i.e. CA, hydrogen ion and D2EHPA, it is elucidated that CA (RNH{sub 2}) is extracted with D2EHPA (HR`) according to the ion exchange mechanism, as the complex type, RNH{sub 3}R` (HR`){sub 3}, and the equilibrium constants (K{sub ex,CA}) for the extraction reactions are also evaluated. The quantitative structure property relationship (QSPR) of K{sub ex,CA} values for each organic diluent is discussed using molecular modeling with semi-empirical molecular orbital calculations considering the solvent effect. (author)

  4. Separation of rhodium-103m from ruthenium-103 by solvent extraction

    International Nuclear Information System (INIS)

    Chiu, J.H.; Landolt, R.R.; Kessler, W.V.

    1978-01-01

    The results for eight replications of the solvent extraction and purification procedures were /sup 103m/Rh yield, 100.9 +- 2.1% and 103 Ru contamination, 0.0%. The use of sodium hypochlorite as the oxidizing agent eliminated the need for fuming with 1:1 H 2 SO 4 to eliminate chlorides as was required when ceric sulfate was used as the oxidizing agent. The optimum pH for extraction of RuO 4 into CCl 4 was determined to be in the range 6.5 to 7.5. A boiling procedure was used to purify the extracted aqueous solution of /sup 103m/Rh

  5. Effect of Extraction Solvents and Drying Methods on the Physicochemical and Antioxidant Properties of Helicteres hirsuta Lour. Leaves

    Directory of Open Access Journals (Sweden)

    Hong Ngoc Thuy Pham

    2015-12-01

    Full Text Available Helicteres hirsuta Lour. (H. hirsuta L. is widely distributed in southeast Asian countries and has been used traditionally as a medicinal plant. However, optimal conditions for preparation of dried materials for further processing and suitable solvents for the extraction of bioactive compounds have not been investigated. The objective of this study was to evaluate the effects of different extraction solvents and different drying conditions on the physicochemical properties and antioxidant capacity of the H. hirsuta L. leaves. The results showed that both extraction solvents and drying conditions had a significant impact on physicochemical and antioxidant properties of H. hirsuta L. leaves. Among the five solvents investigated, water could extract the highest level of solid content and phenolic compounds, whereas methanol was more effective for obtaining flavonoids and saponins than other solvents. The leaves dried under either hot-air drying at 80 °C (HAD80, or vacuum drying at 50 °C (VD50 yielded the highest amount of total phenolic compounds (7.77 and 8.33 mg GAE/g, respectively and total flavonoid content (5.79 and 4.62 mg CE/g, respectively, and possessed the strongest antioxidant power, while leaves dried using infrared drying at 30 °C had the lowest levels of bioactive compounds. Phenolic compounds including flavonoids had a strong correlation with antioxidant capacity. Therefore, HAD80 and VD50 are recommended for the preparation of dried H. hirsuta L. leaves. Water and methanol are suggested solvents to be used for extraction of phenolic compounds and saponins from H. hirsuta L. leaves for the potential application in the nutraceutical and pharmaceutical industries.

  6. Synthesis, Characterization and Printing Application of Solvent Dyes Based on 2-Hydroxy-4-n-octyloxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2011-01-01

    Full Text Available Solvent dyes have been prepared by the coupling of diazo solution of different aromatic amines with 2-hydroxy-4-n-octyloxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-Visible spectral data have also been discussed in terms of structure property relationship. The printing of all the dyes on cotton fiber was monitored. The result shows that better hue was obtained on printing on cotton fiber and it is resulted in yellow to reddish brown colorations which showed a good fastness to light, with poor to good fastness to washing, perspiration and sublimation, however it shows poor rubbing fastness.

  7. Determination of solvent concentration-dependent dispersion in the vapor extraction (VAPEX) process

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. [Ryerson Polytechnic Univ., Toronto, ON (Canada)

    2008-07-01

    This paper presented the results of a computational algorithm that revealed the optimal conditions required for vapor extraction (VAPEX) for a solvent gas-heavy oil system. VAPEX is a promising recovery process because it requires low energy use and emits fewer greenhouse gases to the atmosphere compared to other enhanced oil recovery methods. The process is governed by the dispersion of solvent gases into heavy oil and bitumen. As such, it is essential to accurately determine solvent dispersion in VAPEX in order to effectively predict the amount and time scale of oil recovery, and to optimize field operations. VAPEX experiments were conducted in this study to determined the dispersion coefficient of a solvent as a function of its concentration in heavy oil and bitumen. The principles of variational calculus were used together with a mass transfer model of the experimental process. It was concluded that the oil production determined by the model should agree with its experimental counterpart, given the optimal gas dispersion versus concentration function.

  8. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  9. Synthesis metal nanoparticle

    Science.gov (United States)

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  10. A novel dipicolinamide-dicarbollide synergistic solvent system for actinide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Ajay Bhagwan [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Pune Univ. (India). Garware Research Centre; Pathak, Priyanath; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Shinde, Vaishali Sanjay [Pune Univ. (India). Garware Research Centre; Alyapyshev, M.Yu.; Babain, Vasiliy A. [Federal Agency for Atomic Energy, St. Petersburg (Russian Federation). V.G. Khlopin Radium Institute

    2014-09-01

    Solvent extraction studies of several actinide ions such as Am(III), U(VI), Np(IV), Np(VI), Pu(IV) were carried out from nitric acid medium using a synergistic mixture of N,N'-diethyl-N,N'-di(para)fluorophenyl-2,6-dipicolinamide, (DEtD(p)FPhDPA, DPA), and hydrogen dicarbollylcobaltate (H{sup +}CCD{sup -}) dissolved in phenyltrifluoromethylsulphone (PTMS). The effects of different parameters such as aqueous phase acidity (0.01-3 M HNO{sub 3}), oxidation states of metal ions, ligand concentration, nature of diluent and temperature on the extraction behavior of metal ions were studied. The extracted Am(III) species was determined as H{sup +}[Am(DPA){sub 2}(CCD){sub 4}]{sup -} With increasing aqueous phase acidities, the extractability of both Am(III) and Eu(III) was found to decrease. The synergistic mixture showed better extraction in mM concentrations as compared to previously studied dipicolinamides. The thermodynamic studies were performed to calculate heat of extraction reaction and the extraction constants. The proposed synergistic mixture showed good extraction for all the metal ions, though lanthanide actinide separation results are not encouraging. (orig.)

  11. Microwave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts

    Directory of Open Access Journals (Sweden)

    Meisam Hasanpoor

    2017-01-01

    Full Text Available In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed existence of Al-O band and bio-functional groups, originated from plant extract. Morphology and size of nanoparticles were investigated using scanning electron microscopy, transmission electron microscopy and atomic force microscopy techniques. It was observed that nanoparticles have near-spherical shape. Average size of clusters of nanoparticles varied with different routes from of 60 nm to 300 nm. AFM images showed that Individual nanoparticles were less than 10 nm.

  12. Rapid determination of volatile constituents in safflower from Xinjiang and Henan by ultrasonic-assisted solvent extraction and GC–MS

    Directory of Open Access Journals (Sweden)

    Ling-Han Jia

    2011-08-01

    Full Text Available The total volatile components were extracted from safflower by ultrasonic-assisted solvent extraction (USE and their chemical constituents were analyzed by gas chromatography–mass spectrometry (GC–MS to provide scientific basis for the quality control of safflower. Five different solvents (diethyl ether, ethanol, ethyl acetate, dichloromethane and acetone were used and compared in terms of number of volatile components extracted and the peak areas of these components in TIC. The results showed that USE could be used as an efficient and rapid method for extracting the volatile components from safflower. It also could be found that the number of components in the TIC of ethyl acetate extract was more than that in the TIC of other solvent ones. Meanwhile, the volatile components of safflower from Xinjiang Autonomous Region and Henan Province of China were different in chemical components and relative contents. It could be concluded that both the extraction solvents and geographical origin of safflower are responsible for these differences. The experimental results also indicated that USE/GC–MS is a simple, rapid and effective method to analyze the volatile oil components of safflower. Keywords: Safflower, Ultrasonic solvent extraction, Gas chromatography–mass spectrometry (GC–MS

  13. Influence of solvents on the changes in structure, purity, and in vitro characteristics of green-synthesized ZnO nanoparticles from Costus igneus

    Science.gov (United States)

    Nandhini, G.; Suriyaprabha, R.; Maria Sheela Pauline, W.; Rajendran, V.; Aicher, Wilhelm Karl; Awitor, Oscar Komla

    2018-05-01

    The present study is intended to produce high-purity zinc oxide nanoparticles from the leaves of Costus igneus and zinc acetate precursor via sustainable methods by the tribulation with three different solvents (hot water, methanol, and acetone) for the extraction of plant compounds. While examining the physico-chemical characteristics of ZnO nanoparticles incurred by the catalysis of plant bioactive compounds extracted from different solvents, the hot water extract-based green synthesis process yields higher purity (99.89%) and smaller particle size (94 nm) than other solvents. The optimization of the solvents used for the green synthesis of nanoparticles renders key identification in appropriate extraction of bioactive compounds suitable for the nucleation/production of nanoparticles in addition to annealing temperature. The impregnable usage of ZnO nanoparticles in clinical applications is further confirmed based on the treatment of particles (1-10 mg ml-1) against Gram-positive (S. aureus and S. epidermis) and Gram-negative bacteria (E. coli and K. pneumoniae) with respect to their growth inhibition. An in-force growth inhibition against particular S. aureus and S. epidermis imparted by the low concentration of ZnO nanoparticles signifies the utilization and consumption of green-synthesized high-purity nanoparticles for therapeutic and cosmetic applications.

  14. Characterization of Carya illinoiensis and Juglans regia oils obtained by different extraction systems

    Directory of Open Access Journals (Sweden)

    Tainara Costa-Singh

    2015-05-01

    Full Text Available It is extremely important to evaluate the extraction processes of vegetable oils used in food, considering that the nuts are rich sources of triacylglycerols. Thus, the present study aimed at comparing the methods of solvent extraction and extraction by pressing of the lipid fractions of walnut (Juglans regia and pecan nut (Carya illinoensis, in order to elucidate their influence on the content of bioactive substances. The samples were analyzed regarding fatty acid profile, tocopherols, phytosterols, carotenoids, and phenolic compounds, presenting relevant quantities of these bioactive substances. It was found that the extraction of oils by pressing minimized degradation of tocopherol when compared to solvent extraction. However, solvent extraction is more efficient to extract bioactive compounds such as phytosterols, carotenoids, and phenolic compounds.

  15. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  16. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    Directory of Open Access Journals (Sweden)

    Bożena Szermer-Olearnik

    Full Text Available Lipopolysaccharide (LPS, endotoxin, pyrogen constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol. During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3 and 10(5 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3-10(5 EU/10(9 PFU (plaque forming units down to an average of 2.8 EU/10(9 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli and F8 (P. aeruginosa.

  17. Facile and solvent-free routes for the synthesis of size-controllable Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Ngo, Thanh Hieu; Tran, Dai Lam; Do, Hung Manh; Le, Van Hong; Nguyen, Xuan Phuc; Tran, Vinh Hoang

    2010-01-01

    Magnetite nanoparticles are one of the most important materials that are widely used in both medically diagnostic and therapeutic research. In this paper, we present some facile and non-toxic synthetic approaches for size-controllable preparations of magnetite nanoparticles, which are appropriate for biomedical applications, namely (i) co-precipitation; (ii) reduction–precipitation and (iii) oxidation–precipitation. Magnetic characterizations of the obtained nanoparticles have been studied and discussed. The oxidation precipitation route was chosen for investigation of the dependence of kinetic driven activation energy and that of coercive force on particle size (and temperature) during the course of the reaction. The structural–magnetic behavior was also correlated. Being solvent and surfactant-free, these methods are advantageous for synthesis and further functionalization towards biomedical applications

  18. Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F [ORNL; Birdwell Jr, Joseph F [ORNL; DePaoli, David W [ORNL; Gauld, Ian C [ORNL

    2009-10-01

    A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  19. Separation of cesium from intermediate level liquid radioactive waste by solvent extraction with antioxidants

    International Nuclear Information System (INIS)

    Gulis, G.

    1989-01-01

    Antioxidants AO 2246, AO 4, AO 4K, AO 301 (Czechoslovakia) and NOCRAC 2246 (Japan) were tested as extracting agents for the separation of cesiium by solvent extraction with substituted phenols. The following effects on extraction were studied: pH of water phase, influence of diluent and of antioxidant concentration, extraction time, influence of salt content. The extraction of cesium from liquid radioactive waste was tested. The best results were obtained by NOCRAC 2246 in nitrobenzene, the extraction efficiency was 92.3% with pH 13.23. (author) 7 refs.; 5 figs.; 4 tabs

  20. Study on solvent extraction of gold(III) with 2-mercaptobenzothiazole into chloroform

    Energy Technology Data Exchange (ETDEWEB)

    Rajadhyaksha, M.; Turel, Z.R.

    1985-11-01

    Ideal conditions for the extraction of Au(III) with 2-mercaptobenzothiazole (2-HMBT) into chloroform were established. The effects of various parameters such as pH, time of equilibration, solvents, cation interferences, anion interferences, and stoichiometry of the metal to reagent were established.

  1. Extractive distillation with ionic liquids as solvents : selection and conceptual process design

    NARCIS (Netherlands)

    Gutierrez Hernandez, J.P.

    2013-01-01

    Extractive distillation technology is widely used in the chemical and petrochemical industries for separating azeotropic, close-boiling and low relative volatility mixtures. It uses an additional solvent in order to interact with the components of different chemical structure within the mixture. The

  2. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Li, Yixue; Lin, Yunxuan; Zhang, Haibao [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica

  3. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  4. Effect tetrahydrofuran as solvent in the synthesis of mullite by the Pechini; Efeito do tetrahidrofurano como solvente na sintese de mulita pelo Metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.N.S.; Santos, V.B. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil); Simoes, V.N.; Neves, G.A.; Lira, H.L.; Menezes, R.R., E-mail: Aluskasimoes@homail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    Mullite has been considered interesting in recent decades, due to its properties. The reaction mechanisms in the mullite formation may vary according to the precursor and the methods employed. In order to get mullite by a promising chemical synthesis and understudied in its production, this paper aims to synthesize mullite by Pechini method. We investigated the mullite crystallization kinetics from use of tetrahydrofuran as solvent. The samples were characterized by diffraction of X-ray (XRD), thermal analysis and scanning electron microscopy (SEM). The XRD results showed the formation of mullite, but together with the alpha alumina phase. Thermal analysis confirmed the disruption of the polymer chain prior to the formation of crystalline phases, with a total weight loss of 97%. The SEM showed a morphology consists of large aggregates, damaging the properties of refractory and performance of the material. (author)

  5. Synthesis and antibacterial characterization of sustainable nanosilver using naturally-derived macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Osonga, Francis J.; Kariuki, Victor M.; Yazgan, Idris; Jimenez, Apryl; Luther, David; Schulte, Jürgen; Sadik, Omowunmi A., E-mail: osadik@binghamton.edu

    2016-09-01

    Greener nanosynthesis utilizes fewer amounts of materials, water, and energy; while reducing or replacing the need for organic solvents. A novel approach is presented using naturally-derived flavonoids including Quercetin pentaphosphate (QPP), Quercetin sulfonic acid (QSA) and Apigenin Triphosphate (ATRP). These water soluble, phosphorylated flavonoids were utilized both as reducing agent and stabilizer. The synthesis was achieved at room temperature using water as a solvent and it requires no capping agents. The efficiency of the resulting silver nanoparticle synthesis was compared with naturally-occurring flavonoid such as Quercetin (QCR). Results show that QCR reduced Ag{sup +} faster followed by QPP, QSA and ATRP respectively. This is the first evidence of direct utilization of QCR for synthesis of silver nanoparticles (AgNPs) in water. The percentage conversion of Ag{sup +} to Ag{sup 0} was determined to be 96% after 35 min. The synthesized nanoparticles were characterized using Transmission electron microscopy (TEM), Energy dispersive absorption spectroscopy (EDS), UV–vis spectroscopy, High resolution TEM (HR-TEM) with selected area electron diffraction (SAED). The particle sizes ranged from 2 to 80 nm with an average size of 22 nm and in the case of ATRP, the nanoparticle shapes varied from spherical to hexagonal with dispersed particle size ranging from 2 to 30 nm. Crystallinity was confirmed by XRD and the SAED of (111), (200), and the fringes observed in HRTEM images. Results were in agreement with the UV resonance peaks of 369–440 nm. The particles also exhibit excellent antibacterial activity against Staphylococcus epidermidis, Escherichia coli and Citrobacter freundii in water. - Highlights: • Greener nanosilver prepared using flavonoid derivatives • Synthesized nanosilver exhibits exhibit antibacterial activity. • Approach suitable for industrial synthesis.

  6. Non-covalent synthesis of organic nanostructures

    NARCIS (Netherlands)

    Prins, L.J.; Timmerman, P.; Reinhoudt, David

    1998-01-01

    This review describes the synthesis, characterization and functionalization of hydrogen bonded, box-like assemblies. These assemblies are formed upon mixing bismelamine calix[4]arenes with a complementary barbiturate in apolar solvents. Various techniques for the characterization have been used,

  7. Fuel characteristics and pyrolysis studies of solvent extractables and residues from the evergreen shrub Calotropis procera

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, M.D.; Gregorski, K.S.; Pavlath, A.E.

    1984-01-01

    Solvent extractables and residues from milkweed were evaluated as sources of liquid and solid fuels. Selected chemical, physical and pyrolytic determinations of the extractables and residues indicated that hexane extract is a potentially valuable, high density fuel resource. Methanol extract was shown to be a lower energy, highly toxic extract. Extracted residues were demonstrated to be valuable as solid fuel energy resources. 31 references.

  8. Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO₂ extraction.

    Science.gov (United States)

    Jaime, Laura; Vázquez, Erika; Fornari, Tiziana; López-Hazas, María del Carmen; García-Risco, Mónica R; Santoyo, Susana; Reglero, Guillermo

    2015-03-15

    In this work three different techniques were applied to extract dry leaves of spinach (Spinacia oleracea): solid-liquid extraction (SLE), pressurised liquid extraction (PLE) and supercritical fluid extraction (SFE) to investigate the influence of extraction solvent and technique on extracts composition and antioxidant activity. Moreover, the influence of carotenoids and phenolic compounds on the antioxidant and anti-inflammatory activities of spinach extracts was also studied. The higher concentrations of carotenoids and the lower content of phenolic compounds were observed in the supercritical CO₂ extracts; whereas water and/or ethanol PLE extracts presented low amounts of carotenoids and the higher concentrations of phenolic compounds. PLE extract with the highest content of phenolic compounds showed the highest antioxidant activity, although SFE carotenoid rich extract also showed a high antioxidant activity. Moreover, both extracts presented an important anti-inflammatory activity. PLE seems to be a good technique for the extraction of antioxidant and anti-inflammatory compounds from spinach leaves. Moreover, spinach phenolic compounds and carotenoids present a high antioxidant activity, whereas spinach carotenoids seem to show a higher anti-inflammatory activity than phenolic compounds. It is worth noting that of our knowledge this is the first time the anti-inflammatory activity of lipophilic extracts from spinach leaves is reported. © 2014 Society of Chemical Industry.

  9. Characterization of Samples from Old Solvent Tanks S1 through S22

    Energy Technology Data Exchange (ETDEWEB)

    Leyba, J.D.

    1999-03-25

    The Old Radioactive Waste Burial Ground (ORWBG, 643-E) contains 22 old solvent tanks (S1 - S22) which were used to receive and store spent PUREX solvent from F- and H-Canyons. The tanks are cylindrical, carbon-steel, single-wall vessels buried at varying depths. A detailed description of the tanks and their history can be found in Reference 1. A Sampling and Analysis Plan for the characterization of the material contained in the old solvent tanks was developed by the Analytical Development Section (ADS) in October of 19972. The Sampling and Analysis Plan identified several potential disposal facilities for the organic and aqueous phases present in the old solvent tanks which included the Solvent Storage Tank Facility (SSTF), the Mixed Waste Storage Facilities (MWSF), Transuranic (TRU) Pad, and/or the Consolidated Incineration Facility (CIF). In addition, the 241-F/H Tank Farms, TRU Pads, and/or the MWSF were identified as potential disposal facilities for the sludge phases present in the tanks. The purpose of this sampling and characterization was to obtain sufficient data on the material present in the old solvent tanks so that a viable path forward could be established for the closure of the tanks. Therefore, the parameters chosen for the characterization of the various materials present in the tanks were based upon the Waste Acceptance Criteria (WAC) of the SSTF3, TRU Pads4, MWSF5, CIF6, and/or 241-F/H Tank Farms7. Several of the WAC's have been revised, canceled, or replaced by new procedures since October of 1997 and hence where required, the results of this characterization program were compared against the latest revision of the appropriate WAC.

  10. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  11. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    Science.gov (United States)

    Anand, Madhu

    Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various

  12. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  13. Rapid determination of volatile constituents in safflower from Xinjiang and Henan by ultrasonic-assisted solvent extraction and GC–MS

    OpenAIRE

    Jia, Ling-Han; Liu, Yi; Li, Yu-Zhen

    2011-01-01

    The total volatile components were extracted from safflower by ultrasonic-assisted solvent extraction (USE) and their chemical constituents were analyzed by gas chromatographyâmass spectrometry (GCâMS) to provide scientific basis for the quality control of safflower. Five different solvents (diethyl ether, ethanol, ethyl acetate, dichloromethane and acetone) were used and compared in terms of number of volatile components extracted and the peak areas of these components in TIC. The results sh...

  14. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  15. High linear energy transfer degradation studies simulating alpha radiolysis of TRU solvent extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Jeremy [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States); Miller, George [Department of Chemistry- University of California Irvine, 2046D PS II, Irvine, CA, 92697 (United States); Nilsson, Mikael [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States)

    2013-07-01

    Treatment of used nuclear fuel through solvent extraction separation processes is hindered by radiolytic damage from radioactive isotopes present in used fuel. The nature of the damage caused by the radiation may depend on the radiation type, whether it be low linear energy transfer (LET) such as gamma radiation or high LET such as alpha radiation. Used nuclear fuel contains beta/gamma emitting isotopes but also a significant amount of transuranics which are generally alpha emitters. Studying the respective effects on matter of both of these types of radiation will allow for accurate prediction and modeling of process performance losses with respect to dose. Current studies show that alpha radiation has milder effects than that of gamma. This is important to know because it will mean that solvent extraction solutions exposed to alpha radiation may last longer than expected and need less repair and replacement. These models are important for creating robust, predictable, and economical processes that have strong potential for mainstream adoption on the commercial level. The effects of gamma radiation on solvent extraction ligands have been more extensively studied than the effects of alpha radiation. This is due to the inherent difficulty in producing a sufficient and confluent dose of alpha particles within a sample without leaving the sample contaminated with long lived radioactive isotopes. Helium ion beam and radioactive isotope sources have been studied in the literature. We have developed a method for studying the effects of high LET radiation in situ via {sup 10}B activation and the high LET particles that result from the {sup 10}B(n,a){sup 7}Li reaction which follows. Our model for dose involves solving a partial differential equation representing absorption by 10B of an isentropic field of neutrons penetrating a sample. This method has been applied to organic solutions of TBP and CMPO, two ligands common in TRU solvent extraction treatment processes. Rates

  16. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian

    2016-01-01

    As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comparative studies with n-methyl-2-pyrrolidone and furfural as solvents for extraction of lube distillates

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R.; Singh, H.; Kishore, K.; Choudhary, G.S.; Kaushik, R.S.

    Solvent extraction of spindle raw lube distillate from Oman crude using n-methyl pyrrolidone (NMP) containing 1.5 wt.% water has been studied using a six-stage all-glass mixer-settler. Results of three operating temperatures with NMP are reported. A 65-55/sup 0/C extraction temperature appears to be most appropriate for this stock. Data obtained at this temperature have been compared with those for furfural on the basis of phase boundary curves, extraction and lube refining indices and selectivity. Comparison of the results shows NMP to be more selective as far as raffinate yield is concerned. It requires lower operating solvent-to-feed ratios and lower temperatures. 14 refs.

  18. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ajitha, B., E-mail: ajithabondu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ashok Kumar Reddy, Y. [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sreedhara Reddy, P. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2015-04-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity.

  19. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    International Nuclear Information System (INIS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2015-01-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity

  20. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhua; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Highlights: • A strategy for extraction of protein based on DES-coated magnetic graphene oxide. • The deep eutectic solvents were based on choline chloride. • Bovine serum albumin was used as the analyte. • The material prepared works for the acidic but not the basic or the neutral proteins. - Abstract: Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe{sub 3}O{sub 4}@GO) to form Fe{sub 3}O{sub 4}@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe{sub 3}O{sub 4}@GO-DES, and the results indicated the successful preparation of Fe{sub 3}O{sub 4}@GO-DES. The UV–vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe{sub 3}O{sub 4}@GO-DES. Comparison of Fe{sub 3}O{sub 4}@GO and Fe{sub 3}O{sub 4}@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe{sub 3}O{sub 4}@GO-DES performs better than Fe{sub 3}O{sub 4}@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L{sup −1} Na{sub 2}HPO{sub 4} contained 1 mol L{sup −1} NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled.

  1. A development and an application of Mixset-X computer code for simulating the Purex solvent extraction system

    International Nuclear Information System (INIS)

    Shida, M.; Naito, M.; Suto, T.; Omori, E.; Nojiri, T.

    2001-01-01

    MIXSET is a FORTRAN code developed to simulate the Purex solvent extraction system using mixer-settler extractors. Japan Nuclear Cycle Development Institute (JNC) has been developing the MIXSET code since the years 1970 to analyze the behavior of nuclides in the solvent extraction processes in Tokai Reprocessing Plant (TRP). This paper describes the history of MIXSET code development, the features of the latest version, called MIXSET-X and the application of the code for safety evaluation work. (author)

  2. Supercritical CO2 extraction of Schinus molle L with co-solvents: mathematical modeling and antimicrobial applications

    Directory of Open Access Journals (Sweden)

    Rodrigo Scopel

    2013-06-01

    Full Text Available This work investigates the antimicrobial activity of the Schinus molle L. leaves extracts obtained under supercritical conditions using carbon dioxide and co-solvents. Antimicrobial qualitative evaluation was carried out through the bioautography technique and the microorganisms studied were Staphylococcus aureus, Pseudomonas aeruginosas, Escherichia coli, Micrococcus luteus, and Salmonella choleraesuis. The supercritical fluid extraction was carried out in a pilot scale equipment using carbon dioxide modified by the addition of co-solvents, such as ethanol and water at 150 bar and 333 K. A mathematical modeling of the process was also performed.

  3. Assessment of Multiple Solvents for Extraction and Direct GC-MS Determination of the Phytochemical Inventory of Sansevieria Extrafoliar Nectar Droplets.

    Science.gov (United States)

    Gaylor, Michael O; Juntunen, Hope L; Hazelwood, Donna; Videau, Patrick

    2018-04-01

    Considerable effort has been devoted to analytical determinations of sugar and amino acid constituents of plant nectars, with the primary aim of understanding their ecological roles, yet few studies have reported more exhaustive organic compound inventories of plant nectars or extrafoliar nectars. This work evaluated the efficacy of four solvents (ethyl acetate, dichloromethane, toluene and hexane) to extract the greatest number of organic compound classes and unique compounds from extrafoliar nectar drops produced by Sansevieria spp. Aggregation of the results from each solvent revealed that 240 unique compounds were extracted in total, with 42.5% of those detected in multiple extracts. Aliphatic hydrocarbons dominated in all but the ethyl acetate extracts, with 44 unique aliphatic hydrocarbons detected in dichloromethane (DCM) extracts, followed by 41, 19 and 8 in hexane, toluene and ethyl acetate extracts, respectively. Hexane extracted the most unique compounds (79), followed by DCM (73), ethyl acetate (56) and toluene (32). Integrated total ion chromatographic peak areas of extracted compound classes were positively correlated with numbers of unique compounds detected within those classes. In addition to demonstrating that multi-solvent extraction with direct GC-MS detection is a suitable analytical approach for determining secondary nectar constituents, to the best of our knowledge, this study also represents: (i) the first attempt to inventory the secondary phytochemical constituents of Sansevieria spp. extrafoliar nectar secretions and (ii) the largest organic solvent extractable compound inventory reported for any plant matrix to date.

  4. Solvent extraction of uranium(VI) and thorium(IV) from nitrate media by carboxylic acid amides

    International Nuclear Information System (INIS)

    Preston, J.S.; Preez, A.C. du

    1995-01-01

    A series of nineteen N-alkyl carboxylic acid amides (R.CO.NHR') has been prepared, in which the alkyl groups R and R' have been varied in order to introduce different degrees of steric complexity into the compounds. A smaller number of N,N-dialkyl amides (R.CO.NR 2 ') and non-substituted amides (R.CO.NH 2 ) has also been prepared for comparison purposes. These amides were characterized by measurement of their boiling points, melting points, refractive indices and densities. The solvent extraction of uranium(VI) and thorium(IV) from sodium nitrate media by solutions of the amides in toluene was studied. Increasing steric bulk of the alkyl groups R and R' was found to cause a marked decrease in the extraction of thorium, with a much smaller effect on the extraction of uranium, thus considerably enhancing the separation between these metals. Vapour pressure osmometry studies indicate that the N-alkyl amides are self-associated in toluene solution, with aggregation numbers up to about 2.5 for 0.6 M solutions at 35 degree C. In contrast, the N,N-dialkyl amides behave as monomers under these conditions. The distribution ratios for the extraction of uranium and thorium show second- and third-order dependences, respectively, on the extractant concentration for both the N-alkyl and N,N-dialkyl amides. 15 refs., 8 figs., 8 tabs

  5. Results Of The Extraction-Scrub-Strip Testing Using An Improved Solvent Formulation And Salt Waste Processing Facility Simulated Waste

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D Cs in an ESS test, using the baseline solvent formulation and the typical waste feed, is ∼15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  6. Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX) for metal recovery.

    Science.gov (United States)

    Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming

    2010-01-01

    In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.

  7. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  8. Removal of technetium from alkaline nuclear-waste media by a solvent-extraction process using crown ethers

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Presley, D.J.; Haverlock, T.J.; Moyer, B.A.

    1995-01-01

    Crown ethers dissolved in suitably modified aliphatic kerosene diluents can be employed to extract technetium as pertechnetate anion (TcO 4 - ) with good extraction ratios from realistic simulants of radioactive alkaline nitrate waste. The modifiers utilized are non-halogenated and non-volatile, and the technetium can be removed from the solvent by stripping using water. The crown ethers bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (di-t-BuCH18C6) and dicyclohexano-18-crown-6 (DCH18C6) provide stronger TcO 4 - extraction than dicyclohexano-21-crown-7 and 4-tert-butylcyclohexano 15-crown-5. Whereas DCH18C6 provides somewhat higher TcO 4 - extraction ratios than the more lipophilic di-t-BuCH18C6 derivative, the latter was selected for further study owing to its lower distribution to the aqueous phase. Particularly good extraction and stripping results were obtained with di-t-BuCH 18C6 at 0.02 M in a 2:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M. Using this solvent, 98.9% of the technetium contained (at 6 x 10 -5 M) in a Double-Shell Slurry Feed (DSSF) Hanford tank waste simulant was removed following two cross-current extraction contacts. Two cross-current stripping contacts with deionized water afforded removal of 99.1% of the technetium from the organic solvent

  9. Solvent extraction of Pu(IV) with TODGA in C6mimTf2N

    International Nuclear Information System (INIS)

    Xiaohong Huang; Qiuyue Zhang; Jinping Liu; Hui He; Wenbin Zhu; Xiaorong Wang

    2013-01-01

    Studies on the solvent extraction of Plutonium(Pu(IV)) from aqueous nitric acid by N,N,N'N'tetraoctyl-diglycolamide (TODGA) in 1-hexyl-3-methylimidazolium-bis(trifluoromethylsulfonyl) imide (C 6 mimTf 2 N) room temperature ionic liquid (RTIL) were carried out. It was found that Pu(IV) is extracted into RTIL phase as [Pu(NO 3 )(TODGA)] 3+ through cation exchange mechanism. Extraction reaction equation is obtained by the influence of acidity and extractant concentration, and the parameters of thermodynamic equilibrium constant was calculated. (author)

  10. Mercury extraction by the TRUEX process solvent. II. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.; Todd, T.A.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 , from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . Because experiments described here show that mercury can be extracted from SBW and stripped from the solvent, a process has been developed to partition mercury from the actinides in SBW. 10 refs., 3 figs., 10 tabs

  11. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. Giridhara; David, E.

    2016-04-01

    Synthesis of metal nanoparticles using biological systems is an expanding research area in nanotechnology. Moreover, search for new nanoscale antimicrobials is been always attractive as they find numerous avenues for application in medicine. Biosynthesis of metallic nanoparticles is cost effective and eco-friendly compared to those of conventional methods of nanoparticles synthesis. Herein, we present the synthesis of zinc oxide nanoparticles using the stem bark extract of Boswellia ovalifoliolata, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 ml of 1 mM zinc nitrate aqueous solution with 10 ml of 10 % bark extract. The formation of B. ovalifoliolata bark-extract-mediated zinc oxide nanoparticles (BZnNPs) was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 230 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract are responsible for the reduction and stabilization of the BZnNPs. The morphology and crystalline phase of the nanocrystals were determined by Transmission electron microscopy (TEM). The hydrodynamic diameter (20.3 nm) and a positive zeta potential (4.8 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of BZnNPs was evaluated (in vitro) against fungi, Gram-negative, and Gram-positive bacteria using disk diffusion method which were isolated from the scales formed in drinking water PVC pipelines.

  12. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  13. Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent.

    Science.gov (United States)

    Yang, Mengyao; Rehman, Muhammad Saif Ur; Yan, Tingxuan; Khan, Asad Ullah; Oleskowicz-Popiel, Piotr; Xu, Xia; Cui, Ping; Xu, Jian

    2018-02-01

    The influence of different parts of corn stover on lignin extraction was investigated. Five kinds of lignin were isolated by the high boiling point solvent extraction from the whole corn stover and four different parts including leaf, husk, bark and pith. The optimal condition was obtained: 6.25 g/L NaOH, 140 °C, 1 h and 60% (v/v) 1,4-butanediol. The extracted lignins were then characterized. FT-IR analysis revealed that all of the lignins were typically herbaceous. The lignin extracted from husk contained more S unit. Gel permeation chromatography analysis showed that it was necessary to separate corn stover into different parts to obtain low polydispersity lignin. The SEM and FT-IR analysis proved that the lignin dissolution was related to the tightness structure presenting a positive correlation with hydrogen bond index. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of the lemongrass plant (Cymbopogon citratus extracted in different solvents for antioxidant and antibacterial activity against human pathogens

    Directory of Open Access Journals (Sweden)

    Balachandar Balakrishnan

    2014-02-01

    Full Text Available Objective: To test antibacterial and antioxidant activity of the lemongrass plant Cymbopogon citratus (C. citratus leaves extracted serially by the solvents (chloroform, methanol and water. Methods: The plant leaves extracts were used for antibacterial activity on Bacillus subtilis, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus, Nocardia sp., Serratia sp., and Enterobacter aeruginosa microorganisms by the Kirby Bauer agar disc diffusion method. This study was carried out on lemongrass plant leaf extracts in different concentration of all solvents. The leaf extracts from different solvents were tested for their scavenging activity against the stable free radical DPPH in quantization using a spectrophotometric assay. Oxidative damage was induced in vitro by treating blood DNA and analyzing the effects of the leaf extracts. Results: The results showed that C. citratus extracts exhibited maximum zones of inhibition in chloroform, methanol and water extracts. It was Observed that the C. citratus extracts exhibited maximum zone of inhibition against Bacillus subtilis, Pseudomonas aeruginosa and Proteus vulgaris. Analyzed data in the present work suggested that antibacterial activity of C. citratus plant leaf extracts showed good results for Gram-positive and Gram-negative organisms. DPPH scavenging activity was highly elicited by the extract of C. citratus. Chloroform, methanol and water extracts of C. citratus leaves effectively decreased the extent of DNA damage. Conclusions: The present study suggested that the lemongrass plant extracts could offer various health benefits.

  15. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  16. Synthesis and characterization of gold nanoparticles using Ficus religiosa extract

    Directory of Open Access Journals (Sweden)

    Kirtee Wani

    2013-03-01

    Full Text Available We report a cost effective and eco-friendly biosynthesis of gold nanoparticles (F-AuNPs using aqueous extract of Ficus religiosa as the reducing and stabilizing agent. These nanoparticles were characterized by various techniques such as UV-Vis, XRD, TEM and FTIR. The characteristic surface plasmon peak was observed at 540 nm while XRD analysis suggested it to be a face-centered cubic (fcc structure with peaks at 38.06, 44.46, 64.75 and 77.56. FTIR studies indicated the capping of the nanoparticles with polyphenols, amines and carboxylates present in the extract of Ficus religiosa whereas TEM analysis showed spherical morphology with other shapes such as triangles and hexagons. The F-AuNPs were found to be non-toxic to HEK 293 cells, thereby suggesting their potential application in the field of nanobiotechnology.

  17. Solvent extractions applications to hydrometallurgy. Pt.III: Nickel, cobalt, manganese and ocean nodules

    International Nuclear Information System (INIS)

    Amer, S.

    1981-01-01

    The main applications of solvent extraction to the hydrometallurgy of nickel, cobalt, manganese and manganese rich ocean nodules, which also contain nickel, cooper and cobalt, are exposed. A short description of the processes with commercial applications is made. (author)

  18. Application of 2k Full Factorial Design in Optimization of Solvent-Free Microwave Extraction of Ginger Essential Oil

    Directory of Open Access Journals (Sweden)

    Mumtaj Shah

    2014-01-01

    Full Text Available The solvent-free microwave extraction of essential oil from ginger was optimized using a 23 full factorial design in terms of oil yield to determine the optimum extraction conditions. Sixteen experiments were carried out with three varying parameters, extraction time, microwave power, and type of sample for two levels of each. A first order regression equation best fits the experimental data. The predicted values calculated by the regression model were in good agreement with the experimental values. The results showed that the extraction time is the most prominent factor followed by microwave power level and sample type for extraction process. An average of 0.25% of ginger oil can be extracted using current setup. The optimum conditions for the ginger oil extraction using SFME were the extraction time 30 minutes, microwave power level 640 watts, and sample type, crushed sample. Solvent-free microwave extraction proves a green and promising technique for essential oil extraction.

  19. Impact of drying methods and extraction solvents on the steroidal saponians content of tibullus terresteris grown in the peshawar valley of khyberpakhtunkhwa, pakistan

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Rehman, M.U.; Ramzan, M.; Ali, S.A.

    2017-01-01

    The experiments were conducted to see the impact of drying methods and extraction solvents on the yield of steroidal saponins of Tribulus terrestris. The plant was dried by three different drying methods namely, solar collector drying, open sun drying and shade drying. After drying different levels (25-100%) of extracting solvent in the form of ethanol, methanol and distilled water were used for extraction. Soxhlet apparatus was used for extraction, while the gas chromatography apparatus was used in the experiment for detecting steroidal saponins in Tribulus terrestris. After extraction, four saponins identified were Tigogenin, Gitogenin, Hecogenin and Neohecogenin. The maximum yield of 61.2% was recorded for flat plate solar drying with 75% ethanol solution, followed 49.5% in shade drying with the same extraction solvent level. The lowest value of 3.1% yield was recorded for distilled water with open sun drying method. It was concluded that Both the drying methods and extraction solvent have a direct effect on the yield of steroidal saponins extracted from Tribulus terrestris. A maximum yield of almost 60% saponins may be achieved, if Tribulus terrestris is dried using a flat plate solar collector and extorted with 75% ethanol solution using GC-MS technique. Open sun drying minimizes saponins in Tribulus terrestris, while distilled water is the worse extracting solvent for extraction of steroidal saponins from Tribulus terrestris. (author)

  20. Caustic-Side Solvent Extraction Chemical and Physical Properties Progress in FY 2000 and FY 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, BA

    2002-04-17

    The purpose of this work was to provide chemical- and physical-property data addressing the technical risks of the Caustic-Side Solvent Extraction (CSSX) process as applied specifically to the removal of cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site. As part of the overall Salt Processing Project, this effort supported decision-making in regards to selecting a preferred technology among three alternatives: (1) CSSX, (2) nonelutable ion-exchange with an inorganic silicotitanate material and (3) precipitation with tetraphenylborate. High risks, innate to CSSX, that needed specific attention included: (1) chemical stability of the solvent matrix, (2) radiolytic stability of the solvent matrix, (3) proof-of-concept performance of the proposed process flowsheet with simulated waste, and (4) performance of the CSSX flowsheet with actual SRS high-level waste. This body of work directly addressed the chemical-stability risk and additionally provided supporting information that served to plan, carry out, and evaluate experiments conducted by other CSSX investigators addressing the other high risks. Information on cesium distribution in extraction, scrubbing, and stripping served as input for flowsheet design, provided a baseline for evaluating solvent performance under numerous stresses, and contributed to a broad understanding of the effects of expected process variables. In parallel, other measurements were directed toward learning how other system components distribute in the flowsheet. Such components include the solvent components themselves, constituents of the waste, and solvent-degradation products. Upon understanding which components influence flowsheet performance, it was then possible to address in a rational fashion how to clean up the solvent and maintain its stable function.