WorldWideScience

Sample records for synthesis characterization antimicrobial

  1. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...

  2. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Assem Barakat, Bandar M. Al-Qahtani, Abdullah M. Al-Majid, M. Ali Mohammed Rafi Shaik, Mohamed H.M. Al-Agamy, Abdul Wadood ...

  3. Synthesis, characterization and antimicrobial studies

    Indian Academy of Sciences (India)

    ... the bispyrazolines 3a–3h is found to be dependent on the length of internal spacer unit. Keywords. Cyclization reactions; bischalcones; internal spacer; bispyrazolines; alkyl chains and antimicrobial activity. 1. Introduction. The study of heterocyclic systems has attracted the attention of organic chemists in the past decades.

  4. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    chloroquinolin-3-yl)-6-(aryl)pyrimidin-2-yl)-2-morpholinoacetamides (5a-l) were synthesized by multistep reactions. Compounds were characterized by IR, NMR and mass spectra. Antimicrobial screening of title compounds (5a-l) was carried out ...

  5. Synthesis, Characterization and Antimicrobial Activity of Copper(II ...

    African Journals Online (AJOL)

    This study presents the synthesis, characterization and antimicrobial activity of copper(II) complexes of some ortho-substituted aniline Schiff bases (L1–L8). The Schiff bases and their respective copper(II) complexes were characterized by a combination of elemental analysis, infrared and UV/Visible studies. The structures of ...

  6. synthesis, characterization, thermal behavior and antimicrobial

    African Journals Online (AJOL)

    The present work deals with the synthesis and characterization of Co, Ni, Cd, Zn and Cu(II) complexes of 3-methyl benzoic acid with/without hydrazine. EXPERIMENTAL. The chemicals and solvents used were of AR grade received from Fluka Chemicals. The double distilled water was used for the preparation and chemical ...

  7. Synthesis, characterization and antimicrobial studies of cadmium(II)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 130; Issue 4. Synthesis, characterization and antimicrobial studies of cadmium(II) complexes with a tetraazamacrocycle (LB) and its cyanoethyl N-pendent derivative (LBX). MD SHAH ALAM SASWATA RABI MD MASUDUR RAHMAN ADRITY BAIDYA MANASHI DEBI ...

  8. Synthesis, characterization and antimicrobial potential of transition ...

    African Journals Online (AJOL)

    Cu (II) complex showed highest inhibition zone against Shigella dysentriae (22.3 mm), greater than standard drug, while the Zn (II) complex showed maximum antifungal activity against Trichophyton simii (18.7 mm). The antimicrobial activities indicated that metal complexes showed enhanced activity as compared to the ...

  9. synthesis, characterization and antimicrobial activity of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Kurtoglu, M.; Purtas, F.; Serin, S. Transit. Met. Chem. 2005, 30, 1042; c) Sreedaran, S.;. Bharathi, K.S.; Kalilur-Rahiman, A.; Rajesh, K.; Nirmala, G.; Jagadish, L.; Kaviyarasan, V.;. Narayana, V. Polyhedron 2008, 27, 1867. 14. Clinical and Laboratory Standards Institute (CLSI) Methods for dilution antimicrobial susceptibility ...

  10. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    sants.20 Comparative structure of drugs and reported bio-active quinoline derivatives shown in figure 1. As a result of remarkable pharmacological efficiency of quinoline, pyrimidine and morpholine derivatives, our studies have been focused towards the synthesis and bio-evaluation of these derivatives by hybrid approach.

  11. Synthesis, Characterization and Antimicrobial Activities of Some ...

    African Journals Online (AJOL)

    user

    of metal ions with vitamin.111: Synthesis and infrared spectra of metal complexes with pyridoxamine and pyridoxine. Inorg. Chim. Acta, 46, 191-197. Gary, J and Adeyemo, A (1981) Interaction of vitamin B1 with Zn(II), Cd (II) and Hg(II) in. Deuterated Dimethyl Sulfoxide. Inorg. Chim. Acta, 55, 93-98. Gohzalez-vergara, E ...

  12. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    A new series of Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) mixed ligands-metal complexes derived from salicylic acid (SA) and 1,10-phenanthroline (PHEN) have been synthesized and characterized by spectroscopic studies. The coordination of the two ligands towards central metal ions has been proposed in the light of ...

  13. Synthesis, Characterization, Antimicrobial Activity and Antioxidant ...

    African Journals Online (AJOL)

    The Schiff base ligand and the metal (II) complexes prepared were characterized by melting point/decomposition temperature, solubility, conductivity, FT-IR spectra and elemental analysis results. IR spectra of the free ligand showed a band at 1655cm-1 which is assigned to the (-C=N-) stretching vibration of the azomethine.

  14. Synthesis, Characterization and Antimicrobial Activities of Some ...

    African Journals Online (AJOL)

    Some transition metal complexes of nicotinamide have been prepared and characterized using melting point, conductivity measurement, infrared, electronic, HNMR and atomic absorption spectroscopic methods. . The antibacterial and antifungal studies of the metal complexes and the ligand have been evaluated against ...

  15. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    Purpose: To synthesize thiosemicarbazide and determine its antimicrobial properties. Methods: Pyridine-based thiosemicarbazide was synthesized, characterized and evaluated for antimicrobial activity. The structure of the synthesized compound was established by spectral analysis, namely, Fourier transform infrared ...

  16. Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications

    Science.gov (United States)

    Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara

    2018-04-01

    Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.

  17. Synthesis, characterization and antimicrobial studies of Cu(II) and ...

    African Journals Online (AJOL)

    chloroaniline were synthesized and characterized by solubility test, infrared spectra, conductivity measurement, magnetic susceptibility, metal-ligand ratio determination, and antimicrobial activity. The low molar conductance values range (16.

  18. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  19. Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives.

    Science.gov (United States)

    Krishnanjaneyulu, Immadisetty Sri; Saravanan, Govindaraj; Vamsi, Janga; Supriya, Pamidipamula; Bhavana, Jarugula Udaya; Sunil Kumar, Mittineni Venkata

    2014-01-01

    A series of novel N-((1H-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-substituted-4, 5-dihydro-1-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-substituted-4, 5-dihydro-1H-pyrazol-3-yl) benzenamine were synthesized by treating various 1-(4-((1H-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one with phenyl hydrazine in the presence of sodium acetate through a simple ring closure reaction. The starting material, 1-(4-((1H-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one,-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one, was synthesized from o-phenylenediamine by a multistep synthesis. All the synthesized compounds were characterized by spectroscopic means and elemental analyses. The title compounds were investigated for in vitro antibacterial and antifungal properties against some human pathogenic microorganisms by employing the agar streak dilution method using Ciprofloxacin and Ketoconazole as standard drugs. All title compounds showed activity against the entire strains of microorganism. Structural activity relationship studies reveal that compounds possessing an electron-withdrawing group display better activity than the compounds containing electron-donating groups, whereas the unsubstituted derivatives display moderate activity. Based on the results obtained, N-((1H-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-(4-(trifluoromethyl) phenyl)-4,5-dihydro-1H-pyrazol-3-yl) benzenamine 5i was found to be very active compared with the rest of the compounds and standard drugs that were subjected to antimicrobial assay.

  20. Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Immadisetty Sri Krishnanjaneyulu

    2014-01-01

    Full Text Available A series of novel N-((1H-benzoimidazol-1-yl methyl-4-(1-phenyl-5-substituted-4, 5-dihydro-1-benzoimidazol-1-yl methyl-4-(1-phenyl-5-substituted-4, 5-dihydro-1H-pyrazol-3-yl benzenamine were synthesized by treating various 1-(4-((1H-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one with phenyl hydrazine in the presence of sodium acetate through a simple ring closure reaction. The starting material, 1-(4-((1H-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one,-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one, was synthesized from o-phenylenediamine by a multistep synthesis. All the synthesized compounds were characterized by spectroscopic means and elemental analyses. The title compounds were investigated for in vitro antibacterial and antifungal properties against some human pathogenic microorganisms by employing the agar streak dilution method using Ciprofloxacin and Ketoconazole as standard drugs. All title compounds showed activity against the entire strains of microorganism. Structural activity relationship studies reveal that compounds possessing an electron-withdrawing group display better activity than the compounds containing electron-donating groups, whereas the unsubstituted derivatives display moderate activity. Based on the results obtained, N-((1H-benzoimidazol-1-yl methyl-4-(1-phenyl-5-(4-(trifluoromethyl phenyl-4,5-dihydro-1H-pyrazol-3-yl benzenamine 5i was found to be very active compared with the rest of the compounds and standard drugs that were subjected to antimicrobial assay.

  1. Synthesis, characterization, antimicrobial and biofilm inhibitory studies of new esterquats.

    Science.gov (United States)

    Yasa, Sathyam Reddy; Kaki, Shiva Shanker; Poornachandra, Y; Kumar, C Ganesh; Penumarthy, Vijayalakshmi

    2016-04-15

    Novel esterquats (monoesterquats and diesterquats) were synthesized from 11-bromo undecanoic acid (11-BUA) and different alkyl amines. The prepared compounds were characterized by FT-IR, (1)H NMR, (13)C NMR and mass spectral analysis. 11-BUA was converted into methyl 11-bromo undecanoate which was further converted into amine ester (amine monoester and diester) by reacting with different aliphatic amines (hexyl, dodecyl, octadecyl, dioctyl and dicyclohexyl amine). Finally, the obtained amine esters were converted into esterquats (monoesterquat and diesterquat) by reacting with methyl iodide followed by ion exchange to afford chloride counter ion esterquats (5a-h). The synthesized esterquat products were studied for their antimicrobial and biofilm inhibitory activities. Among all the compounds, amine ester 3a and esterquat 5d showed potent antimicrobial activity towards pathogenic Gram-positive bacterial strains with minimum inhibitory concentration (MIC) values in the range of 3.9-15.6 μg mL(-1) and 1.9-7.8 μg mL(-1), respectively. The esterquat 5d also showed promising antifungal activity against Candida albicans MTCC 3017, Candida albicans MTCC 4748 and Candida aaseri MTCC 1962 strains with MIC value of 7.8 μg mL(-1) which was identical to standard Miconazole. The compounds which exhibited antimicrobial activity were also effective in anti-biofilm activity and it was found that compound 5d exhibited excellent biofilm inhibitory activity with IC50 value of 0.9 μg mL(-1) against Staphylococcus aureus MLS16 MTCC 2940. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  3. Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tank, Kashmira P., E-mail: kashmira_physics@yahoo.co.in [Saurashtra University, Crystal Growth Laboratory, Physics Department (India); Chudasama, Kiran S.; Thaker, Vrinda S. [Saurashtra University, Bioscience Department (India); Joshi, Mihir J., E-mail: mshilp24@rediffmail.com [Saurashtra University, Crystal Growth Laboratory, Physics Department (India)

    2013-05-15

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson-Hall analysis. The average particle size was found to be 30-60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

  4. Synthesis, characterization, and antimicrobial properties of copper nanoparticles

    Science.gov (United States)

    Usman, Muhammad Sani; Zowalaty, Mohamed Ezzat El; Shameli, Kamyar; Zainuddin, Norhazlin; Salama, Mohamed; Ibrahim, Nor Azowa

    2013-01-01

    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer. PMID:24293998

  5. Synthesis, Characterization and Antimicrobial Activity of Copper(II ...

    African Journals Online (AJOL)

    NICO

    2014-03-03

    Mar 3, 2014 ... Many Schiff base metal complexes have been prepared and screened for their antimicrobial activity. Ortho-hydroxysalicylaldimines possess N2O2 donor atoms and consequently, form stable chelates with metal ions.15,21,23–24. The configuration of the chelate group in the four coordinate complexes may ...

  6. Synthesis and characterization of barbitones as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    H. G. SANGANI

    2006-06-01

    Full Text Available Barbitones (3 were synthesised by the condensation of chalcones (2 with barbituric acid. The structure of the synthesized compounds were assigned on the basis of elemental analyses, IR, NMR and mass spectral studies. All the products were evaluated for their in vitro antimicrobial activity against various strains of bacteria and fungi.

  7. Synthesis, characterization and antimicrobial studies of bio silica ...

    Indian Academy of Sciences (India)

    37

    disadvantages of flame synthesis [24]. The Laser ablation method has limitations in wavelength of the laser impinging metallic target, duration of laser pulses, laser fluence, duration of ablation and effective liquid medium with or without the presence of surfactants. [25]. Reverse microemulsion method limits its high cost and ...

  8. Synthesis, characterization and antimicrobial activities of a Schiff ...

    African Journals Online (AJOL)

    Complexes of Cu(II), Ni(II) and Mn(II) with a Schiff base derived from condensation reaction of phenylalanine and acetylacetone have been synthesized and characterized analytically and spectroscopically. Melting point of the Schiff base was 188oC and the complexes decompose within a temperature range of 210-242oC.

  9. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities

    Science.gov (United States)

    Gopi, D.; Kanimozhi, K.; Kavitha, L.

    2015-04-01

    In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine.

  10. Synthesis, Characterization and Antimicrobial Activity of Novel Pharmacophores Incorporating Imidazoline-Oxazoline Scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Barakat, Assem; Almajid, Abdullah Mohammed; Alquhatany, Faisal M.; Islam, Mohammad Shahidul [King Saud Univ., Riyadh (Saudi Arabia); Alagamy, Mohamed H. M. [Al-Azhar Univ., Cairo (Egypt)

    2014-02-15

    In this work, synthesis, characterization and antimicrobial activity of series of imidazolines-oxazolines scaffolds 5a-f and 10a-d have been investigated. All the imidazolines-oxazolines derivatives were prepared from acid derivatives 1 and 6a-c, and enantiomerically pure (S)-2-amino-3-methyl-1-butanol in four steps with excellent optical purity. The structures of all newly synthesized compounds have been elucidated by {sup 1}H, {sup 13}C NMR, GCMS, and IR spectrometry. Their purity was confirmed using elemental analysis. Some newly synthesized compounds were examined to in-vitro antimicrobial activity. Among the prepared products 10d was found to exhibits the most active against all tested bacteria and fungi with minimal inhibitory concentration (MIC) ranged between 21.9 and 42.6 μg/mL.

  11. Solid Phase Peptide Synthesis of Antimicrobial Peptides for cell Binding Studies: Characterization Using Mass Spectrometry

    National Research Council Canada - National Science Library

    Vouros, Paul

    2002-01-01

    ...) in order to determine their anti-microbial activity. To expedite this goal, mass spectrometry was used to identify products of the solid phase synthesis and thereby optimize synthetic conditions...

  12. Synthesis, Characterization, Antimicrobial Screening and Free-Radical Scavenging Activity of Some Novel Substituted Pyrazoles

    Directory of Open Access Journals (Sweden)

    Nagwa Mohamed Mahrous Hamada

    2015-06-01

    Full Text Available The present work deals with the synthesis of acetoxysulfonamide pyrazole derivatives, substituted 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives starting from substituted vanillin chalcones. Acetoxysulfonamide pyrazole derivatives were prepared from the reaction of chalcones with p-sulfamylphenylhydrazine followed by treatment with acetic anhydride. At the same time 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives were prepared from the reaction of chalcones with either thiosemicarbazide or isonicotinic acid hydrazide, respectively. The synthesized compounds were structurally characterized on the basis of IR, 1H-NMR, 13C-NMR spectral data and microanalyses. All of the newly isolated compounds were tested for their antimicrobial activities. The antimicrobial screening using the agar well-diffusion method revealed that the chloro derivatives are the most active ones. Moreover, the antioxidant and anti-inflammatory activity of these chloro derivatives are also studied using the DPPH radical scavenging and NO radical scavenging methods, respectively.

  13. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications.

    Science.gov (United States)

    Hui, Franck; Debiemme-Chouvy, Catherine

    2013-03-11

    Antimicrobial N-halamine polymers and coatings have been studied extensively over the past decade thanks to their numerous qualities such as effectiveness toward a broad spectrum of microorganisms, long-term stability, regenerability, safety to humans and environment and low cost. In this review, recent developments are described by emphasizing the synthesis of polymers and/or coatings having N-halamine moieties. Actually, three main approaches of preparation are given in detail: polymerization, generation by electrochemical route with proteins as monomers and grafting with precursor monomers. Identification and characterization of the formation of the N-halamine bonds (>N-X with X = Cl or Br or I) by physical techniques such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and by chemical reactions are described. In order to check the antimicrobial activity of the N-halamine compounds, bacterial tests are also described. Finally, some examples of application of these N-halamines in the water treatment, paints, healthcare equipment, and textile industries are presented and discussed.

  14. Synthesis, Characterization and Antimicrobial Evaluation of some Thiazole-Derived Carbamates, Semicarbazones, Amides and Carboxamide

    International Nuclear Information System (INIS)

    Balawi, N.A.A.; ALShaikh, M.A.A.; Alafeefy, A.M.; Khan, K.M.

    2016-01-01

    This study comprises the synthesis and characterization of twenty thiazole-derived carbamates (3a-e), N-substituted amides (8a-h) and carboxamide (10) from 2-aminothiazoles (1a, b) via nucleophilic substitution reactions with activated carbonyl compounds including, chloroformates (2a-d), acid chlorides (7a-e) and glutaric anhydride (9), respectively. Sequential hydrazinolysis of carbamate (3e) and condensation with a variety of aldehydes and ketones (5a d) afforded the corresponding semicarbazones (6a-d). Some selected synthesized compounds were subjected to in vitro antimicrobial evaluation against common pathogens including, Gram+ve bacteria Bacillus subtilis (NRRL B-543) and Staphylococcus aureus, Gram-ve bacteria Escherichia coli (NRRLB-21), yeasts-Candida albicans (NRRLY-477) and Saccharomyces cercvisiae (NRRL Y-567) and fungs Asperigillus niger (NRRL 599). Screening results revealed that most of the tested compounds possess good antimicrobial activity compared to standard drugs. The highest inhibitory effects against Gram-ve Escherichia coli, Gram+ve Staphylococcus aureus, yeast Candida albicans and fungus Aspergillus niger was displayed by amide (8g) bearing the thiophene moiety. (author)

  15. Synthesis, structural characterization and antimicrobial activity evaluation of metal complexes of sparfloxacin

    Science.gov (United States)

    El-Gamel, Nadia E. A.; Zayed, M. A.

    2011-11-01

    The synthesis and characterization of binary Cu(II)- ( 1), Co(II)- ( 2), Ni(II)- ( 3), Mn(II)- ( 4), Cr(III)- ( 5), Fe(III)- ( 6), La(III)- ( 7), UO 2(VI)- ( 8) complexes with sparfloxacin ( HL1) and ternary Cu(II)- ( 9), Co(II)- ( 10), Ni(II)- ( 11), Mn(II)- ( 12), Cr(III)- ( 13), Fe(III)- ( 14), La(III)- ( 15), UO 2(VI)- ( 16) complexes with sparfloxacin ( HL1) and DL-alanine ( H2L2) complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, thermal analysis and 1H-NMR spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complexes which were four coordinate, square planar and U- and La-atoms in the uranyl and lanthanide have a pentagonal bipyramidal coordination sphere. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug sparfloxacin. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)- and Mn(II) complexes exhibited higher potency as compared to the parent drug against Gram-negative bacteria.

  16. Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moshalagae Motlatle, Abesach, E-mail: AMotlatle@csir.co.za; Kesavan Pillai, Sreejarani, E-mail: skpillai@csir.co.za; Rudolf Scriba, Manfred, E-mail: MRscriba@csir.co.za; Sinha Ray, Suprakas, E-mail: Rsuprakas@csir.co.za [Council for Scientific and Industrial Research, DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials (South Africa)

    2016-10-15

    Cu nanoparticles were synthesized using low-temperature aqueous reduction method at pH 3, 5, 7, 9 and 11 in presence of ascorbic acid and polyvinylpyrrolidone. The nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Results demonstrated a strong dependence of synthesis pH on the size, shape, chemical composition and structure of Cu nanoparticles. While lower pH conditions of 3 and 5 produced Cu{sup 0}, higher pH levels (more than 7) led to the formation of Cu{sub 2}O/CuO nanoparticles. The reducing capacity of ascorbic acid, capping efficiency of PVP and the resulting particle sizes were strongly affected by solution pH. The results of in vitro disk diffusion tests showed excellent antimicrobial activity of Cu{sub 2}O/CuO nanoparticles against a mixture of bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), indicating that the size as well as oxidation state of Cu contributes to the antibacterial efficacy. The results indicate that varying synthesis pH is a strategy to tailor the composition, structure and properties of Cu nanoparticles.

  17. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sirsendu; Koul, Veena, E-mail: veenak@iitd.ac.in

    2016-02-01

    A novel, elastic, non-adhesive and antimicrobial hydrogel PVA scaffold (loaded with AgNPs) synthesized using freeze-thaw method has been characterized in this study. The direct visualization of the as synthesized (one-pot green synthesis methodology) AgNPs using TEM shows particle size in the range of 7 ± 3 nm. The minimum inhibitory concentration (MIC) of AgNPs for Staphylococcus aureus and Escherichia coli was estimated to be 7.81 μg/mL, whereas for Pseudomonas aeruginosa (gram negative) it was around 3.90 μg/mL. The antimicrobial efficacy of AgNPs was further studied by protein leakage, ROS and LDH activity assay. The quantitative elemental analysis of silver was calculated before and after release in phosphate buffer (pH-7.4) by atomic absorption spectroscopy. The antimicrobial efficacy of the scaffold was retained even after 96 h of release of AgNPs which suggests that the scaffold can be used as a reservoir for AgNPs to maintain a moist and sterile environment for a long period of time. - Highlights: • Green synthesis of AgNPs and evaluation of its antimicrobial efficacy • Synthesis of PVA hydrogel by freeze thaw technique • Antimicrobial activity of AgNPs loaded PVA hydrogel by zone of inhibition • Release kinetics of AgNPs from hydrogel by atomic absorption spectroscopy.

  18. Diclofenac-Based Hydrazones and Spirothiazolidinones: Synthesis, Characterization, and Antimicrobial Properties.

    Science.gov (United States)

    Kocabalkanlı, Ayşe; Cihan-Üstündağ, Gökçe; Naesens, Lieve; Mataracı-Kara, Emel; Nassozi, Mebble; Çapan, Gültaze

    2017-05-01

    We report here the synthesis, structural characterization, and biological evaluation of novel diclofenac-based hydrazone (4a-f) and spirothiazolidinone (5a-f, 6a-f) derivatives designed as potential antimicrobial agents. The compounds were evaluated in vitro for their antiviral activity against a wide spectrum of DNA and RNA viruses. They were further screened in vitro against different strains of bacteria and fungi. The hydrazone derivatives, 4a and 4c-f, were found to be active against herpesviruses (HSV-1, HSV-2, and HSV-1 TK - ), vaccinia virus, and Coxsackie B4 virus, with EC 50 values between 6.6 µg/mL and 14.7 μg/mL, and the selectivity index values were greater than 10 for 4a and 4f. The newly synthesized compounds (4-6) were inactive against the bacterial and the fungal strains tested, at levels below 2500, 1250, or 625 μg/mL. Interestingly, the key intermediate 3 with a free hydrazide moiety displayed antifungal properties against Candida albicans and C. parapsilosis at MIC values of 4.88 µg/mL and 78.12 μg/mL, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Science.gov (United States)

    Elumalai, K.; Velmurugan, S.

    2015-08-01

    The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV-Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H2O2 concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  20. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    Science.gov (United States)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  1. Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2013-05-01

    Full Text Available We present a simple, efficient, low cost and template free method for preparation of well dispersed ultra-long (1 μm CdO nanowires. The CdO nanowires were characterized by x-ray diffraction (XRD, Transmission electron microscopy (TEM, UV-visible spectroscopy and Raman measurements. The direct and indirect band gaps were calculated to be 3.5 eV and 2.6 eV, respectively. In the Raman spectra only second order features were observed. The CdO nanowires were used to study antimicrobial activities against B.subtilis and E.coli microbes. It shows antimicrobial activity against B.subtilis and E.coli. However, the antimicrobial activities are better against B.subtilis than that of E.coli.

  2. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications

    Directory of Open Access Journals (Sweden)

    Hussein-Al-Ali SH

    2014-08-01

    Full Text Available Samer Hasan Hussein-Al-Ali,1,2 Mohamed Ezzat El Zowalaty,3,4 Mohd Zobir Hussein,5 Benjamin M Geilich,6 Thomas J Webster6,7 1Laboratory of Molecular Biomedicine, 2Faculty of Pharmacy, Isra University, Amman, Kingdom of Jordan; 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia; 5Materials Synthesis and Characterization Laboratory Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 6Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Abstract: Because of their magnetic properties, magnetic nanoparticles (MNPs have numerous diverse biomedical applications. In addition, because of their ability to penetrate bacteria and biofilms, nanoantimicrobial agents have become increasingly popular for the control of infectious diseases. Here, MNPs were prepared through an iron salt coprecipitation method in an alkaline medium, followed by a chitosan coating step (CS-coated MNPs; finally, the MNPs were loaded with ampicillin (amp to form an amp-CS-MNP nanocomposite. Both the MNPs and amp-CS-MNPs were subsequently characterized and evaluated for their antibacterial activity. X-ray diffraction results showed that the MNPs and nanocomposites were composed of pure magnetite. Fourier transform infrared spectra and thermogravimetric data for the MNPs, CS-coated MNPs, and amp-CS-MNP nanocomposite were compared, which confirmed the CS coating on the MNPs and the amp-loaded nanocomposite. Magnetization curves showed that both the MNPs and the amp-CS-MNP nanocomposites were superparamagnetic, with saturation magnetizations at 80.1 and 26.6 emu g-1, respectively. Amp was loaded at 8

  3. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    International Nuclear Information System (INIS)

    Elumalai, K.; Velmurugan, S.

    2015-01-01

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H 2 O 2 concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration

  4. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Energy Technology Data Exchange (ETDEWEB)

    Elumalai, K. [Department of Physics, Annamalai University, Annamalai Nagar 608002 (India); Velmurugan, S., E-mail: drvelmurganphy@gmail.com [Department of Engineering Physics (FEAT), Annamalai University, Annamalai Nagar 608 002 (India)

    2015-08-01

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H{sub 2}O{sub 2} concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  5. Synthesis, characterization and antimicrobial activities of amide derivatives of febuxostat intermediate

    Directory of Open Access Journals (Sweden)

    Sreedhar Badvel

    2015-06-01

    Full Text Available A series of new carboxamide derivatives of 3-(4-(5-(ethoxycarbonyl-4-methylthiazol-2-ylphenoxypropionic acid were synthesized by Schotten-Baumann reaction. The newly synthesized compounds were characterized by IR, NMR and mass spectral analysis. The target molecules were evaluated for their efficacy as antimicrobial agents in vitro by disc diffusion method. Compounds 4c, 4f, 4g and 4i showed high inhibitory activity.

  6. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    Science.gov (United States)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  7. Synthesis, characterization and antimicrobial evaluation of 2,5-disubstituted-4-thiazolidinone derivatives

    Directory of Open Access Journals (Sweden)

    Aakash Deep

    2014-07-01

    Full Text Available In the present study novel derivatives of 4-thiazolidinone were prepared from biphenyl-4-carboxylic acid and evaluated for their in vitro antimicrobial activity against two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa and two Gram positive strains (Bacillus subtilis and Staphylococcus aureus and fungal strain Candida albicans and Aspergillus niger. The newly synthesized compounds were characterized by IR, 1H NMR and C, H, N analyses. The results revealed that all synthesized compounds have a significant biological activity against the tested microorganisms. Among the synthesized derivatives 4g (biphenyl-4-carboxylic acid [2-(3-bromophenyl-5-(3-nitrobenzylidene-4-oxo-thiazolidin-3-yl]-amide and 4i (biphenyl-4-carboxylic acid [5-(3-bromobenzylidene-2-(3-bromophenyl-4-oxo-thiazolidin-3-yl]-amide were found to be most effective antimicrobial compounds.

  8. Synthesis, characterization and antimicrobial activity of biguanidinylated chitosan-g-poly[(R)-3-hydroxybutyrate].

    Science.gov (United States)

    Salama, Hend E; Saad, Gamal R; Sabaa, Magdy W

    2017-08-01

    Chitosan biguanidine hydrochloride (ChG) and low molecular weight poly[(R)-3-hydroxybutyrate] (PHB) were successfully prepared to overcome the solubility problem of chitosan and PHB and also to enhance antimicrobial activity of chitosan. The graft copolymers based on ChG and PHB (ChG-grafted PHB) were then prepared via condensation reaction of the carboxylic groups of PHB with the amino groups of ChG. These graft copolymers swell in water. The prepared graft copolymers were characterized by FTIR, 1 H NMR, X-ray diffraction (XRD) and thermal analyses (TGA and DSC). TGA and DSC results revealed that the thermal stability and crystallinity of the graft copolymers were found to increase as the content of PHB increased. The antimicrobial activity of both ChG and ChG-grafted PHB, against Streptococcus pneumoniae, Bacillus subtilis, Escherichia coli (as examples of bacteria) and Aspergillus fumigatus, Geotricum candidum and Syncephalastrum recemosum (as examples of fungi), were tested. Among them, ChG and ChG-grafted PHB with the highest grafting percent investigated showed to possess relatively higher antimicrobial activity with low MIC values in the range of 0.49-3.90μgmL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan

    2016-09-01

    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  10. New Hydrazones Bearing Thiazole Scaffold: Synthesis, Characterization, Antimicrobial, and Antioxidant Investigation

    Directory of Open Access Journals (Sweden)

    Cristina Nastasă

    2015-09-01

    Full Text Available New series of hydrazones 5–18 were synthesized, in good yields, by reacting 4-methyl-2-(4-(trifluoromethylphenylthiazole-5-carbohydrazide with differently substituted benzaldehyde. The resulting compounds were characterized via elemental analysis, physico-chemical and spectral data. An antimicrobial screening was done, using Gram (+, Gram (− bacteria and one fungal strain. Tested molecules displayed moderate-to-good growth inhibition activity. 2,2-Diphenyl-1-picrylhydrazide assay was used to test the antioxidant properties of the compounds. Monohydroxy (14–16, para-fluorine (13 and 2,4-dichlorine (17 derivatives exhibited better free-radical scavenging ability than the other investigated molecules.

  11. New Hydrazones Bearing Thiazole Scaffold: Synthesis, Characterization, Antimicrobial, and Antioxidant Investigation.

    Science.gov (United States)

    Nastasă, Cristina; Tiperciuc, Brîndușa; Duma, Mihaela; Benedec, Daniela; Oniga, Ovidiu

    2015-09-18

    New series of hydrazones 5-18 were synthesized, in good yields, by reacting 4-methyl-2-(4-(trifluoromethyl)phenyl)thiazole-5-carbohydrazide with differently substituted benzaldehyde. The resulting compounds were characterized via elemental analysis, physico-chemical and spectral data. An antimicrobial screening was done, using Gram (+), Gram (-) bacteria and one fungal strain. Tested molecules displayed moderate-to-good growth inhibition activity. 2,2-Diphenyl-1-picrylhydrazide assay was used to test the antioxidant properties of the compounds. Monohydroxy (14-16), para-fluorine (13) and 2,4-dichlorine (17) derivatives exhibited better free-radical scavenging ability than the other investigated molecules.

  12. Benzylidene/2-aminobenzylidene hydrazides: Synthesis, characterization and in vitro antimicrobial evaluation

    Directory of Open Access Journals (Sweden)

    Manav Malhotra

    2014-11-01

    Full Text Available In this study a series of new mannich bases were synthesized and characterized by elemental and spectral (IR, 1H NMR, 13C NMR studies. All the synthesized compounds were evaluated for their antimicrobial activity by broth dilution method against two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa, two Gram positive strains (Bacillus subtilis and Staphylococcus aureus and fungal strain (Candida albicans and Aspergillus niger. Preliminary pharmacological evaluation revealed that the compounds (3f, 3i, 3j, and 3k showed good activity against these strains. The result demonstrates the potential and importance of developing new mannich bases which would be effective against resistant bacterial and fungal strain.

  13. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation.

    Science.gov (United States)

    Bhowmick, Sirsendu; Koul, Veena

    2016-02-01

    A novel, elastic, non-adhesive and antimicrobial hydrogel PVA scaffold (loaded with AgNPs) synthesized using freeze-thaw method has been characterized in this study. The direct visualization of the as synthesized (one-pot green synthesis methodology) AgNPs using TEM shows particle size in the range of 7±3nm. The minimum inhibitory concentration (MIC) of AgNPs for Staphylococcus aureus and Escherichia coli was estimated to be 7.81μg/mL, whereas for Pseudomonas aeruginosa (gram negative) it was around 3.90μg/mL. The antimicrobial efficacy of AgNPs was further studied by protein leakage, ROS and LDH activity assay. The quantitative elemental analysis of silver was calculated before and after release in phosphate buffer (pH-7.4) by atomic absorption spectroscopy. The antimicrobial efficacy of the scaffold was retained even after 96h of release of AgNPs which suggests that the scaffold can be used as a reservoir for AgNPs to maintain a moist and sterile environment for a long period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis, characterization, in vitro antimicrobial, and U2OS tumoricidal activities of different coumarin derivatives

    Science.gov (United States)

    2013-01-01

    Background Coumarin and its derivatives are biologically very active. It was found that the enhanced activities are dependent on the coumarin nucleus. Biological significance of these compounds include anti-bacterial, anti-thrombotic and vasodilatory, anti-mutagenic, lipoxygenase and cyclooxygenase inhibition, scavenging of reactive oxygen species, and anti-tumourigenic. Our interest in medicinal chemistry of dicoumarol compounds have been developed by keeping in view the importance of coumarins along with its derivatives in medicinal chemistry. All the synthesized compounds were fully characterized by spectroscopic and analytical techniques and were screened for antimicrobial and U2OS bone cancer activities. Results 4-hydroxycoumarin was derivatized by condensing with different aldehydes yielding the dicoumarol and translactonized products. Elemental analyses, ESI(+,−) MS, 1H and 13C{1H}-NMR, infrared spectroscopy and conductance studies were used to characterize the synthesized compounds which revealed the dicoumarol and dichromone structures for the compounds. The compounds were screened against U2OS cancerous cells and pathogenic micro organisms. The compounds with intermolecular H-bonding were found more active revealing a possible relationship among hydrogen bonding, cytotoxicity and antimicrobial activities. Conclusion Coumarin based drugs can be designed for the possible treatment of U2OS leukemia. PMID:23587363

  15. Synthesis, Characterization, and Thermal and Antimicrobial Activities of Some Novel Organotin(IV: Purine Base Complexes

    Directory of Open Access Journals (Sweden)

    Reena Jain

    2013-01-01

    Full Text Available A new series of organotin(IV complexes with purine bases theophylline (HL1 and theobromine (L2 of the types R3Sn(L1, R2Sn(L1Cl, R3Sn(L2Cl, and R2Sn(L2Cl2 (R = C6H5CH2–; p-ClC6H4CH2– have been synthesized in anhydrous THF. The complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations, UV-vis, IR, 1H, 13C NMR, and mass spectral studies. Various kinetic and thermodynamic parameters of these complexes have also been determined using TG/DTA technique. The thermal decomposition techniques indicate the formation of SnO2 as a residue. The results show that the ligands act as bidentate, forming a five-member chelate ring. All the complexes are 1 : 1 metal-ligand complexes. In order to assess their antimicrobial activity, the ligands and their corresponding complexes have also been tested in vitro against bacteria (E. coli, S. aureus, and P. pyocyanea and fungi (Rhizopus oryzae and Aspergillus flavus. All the complexes exhibit remarkable activity, and the results provide evidence that the studied complexes might indeed be a potential source of antimicrobial agents.

  16. Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy.

    Science.gov (United States)

    Ivashchenko, Olena; Lewandowski, Mikołaj; Peplińska, Barbara; Jarek, Marcin; Nowaczyk, Grzegorz; Wiesner, Maciej; Załęski, Karol; Babutina, Tetyana; Warowicka, Alicja; Jurga, Stefan

    2015-10-01

    The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques. Adsorptivity of magnetite/silver nanocomposite towards seven antibiotics from five different groups was investigated. It was shown that rifampicin, doxycycline, ceftriaxone, cefotaxime and doxycycline may be attached by physical adsorption to magnetite/silver nanocomposite. Electrostatic surfaces of antibiotics were modeled and possible mechanism of antibiotic attachment is considered in this article. Raman spectra of magnetite, magnetite/silver and magnetite/silver/antibiotic were collected. It was found that it is difficult to detect the bands related to antibiotics in the magnetite/silver/antibiotic nanocomposite spectra due to their overlap by the broad carbon bands of magnetite nanopowder. Magnetic measurements revealed that magnetic saturation of the magnetite/silver/antibiotic nanocomposites decreased on 6-19 % in comparison with initial magnetite nanopowder. Pilot study of antimicrobial properties of the magnetite/silver/antibiotic nanocomposites were performed towards Bacillus pumilus. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis, characterization, antimicrobial and cytotoxicity studies of a novel titanium dodecylamino phosphate

    Directory of Open Access Journals (Sweden)

    A. Rajini

    2017-01-01

    Full Text Available A novel titanium dodecylamino phosphate has been synthesized instantly at ambient temperature and characterized by various analytical and spectroscopic techniques such as PXRD, SEM-EDAX, TGA/DTA, FT-IR, dispersive Raman, UV–Vis DRS, XPS, 31P and 13C MAS NMR. The material was tested for biological activities such as antimicrobial, nematicidal and anticancer. The material exhibits potent antimicrobial activity against Gram-positive bacteria and fungi. The percentage mortality against Meloidogyne incognita nematode was increased with increase in concentration and incubation time. Further the material was also investigated for anticancer on human cancer cell lines such as cervix (HeLa, leukemia (HL60 and breast (MCF7. The cells were dosed with varying concentrations of the material and cell viability was measured by sulforhodamine-B (SRB calorimetric assay. Interestingly, the material shows GI50 values of 39.8 μg mL−1 (HL60, 13.2 μg mL−1 (MCF7 and a superior value of 10.6 μg mL−1 (HeLa, respectively. However the material was found to be excellent and active against HeLa and MCF7 than HL60 cells leading to the conclusion that presence of titanium and amino groups were responsible for cytotoxicity.

  18. Synthesis, characterization, antimicrobial and cytotoxic studies of a novel vanadium dodecylamino phosphate

    Directory of Open Access Journals (Sweden)

    A. Rajini

    2017-05-01

    Full Text Available A novel vanadium dodecylamino phosphate was synthesized by mixing phosphoric acid and vanadyl acetylacetonate with dodecylamine at ambient temperature. The material was characterized by various spectroscopic and analytical techniques to know its morphological and structural characteristics. The biological activity of the material toward antimicrobial, nematicidal, DNA cleavage and cytotoxicity has been screened. The material exhibits moderate to good antimicrobial activity against Gram-positive bacteria. The percentage mortality on Meloidogyne incognita nematode was found to increase with increase in concentration of VDDAP at 48 h. Further, the material was investigated for cytotoxicity on human cancer cell lines such as cervix (HeLa, leukemia (HL60 and breast (MCF7. The cells were dosed with varying concentrations of the VDDAP and cell viability was measured by sulforhodamine B (SRB assay to determine their GI50 values. Interestingly, the compound shows GI50 values of 25.4 μg mL−1 (HeLa, 29.1 μg mL−1 (MCF7 and a superior value of 11.6 μg mL−1 (HL60 respectively. The DNA cleavage activity of the material was investigated using agarose gel electrophoresis.

  19. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  20. Facile Synthesis, Characterization, and In Vitro Antimicrobial and Anticancer Activities of Biscoumarin Copolyester Bearing Pendant 3-(Trifluoromethyl)Styrene.

    Science.gov (United States)

    Kandaswamy, Narendran; Raveendiran, Nanthini

    2014-01-01

    Synthesis of random biscoumarin copolyester bearing pendant 3-(trifluoromethyl)styrene was prepared by the reaction of biscoumarin monomer 3 and hydroquinone 5 with azeloyl chloride. The influence of pendant 3-(trifluoromethyl)styrene unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and compared in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.15 dL/g and 1.36, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was also investigated.

  1. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    International Nuclear Information System (INIS)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2015-01-01

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml −1 and 0.156–2.500 mg ml −1 , respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml −1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  2. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yijie [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Jiang, Xiaoyu; Zhang, Jing [AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore); Lin, Ming [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tang, Xiaosheng [AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore); Zhang, Jie, E-mail: zhangj@imre.a-star.edu.sg [Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research - A*STAR, 3 Research Link, 117602 (Singapore); Liu, Hongjun, E-mail: hjliu@henu.edu.cn [Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004 (China); AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, 208787 (Singapore)

    2017-02-28

    Highlights: • Nanosilver diatomite has been developed with a facile, easy and effective in–situ reduction method. • The nanosilver diatomite demonstrated great antibacterial properties to gram positive and gram–negative bacterial. • A small amount of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. • Low cost nano–composite antimicrobial material for water purification industry. - Abstract: Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV–vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  3. Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2'-Bipyridine.

    Science.gov (United States)

    Vasile Scăețeanu, Gina; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Kamerzan, Crina; Măruţescu, Luminiţa; Daniliuc, Constantin G; Maxim, Cătălin; Calu, Larisa; Olar, Rodica; Badea, Mihaela

    2018-01-12

    The synthesis, structural characterization, cytotoxicity, and antimicrobial properties of four new complexes formed by employing acrylate anion and 2,2'-bipyridine are reported herein. X-ray crystallography revealed the trinuclear nature of [Mn₃(2,2'-bipy)₂(C₃H₃O₂)₆] ( 1 ), meanwhile complexes with general formula [M(2,2'-bipy)(C₃H₃O₂)₂(H₂O) x ]∙ y H₂O (( 2 ) M: Ni, x = 1, y = 0; ( 3 ) M: Cu, x = 1, y = 0; ( 4 ) M: Zn, x = 0, y = 1; 2,2'-bipy: 2,2'-bipyridine; C₃H₃O₂: acrylate anion) were shown to be mononuclear. The lowest minimum inhibitory concentration (MIC) of 128 μg mL -1 was recorded for all four tested complexes against Candida albicans , for complex ( 3 ) against Escherichia coli , and for complex ( 4 ) against Staphylocococcus aureus . Compounds ( 3 ) and ( 4 ) were also potent efflux pumps activity inhibitors (EPI), proving their potential for use in synergistic combinations with antibiotics. Complexes ( 1 )-( 4 ) revealed that they were not cytotoxic to HCT-8 cells. They also proved to interfere with the cellular cycle of tumour HCT-8 cells by increasing the number of cells found in the S and G2/M phases. Taken together, these results demonstrate the potential of zinc and copper complexes for use in the development of novel antimicrobial and anti-proliferative agents.

  4. Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: Evaluation of antimicrobial activities.

    Science.gov (United States)

    Saravanan, A; Kumar, P Senthil; Karthiga Devi, G; Arumugam, T

    2016-08-01

    In the present research, in vitro antimicrobial activity of metallic nanoparticles impregnated on activated carbon (MNPI-AC) was investigated. Activated carbon (AC) was successfully prepared from Fishtail palm Caryota urens seeds by using two surface modification process (i) sulphuric acid treated Caryota urens seeds (SMCUS) (ii) ultrasonic assisted Caryota urens seeds (UACUS). Mukia maderasapatna plant extract was used as reducing agent for the synthesis of metallic nanoparticles. The characterization studies of MNPI - AC were performed by using a UV-visible spectrophotometer and Fourier Transform Infrared Spectroscopic (FT-IR) analyses. Different active functional groups were identified by FTIR studies which were responsible for impregnation of metallic nanoparticles on a surface of AC. The antimicrobial activity of MNPI - AC was examined against four bacterial strains: 2 g positive (Staphylococcus aureus and Staphylococcus epidermidis) and 2 g negative (Pseudomonas aeruginosa and Escherichia coli) and one fungal strain (Candida albicans). Among different MNPs, Pb-AC (UACUS) shows that higher zone of inhibition. These results in the literature showed that MNPI - AC are to be effective for deactivation and inactivation of microbes in an efficient manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis, spectroscopic characterization, DFT study and antimicrobial activity of novel alkylaminopyrazole derivatives

    Science.gov (United States)

    Zalaru, Christina; Dumitrascu, Florea; Draghici, Constantin; Tarcomnicu, Isabela; Tatia, Rodica; Moldovan, Lucia; Chifiriuc, Mariana-Carmen; Lazar, Veronica; Marinescu, Maria; Nitulescu, Mihai George; Ferbinteanu, Marilena

    2018-03-01

    A new series of substituted N,N-bis-[(1H-pyrazol-1-yl)methyl]-aminohexadecane Mannich bases were synthesized, characterized by IR, 1H NMR 13C NMR, UV-Vis, MS and elemental analysis, and tested for their biological activity. All the synthesized compounds were tested for in vitro antimicrobial activity against a panel of selected bacterial and fungal strains using erythromycin and clotrimazole as standards. Most of the synthesized compounds demonstrated very good activity at minimum inhibitory concentrations (MICs). Compound 3b with an halogen atom into the pharmacophore structure exhibited the most significant activity against Bacillus subtilis (MIC = 0.007 μgmLL-1) versus erythromycin as standard. In vitro cytotoxicity of the new compounds was studied using MTT assay. The analysis of the test cells showed that the newly synthesized alkylaminopyrazoles derivatives were biocompatible until a concentration of 5 μgmL-1; two compounds presented a high degree of biocompatibility on the studied concentration range.

  6. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    Science.gov (United States)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-02-01

    Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV-vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  7. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  8. Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles

    Science.gov (United States)

    Mocanu, Aurora; Furtos, Gabriel; Rapuntean, Sorin; Horovitz, Ossi; Flore, Chirila; Garbo, Corina; Danisteanu, Ancuta; Rapuntean, Gheorghe; Prejmerean, Cristina; Tomoaia-Cotisel, Maria

    2014-04-01

    Nano hydroxyapatite doped with zinc (0.2 wt%), silver (0.25 wt%) and gold (0.025 wt%), (HAP), has been obtained by an innovative wet chemical approach, coupled with a reduction process for silver and gold. The synthesized multi-substituted nano HAP was freeze-dried and calcined at 650 °C. Nano HAP has been characterized by XRD, FTIR spectroscopy and imaging techniques: TEM, SEM and AFM. Then, nano HAP was mixed with previously synthesized silver nanoparticles (AgNPs), in the amount of 9 wt%, to give a novel material (HAP-Ag). The AgNPs were prepared by the reduction of silver nitrate with glucose in alkaline medium. TEM and UV-Vis confirmed the formation of AgNPs with an average size of 12 nm. Further, organic matrix composites were obtained from a filler made of HAP and/or HAP-Ag and a mixture of monomers (such as bis-GMA and TEG-DMA), which were polymerized at various compositions in AgNPs content up to 5.4 wt%. Antibacterial activities of these composites were investigated against several different pathogenic species: Escherichia coli, Staphylococcus aureus, Staphylococcus spp., Bacillus cereus, and Candida albicans, using the Kirby-Bauer disk-diffusion method. Antibacterial activities are enhanced with increasing of silver content within composites. These effects clearly reveal that AgNPs can be effectively utilized in combination with multi-substituted HAP and polymeric matrix, both used as carriers, in order to improve their efficiency against various pathogenic species. These composites can be considered a promising antimicrobial material for coating of orthopedic and dental implants or used as bone cements in surgical applications.

  9. SYNTHESIS, STEREOCHEMISTRY AND ANTIMICROBIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: 4-Phenylsemicarbazone, Metal complexes, Stereochemistry, Antimicrobial activity. INTRODUCTION ... stereochemistry of semicarbazone metal complexes [8-13], this group of ligands deserve further investigations. ..... The cytotoxicity of tested compounds generally increased with increase concentration and ...

  10. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  11. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract.

    Science.gov (United States)

    Annamalai, A; Christina, V L P; Sudha, D; Kalpana, M; Lakshmi, P T V

    2013-08-01

    The activity of a nano sized particle is said to be greater when compared to that of its parent materials combined. Thus, an attempt was made to produce gold nanostructures having unusual physicochemical properties. In this study, eco-friendly, non-toxic gold nanoparticles (Au NPs) were biologically synthesized using the leaf extract of Euphorbia hirta L. The synthesis of Au NPs was confirmed by a change in extract color from pale yellow to purple and surface plasmon resonance spectra obtained in a range of approximately 530nm. Nanoparticles whose sizes ranged from 6nm to 71nm, were synthesized. Different instrumental techniques were used to characterize the synthesized AuNPs, such TEM, XRD, EDAX, AFM, particle size analyzer, FTIR and Raman spectra. Also the antibacterial activity of the green synthesized Au NPs against bacterial strains of Escherchia coli, Pseudomonas aeroginosa and Klebsiella pneumonia was studied using MIC method, and found to be highly effective. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Silver nanoparticles: green synthesis using Phoenix dactylifera fruit extract, characterization, and anti-oxidant and anti-microbial activities

    Science.gov (United States)

    Shaikh, Anas Ejaz; Satardekar, Kshitij Vasant; Khan, Rummana Rehman; Tarte, Nanda Amit; Barve, Siddhivinayak Satyasandha

    2018-03-01

    Hydro-alcoholic (2:8 v/v) extract of the pulp of Phoenix dactylifera fruit pulp obtained using Soxhlet extraction (70 °C, 6 h) was found to contain alkaloids, sterols, tannins, flavonoids, cardiac glycosides, proteins, and carbohydrates. An aqueous solution (20% v/v) of the extract led to the synthesis of silver nanoparticles (AgNPs) from 0.01 M AgNO3 solution as confirmed by the surface plasmon resonance at 445 nm determined using UV-visible spectroscopy after 24 h. The synthesized AgNPs were found to be mostly spherical and complexed with phytochemicals from the extract. The size of AgNPs ranged from 12.2-140.2 nm with mean diameter of 47.0 nm as characterized by scanning electron microscopy (SEM). The elemental composition of the AgNPs complexed with the phytochemicals was found to be 80.49% silver (Ag), 15.21% carbon (C), and 4.30% oxygen (O) on a weight basis by energy-dispersive spectroscopy (EDS). Using the α,α-diphenyl-β-picrylhydrazyl (DPPH) assay, an anti-oxidant activity of 89.15% for 1 µg L-1 ultrasonically homogenized ethanolic solution of complexed AgNPs was obtained (equivalent to 0.20 mg mL-1 gallic acid solution), while methanolic solution of plant extract possessed an EC50 value of 3.45% (v/v) (equivalent to 0.11 mg mL-1 gallic acid solution). The plant-nanosilver broth was also found to possess effective anti-microbial activity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Candida albicans ATCC 10231 as assessed by the disc diffusion assay. However, the plant extract showed negligible anti-microbial activity.

  13. Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

    CSIR Research Space (South Africa)

    Motlatle, Abesach M

    2016-10-01

    Full Text Available H. The results of in vitro disk diffusion tests showed excellent antimicrobial activity of Cu(sub2)O/CuO nanoparticles against a mixture of bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), indicating that the size as well...

  14. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids

    Science.gov (United States)

    Dinari, Mohammad; Gharahi, Fateme; Asadi, Parvin

    2018-03-01

    A new series of 1,3,5-triazine incorporating aromatic quinazolinone moieties as a potential antimicrobial agents is reported. The first chlorine group of the cyanuric chloride (1) was replaced by aniline and the second one was replaced by various aromatic amines. The prepared monochlorotriazine was allowed to react with hydrazine and subsequently it was reacted with 2-methyl-4H-benzo[1,3]oxazin-4-one to obtain novel triazine-quinazolinone based hybrids (9a-f). The chemical structure and purity of the hybrid compounds were evaluated by different techniques such as thin layer chromatography, melting point, Fourier-transform infrared (FTIR), 1H and 13C NMR spectra and elemental analysis. Antimicrobial activity of the hybrid compounds were study by three Gram-negative bacteria (Salmonella entritidis, Escherichia coli, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Listeria monocitogenes, Bacillus subtilis) as well as Candida albicansas a yeast-like fungus using the serial broth dilution method. Among them, compound 9d with benzenesulfonamide group showed higher antimicrobial activity with a minimum inhibitory concentration (MIC) value of 16 μg/mL. Furthermore, compounds 5d, 9a and 9b showed good activity against several tested strains. In addition, docking simulation was perform to position best antibacterial compounds in to the S. aureus dihydrofolate reductase (DHFR) active site to determine the probable binding conformations.

  15. GREEN SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF SILVER NANOPARTICLES FROM Plectranthus amboinicus PLANT EXTRACTS

    OpenAIRE

    Niveditha.K* and T H Sukirtha

    2018-01-01

    Nanotechnology is now creating a growing sense of excitement in the life sciences. Nano particles having a size of 1-100nm can be prepared by different chemical, physical and biological approaches. Among these green synthesis method is the most emerging approach of preparation because, this is easier than the other methods, eco friendly and less time consuming. The green synthesis was done by using the aqueous extract of Plectranthus amboinicus leaf and silver nitrate as the precursor for ...

  16. Pure and zinc doped nano-hydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies

    Science.gov (United States)

    Tank, Kashmira P.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.

    2014-09-01

    The structural, antimicrobial, and hemolytic properties and bioactivity have been studied of pure hydroxyapatite (HAP) and zinc doped hydroxyapatite (Zn-HAP) nano-particles for their medical applications. Pure HAP and Zn-HAP nano-particles were synthesized by the surfactant mediated approach. The doping of zinc was estimated by EDAX. The average particle size was determined by applying Scherrer's formula to powdered XRD patterns. The nano-particle morphology was studied by TEM and the presence of various functional groups was identified by FTIR spectroscopy. Good antimicrobial activity of nano-HAP and nano-Zn-HAP was found against five organisms, viz., Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus, Staphylococcous aureus and Bacillus cereus as Gram positive. The ability of new apatite formation on the surface of pure and doped HAP samples was studied by using Simulated Body Fluid (SBF) in vitro. Hemolytic study indicated that all samples were non-hemolytic and suggesting potential application as bone implant material.

  17. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites

    Science.gov (United States)

    Mahmoud, K. H.

    2015-03-01

    Silver nanoparticles (Ag NPs) were synthesized by chemical reduction of silver salt (AgNO3) through sodium borohydride. The characteristic surface plasmon resonance band located at around 400 nm in the UV-Visible absorption spectrum confirmed the formation of Ag nanoparticles. Polyvinyl alcohol-silver (PVA-Ag) nanocomposite films were prepared by the casting technique. The morphology and interaction of PVA with Ag NPs were examined by transmission electron microscopy and FTIR spectroscopy. Optical studies show that PVA exhibited indirect allowed optical transition with optical energy gap of 4.8 eV, which reduced to 4.45 eV under addition of Ag NPs. Optical parameters such as refractive index, complex dielectric constant and their dispersions have been analyzed using Wemple and DiDomenco model. Color properties of the nanocomposites are discussed in the framework of CIE L∗u∗v∗ color space. The antimicrobial activity of the nanocomposite samples was tested against Gram positive bacteria (Staphylococcus aureus NCTC 7447 &Bacillus subtillis NCIB 3610), Gram negative bacteria (Escherichia coli, NTC10416 &Pseudomonas aeruginosa NCIB 9016) and fungi (Aspergillus niger Ferm - BAM C-21) using the agar diffusion technique. The antimicrobial study showed that PVA has moderate antibacterial activity against B. subtillis and the 0.04 wt% Ag NPs composite sample effect was strong against S. aureus.

  18. “Green” Synthesis of Sucrose Octaacetate and Characterization of Its Physicochemical Properties and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    N. Petkova

    2018-01-01

    Full Text Available Sucrose octaacetate (octa-O-acetylsucrose has been synthesized by esterification of sucrose with acetic anhydride using ultrasound-assisted irradiation. This sucrose ester is a white, water-insoluble substance with a bitter taste. The FT-IR and NMR spectra confirmed acetylation and revealed the hydrophobic incorporation in sucrose molecule. Furthermore, the foamability, foam stability, emulsification and antimicrobial properties of octa-O-acetylsucrose were evaluated. Foams and 50 % (oil/water model emulsions were prepared with 2 % (w/w octa-O-acetylsucrose. The obtained results demonstrate the formation of emulsions and foams with high stability (50–70 %. The antimicrobial activity of octa-O-acetylsucrose was evaluated against seventeen microorganisms (Gram-positive and Gram-negative bacteria, yeasts, and fungi. Octa-O-acetylsucrose inhibited the growth of fungi Penicillium sp., Rhizopus sp. and Fusarium moniliforme at 5 mg cm–3, and yeasts Candida albicans at 1 mg cm–3. Inhibition against Gram-positive and Gram-negative bacteria was not observed. The obtained results demonstrate the potential applications of octa-O-acetylsucrose as a foaming agent, oil-in-water emulsion stabilizer, and antifungal substance in pharmaceutical and cosmetic preparations.

  19. Potential inhibitors of dapE and argE enzymes as the new antimicrobial agents: Synthesis and characterization

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Pícha, Jan; Vaněk, Václav; Jiráček, Jiří; Slaninová, Jiřina; Fučík, Vladimír; Holz, R. C.

    2008-01-01

    Roč. 14, č. 8 (2008), s. 83-84 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] R&D Projects: GA AV ČR IAA400550614 Institutional research plan: CEZ:AV0Z40550506 Keywords : antimicrobial agents * dapE and argE inhibitors * synthesis and activity Subject RIV: CC - Organic Chemistry

  20. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain

    OpenAIRE

    Wypij, Magdalena; Czarnecka, Joanna; Świecimska, Magdalena; Dahm, Hanna; Rai, Mahendra; Golinska, Patrycja

    2018-01-01

    We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV–Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malas...

  1. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. Giridhara; David, E.

    2016-04-01

    Synthesis of metal nanoparticles using biological systems is an expanding research area in nanotechnology. Moreover, search for new nanoscale antimicrobials is been always attractive as they find numerous avenues for application in medicine. Biosynthesis of metallic nanoparticles is cost effective and eco-friendly compared to those of conventional methods of nanoparticles synthesis. Herein, we present the synthesis of zinc oxide nanoparticles using the stem bark extract of Boswellia ovalifoliolata, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 ml of 1 mM zinc nitrate aqueous solution with 10 ml of 10 % bark extract. The formation of B. ovalifoliolata bark-extract-mediated zinc oxide nanoparticles (BZnNPs) was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 230 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract are responsible for the reduction and stabilization of the BZnNPs. The morphology and crystalline phase of the nanocrystals were determined by Transmission electron microscopy (TEM). The hydrodynamic diameter (20.3 nm) and a positive zeta potential (4.8 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of BZnNPs was evaluated (in vitro) against fungi, Gram-negative, and Gram-positive bacteria using disk diffusion method which were isolated from the scales formed in drinking water PVC pipelines.

  2. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Directory of Open Access Journals (Sweden)

    Hassiba AJ

    2017-03-01

    Full Text Available Alaa J Hassiba,1 Mohamed E El Zowalaty,2 Thomas J Webster,3–5 Aboubakr M Abdullah,6 Gheyath K Nasrallah,7 Khalil Abdelrazek Khalil,8 Adriaan S Luyt,6 Ahmed A Elzatahry1 1Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar; 2School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 3Department of Chemical Engineering, 4Department of Bioengineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 6Center for Advanced Materials, 7Department of Biomedical Science, College of Health Sciences, Biomedical Research Center, Qatar University, Doha, Qatar; 8Department of Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates Abstract: Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol and chitosan loaded with silver nanoparticles (AgNPs and a lower layer of polyethylene oxide (PEO or polyvinylpyrrolidone (PVP nanofibers loaded with chlorhexidine (as an antiseptic. The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber

  3. Synthesis and characterization of 3-aminoquinoline derivatives and studies of photophysicochemical behaviour and antimicrobial activities

    Science.gov (United States)

    Zengin, Gulay; Nafea Al Kawaz, Ali Muayad; Zengin, Huseyin; Mert, Adem; Kucuk, Bedia

    2016-01-01

    A series of 3-aminoquinoline derivatives were synthesized, where their chemical structures were confirmed by various analytical techniques, such as, Elemental Analysis, Nuclear Magnetic Resonance Spectroscopy (1H and 13C NMR), Liquid Chromatography-Mass-Mass Spectroscopy (LC-MS-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL). The quinoline ring core, typical of aminoquinolines, and a naphthalene group was combined to devise (4-alkyl-1-naphthyl)-quinolin-3-ylamide derivatives. These derivatives were designed and synthesized in light of the chemical and biological profiles of these important subunits. All the compounds were evaluated for their in vitro antibacterial and antifungal activities by the paper disc diffusion method with Gram-positive Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, Gram-negative Enterobacter aerogenes, Eschericha coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and yeasts Candida albicans, Saccharomyces cerevisiae and Yarrovia lipolytica. These compounds showed antimicrobial activities against Gram-positive and Gram-negative bacteria and several yeasts, and thus their activity was not restricted to any particular type of microorganism.

  4. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging

    International Nuclear Information System (INIS)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio

    2015-01-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm -1 and 1165 cm -1 bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  5. Synthesis, characterization and antimicrobial properties of a Co(II)-phthalylsulfathiazolate complex.

    Science.gov (United States)

    Monti, Laura; Pontoriero, Ana; Mosconi, Natalia; Giulidori, Cecilia; Hure, Estela; Williams, Patricia A M; Rodríguez, María Victoria; Feresin, Gabriela; Campagnoli, Darío; Rizzotto, Marcela

    2010-12-01

    The reaction between phthalylsulfathiazole (H(2)PST), in alkaline aqueous solution, and cobalt(II) nitrate led to a pink solid, [Co(PST)(H(2)O)(4)] (1), which was characterized by elemental and thermogravimetric analysis; FT-IR, Raman and diffuse reflectance spectra. Spectroscopic data reveal that the ligand would be doubly deprotonated and that the Co(II) ion environment is a distorted octahedral one. (1) showed antibacterial activity similar to the ligand.

  6. Synthesis and Characterization of Carboxymethyl Chitosan Nanogels for Swelling Studies and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Reem K. Farag

    2012-12-01

    Full Text Available Nanogels of a binary system of carboxymethyl chitosan (CMCh and poly- (vinyl alcohol PVA, were successfully synthesized by a novel in situ process. They were also characterized by various analytical tools like Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and X-ray diffraction (XRD. They were studied for their unique swelling properties in water and different pH solutions. They were also investigated for their great ability to capture or isolate bacteria and fungi from aquatic environments.

  7. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    Science.gov (United States)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  8. Synthesis, characterization, conductivity and antimicrobial study of a novel thermally stable polyphenol containing azomethine group

    Science.gov (United States)

    Yılmaz Baran, Nuray; Karakışla, Meral; Demir, Hacı Ökkeş; Saçak, Mehmet

    2016-11-01

    Poly(4-[[(4-methylphenyl)methylene]amino]phenol) (P(4-MMAP)), which is a Schiff base polymer, was synthesized by an oxidative polycondensation reaction of 4-[[(4-methylphenyl)methylene]amino]phenol (4-MMAP) with the oxidants NaOCl, H2O2 and O2 in an aqueous alkaline medium. The polymerizations were carried out at various temperatures and times, and the highest polymer yield could be obtained when using 37% with NaOCl oxidant. The structures of the monomer and polymer were characterized by UV-Vis, FTIR 1H NMR and X-ray diffraction techniques. The thermal behaviors of the monomer and polymer were identified by the TG and DTG techniques. The thermal degradation of the polymer which was observed thermally stable up to 1000 °C, was also supported by the Thermo-IR spectra recorded in the temperature range of 25-800 °C. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymer were found to be 16682, 57796 g/mol and 3.4, respectively. The highest electrical conductivity value of P(4-MMAP) doped with iodine vapor at different temperatures and times was measured to be 7.8 × 10-5 Scm-1 after doping for 48 h at 60 °C. The antibacterial and antifungal activities of 4-MMAP and P(4-MMAP) were also assayed against the bacteria Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Bacillus subtilis and the fungi Candida albicans, Saccharomyces cerevisiae, respectively.

  9. Iron and nickel complexes with heterocyclic ligands: stability, synthesis, spectral characterization, antimicrobial activity, acute and subacute toxicity.

    Science.gov (United States)

    Bouchoucha, Afaf; Terbouche, Achour; Zaouani, Mohamed; Derridj, Fazia; Djebbar, Safia

    2013-07-01

    The synthesis and characterization by elemental analysis, emission atomic spectroscopy, TG measurements, magnetic measurements, FTIR, (1)H NMR, UV-visible spectra and conductivity of a series of iron (II) and nickel (II) complexes with two heterocyclic ligands (L(1)(SMX): sulfamethoxazole and L(2)(MIZ): metronidazole) used in pharmaceutical field and with a new ligand derived benzoxazole (L(3)(MPBO): 2-(5-methylpyridine-2-yl)benzoxazole), were reported. The formulae obtained for the complexes are: [M(L(1))2 Cl2]·nH2O, [M(L(2))2Cl2(H2O)2]·H2O and [M(L(3))2(OH)2]·nH2O. Stability constants of these complexes have been determined by potentiometric methods in water-ethanol (90:10, v/v) mixture at a 0.2 mol L(-1) ionic strength (NaCl) and at 25.0±0.1 °C. Sirko program was used to determine the protonation constants as well as the binding constants of three species [ML2H2](2+), [ML2] and [ML](2+). The antimicrobial activity of the ligands and complexes was evaluated in vitro against different human bacteria and fungi using agar diffusion method. Iron sulfamethoxazole complex showed a remarkable inhibition of bacteria growth especially on Staphylococcus aureus and P. aeruginosa. The iron metronidazole complex is active against yeasts especially on Candida tropicalis strain. Nickel complexes presented different antibacterial and antifungal behavior's against bacteria and fungal. The acute toxicity study revealed that the iron complexes are not toxic at 2000 mg/kg dose orally administrated. LD50 for nickel complexes was determined using graphical method. No significant differences in the body weights between the control and the treated groups of both rat sexes in subacute toxicity study using for iron complexes. Hematological and clinical blood chemistry analysis revealed no toxicity effects of the iron complexes. Pathologically, neither gross abnormalities nor histopathological changes were observed for these complexes. Copyright © 2013 Elsevier GmbH. All rights

  10. SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. A series of new biologically active complexes of Zn(II), Cu(II), Co(II) and Ni(II) with imidazole derivative have been synthesized. The synthesized chelating agent and metal(II) complexes were screened for antibacterial activities against four pathogenic species of bacteria namely; Eschereschi coli, Pseudomonas.

  11. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  12. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain.

    Science.gov (United States)

    Wypij, Magdalena; Czarnecka, Joanna; Świecimska, Magdalena; Dahm, Hanna; Rai, Mahendra; Golinska, Patrycja

    2018-01-05

    We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV-Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malassezia furfur by using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum biocidal concentration of AgNPs against bacterial and yeast strains were determined. Synergistic effect of AgNPs in combination with antibacterial and antifungal antibiotics was determined by FIC index. In addition, MTT assay was performed to study cytotoxicity of AgNPs alone and in combination with antibiotics against mouse fibroblasts and HeLa cell line. Biogenic AgNPs were stable, spherical, small, polydispersed and capped with organic compounds. The variable antimicrobial activity of AgNPs was observed against tested bacteria and yeasts. The lowest MIC (16 µg ml -1 ) of AgNPs was found against P. aeruginosa, followed by C. albicans and M. furfur (both 32 µg ml -1 ), B. subtilis and E. coli (both 64 µg ml -1 ), and then S. aureus and Klebsiella pneumoniae (256 µg ml -1 ). The high synergistic effect of antibiotics in combination with AgNPs against tested strains was found. The in vitro cytotoxicity of AgNPs against mouse fibroblasts and cancer HeLa cell lines revealed a dose dependent potential. The IC 50 value of AgNPs was found in concentrations of 4 and 3.8 µg ml -1 , respectively. Combination of AgNPs and antibiotics significantly decreased concentrations of both antimicrobials used and retained their high antibacterial and antifungal activity. The synthesis of AgNPs using S. xinghaiensis OF1 strain is an eco-friendly, cheap and nontoxic method. The

  13. Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications.

    Science.gov (United States)

    Kar, S; Bagchi, B; Kundu, B; Bhandary, S; Basu, R; Nandy, P; Das, S

    2014-11-01

    Microbial resistance to antibiotics has triggered the development of nanoscale materials as an alternative strategy. To stabilize these particles an inert support is needed. Porous nanomullite developed by sol-gel route is loaded with copper and silver nanoparticle by simple adsorption method. These nanocomposites are characterized using XRD, FTIR, TEM, SEM, EDAX and UV-visible spectrophotometer. Antibacterial activity of these nanocomposites against Gram positive and Gram negative bacteria are performed by bactericidal kinetics, flow cytometry and MTT assay. The underlying mechanisms behind the antimicrobial property and cell death are also investigated by EPR spectroscopy, intracellular ROS measurement and β-galactosidase assay. The cytocompatibility of the nanocomposites is investigated by cell viability (MTT), proliferation (Alamar blue) and wound healing assay of mammalian fibroblast cell line. Nanocomposites show a fairly uniform distribution of metal nanoparticle within mullite matrix. They show excellent antibacterial activity. Metal ions/nanoparticle is found to be released from the materials (CM and SM). Treated cells manifested high intracellular oxidative stress and β-galactosidase activity in the growth medium. The effect of nanocomposites on mammalian cell line depends on exposure time and concentration. The scratch assay shows normal cell migration with respect to control. The fabricated nanoparticles possess diverse antimicrobial mechanism and exhibit good cytocompatibility along with wound healing characteristics in mouse fibroblast cell line (L929). The newly synthesized materials are promising candidates for the development of antimicrobial ceramic coatings for biomedical devices and therapeutic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Biological synthesis and characterization of silver nanoparticles using. Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. PARAMASIVAM PREMASUDHA1, MUDILI VENKATARAMANA2,∗, MARRIAPPAN ABIRAMI3,. PERIYASAMY VANATHI4, KADIRVELU KRISHNA2 and RAMASAMY ...

  15. Synthesis, Characterization, and Evaluation of Antimicrobial Activities of Chitosan and Carboxymethyl Chitosan Schiff-Base/Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed M. Khalil

    2017-01-01

    Full Text Available Schiff-bases of chitosan (CS and carboxymethyl chitosan (CMCS/silver nanoparticles (AgNPs have been synthesized, characterized, and evaluated as antimicrobial agents against two Gram +ve bacteria (Bacillus cereus and Staphylococcus aureus and two Gram −ve bacteria (Escherichia coli and Pseudomonas aeruginosa in addition to Candida albicans as a fungus. The in situ reactions of CS and/or CMCS with some pyrazole aldehyde derivatives in acidic media containing silver nitrate to yield silver nanoparticles loaded onto CS and CMCS/Schiff-bases were carried out. Characterizations of the prepared compounds via FTIR spectroscopy, SEM, TEM, and TGA were carried out. Schiff-bases/silver nanoparticles of CS and CMCS showed higher antimicrobial activity than the blank CS and CMCS. The presence of AgNO3 (3% wt% displayed high antibacterial efficiencies with inhibition zones in the extent of 19–39 mm. TEM analysis showed that the size of the silver nanoparticles is in the range of 4–28 nm for the prepared nanocomposites.

  16. Synthesis, Characterization and Antimicrobial Activities of Transition Metal Complexes of methyl 2-(((E)-(2-hydroxyphenyl)methylidene)amino)benzoate

    International Nuclear Information System (INIS)

    Ikram, M.; Rehman, S.

    2016-01-01

    New metal complexes with Schiff base ligand methyl 2-(((E)-(2-hydroxyphenyl)methylidene)amino)benzoate, were synthesized and characterized. Elemental analyses, EI-MS, 1H and 13C(1H)-NMR were used for ligand characterization whereas elemental analyses, EI-MS, IR and UV-Visible spectroscopic techniques were used for the transition metal compounds. All these analyses reveal the bis arrangement of the ligand around the metal centres. The compounds were studied for their antimicrobial activities against different pathogenic microbial species. It was found that the Schiff base ligand was completely inactive in comparison to the transition metal compounds. It was also observed that nickel based metal complex shown good results against Candida albican (25 mm) and zinc based metal complex against Agrobacterium tumefaciens (16 mm). (author)

  17. Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone ...

    Indian Academy of Sciences (India)

    Vol. 124, No. 2, March 2012, pp. 469–481. c Indian Academy of Sciences. Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone, azetidinone encompassing indolylthienopyrimidines. ANAND RAGHUNATH SAUNDANE. ∗. , MANJUNATHA YARLAKATTI,. PRABHAKER WALMIK and VIJAYKUMAR KATKAR.

  18. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity

    Science.gov (United States)

    Yugandhar, Pulicherla; Vasavi, Thirumalanadhuni; Uma Maheswari Devi, Palempalli; Savithramma, Nataru

    2017-10-01

    In recent times, nanoparticles are attributed to green nanotechnology methods to know the synergistic biological activities. To accomplish this phenomenon, present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) by using Syzygium alternifolium stem bark, characterized those NPs using expository tools and to elucidate high prioritized antimicrobial and anticancer activities. Synthesized particles exhibited a color change pattern upon synthesis and affirmed its respective broad peak at 285 nm which was analyzed through UV-vis spectroscopy. FT-IR study confirmed that phenols and primary amines were mainly involved in capping and stabilization of nanoparticles. DLS and Zeta potential studies revealed narrow size of particles with greater stability. XRD studies revealed the crystallographic nature of particles with 17.2 nm average size. Microscopic analysis by using TEM revealed that particle size range from 5-13 nm and most of them were spherical in shape, non-agglomerated and poly-dispersed in condition. Antimicrobial studies of particles showed highest inhibitory activity against E. coli and T. harzianum among bacterial and fungal strains, respectively. The scope of this study is extended by examining anticancer activity of CuO NPs. This study exhibited potential anticancer activity towards MDA-MB-231 human breast cancer lines. Overall, these examinations relate that the S. alternifolium is described as efficient well-being plant and probabilistically for the design and synthesis of nanoparticles for human health. This study paves a way to better understand antimicrobial and anticancer therapeutic drug potentials of nanoparticles to design and analysis of pharmaceuticals by in vivo and in vitro approaches.

  19. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents

    Science.gov (United States)

    Rizk, Sameh A.; El-Naggar, Abeer M.; El-Badawy, Azza A.

    2018-03-01

    A series of 5-cyano-2-thiouracil derivatives, containing diverse hydrophobic groups in the 2-, 4- and 6-positions, were synthesized through one pot reaction of thiophene 2-carboxaldehyde, ethylcyanoacetate and thiourea using classic reflux-based method as well as microwave-assisted methods. Such prepared compounds were reacted with different electrophilic reagents to synthesize potent anti-microbial agents, e.g. 1,3,4-thiadiazinopyrimidine, hydrazide and triazolopyrimidine derivatives (compounds 4a-e, 9 and 10-12) respectively. The density functional theory (DFT) was then applied to explore the structural and electronic characteristics of these materials. It is found that compound 12 exhibited the highest antibacterial and antifungal activity against C. Albicans showing six-fold increasing biological affinity compared to that of Colitrimazole drug with MIC values 7.8 and 49 μg/mL, respectively. All the synthesized compounds have been characterized based on their elemental analyses and spectral data. Such compounds can be submitted to in vivo antimicrobial studies in future works.

  20. Synthesis, characterization, antimicrobial and antitumor reactivity of new palladium(II) complexes with methionine and tryptophane coumarine derivatives

    Science.gov (United States)

    Stojković, Danijela Lj; Jevtić, Verica V.; Vuković, Nenad; Vukić, Milena; Čanović, Petar; Zarić, Milan M.; Mišić, Milena M.; Radovanović, Dragče M.; Baskić, Dejan; Trifunović, Srećko R.

    2018-04-01

    In reaction of 3-acetyl-4-hydroxy coumarine with methionine methyl ester hydrochloride and tryptophane methyl ester hydrochloride the corresponding enamine ligands were obtained. Palladium (II) complexes were prepared in reaction of potassium-tetrachloridopalladate (II) and corresponding enamine. All compounds were characterized by microanalysis, infrared, 1H and 13C NMR spectroscopy. In vitro antitumor activity of the mentioned ligands and corresponding palladium (II) complexes, as well as me-Gly and me-Val ligands and [Pd (me-Gly)]Cl and [Pd (me-Val)2] complexes was determined by MTT assay against two leukemia cell lines (JVM-13 and MOLT-4) and against primary leukemic cells isolated from chronic lymphocytic leukemia (CLL) patients. Antimicrobial activity of the tested compound was evaluated by determining the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) against three reference bacterial strains: E. faecalis, P. aeruginosa, S. aureus and one clinical isolate of yeast: Candida spp.

  1. Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2′-Bipyridine

    Directory of Open Access Journals (Sweden)

    Gina Vasile Scăețeanu

    2018-01-01

    Full Text Available The synthesis, structural characterization, cytotoxicity, and antimicrobial properties of four new complexes formed by employing acrylate anion and 2,2′-bipyridine are reported herein. X-ray crystallography revealed the trinuclear nature of [Mn3(2,2′-bipy2(C3H3O26] (1, meanwhile complexes with general formula [M(2,2′-bipy(C3H3O22(H2Ox]∙yH2O ((2 M: Ni, x = 1, y = 0; (3 M: Cu, x = 1, y = 0; (4 M: Zn, x = 0, y = 1; 2,2′-bipy: 2,2′-bipyridine; C3H3O2: acrylate anion were shown to be mononuclear. The lowest minimum inhibitory concentration (MIC of 128 μg mL−1 was recorded for all four tested complexes against Candida albicans, for complex (3 against Escherichia coli, and for complex (4 against Staphylocococcus aureus. Compounds (3 and (4 were also potent efflux pumps activity inhibitors (EPI, proving their potential for use in synergistic combinations with antibiotics. Complexes (1–(4 revealed that they were not cytotoxic to HCT-8 cells. They also proved to interfere with the cellular cycle of tumour HCT-8 cells by increasing the number of cells found in the S and G2/M phases. Taken together, these results demonstrate the potential of zinc and copper complexes for use in the development of novel antimicrobial and anti-proliferative agents.

  2. Synthesis, characterization, antimicrobial screening and in silico studies of Schiff bases derived from trans-para-methoxycinnamaldehyde

    Science.gov (United States)

    Obasi, N. L.; Kaior, G. U.; Ibezim, A.; Ochonogor, Alfred E.; Rhyman, Lydia; Uahengo, Veikko; Lutter, Michael; Jurkschat, Klaus; Ramasami, Ponnadurai

    2017-12-01

    Two Schiff bases namely N,N‧-Bis-[3-(4-metoxy-phenyl)-allylidene]ethane-1,2-diamine (TPMC/EDA) and [3-(4-methoxy-phenyl)-allylidene]-phenyl-amine (TPMC/AN) were synthesized. They were characterized using elemental microanalysis, IR, NMR, UV and mass spectroscopies. Single crystals of TPMC/AN were also analyzed by X-ray diffraction and the compound was examined using B3LYP/6-311++G(d,p) method. A Monoclinic crystal system and space groups of P21/c were obtained for the crystal. Docking calculations on the compounds showed they interacted with fungal N-myristoyltransferase and bacteria DNA gyrase at 2.62-2.95 and 190.26-98.99 μM ranges. The predicted docked poses identified unique binding modes of the compounds and vital intermolecular interactions. The anti-microbial screening of the compounds were carried out against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger using agar well diffusion method. The standard drugs used were the anti-bacterial ciprofloxacin and the anti-fungal fluconazole. The compounds showed activity against all the microorganisms comparable to the used standard drugs. TPMC/EDA was more active than the standard fungal drug in the screening against the fungi strain, Aspergillus niger. It showed the MIC and IZD of 1.3 mg/ml and 9.0 mm respectively. These suggest that the compounds are potential bactericidal and fungicidal candidates.

  3. Synthesis and Characterization of a Metal Complex Containing Naringin and Cu, and its Antioxidant, Antimicrobial, Antiinflammatory and Tumor Cell Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sérgio Paulo Bydlowski

    2007-07-01

    Full Text Available The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS, elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin–Cu (II complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytoxicity activities than free naringin without reducing cell viability.

  4. Coordination diversity of new mononuclear ONS hydrazone with transition metals: Synthesis, characterization, molecular modeling and antimicrobial studies

    Science.gov (United States)

    Adly, Omima M. I.; Taha, A.

    2013-04-01

    The mononuclear hydrazone ligand, H2L, a condensation product of 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one with 2-hydroxy-1-naphthaldehyde and its metal chelates of Cu(II), Ni(II), Co(II), Zn(II), Cd(II), VO(IV) and UO2(VI) ions were synthesized and characterized using elemental analyses, spectral, magnetic and molar conductance studies as well as thermal gravimetric analysis (TGA). The physico-chemical studies support that the ligand acts as mono- or dibasic tridentate ONS donor toward metal ions forming a mononuclear square planar, tetrahedral, square pyramidal and octahedral geometrical arrangements except UO2(VI) complex in which the metal ion is octa-coordinated. The ligand field parameters, Dq, B and β values, in the case of the cobalt and nickel complexes are calculated. The kinetics of the thermal decomposition for some metal complexes studied and their thermodynamic parameters were reported. Structural parameters of the ligand and its metal chelates have been calculated and correlated with the experimental data. The ligand and its metal chelates were screened for their antimicrobial activity against Staphylococcus aureus and Bacillus subtilis as Gram-positive bacteria, Escherichia coli and Salmonella typhimurium as Gram-negative bacteria and Candida albicans as fungus strain.

  5. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Yusuf Oloruntoyin Ayipo

    2016-11-01

    Full Text Available Synthesis of coordination compounds of Zinc(II, Copper(II, Nickel(II, Cobalt(II and Iron(II with mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid has been studied. The complexes were characterized via: solubility test, melting point determination, conductivity measurement, Atomic Absorption Spectroscopy, UV-Visible Spectroscopy, FTIR Spectroscopy and magnetic susceptibility. The complexes were proposed to have a stoichiometry ratio of 1:1:1 between each metal salt and the ligands with tetrahedral and octahedral geometry following the reaction pattern of MX.yH2O + L1L2/3 to give ML1L2/3X.yH2O. Biological activities of the synthesized complexes have been evaluated against Escherichia coli and Staphylococcus aureus.

  6. Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially N2O2 Schiff base complexes

    Science.gov (United States)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2013-12-01

    Metal complexes of a new potentially tetradentate symmetrical Schiff base ligand (H2L) with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Fe(III) and UO2(VI) metal ions have been synthesized and characterized based on their elemental analyses, spectral (IR, UV-Vis, 1H NMR and mass spectra), magnetic and molar conductance studies as well as thermal gravimetric analysis (TGA). The synthesized complexes have the general formula [MHxL(H2O)yXn]: x = 0-1, y = 0-4 and n = 0-1; where: L = dianion of 6-hydroxy-5-[N-(2-{[(1E)-1-(6-hydroxy-2,4-dioxo-3,4-dihydro-2H-1,3-thiazin-5-yl)ethylidene]amino}ethyl) ethanimidoyl]-2H-1,3-thiazine-2,4(3H)-dione and X = nitrate or sulphate anion. The ligand behaves as diabasic tetradentate N2O2 sites, except in cases of Co(II), VO(IV) and UO2(VI) metal ions, it behaves as monobasic tetradentate Schiff base ligand. The metal complexes exhibited square planar, square-pyramidal and octahedral geometrical arrangements except for Ce(III) and UO2(VI) complexes, they are octa-coordinated. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition stages of some complexes. Structural parameters of the ligand and its metal complexes have been theoretically computed on the basis of semiemperical PM3 level, and the results were correlated with their experimental data. The antimicrobial activities of the ligand and its metal complexes were tested against some Gram-positive and Gram-negative bacteria; and fungus strain and the results were discussed.

  7. One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies

    Science.gov (United States)

    Das, Amlan Kumar; Marwal, Avinash; Sain, Divya; Pareek, Vikram

    2015-03-01

    The present study demonstrates the bioreductive green synthesis of nanosized HgO using flower extracts of an ornamental plant Callistemon viminalis. The flower extracts of Callistemon viminalis seem to be environmentally friendly, so this protocol could be used for rapid production of HgO. Till date, there is no report of synthesis of nanoparticles using flower extract of Callistemon viminalis. Mercuric acetate was taken as the metal precursor in the present experiment. The flower extract was found to act as a reducing as well as a stabilizing agent. The phytochemicals present in the flower extract act as reducing agent which include proteins, saponins, phenolic compounds, phytosterols, and flavonoids. FT-IR spectroscopy confirmed that the extract had the ability to act as a reducing agent and stabilizer for HgO nanoparticles. The formation of the plant protein-coated HgO nanoparticles was first monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of HgO nanoparticles by exhibiting the typical surface plasmon absorption maxima at 243 nm. The average particle size formed ranges from 2 to 4 nm. The dried form of synthesized nanoparticles was further characterized using TGA, XRD, TEM, and FTIR spectroscopy. FT-IR spectra of synthesized HgO nanoparticles were performed to identify the possible bio-molecules responsible for capping and stabilization of nanoparticles, which confirm the formation of plant protein-coated HgO nanoparticles that is further corroborated by TGA study. The optical band gap of HgO nanoparticle was measured to be 2.48 eV using cutoff wavelength which indicates that HgO nanoparticles can be used in metal oxide semiconductor-based photovoltaic cells. A possible core-shell structure of the HgO nanobiocomposite has been proposed.

  8. Synthesis, characterisation, stereochemistry and antimicrobial ...

    Indian Academy of Sciences (India)

    benzodiazepine also supports boat conformation in the solid state. The antimicrobial activity for -acetyltetrahydro-1,5-benzodiazepines have been carried out. -morpholinoacetyl-2,2,4-trimethyl-1H-1,5-benzodiazepine demonstrated better antibacterial and ...

  9. Chemical Synthesis of Antimicrobial Peptides.

    Science.gov (United States)

    Münzker, Lena; Oddo, Alberto; Hansen, Paul R

    2017-01-01

    Solid-phase peptide synthesis (SPPS) is the method of choice for chemical synthesis of peptides. In this nonspecialist review, we describe commonly used resins, linkers, protecting groups, and coupling reagents in 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS. Finally, a detailed protocol for manual Fmoc SPPS is presented.

  10. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    Science.gov (United States)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  11. Design, Synthesis and Characterization of Novel Arylamides Containing 1,2,4-triazole Nuclei for Possible Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    S. R. Dhol

    2004-01-01

    Full Text Available Diphenyl aceto hydrazide on reaction with carbon disulfide and potassium hydroxide gave potassium α,α-diphenyl acetamido dithiocarbamate, which on cyclisation with hydrazine hydrate yielded key intermediate 3-mercapto-4,N-amino-5-benzhydryl-1,2,4-triazoles. The key intermediate on condensation with different acid chloride afforded our titled compounds. The synthesised compounds have been confirmed elemental analyses and further supported by spectral data. All the synthesised compounds have been evaluated for their in vitroin vitro antimicrobial activity.

  12. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    Li, Shu-Ming; Fu, Lian-Hua; Ma, Ming-Guo; Zhu, Jie-Fang; Sun, Run-Cang; Xu, Feng

    2012-01-01

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO 3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  13. A theobromine derived silver N-heterocyclic carbene: synthesis, characterization, and antimicrobial efficacy studies on cystic fibrosis relevant pathogens.

    Science.gov (United States)

    Panzner, Matthew J; Hindi, Khadijah M; Wright, Brian D; Taylor, Jane B; Han, Daniel S; Youngs, Wiley J; Cannon, Carolyn L

    2009-09-21

    The increasing incidence of multidrug-resistant (MDR) pulmonary infections in the cystic fibrosis (CF) population has prompted the investigation of innovative silver based therapeutics. The functionalization of the naturally occurring xanthine theobromine at the N(1) nitrogen atom with an ethanol substituent followed by the methylation of the N(9) nitrogen atom gives the N-heterocyclic carbene precursor 1-(2-hydroxyethyl)-3,7,9-trimethylxanthinium iodide. The reaction of this xanthinium salt with silver acetate produces the highly hydrophilic silver carbene complex SCC8. The in vitro antimicrobial efficacy of this newly synthesized complex was evaluated with excellent results on a variety of virulent and MDR pathogens isolated from CF patients. A comparative in vivo study between the known caffeine derived silver carbene SCC1 and SCC8 demonstrated the ability of both complexes to improve the survival rates of mice in a pneumonia model utilizing the clinically isolated infectious strain of Pseudomonas aeruginosa PA M57-15.

  14. Facile Synthesis, Characterization, and In Vitro Antimicrobial and Anticancer Activities of Biscoumarin Copolyester Bearing Pendant 3-(Trifluoromethyl)Styrene

    OpenAIRE

    Kandaswamy, Narendran; Raveendiran, Nanthini

    2014-01-01

    Synthesis of random biscoumarin copolyester bearing pendant 3-(trifluoromethyl)styrene was prepared by the reaction of biscoumarin monomer 3 and hydroquinone 5 with azeloyl chloride. The influence of pendant 3-(trifluoromethyl)styrene unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and compared in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.15?dL/g and 1.36, respectively. The...

  15. A theobromine derived silver N-heterocyclic carbene: synthesis, characterization, and antimicrobial efficacy studies on cystic fibrosis relevant pathogens†

    Science.gov (United States)

    Panzner, Matthew J.; Hindi, Khadijah M.; Wright, Brian D.; Taylor, Jane B.; Han, Daniel S.

    2009-01-01

    The increasing incidence of multidrug-resistant (MDR) pulmonary infections in the cystic fibrosis (CF) population has prompted the investigation of innovative silver based therapeutics. The functionalization of the naturally occurring xanthine theobromine at the N1 nitrogen atom with an ethanol substituent followed by the methylation of the N9 nitrogen atom gives the N-heterocyclic carbene precursor 1-(2-hydroxyethyl)-3,7,9-trimethylxanthinium iodide. The reaction of this xanthinium salt with silver acetate produces the highly hydrophilic silver carbene complex SCC8. The in vitro antimicrobial efficacy of this newly synthesized complex was evaluated with excellent results on a variety of virulent and MDR pathogens isolated from CF patients. A comparative in vivo study between the known caffeine derived silver carbene SCC1 and SCC8 demonstrated the ability of both complexes to improve the survival rates of mice in a pneumonia model utilizing the clinically isolated infectious strain of Pseudomonas aeruginosa PA M57-15. PMID:20449175

  16. Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies

    Directory of Open Access Journals (Sweden)

    N. RAMAN

    2008-10-01

    Full Text Available A new series of transition metal complexes of Cu(II, Ni(II, Co(II and Zn(II have been designed and synthesized using a Schiff base (L derived from 4-aminoantipyrine, benzaldehyde and o-phenylenediamine. The structural features were derived from their elemental analyses, magnetic susceptibility and molar conductivity, as well as from mass, IR, UV–Vis, 1H-NMR and ESR spectral studies. The FAB mass spectral data and elemental analyses showed that the complexes had a composition of the ML type. The UV–Vis and ESR spectral data of the complexes suggested a square-planar geometry around the central metal ion. The magnetic susceptibility values of the complexes indicated that they were monomeric in nature. Antimicrobial screening tests were also performed against four bacteria, viz. Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Bacillus subtilis and three fungi, viz. Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. These data gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that only the copper complex cleaves CT DNA in the presence of an oxidant.

  17. Synthesis, characterization and antibacterial evaluation of ...

    African Journals Online (AJOL)

    The synthesis, characterization and anti-bacterial evaluation of two palmitoyl amino acids is reported in this work. The reported antimicrobial activity of some fatty acid derivatives encouraged the investigation of the possible influence of an aromatic group substituent on a saturated fatty acid residue. The compounds were ...

  18. Efficient synthesis, structural characterization and anti-microbial activity of chiral aryl boronate esters of 1,2-O-isopropylidene-α-D-xylofuranose.

    Science.gov (United States)

    Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M

    2011-07-01

    A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials

    Directory of Open Access Journals (Sweden)

    Ebrahiminezhad Alireza

    2017-01-01

    Full Text Available Green synthesis of silver nanoparticles (AgNPs was developed by treating Ag+ with Alcea rosea flower extract. AgNO3 concentration, flower extract quantity, and reaction temperature were found to be significant factors in the bioreduction reaction. Synthesized AgNPs were almost spherical in shape with an average diameter of 7.2 nm. Fourier transform infrared spectroscopy (FTIR analysis revealed that oxygen-bearing functional groups in the A. rosea flower extract are responsible for reduction of Ag+. The minimum inhibitory concentration (MIC of AgNPs against a Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacteria was determined to be 37.5 μg/ml.

  20. Synthesis, Characterization and Antimicrobial Activity of Metal Chelates of 5-[1(H-Benzotriazole methylene]-8-quinolinol

    Directory of Open Access Journals (Sweden)

    H. S. Patel

    2009-01-01

    Full Text Available 5-Chloromethyl-8-quinolinol was condensed stoichiometrically with benzotriazole in presence of potassium carbonate. The resulting 5-[1(H-benzo triazole methylene]-8-quinolinol (BTMQ was characterized by elemental analysis and spectral studies. The transition metal chelates viz. Cu2+, Ni2+, Co3+, Mn2+ and Zn2+ of BTMQ were prepared and characterized by metal-ligand (M:L ratio, IR and reflectance spectral studies and magnetic properties. The antifungal activity of BTMQ and its metal chelates was screened against various fungi. The results show that all these samples are good antifungal agents.

  1. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    E-mail: a-ahmadi@kiau.ac.ir; ahmadikiau@yahoo.com. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL EVALUATION OF. SOME NOVEL DERIVATIVES OF 2-BROMOMETHYL-BENZIMIDAZOLE. Abbas Ahmadi*. Department of Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University,.

  2. Biosynthesis, characterization and antimicrobial study of silver ...

    African Journals Online (AJOL)

    Both the characterization and antimicrobial activity test were very successful and could lead to significant economic viability, as well as being environmentally friendly for treatment of some infectious diseases. Keywords: Syzygium guineenses, Green Chemistry, Spectroscopy, Optoelectronics, Biomedical Sensors ...

  3. Synthesis, Characterization, and Antimicrobial Studies of Novel Series of 2,4-Bis(hydrazino-6-substituted-1,3,5-triazine and Their Schiff Base Derivatives

    Directory of Open Access Journals (Sweden)

    Hessa H. Al-Rasheed

    2018-01-01

    Full Text Available The present work represents the synthesis, characterization, and antimicrobial studies of novel series of 2,4-bis(hydrazino-6-substituted-1,3,5-triazine and their Schiff base derivatives. IR, NMR (H1 and C13, elemental analysis, and LC-MS characterized the prepared compounds. The biological activity of the target products was evaluated as well. Twenty-two of the prepared compounds were selected according to their solubility in aqueous DMSO. Only eight compounds showed good activity against the selected pathogenic bacteria and did not show antagonistic effect against fungus Candida albicans. Two compounds 4k and 5g have wide-range effect presently in Gram-positive and Gram-negative bacteria while other compounds (4f, 4i, 4m, 5d, 6i, and 6h showed specific effect against the Gram-negative or Gram-positive bacteria. The minimum inhibitory concentration (MIC, μg/mL of 4f, 4i, 4k, and 6h compounds against Streptococcus mutans was 62.5 μg/mL, 100 μg/mL, 31.25 μg/mL, and 31.25 μg/mL, respectively. The MIC of 4m, 4k, 5d, 5g, and 6h compounds against Staphylococcus aureus was 62.5 μg/mL, 31.25 μg/mL, 31.25 μg/mL, 100 μg/mL, and 62.5 μg/mL, respectively. The MIC of 4k, 5g, and 6i compounds against Salmonella typhimurium was 31.25 μg/mL, 100 μg/mL, and 62.5 μg/mL, respectively. The MIC of 6i compound against Escherichia coli was 62.5 μg/mL.

  4. Friedel-Crafts Polyketones: Synthesis, Characterization and Antimicrobial Properties of Unsaturated Polyketones and Copolyketones Based on Difurfurylidene Cycloheptanone

    Directory of Open Access Journals (Sweden)

    Nayef S. Al-Muaikel

    2011-01-01

    Full Text Available A new type of unsaturated polyketones and copolyketones having cycloheptanone moiety in a p-conjugated main chain were synthesized via Friedel-Crafts reaction through the polymerization of the monomer: 2,7-bis furfurylidene cycloheptanone I with different diacid chlorides. The model compound was synthesized by reacting I with benzoyl chloride and characterized by 1H-NMR, IR, and elemental analyses. The polyketones and copolyketones were soluble easily in protic solvents like H2SO4 and trifluoroacetic acid. The thermal properties of these polyketones and copolyketones were evaluated and correlated to their structural units by TGA and DSC measurements. The crystallinity of some polymers was tested by X-ray analyses; also the morphological properties of selected examples of poly and copolyketones were detected by SEM. All the polyketones were tested for their biological activity against bacteria, fungi, and yeast. It was observed that the majority of the polyketones and its copolymers synthesized can be used as antibacterial and antifungal agents.

  5. Synthesis, characterization, photoluminescent properties and antimicrobial activities of two novel polymeric silver(I) complexes with diclofenac

    Science.gov (United States)

    Hamamci Alisir, Sevim; Sariboga, Bahtiyar; Caglar, Sema; Buyukgungor, Orhan

    2017-02-01

    Two novel silver(I) complexes with diclofenac, ({2-(2,6-dicholoroanilino)phenylacetic acid} = dicl) namely [Ag(dicl)]n (1) and [Ag(dicl)(bipy)]n (2) (bipy: 4,4'-bipyridine), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis and single-crystal X-ray diffraction. X-ray crystallographic data of 1 revealed that dicl anion adopts a μ3-η1,η2 coordinated mode link three Ag atoms generate 1D infinite chain structure. In 2, dicl ligand plays crucial role to form double-ladder chain structure, clamping two neighboring [Ag(μ-bipy)]∞ chains by using carboxylate oxygen atoms (O1, O2). The most interesting structural feature of 2 is the presence of strong π···π interactions between aromatic phenyl rings of dicl placed in the adjacent 1D chains, leads to forming 2D slab structure. The coordination modes of dicl in the title complexes are supported by using IR spectroscopy. Thermal stabilities of 1 and 2 have been determined by TG/DTA/DTG techniques. The luminescent properties of complex 1 and 2 have been investigated in the solid state at room temperature. Furthermore, the title complexes have been tested for their in vitro antibacterial activities and are determined to be highly effective for antibacterial activity against Gram(+) and Gram(-) pathogenic bacteria cells. 1 and 2 showed activity on Fungi, as well.

  6. New silver(I) complex with diazafluorene based ligand: Synthesis, characterization, investigation of in vitro DNA binding and antimicrobial studies

    Science.gov (United States)

    Movahedi, Elaheh; Rezvani, Ali Reza

    2017-07-01

    A novel diazafluorene based complex with silver, [Ag(dian)2 ] NO3 , where dian is N-(4,5-diazafluoren-9-ylidene)aniline, has been prepared and characterized by elemental analysis, IR spectroscopy, 1HNMR, UV-Vis spectroscopy and cyclic voltammetry. In order to explore the relationship between the structure and biological properties, DNA binding propensity and in vitro antibacterial property have also been studied. The mode of DNA-complex interaction has been investigated by electronic absorption titration, luminescence titration, competitive binding experiment, effect of ionic strength, thermodynamic studies, viscometric evaluation, circular dichroism spectroscopy and cyclic voltammetry. The results reveal that the complex binds to CT-DNA in a moderate intercalation capability with the partial insertion of a planar dian ligand between the base stacks of double-stranded DNA with binding constant (Kb) of 2.4 × 105 M-1. The viscosities and CD spectra of the DNA provide strong evidence for the intercalation. An in vitro antibacterial efficacy of the Ag(I) complex on a series of Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) indicates that the complex exhibits a marked antibacterial activity. The minimum inhibitory concentrations of the complex indicate that it exhibits much higher antibacterial effect on standard bacterial strains of Escherichia coli and Staphylococcus aureus than those of silver nitrate, silver sulfadiazine. The bacterial inhibitions of the silver(I) complex are closely agreed to its DNA binding affinities.

  7. FACILE SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF CELLULOSE-CHITOSAN-HYDROXYAPATITE COMPOSITE MATERIAL, A POTENTIAL MATERIAL FOR BONE TISSUE ENGINEERING

    Science.gov (United States)

    Mututuvari, Tamutsiwa M.; Harkins, April L.

    2013-01-01

    Hydroxyapatite (HAp) is often used as a bone-implant material because it is biocompatible and osteoconductive. However, HAp possesses poor rheological properties and it is inactive against disease-causing microbes. To improve these properties, we developed a green method to synthesize multifunctional composites containing: (1) cellulose (CEL) to impart mechanical strength; (2) chitosan (CS) to induce antibacterial activity thereby maintaining a microbe-free wound site; and (3) HAp. In this method, CS and CEL were co-dissolved in an ionic liquid (IL) and then regenerated from water. HAp was subsequently formed in situ by alternately soaking [CEL+CS] composites in aqueous solutions of CaCl2 and Na2HPO4. At least 88% of IL used was recovered for reuse by distilling the aqueous washings of [CEL+CS]. The composites were characterized using FTIR, XRD and SEM. These composites retained the desirable properties of their constituents. For example, the tensile strength of the composites was enhanced 1.9X by increasing CEL loading from 20% to 80%. Incorporating CS in the composites resulted in composites which inhibited the growth of both Gram positive (MRSA, S. aureus and VRE) and Gram negative (E. coli and P. aeruginosa) bacteria. These findings highlight the potential use of [CEL+CS+HAp] composites as scaffolds in bone tissue engineering. PMID:23595871

  8. Reactions of tin- and triorganotin(IV isopropoxides with thymol derivative: Synthesis, characterization and in vitro antimicrobial screening

    Directory of Open Access Journals (Sweden)

    Matela Garima

    2013-01-01

    Full Text Available A new series of diisopropyloxytin- and triorganotin(IV complexes of H2hbgl (1 of the general formula Sn(OPri2(hbgl (2, Sn(OPri2(Hhbgl2 (3, Ph3Sn(Hhbgl (4, Bu3Sn(Hhbgl (5 and Me3Sn(Hhbgl (6, [where H2hbgl= a ligand of thymol derivative namely, N-(2-hydroxy-3-isopropyl-6-methyl benzylGlycine] were synthesized by reacting tin- and triorganotin(IV chloride with the ligand, with the aid of sodium iso-propoxide in appropriate stiochiometric ratios (1:1 and 1:2. These complexes were characterized by elemental analysis, IR, 1H nuclear magnetic resonance. The spectral data suggest that the carboxylate group, in complexes 2-5, was bonded in a bidentate manner, while a unidentate bonding was observed in complex 6. All five complexes were tested in vitro for their antibacterial activity against Gram-positive bacteria namely, Staphylococcus aureus MTCC 96, Bacillus subtilis MTCC 121 and two Gram-negative bacteria namely, Escherichia coli MTCC 1652 and Pseudomonas aeruginosa MTCC 741. All the five complexes were also tested against three pathogenic fungal strains namely, Aspergillus niger, A. flavus and Penicillium sp.

  9. Synthesis, characterization, density functional study and antimicrobial evaluation of a series of bischelated complexes with a dithiocarbazate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    E. Zangrando

    2017-02-01

    Full Text Available A nitrogen-sulfur Schiff base HL (1 derived from S-hexyldithiocarbazate and 4-methylbenzaldehyde has been reacted with different divalent metal ions in 2:1 molar ratio, producing neutral complexes (2–7 of general formula MIIL2 (where M = Ni, Cu, Zn, Cd, Pd and Pb. All compounds were characterized using established physico-chemical and spectroscopic methods. The single crystal structures of CuII and ZnII complexes are compared and discussed with those of NiII and PdII already reported by us, underlining the geometrical variations occurring in the HL ligand upon coordination. The metal complexes, as revealed by the X-ray diffraction analyses, show a square planar or tetrahedral coordination geometry, and in the former case either a cisoid or transoid configuration of chelating ligands. Density functional theory (DFT and time-dependent density functional theory (TD-DFT calculations have been performed on the isolated cis/trans complexes of Ni and Pd complexes in order to evaluate the stability of the isomer isolated in solid state. The thermodynamic parameters for trans to cis isomerization of NiL2 complex [ΔH = −29.12 kJ/mol and ΔG = −43.97 kJ/mol] indicated that the trans isomer (observed in solid state is more stable than the cis one. On the other hand, relative enthalpy [ΔH = −4.37 kJ/mol] and Gibbs free energy [ΔG = −5.50 kJ/mol] of PdL2 complex disclosed a small difference between the energies of the two isomers. Experimental UV–vis and TD-DFT calculation confirmed that these complexes have distinctive LMCT bands with a broad shoulder at 400–550 nm. With the purpose of providing insight into the properties and behavior of the complexes in solution, photoluminescence and electrochemical experiments have been also performed. Finally, the anti-bacterial activity of these compounds was evaluated against three pathogenic Gram-negative organisms such as Escherichia coli, Salmonella typhi and Shigella flexneri, but

  10. Synthesis, characterization, and antimicrobial evaluation of a small library of ferrocene-containing acetoacetates and phenyl analogs: the discovery of a potent anticandidal agent.

    Science.gov (United States)

    Radulović, Niko S; Mladenović, Marko Z; Stojanović-Radić, Zorica; Bogdanović, Goran A; Stevanović, Dragana; Vukićević, Rastko D

    2014-08-01

    A library of 16 2-substituted methyl acetoacetates containing ferrocenyl or phenyl units was designed to disclose differences in the antimicrobial activity of ferrocene-containing compounds and their phenyl analogs. Two methyl acetoacetates, whose structures do not contain an aromatic nucleus, were also included in order to probe the inherent activity of the scaffold itself. The acetoacetates were synthesized (low-to-good yields) and fully characterized by spectral (MS, IR, UV-Vis, 1D and 2D NMR) and electrochemical (cyclic voltammetry) techniques. Single-crystal X-ray analysis has been performed for methyl 2-acetyl-2-(ferrocenylmethyl)-5-methylhex-4-enoate. All compounds have demonstrated in vitro antimicrobial activity against six bacterial (three Gram-positive and three Gram-negative) and two fungal strains with minimal inhibitory concentration values of 0.0050-20.6 μmol mL(-1). The most active compound was 2-acetyl-2-(ferrocenylmethyl)-4-methylpent-4-enoate whose activity was comparable to that of nystatin against the yeast Candida albicans. Agglomerative hierarchical clustering statistical analysis of the antimicrobial assay data demonstrated that ferrocene-containing compounds have statistically different and greater antimicrobial activity when compared to their phenyl analogs.

  11. Synthesis, characterization, and antimicrobial evaluation of novel 5-benzoyl-N-substituted amino- and 5-benzoyl-N-sulfonylamino-4-alkylsulfanyl-2-pyridones

    Directory of Open Access Journals (Sweden)

    Elgemeie G

    2017-11-01

    Full Text Available Galal Elgemeie,1 Farag Altalbawy,2,3 Mohammed Alfaidi,3 Rania Azab,2,4 Atef Hassan5 1Department of Chemistry, Faculty of Science, Helwan University, Helwan, 2National Institute of Laser Enhanced Sciences (NILES, Cairo University, Giza, Egypt; 3Department of Biological Sciences, University College of Duba, Tabuk University, Tabuk, 4Department of Biological Sciences, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia; 5Department of Mycology and Mycotoxins, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt Abstract: The present research describes the synthesis of novel 5-benzoyl-N-substituted-amino- and 5-benzoyl-N-sulfonylamino-4-alkylsulfanyl-2-pyridones 5a–c and 6a–c via the reaction of 2-benzoyl-3,3-bis(alkylthioacrylonitriles 2a–c with N-cyanoacetohydrazide 3 and cyanoaceto-N-phenylsulfonylhydrazide 4, respectively. Also, the reactivity of the compounds 5a–c toward hydrazine hydrate to give product 1H-pyrazolo[4,3-c]pyridine derivative 7 was studied. In addition, the reactivity of the 2a–c toward 1-cyanoacetyl-4 arylidenesemicarbazides 8a–c afforded 3,5-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitrile derivatives (12–14a–c, which reacted with hydrazine hydrate to give 3H-pyrazolo[4,3-c][1,2,4]triazolo[1,5-a]pyridine-6-carbonitrile derivatives 15a–c. The structures of the new products were characterized based on 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, infrared, mass-spectroscopy, and elemental analyses. The products were screened in vitro for their antibacterial and antifungal activity properties. Keywords: amino-2-pyridones, N-cyanoacetohydrazide, cyanoaceto-N-phenylsulfonylhydrazide, 2-benzoyl-3,3-bis(alkylthioacrylonitriles, 5-benzoyl-N-sulfonylamino-4-alkylsulfanyl-2-pyridones, 5-benzoyl-N-substituted-amino-4-alkylsulfanyl-2 pyridones, antimicrobial activity

  12. Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential

    Science.gov (United States)

    Kuppurangan, Gunaseelan; Karuppasamy, Balaji; Nagarajan, Kanipandian; Krishnasamy Sekar, Rajkumar; Viswaprakash, Nilmini; Ramasamy, Thirumurugan

    2016-10-01

    Natural synthesis of metal nanoparticles is gaining more attention in recent years. This article demonstrates the phytochemical synthesis of silver nanoparticles (AgNPs) by using Indoneesiella echioides (L) leaf extract as a reducing and stabilizing agent. Biosynthesis of AgNPs was monitored by UV-visible spectroscopy which revealed intense surface plasmon resonance bands at 420 nm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction were employed to identify various functional groups and crystalline nature of AgNPs. High-resolution transmission electron microscopy studies demonstrated that synthesized particles were spherical with average size of ~29 nm. In vitro antioxidant effects were analyzed by 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), which exhibited 69 and 71 % of scavenging activity, respectively. The antimicrobial activity of green AgNPs displayed better zone of inhibition against selected human pathogens. The present study also investigated the toxicity effect of biogenic AgNPs against human lung adenocarcinoma cancer cells (A549) and normal human epithelial cells (HBL-100) in vitro, and the inhibitory concentrations (IC50) were found to be 30 and 60 µg/mL, respectively. Herein, we propose a previously unexplored medicinal plant for the biological synthesis of AgNPs with potent biomedical applications.

  13. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    Science.gov (United States)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  14. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Abstract. Tetraaqua bismaleato iron(II) [Fe(C4H3O4)2(H2O)4], (1) is a new synthetic antimicrobial agent. Thermal analysis shows that the dehydration of the compound occurs in agreement with the structure. The sin- gle crystal salt crystallizes in the triclinic space group P-1 with a = 5.171(2) Å, b = 7.309(3) Å, c = 9.731(3).

  15. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Tetraaqua bismaleato iron(II) [Fe(C4H3O4)2 (H2O)4], (1) is a new synthetic antimicrobial agent. Thermal analysis shows that the dehydration of the compound occurs in agreement with the structure. The single crystal salt crystallizes in the triclinic space group -1 with = 5.171(2) Å, = 7.309(3) Å, = 9.731(3) Å, ...

  16. Synthesis Characterization and Antimicrobial Activity of Metal Chelates of 1, 7-Di (2-hydroxyphenyl 1, 7 di (N-methyl aza-1, 3, 5 heptarine-3-ol hydrochloride

    Directory of Open Access Journals (Sweden)

    Nalin P. Patani

    2010-01-01

    Full Text Available The Schiff base complexes derived from 2-furancarboxaldehyde and N-methyl-2-amino phenol have been prepared and characterized using several physical techniques, like elemental analysis, thermogravimetric analysis, magnetic moment measurements, infrared and resonance spectra. N-Methyl-2-amino phenol was condensed stoichiometrically with 2-furancarboxaldehyde in presence of methanol. The resulting 1,7-di(2-hydroxyphenyl 1,7 di(N-methyl aza-1,3,5 heptarine-3-ol hydrochloride was characterized by elemental analysis and spectral studies. The transition metal complexes of Cu2+, Zn2+, Ni2+, Co2+ and Mn2+ of the synthesized complexes were prepared. Metal ligand (M:L ratio, IR, reflectance spectral studies, magnetic properties and antimicrobial activity of the synthesized complexes and its metal complexes were carried out.

  17. Synthesis and Antimicrobial Activity of the Essential Oil Compounds ...

    African Journals Online (AJOL)

    NICO

    2012-08-26

    Aug 26, 2012 ... Essential oil constituent, (E)- and (Z)-3-hexenyl nonanoate, antimicrobial, ester synthesis, acid-induced alkene isomerizations. Numerous studies and reviews on the subject matter of com- pounds isolated from plants have demonstrated that essential oil compounds display antimicrobial activity1–7.

  18. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    Science.gov (United States)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  19. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II)

    Science.gov (United States)

    Ahamad, Tansir; Alshehri, Saad M.

    2012-10-01

    Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.

  20. Synthesis, Characterization, and Antimicrobial and Antispermatogenic Activity of Bismuth(III and Arsenic(III Derivatives of Biologically Potent Nitrogen and Sulfur Donor Ligands

    Directory of Open Access Journals (Sweden)

    Latika Dawara

    2012-01-01

    Full Text Available A series of Bi(III and As(III complexes with two N∩S donor ligands, 1-(4-chloro-2-oxo-2H-chromen-3-yl-methylene-thiosemicarbazide (L1H and N′-[1-(2-oxo-2H-chrome-3yl-ethylidene]-hydrazinecarbodithionic acid benzyl ester (L2H have been synthesized by the reaction of BiCl3 and Ph3As with ligands in 1 : 1 and 1 : 2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations, and a combination of electronic, IR, 1H NMR, 13C NMR spectroscopic techniques, and X-ray diffraction for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. Both the ligands and their corresponding metal complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.

  1. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens.

    Science.gov (United States)

    Fakhri, Ali; Tahami, Shiva; Naji, Mahsa

    2017-04-01

    Nano-medicine is a breakthrough discovery in the healthcare sector. Doxycycline is a new generation antibiotic which is proved to be a boon in the treatment of patients with complicated skin infections. We have tried to explore the benefits of synthesized bimetallic silver-gold nanoparticles in combination with new generation antibiotic for burn infections. The bimetallic nanoparticles synthesized by core-shell method were characterized using scanning electron microscopy equipped with an energy dispersive spectrometer, transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The calculated average particle sizes of the Ag-Au NPs were found to be 27.5nm. The Ag-Au core-shell BNPs show a characteristic Plasmon peak at 525nm which is broad and red shifted. The synergistic antimicrobial activity of doxycycline conjugated bimetallic nanoparticles was investigated against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Micrococcus luteus. This combined therapeutic agent showed greater bactericidal activity. Synergy of antibiotic with bimetallic nanoparticles is quite promising for significant application in burn healing therapy. The mechanism of the antibacterial activity was studied through the formation of reactive oxygen species (ROS) that was later suppressed with antioxidant to establish correlation with the Ag-Au NPs antimicrobial activity. Ag-Au NPs showed effective antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization, X-ray crystal structure, DFT calculation, DNA binding, and antimicrobial assays of two new mixed-ligand copper(II) complexes

    Science.gov (United States)

    Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Mohamadi, Maryam; Suarez, Sebastian; Baggio, Ricardo; Khaleghi, Moj; Torkzadeh-Mahani, Masoud; Mostafavi, Ali

    2015-05-01

    Two new Cu(II) complexes, [Cu(L)(phen)] (1), [Cu(L)(bipy)] (2), where L2- = (3-methoxy-2oxidobenzylidene)benzohydrazidato, phen = 1,10 phenanthroline, and bipy = 2,2‧ bipyridine, were prepared and fully characterized using elemental analyses, FT-IR, molar conductivity, and electronic spectra. The structures of both complexes were also determined by X-ray diffraction. It was found that, both complexes possessed square pyramidal coordination environment in which, Cu(II) ions were coordinated by donor atoms of HL and two nitrogens of heterocyclic bases. Computational studies were performed using DFT calculations at B3LYP/6-311+G(d,p) level of theory. DNA binding activities of these complexes were also investigated using electronic absorption, competitive fluorescence titration and cyclic voltammetry studies. The obtained results indicated that binding of the complexes to DNA was of intercalative mode. Furthermore, antimicrobial activities of these compounds were screened against microorganisms.

  3. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper(II Complexes with the Schiff Base Derived from 2-Hydroxy-4-Methoxybenzaldehyde

    Directory of Open Access Journals (Sweden)

    Elena Pahonțu

    2015-04-01

    Full Text Available A novel Schiff base, ethyl 4-[(E-(2-hydroxy-4-methoxyphenylmethylene-amino]benzoate (HL, was prepared and structurally characterized on the basis of elemental analyses, 1H NMR, 13C NMR, UV-Vis and IR spectral data. Six new copper(II complexes, [Cu(L(NO3(H2O2] (1, [Cu(L2] (2, [Cu(L(OAc] (3, [Cu2 (L2Cl2(H2O4] (4, [Cu(L(ClO4(H2O] (5 and [Cu2(L2S(ClO4(H2O]ClO4·H2O (6 have been synthesized. The characterization of the newly formed compounds was done by IR, UV-Vis, EPR, FAB mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The crystal structures of Schiff base and the complex [Cu2(L2S(ClO4(H2O]ClO4·H2O (6 have been determined by single crystal X-ray diffraction studies. Both copper atoms display a distorted octahedral coordination type [O4NS]. This coordination is ensured by three phenol oxygen, two of which being related to the µ-oxo-bridge, the nitrogen atoms of the azomethine group and the sulfur atoms that come from the polydentate ligand. The in vitro antimicrobial activity against Escherichia coli ATCC 25922, Salmonella enteritidis, Staphylococcus aureus ATCC 25923, Enterococcus and Candida albicans strains was studied and compared with that of free ligand. The complexes 1, 2, 5 showed a better antimicrobial activity than the Schiff base against the tested microorganisms.

  4. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  5. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    OpenAIRE

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  6. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents

    KAUST Repository

    Aouad, Mohamed Reda

    2015-05-23

    (1,4,5-Triphenylimidazol-2-yl-thio)butyric acid hydrazide (3) was obtained via alkylation of 1,4,5-triphenylimidazol-2- thiol (1) with ethylbromobutyrate, followed by addition of hydrazine hydrate. Treatment of acid hydrazide 3 with carbon disulfide in an ethanolic potassium hydroxide solution gave the intermediate potassium dithiocarbazinate salt, which was cyclized to 4-amino-5-[(1,4,5-triphenylimidazol- -2-yl)thiopropyl]-2H-1,2,4-triazole-3-thione (4) in the presence of hydrazine hydrate. Condensation of compound 3 with alkyl/arylisothiocyanate afforded the corresponding 1-[4-(1,4,5-triphenylimidazol-2-ylthio)butanoyl]-4-alkyl/arylthiosemicarbazides (5-7), which upon refluxing with sodium hydroxide, yielded the corresponding 1,2,4-triazole - -3-thiols 8-10. Under acidic conditions, compounds 4-6 were converted to aminothiadiazoles 11-13. Moreover, the series of Schiff bases 14-18 were synthesized from the condensation of compound 3 with different aromatic aldehydes. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral analyses. They were also preliminarily screened for their antimicrobial activity.

  7. Facile Synthesis, Characterization, and In Vitro Antimicrobial Screening of a New Series of 2,4,6-Trisubstituted-s-triazine Based Compounds

    Directory of Open Access Journals (Sweden)

    Ravi Bhushan Singh

    2015-01-01

    Full Text Available A series of new 2,4,6-trisubstituted-s-triazine was synthesized, assessed for antimicrobial activity, and characterized by FTIR, 1HNMR, 13CNMR, and elemental analysis. The tested compounds, 4d, 4g, 4h, 4k, and 4n, have shown considerable in vitro antibacterial efficacy with reference to the standard drug ciprofloxacin (MIC 3.125 μgmL−1 against B. subtilis, E. coli, and K. pneumoniae. It was observed that compounds 4d and 4h displayed equipotent antibacterial efficacy against B. subtilis (MIC 3.125 μgmL−1 and S. aureus (MIC 6.25 μgmL−1. The studies demonstrated that the para-fluorophenylpiperazine substituted s-triazine (4n was potent and exhibited broad spectrum antibacterial activity against S. epidermidis, K. pneumoniae, and P. aeruginosa with MIC of 6.25 μgmL−1 and for E. coli, it showed an MIC of 3.125 μgmL−1 equipotent with reference to the standard drug. Among all the compounds under investigation, compound 4g also demonstrated significant antifungal activity (3.125 μgmL−1 against C. albicans.

  8. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Aouad Mohamed Reda

    2015-06-01

    Full Text Available (1,4,5-Triphenylimidazol-2-yl-thiobutyric acid hydrazide (3 was obtained via alkylation of 1,4,5-triphenylimidazol-2- thiol (1 with ethylbromobutyrate, followed by addition of hydrazine hydrate. Treatment of acid hydrazide 3 with carbon disulfide in an ethanolic potassium hydroxide solution gave the intermediate potassium dithiocarbazinate salt, which was cyclized to 4-amino-5-[(1,4,5-triphenylimidazol- -2-ylthiopropyl]-2H-1,2,4-triazole-3-thione (4 in the presence of hydrazine hydrate. Condensation of compound 3 with alkyl/arylisothiocyanate afforded the corresponding 1-[4-(1,4,5-triphenylimidazol-2-ylthiobutanoyl]-4-alkyl/arylthiosemicarbazides (5-7, which upon refluxing with sodium hydroxide, yielded the corresponding 1,2,4-triazole - -3-thiols 8-10. Under acidic conditions, compounds 4-6 were converted to aminothiadiazoles 11-13. Moreover, the series of Schiff bases 14-18 were synthesized from the condensation of compound 3 with different aromatic aldehydes. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral analyses. They were also preliminarily screened for their antimicrobial activity.

  9. Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with π acceptor picric acid

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq; Oves, M.

    2010-12-01

    Charge transfer complex (CTC) of donor, p-phenylenediamine (PPD) and acceptor, 2,4,6-trinitrophenol (picric acid) has been studied in methanol at room temperature. The CT complex was synthesized and characterized by elemental analysis, FTIR spectra, 1H NMR spectroscopy and electronic absorption spectra which indicate the CT interaction associated with proton migration from the acceptor to the donor followed by hydrogen bonding via N +-H⋯O -. The thermal stability of CT complex was studied using TGA and DTA analyses techniques. The CT complex was screened for its antifungal activity against Aspergillus niger (Laboratory isolate), Candida albicans (IQA-109) and Penicillium sp. (Laboratory isolate) and antibacterial activity against two Gram-positive bacteria Staphylococcus aureus (MSSA 22) and Bacillus subtilis (ATCC 6051) and two Gram-negative bacteria Escherichia coli (K 12) and Pseudomonas aeruginosa (MTCC 2488). It gives good antimicrobial activity. The stoichiometry of the CT complex was found to be 1:1. The physical parameters of CT complex were evaluated by the Benesi-Hildebrand equation. On the basis of the studies, the structure of CT complex is [(PPDH) +(PA) -], and a general mechanism for its formation is proposed.

  10. Synthesis, spectroscopic characterization, antimicrobial and antitumor studies of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand derived from o-acetoacetylphenol

    Science.gov (United States)

    Adly, Omima M. I.; Shebl, Magdy; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.

    2017-12-01

    New mono-, bi- and trinuclear metal complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(VI) with a new Schiff base ligand H3L; ((E)-2-hydroxy-N‧-(4-(2-hydroxyphenyl)-4-oxobutan-2-ylidene)) benzohydrazide (H3L) have been synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The metal complexes exhibited octahedral and tetrahedral geometrical arrangements. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. Structural parameters of the synthesized compounds were calculated on the basis of DFT level implemented in the Gaussian 09 program and Hyperchem 7.52 and correlated with the experimental data. The antimicrobial activity of the present compounds was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.

  11. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Atif Sarwar

    Full Text Available Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68 demonstrated the safety; suggesting that these derivatives could be

  12. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    Science.gov (United States)

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  13. Synthesis, antimicrobial evaluation and QSAR studies of gallic acid derivatives

    Directory of Open Access Journals (Sweden)

    Anurag Khatkar

    2017-05-01

    Full Text Available A series of gallic acid derivatives (1–33 was synthesized and characterized by physicochemical and spectral means. The synthesized compounds were evaluated in vitro for their antimicrobial activity against different Gram positive and Gram negative bacterial and fungal strains by the tube dilution method. Results of antimicrobial screening indicated that compound 6 was the most active antimicrobial agent (pMICam = 1.92 μM/mL. The results of QSAR studies demonstrated that antibacterial, antifungal and overall antimicrobial activities of synthesized gallic acid derivatives were governed by the electronic parameters, cosmic total energy (Cos E. and nuclear energy (Nu. E..

  14. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity.

    Science.gov (United States)

    Fouad, Hatem; Hongjie, Li; Yanmei, Ding; Baoting, Yu; El-Shakh, Ahmed; Abbas, Ghulam; Jianchu, Mo

    2017-11-01

    Culex pipiens pallens are the most common mosquito's vector in Asia. In order to protect the people from diseases, the anti-mosquito population is necessary that uses safe and new bio-pesticides such as bacteria-AgNPs. In our report, we used two kinds of bacteria to synthesize silver nanoparticles to examine the toxic effect on the larvae and pupae of Cx. pipiens pallens and also used as antimicrobial activity. The biosynthesis of AgNPs and its characterization was carried out by UV-Vis spectrophotometry, FTIR, TEM, SEM, and EDX. The larvicidal and pupicidal assays revealed that the lethal concentration LC 50 values of Bacillus amyloliquefaciens-AgNPs were 0.72 ppm (I), 0.73 ppm (II), 0.69 ppm (III), 1.16 ppm (IV), and 4.18 (Pupae), while LC 50 values of Bacillus subtilis-AgNPs were 0.60 ppm (I), 0.62 ppm (II), 0.21 ppm (III), 0.28 ppm (IV), and 3.46 ppm (Pupae) after 72 h of exposure. Antibacterial activity test of AgNPs reveals better results against rice pathogenic bacteria than bacteria alone. Thus, bacteria-mediated silver nanoparticles have a rapid effect on vector mosquito and microbial pathogen suggesting savings of energy and resources. Hence, bacteria-AgNPs may be used in the future as an effective weapon to control vector mosquito and harmful bacteria.

  15. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antmicrobial efficacy of well-known commercial antibiotics. PMID:25848272

  16. Synthesis and antimicrobial activity of cholic acid hydrazone analogues.

    Science.gov (United States)

    Rasras, Anas J M; Al-Tel, Taleb H; Al-Aboudi, Amal F; Al-Qawasmeh, Raed A

    2010-06-01

    Synthesis and antimicrobial activity of cholic acid analogues 4a-t are reported. The synthesis of 4a-t was accomplished from ethylcholate 2. The hydrazone moiety was introduced via coupling of the cholic acid hydrazide (3) with appropriately functionalized aldehyde utilizing acetic acid as a catalyst. Quiet of interest in relation to the synthesized hydrazones is the formation of two rotamers s-cis.E and s-trans.E. Most compounds showed stronger antimicrobial activity against Gram-positive bacteria than Cefaclor and Cefixime. Compounds 4d, 4i and 4j indicated 15-fold stronger antimicrobial activities against Enterobacter faecalis compared to Cefaclor and Cefixime. Some of the synthesized compounds (e.g. 4a, 4c, 4d, 4i, and 4l) reflected two-folds less activity against Escherichia coli relative to Cefixime. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  17. Microwave-assisted green synthesis and antimicrobial activity of ...

    African Journals Online (AJOL)

    Purpose: To synthesize and evaluate the antimicrobial activity of silver nanoparticles (AgNPs) derived from a supercritical carbon dioxide extract of the fresh aerial parts of Phyllanthus niruri. Methods: The synthesis of AgNPs of a P. niruri extract was carried out in a microwave oven. The extraction was carried out using a ...

  18. Synthesis and antimicrobial activity of some novel thienopyrimidines ...

    Indian Academy of Sciences (India)

    Administrator

    pounds in drug discovery programs. In view of these reports and in continuation of our work on biologi- cally active nitrogen and sulfur heterocycles,. 13–15 we report here the synthesis of some novel thieno- pyrimidines and thienotriazolopyrimidines for the evaluation of their antimicrobial properties. The synthesized ...

  19. Synthesis and Antimicrobial Activities of Some New Pyrazoles ...

    African Journals Online (AJOL)

    Synthesis and Antimicrobial Activities of Some New Pyrazoles, Oxadiazoles and Isoxazole Bearing Benzofuran Moiety. ... South African Journal of Chemistry ... Twelve new compounds were synthesized and their identities have been established on the basis of elemental and spectroscopic analysis such as IR, 1H NMR, ...

  20. Synthesis and Antimicrobial Activities of Some New Pyrazoles ...

    African Journals Online (AJOL)

    NICO

    29 antimalarial,30 antimicrobial,31,32 antiviral,33,34 hypoglycaemic,35 anti-HIV activity,36 insecticidal,37 and anti- fungal38 activities. In view of these reports and in continuation of our previous work39 we describe here a facile synthesis of.

  1. Facile green synthesis and potent antimicrobial efficacy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6. Facile green synthesis and potent antimicrobial efficacy of -aminoheteronapthol via tailored Betti's protocol and their bis-aryl hydrazone click products. K M Khandarkar M D Shanti M Ahmed J S Meshram. Regular Articles Volume 125 Issue 6 November ...

  2. synthesis, characterisation and antimicrobial activities of cobalt(ii)

    African Journals Online (AJOL)

    Preferred Customer

    *Corresponding author. E-mail: agwara29@yahoo.com; Tel. 237 798 75425. SYNTHESIS, CHARACTERISATION AND ANTIMICROBIAL ACTIVITIES OF. COBALT(II), COPPER(II) AND ZINC(II) MIXED-LIGAND COMPLEXES. CONTAINING 1,10-PHENANTHROLINE AND 2,2'-BIPYRIDINE. M.O. Agwara1*, P.T. Ndifon1, N.B. ...

  3. Synthesis, spectral characterization of Schiff base transition metal ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. N RAMAN,* J DHAVEETHU RAJA and A SAKTHIVEL. Department of Chemistry, VHNSN College, Virudhunagar 626 001 e-mail: drn_ raman@yahoo.co.in. MS received 1 May 2007; revised 7 July ...

  4. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand

    Science.gov (United States)

    Shebl, Magdy; Khalil, Saied M. E.; Ahmed, Saleh A.; Medien, Hesham A. A.

    2010-09-01

    Condensation of o-acetoacetylphenol and 1,2-diaminopropane in 1:1 molar ratio under condition of high dilution yielded the mono-condensed dibasic Schiff base ligand with a N 2O 2 donors. The mono-condensed ligand has been used for further condensation with 2-hydroxy-5-nitrobenzaldehyde to obtain the new asymmetrical dicompartmental Schiff base ligand, H 3L, with N 2O 3 donors. The structure of the ligand was elucidated by analytical and spectroscopic tools (IR, 1H and 13C NMR spectra) which indicated that the coordinating sites are oxygen atoms of the phenolic OH groups, nitrogen atoms of the azomethine groups and the oxygen atom of the ketonic group. Reactions of the ligand with metal salts yielded mono- and homo-bi-nuclear complexes formulated as [M(HL)], where M dbnd Co(II), Ni(II) and Cu(II), [Fe(H 2L)Cl 2(H 2O)]ṡ2½H 2O, [Fe 2(HL)(ox)Cl 3(H 2O) 2]ṡ5H 2O, [UO 2(H 2L)(OAc)(H 2O) 2], [VO(H 3L)(SO 4)(H 2O)]ṡH 2O, [M 2(L)Cl(H 2O) 2]ṡ½H 2O, where M dbnd Co(II) and Ni(II) and [Cu(H 2L)Cl]. The mononuclear Ni(II) complex, [Ni(HL)], was used to synthesize homo- and hetero-bi- and tri-nuclear complexes with the molecular formulae [Ni 2(L)Cl(H 2O) 2], [Ni 2(L) 2FeCl(H 2O)]ṡH 2O and [Ni 2(HL) 2CoCl 2]. The structures of the complexes were characterized by various techniques such as elemental and thermal analyses, IR, 1H and 13C NMR, mass and electronic spectra as well as conductivity and magnetic moment measurements. Square-planar and octahedral geometries are suggested for the Cu(II), Co(II) and Ni(II) complexes, octahedral geometry for the Fe(III) and VO 2+ complexes while uranium(VI) ion is octa-coordinated in its complex. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli) and fungi ( Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active.

  5. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    Science.gov (United States)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  6. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Singh P

    2015-03-01

    Full Text Available Priyanka Singh,1 Yeon Ju Kim,2 Hina Singh,1 Chao Wang,2 Kyu Hyon Hwang,3 Mohamed El-Agamy Farh,1 Deok Chun Yang1,2 1Department of Oriental Medicinal Material and Processing, 2Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 3Gyeonggi-Do Agricultural Research & Extension Services, Gyeonggi, Republic of Korea Abstract: In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis

  7. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dhaneswar; Nath, Bikash C. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Saikia, Bhaskar J.; Kamrupi, Isha R. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Dolui, Swapan K., E-mail: dolui@tezu.ernet.in [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India)

    2013-10-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology.

  8. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    International Nuclear Information System (INIS)

    Das, Dhaneswar; Nath, Bikash C.; Phukon, Pinkee; Saikia, Bhaskar J.; Kamrupi, Isha R.; Dolui, Swapan K.

    2013-01-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology

  9. Synthesis and antimicrobial activity of some 2 ...

    African Journals Online (AJOL)

    These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds ...

  10. Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone ...

    Indian Academy of Sciences (India)

    Indole; thienopyrimidine; thiazolidin-4-one; azetidin-2-one; antioxidant; antimicrobial activities. 1. Introduction. The complex sequence of cellular and molecular changes that take place during cancer formation are mediated by the different endogenous and exogenous stimuli.1 Among endogenous stimuli are intermediates.

  11. Delivery of phytochemicals of tropical fruit by-products using poly (DL-lactide-co-glycolide) (PLGA) nanoparticles: synthesis, characterization, and antimicrobial activity.

    Science.gov (United States)

    Silva, Larissa M; Hill, Laura E; Figueiredo, Evania; Gomes, Carmen L

    2014-12-15

    Nanoencapsulation offers great potential in natural compounds delivery as it protects them from degradation, improves their aqueous solubility, and delivers active compounds to the action site. Poly (dl-lactide-co-glycolide) (PLGA) nanoparticles of acerola, guava, and passion fruit by-product extracts were synthesized using the emulsion-evaporation method. PLGA with different lactide to glycolide (50:50 and 65:35) ratios were used to determine how polymer composition affected nanoparticles properties and antimicrobial efficiency. Controlled release experiments showed an initial burst followed by a slower release rate for all encapsulated fruit by-products inside PLGA matrix. Nanoparticle properties were more dependent on by-product extract than on PLGA type. Fruit by-products and their nanoparticles were analyzed for antimicrobial activity against Listeria monocytogenes Scott A and Escherichia coli K12. All fruit by-products encapsulated in PLGA inhibited both bacteria at lower (Pfruit by-product. Both PLGA types improved fruit by-products delivery to pathogens and enhanced antimicrobial activity. Published by Elsevier Ltd.

  12. Synthesis, antimicrobial evaluation and QSAR studies of propionic acid derivatives

    OpenAIRE

    Kumar, Sanjiv; Kumar, Pradeep; Marwaha, Rakesh Kumar; Narasimhan, Balasubramanian

    2012-01-01

    A series of Schiff bases (1–17) and esters (18–24) of propionic acid was synthesized in appreciable yield and characterized by physicochemical as well as spectral means. The synthesized compounds were evaluated in vitro for their antimicrobial activity against Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Gram negative bacterium Escherichia coli and fungal strains Candida albicans and Aspergillus niger by tube dilution method. Results of antimicrobial screening indicated th...

  13. Synthesis and Antimicrobial Activity of Amino Acids Conjugated Diphenylmethylpiperazine Derivatives

    Directory of Open Access Journals (Sweden)

    K. N. Shivakumara

    2009-01-01

    Full Text Available A series of amino acid conjugated diphenylmethylpiperazine derivatives were synthesized by coupling diphenylmethylpiperazine with different Boc-amino acids using EDCI/HOBt as coupling agent and NMM as base. The synthesized compounds were characterized by 1H-NMR and elemental analysis. The Boc-deblocked derivatives were tested for their antimicrobial activity. We are here reporting that Phe and Trp conjugated diphenylmethylpiperazine showed equally good antibacterial activities as that of conventional antimicrobial drugs.

  14. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  15. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  16. An Efficient One-Pot Protocol for the Synthesis of Substituted 3,4-Dihydropyrimidin-2(1H-ones Using Metallophthalocyanines (MPcs as Potent Heterogeneous Catalysts: Synthesis, Characterization, Aggregation and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Naceur Hamdi

    2017-04-01

    Full Text Available In this study, novel phthalonitrile 3 and their corresponding metal-free 4 and metallophthalocyanine derivatives 5–7 bearing 2-isopropenyl-4-methoxy-1-methylbenzene groups were synthesized and characterized. 3,4-Dihydropyrimidinones have been synthesized by a modified Biginelli-type reaction with various metallophthalocyanines 5–7 as catalysts. Compared to the classical Biginielli reaction, the new method has the advantages of good yield and short reaction time. Among the various metallophthalocyanines studied, cobalt (II-phthalocyanine was found to be most active for this transformation. The newly prepared compounds were characterized using elemental analyses, MS, IR, 1H/13C-NMR and UV-Vis spectroscopy. In addition; the 3,4-dihydropyrimidinones (DHPMs 8–12 were investigated for antimicrobial activities and revealed good activity. The minimum inhibitory concentration (MIC was determined by the microdilution technique in Mueller-Hinton broth. The MICs were recorded after 24 hours of incubation at 37 °C. These results are promising, showing these compounds are biologically active.

  17. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  18. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation

    OpenAIRE

    Cádiz, V.; Galià, M.; Ronda, J.C.; Lligadas, G.; Bordons, A.; Esteve-Zarzoso, B.; Lluch, C.

    2014-01-01

    10.1002/mabi.201400017 In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylen...

  19. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    C−H⋅⋅⋅O bonds leading to an intricate hydrogen bonding network. Keywords. Synthesis .... in the refinement riding on their respective parent atoms. ..... nent peaks at 326 and 255 nm which can be assigned to transitions of the intramolecularly hydrogen-bon- ded salicylidenimino chromophore. Cotton effects of negative ...

  20. Cloning and characterization of an Armillaria gallica cDNA encoding protoilludene synthase, which catalyzes the first committed step in the synthesis of antimicrobial melleolides.

    Science.gov (United States)

    Engels, Benedikt; Heinig, Uwe; Grothe, Torsten; Stadler, Marc; Jennewein, Stefan

    2011-03-04

    Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6-7 double bond into the 7-8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns.

  1. Cloning and Characterization of an Armillaria gallica cDNA Encoding Protoilludene Synthase, Which Catalyzes the First Committed Step in the Synthesis of Antimicrobial Melleolides*

    Science.gov (United States)

    Engels, Benedikt; Heinig, Uwe; Grothe, Torsten; Stadler, Marc; Jennewein, Stefan

    2011-01-01

    Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6–7 double bond into the 7–8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns. PMID:21148562

  2. Coordination modes of bidentate lornoxicam drug with some transition metal ions. Synthesis, characterization and in vitro antimicrobial and antibreastic cancer activity studies

    Science.gov (United States)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2014-03-01

    The NSAID lornoxicam (LOR) drug was used for complex formation reactions with different metal salts like Cr(III), Mn(II), Fe(III) and Ni(II) chlorides and Fe(II), Co(II), Cu(II) and Zn(II) borates. Mononuclear complexes of these metals are obtained that coordinated to NO sites of LOR ligand molecule. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV-Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and ESR spectral studies, conductivity measurements, thermogravimetric analyses (TG-DTG) and further confirmed by X-ray powder diffraction. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The data show that the complexes have composition of ML2 type except for Fe(II) where the type is [ML3]. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion for all the complexes. The antimicrobial data reveals that LOR ligand in solution show inhibition capacity less or sometimes more than the corresponding complexes against all the species under study. In order to establish their future potential in biomedical applications, anticancer evaluation studies against standard breast cancer cell lines (MCF7) was performed using different concentrations. The obtained results indicate high inhibition activity for Cr(III), Fe(II) and Cu(II) complexes against breast cancer cell line (MCF7) and recommends them for testing as antitumor agents.

  3. Antimicrobial coatings—obtaining and characterization

    Indian Academy of Sciences (India)

    Therefore, the antimicrobial activities and mechanisms of coatings for several pathogenic bacteria (Bacilius cereus and Staphylococcus aureus) were investigated. It was demonstrated that the obtained material with silver nanoparticles keep their antimicrobial effect even if they are subjected to several cycles of washing ...

  4. Antimicrobial coatings — obtaining and characterization

    Indian Academy of Sciences (India)

    With the advent of nanotechnology, it was attempted to replace the biocides from antimicrobial paints with vari- ous nano-sized substances such as: zinc oxide, titanium di- oxide and silver (Niegisch et al 2002). The development of antimicrobial nanocoatings through the green chemistry methods could be a promising way ...

  5. Microwave-assisted green synthesis and antimicrobial activity of ...

    African Journals Online (AJOL)

    The AgNPs were characterized by the Ultraviolet-visible (UV-vis) spectral analysis, Dynamic Light Scattering (DLS) zetasizer analysis, Transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis and Fourier transform infrared (FT-IR) spectroscopy. The antimicrobial assays of AgNPs were carried out against ...

  6. Synthesis and evaluation of antioxidant and antimicrobial activities ...

    African Journals Online (AJOL)

    Purpose: To synthesize and evaluate Schiff base Tin (II) complexes for antioxidant and antimicrobial activities. Methods: The complexes of Tin (II) chloride with various Schiff base derivative of 2-Hydroxy-1- naphthaldehyde (HN) were synthesized and characterized by various physiochemical techniques, including elemental ...

  7. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging; Filme ativo de poli(cloreto de vinila)/prata: sintese, caracterizacao e avaliacao como embalagem ativa antimicrobiana

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio, E-mail: lilianrodribraga@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF, (Brazil)

    2015-07-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm{sup -1} and 1165 cm{sup -1} bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  8. Synthesis and Evaluation of Some Coumarin Containing Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Sayali D. Kudale

    2012-01-01

    Full Text Available A series of the Schiff’s bases incorporating coumarin and chalcone moeities, 3-(4-(4-(substituted phenylprop-1-ene-3-one phenylimino methyl-4-chloro-2h-chromen-2-one 4(a-g were synthesized as potential antimicrobial agents. These compounds were characterized on the basis of their spectral (IR, 1H NMR data and evaluated for antimicrobial activity in vitro against gram positive and gram negative bacteria and fungi. Compound 4b was found to be most active with an MIC of 20 µg/mL against all the tested organisms.

  9. Synthesis, characterization, antimicrobial and enzymatic activity of 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione

    Science.gov (United States)

    Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Fátima C. Guedes da Silva, M.; Sulaiman, Othman; Rahman, Syed Ziaur; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran

    2011-12-01

    The crystal structure of the title compound, 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione has been determined by single crystal X-ray diffraction. It crystallizes in the monoclinic space group P2 1/c with Z = 4. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. The compound showed potential antimicrobial activity comparable to that of clinically used antimicrobial agents against selected microorganisms. It has selective and moderate inhibitory activity on butyryl cholinesterase enzyme and could serve as potential lead compound for synthesis of more bioactive derivatives.

  10. Synthesis, Characterization and Antimicrobial Activity of Metal Chelates of 5-[4-Chloro phenyl(1, 3, 4thiadiazol-2-ylamino methylene]-8-hydroxy quinoline

    Directory of Open Access Journals (Sweden)

    Divyesh K. Patel

    2009-01-01

    Full Text Available 5-Chloromethyl-8-quinolinol was condensed stoichiometrically with 5-(4-chlorophenyl-(1,3,4 thiadiazol-2-ylamine in the presence of sodium bicarbonate. The resulting 5-[4-chlorophenyl-(1,3,4thiadiazol-2-ylamino methylene]-8-quinolinol (CTAQ was characterized by elemental analysis and spectral studies. The transition metal chelates viz. Cu2+, Ni2+, Co2+, Mn2+ and Zn2+ of CTAQ were prepared and characterized by metal-ligand (M:L ratio, IR and reflectance spectroscopies and magnetic properties. The antifungal activity of CTAQ and its metal chelates was screened against various fungi. The results show that all these samples are good antifungal agents.

  11. Synthesis, antimicrobial evaluation and QSAR studies of propionic acid derivatives

    Directory of Open Access Journals (Sweden)

    Sanjiv Kumar

    2017-02-01

    Full Text Available A series of Schiff bases (1–17 and esters (18–24 of propionic acid was synthesized in appreciable yield and characterized by physicochemical as well as spectral means. The synthesized compounds were evaluated in vitro for their antimicrobial activity against Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Gram negative bacterium Escherichia coli and fungal strains Candida albicans and Aspergillus niger by tube dilution method. Results of antimicrobial screening indicated that besides having good antibacterial activity, the synthesized compounds also displayed appreciable antifungal activity and compound 10 emerged as the most active antifungal agent (pMICca and pMICan = 1.93. The results of QSAR studies demonstrated that antibacterial, antifungal and overall antimicrobial activities of synthesized propionic acid derivatives were governed by the topological parameters, Kier’s alpha first order shape index (κα1 and valence first order molecular connectivity index (1χv.

  12. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  13. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA HAQ NAWAZ SHEIKH. Volume 39 Issue 4 August 2016 pp 943-952 ...

  14. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation.

    Science.gov (United States)

    Lluch, Cristina; Esteve-Zarzoso, Braulio; Bordons, Albert; Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2014-08-01

    In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine. The antimicrobial activity of the iodine-containing polyurethanes is demonstrated by its capacity to inhibit the growth of Staphylococcus aureus, and Candida albicans in agar media. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action

    Directory of Open Access Journals (Sweden)

    Dina Ahmed Mosselhy

    2016-03-01

    Full Text Available Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles (SiO2 NPs can be used as elegant carriers for antibiotics to prolong their release. Our goal is the preparation and characterization of SiO2-gentamicin nanohybrids for their potential antimicrobial administration in orthopedic applications. In vitro gentamicin release profile from the nanohybrids (gentamicin-conjugated SiO2 NPs prepared by the base-catalyzed precipitation exhibited fast release (21.4% during the first 24 h and further extension with 43.9% release during the five-day experiment. Antimicrobial studies of the SiO2-gentamicin nanohybrids versus native SiO2 NPs and free gentamicin were performed against Bacillus subtilis (B. subtilis, Pseudomonas fluorescens (P. fluorescens and Escherichia coli (E. coli. SiO2-gentamicin nanohybrids were most effective against B. subtilis. SiO2 NPs play no antimicrobial role. Parallel antimicrobial studies for the filter-sterilized gentamicin were performed to assess the effect of ultraviolet (UV-irradiation on gentamicin. In summary, the initial fast gentamicin release fits the need for high concentration of antibiotics after orthopedic surgical interventions. Moreover, the extended release justifies the promising antimicrobial administration of the nanohybrids in bone applications.

  16. Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action.

    Science.gov (United States)

    Mosselhy, Dina Ahmed; Ge, Yanling; Gasik, Michael; Nordström, Katrina; Natri, Olli; Hannula, Simo-Pekka

    2016-03-05

    Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles (SiO₂ NPs) can be used as elegant carriers for antibiotics to prolong their release. Our goal is the preparation and characterization of SiO₂-gentamicin nanohybrids for their potential antimicrobial administration in orthopedic applications. In vitro gentamicin release profile from the nanohybrids (gentamicin-conjugated SiO₂ NPs) prepared by the base-catalyzed precipitation exhibited fast release (21.4%) during the first 24 h and further extension with 43.9% release during the five-day experiment. Antimicrobial studies of the SiO₂-gentamicin nanohybrids versus native SiO₂ NPs and free gentamicin were performed against Bacillus subtilis ( B. subtilis ), Pseudomonas fluorescens ( P. fluorescens ) and Escherichia coli ( E. coli ). SiO₂-gentamicin nanohybrids were most effective against B. subtilis . SiO₂ NPs play no antimicrobial role. Parallel antimicrobial studies for the filter-sterilized gentamicin were performed to assess the effect of ultraviolet (UV)-irradiation on gentamicin. In summary, the initial fast gentamicin release fits the need for high concentration of antibiotics after orthopedic surgical interventions. Moreover, the extended release justifies the promising antimicrobial administration of the nanohybrids in bone applications.

  17. Synthesis, Antimicrobial, and Computational Evaluation of Novel Isobutylchalcones as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Afzal Basha Shaik

    2017-01-01

    Full Text Available A series of 25 new chalcones were synthesized by Claisen-Schmidt condensation, well characterized by spectroscopic data, and evaluated for their antibacterial and antifungal activities by serial tube dilution method. Among the compounds tested, A3 and A6 containing 2,4-dichlorophenyl and 2,4-difluorophenyl moiety, respectively, were found to be the most potent in the series against both bacterial and fungal strains with a MIC value of 16 µg/mL in each case. Further computational evaluation for antimicrobial activity was performed by atom based 3D-QSAR using PHASE™ software in order to have a correlation between the observed activities and predicted activities. The computational studies were in agreement with the in vitro antimicrobial results and had identified the most promising chalcones as antimicrobial agents and the responsible structural features for the proposed activity.

  18. Novel of core-shell AlOOH/Cu nanostructures: Synthesis, characterization, antimicrobial activity and in vitro toxicity in Neuro-2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Bakina, O. V., E-mail: ovbakina@ispms.tsc.ru; Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru; Glazkova, E. A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, N. V., E-mail: nvsv@ispms.tsc.ru [Institute of Strength Physics and Materials Sciences SB RAS, Akademicheskii Pr. 2/4, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against the Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.

  19. Synthesis, characterization, antimicrobial and antitumor screening of some diorganotin(IV) complexes of 2-[(9H-Purin-6-ylimino)]-phenol.

    Science.gov (United States)

    Rehman, Wajid; Badshah, Amin; Khan, Salimullah; Tuyet, Le Thi Anh

    2009-10-01

    A new series of diorganotin(IV) complexes of the type R(2)SnL(2) (R=Me, Et, Bu, Ph, Bz and L=2-[(9H-Purin-6-ylimino)]-phenol) have been synthesized, characterized by elemental analyses and their solid state configuration has been determined by various spectroscopic (IR, (1)H, (13)C, (119)Sn NMR, (119m)Sn Mössbauer) techniques. The results obtained on the basis of these techniques are in full concurrence with the proposed 2:1 stoichiometry. The title complexes have been screened against various microorganisms, fungi and human cell line KB, the results obtained showed that the bis(2-[(9H-Purin-6-ylimino)]-phenolate) diphenyltin(IV) complex exhibited excellent activity against all types of bacteria and fungi used, while bis(2-[(9H-Purin-6-ylimino)]-phenolate) diethyltin(IV) complex was found to have promising antitumor activity.

  20. Synthesis, characterization, molecular modeling and antimicrobial activity of 2-(2-(ethylcarbamothioyl)hydrazinyl)-2-oxo- N-phenylacetamide copper complexes

    Science.gov (United States)

    El-Gammal, Ola A.

    2010-02-01

    Six Cu(II) complexes of 2-(2-(ethylcarbamothioyl)hydrazinyl)-2-oxo- N-phenylacetamide (H 3APET) have been prepared and characterized by elemental analyses, spectral (IR, UV-vis, 1H NMR and ESR) as well as magnetic and thermal measurements. The data revealed that the ligand acts as ON bidentate, ONS tridentate or ONNS tetradentate forming structure in which each copper atom is a tetrahedral or tetragonal environment. The bond length, bond angle, HOMO, LUMO, dipole moment and charges on the atoms have been calculated to confirm the geometry of the ligand and the investigated complexes. Kinetic parameters were determined for each thermal degradation stage of the Cu(II) complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and its complexes were screened against bacteria Staphylococcus aureus, Escherichia coli, Candida and fungi, Albicans and Aspergillus flavus using the inhibitory zone diameter.

  1. SHORT COMMUNICATION SYNTHESIS, CHARACTERIZATION ...

    African Journals Online (AJOL)

    Preferred Customer

    oxazine-. 2-ol methyl-2,3-diphenyl-2H-1,4-oxazine-2-ol (2). Characterization was performed using elemental analysis, UV-Vis and 1HNMR spectroscopy. The structure of this oxazine compound was determined by X-ray crystallography, and we ...

  2. Synthesis, characterization, DNA interaction and antimicrobial screening of isatin-based polypyridyl mixed-ligand Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    NATARAJAN RAMAN

    2010-06-01

    Full Text Available Several mixed ligand Cu(II/Zn(II complexes using 3-(phenyl-imino-1,3-dihydro-2H-indol-2-one (obtained by the condensation of isatin and aniline as the primary ligand and 1,10-phenanthroline (phen/2,2’-bipyridine (bpy as an additional ligand were synthesized and characterized analytically and spectroscopically by elemental analyses, magnetic susceptibility and molar conductance measurements, as well as by UV–Vis, IR, NMR and FAB mass spectroscopy. The interaction of the complexes with calf thymus (CT DNA was studied using absorption spectra, cyclic voltammetric and viscosity measurements. They exhibit absorption hypochromicity, and the specific viscosity increased during the binding of the complexes to calf thymus DNA. The shifts in the oxidation–reduction potential and changes in peak current on addition of DNA were shown by CV measurements. The Cu(II/Zn(II complexes were found to promote cleavage of pUC19 DNA from the supercoiled form I to the open circular form II and linear form III. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.

  3. Synthesis, Characterization, and Antimicrobial Activity of a Novel Trisazo Dye from 3-Amino-4H-thieno[3,4-c][1]benzopyran-4-one

    Directory of Open Access Journals (Sweden)

    Joseph Tsemeugne

    2018-01-01

    Full Text Available A new trisazo dye has been synthesized by coupling the diazonium ion of 3-amino-4H thieno[3,4-c][1]benzopyran-4-one with 2-tert-butyl-4-methoxyphenol. The newly prepared trisazo dye was characterized by its physical, elemental, and spectroscopic data. 2D-NMR (COSY, HSQC, and HMBC techniques were used to secure the structural assignments. The new trisazo dye (compound 7 along with precursors 3, 4, and 6 was screened by microdilution susceptibility assay for antibacterial and antifungal activities towards eight bacterial strains and three yeasts selected on the basis of their relevance as human pathogens. The results showed that compound 7 (MIC = 2–128 μg/mL was the most active as compared with its precursors. The most resistant microorganisms were V. cholerae NB2 and V. cholerae SG24, whereas the most sensitive microorganism was C. neoformans. The overall results of this study indicated that compound 7 had the greatest potential value against both yeasts and multidrug-resistant bacteria, so further investigation is warranted.

  4. Synthesis, Characterization, and Antimicrobial Activity of a Novel Trisazo Dye from 3-Amino-4H-thieno[3,4-c][1]benzopyran-4-one.

    Science.gov (United States)

    Tsemeugne, Joseph; Sopbué Fondjo, Emmanuel; Tamokou, Jean-de-Dieu; Rohand, Taoufik; Ngongang, Arnaud Djintchui; Kuiate, Jules Roger; Sondengam, Beibam Luc

    2018-01-01

    A new trisazo dye has been synthesized by coupling the diazonium ion of 3-amino-4H thieno[3,4-c][1]benzopyran-4-one with 2- tert -butyl-4-methoxyphenol. The newly prepared trisazo dye was characterized by its physical, elemental, and spectroscopic data. 2D-NMR (COSY, HSQC, and HMBC) techniques were used to secure the structural assignments. The new trisazo dye (compound 7 ) along with precursors 3 , 4 , and 6 was screened by microdilution susceptibility assay for antibacterial and antifungal activities towards eight bacterial strains and three yeasts selected on the basis of their relevance as human pathogens. The results showed that compound 7 (MIC = 2-128  μ g/mL) was the most active as compared with its precursors. The most resistant microorganisms were V. cholerae NB2 and V. cholerae SG24, whereas the most sensitive microorganism was C. neoformans. The overall results of this study indicated that compound 7 had the greatest potential value against both yeasts and multidrug-resistant bacteria, so further investigation is warranted.

  5. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    Science.gov (United States)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  6. Synthesis, spectroscopic characterization and structural investigations of a new charge transfer complex of 2,6-diaminopyridine with 3,5-dinitrobenzoic acid: DNA binding and antimicrobial studies

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq; Kumar, Sarvendra

    2013-03-01

    A new charge transfer (CT) complex [(DAPH)+(DNB)-] consisting of 2,6-diaminopyridine (DAP) as donor and 3,5-dinitrobenzoic acid (DNB-H) as acceptor, was synthesized and characterized by FTIR, 1H and 13C NMR, ESI mass spectroscopic and X-ray crystallographic techniques. The hydrogen bonding (N+-H⋯O-) plays an important role to consolidate the cation and anion together. CT complex shows a considerable interaction with Calf thymus DNA. The CT complex was also tested for its antibacterial activity against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and two Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa strains by using Tetracycline as standard, and antifungal property against Aspergillus niger, Candida albicans, and Penicillium sp. by using Nystatin as standard. The results were compared with standard drugs and significant conclusions were obtained. A polymeric net work through H-bonding interactions between neighboring moieties was observed. This has been attributed to the formation of 1:1 type CT complex.

  7. Synthesis, structural characterization and evaluation of catalytic and antimicrobial properties of new mononuclear Ag(I), Mn(II), Cu(II) and Pt(IV) complexes

    Science.gov (United States)

    Ali, Omyma A. M.; Abd El-Wahab, Zeinab H.; Ismail, Basmh A.

    2017-07-01

    New mononuclear complexes of composition [AgL(H2O)2]NO3·H2O, [MnL2Cl(H2O)]Cl.3½H2O, [CuL2Cl2].½H2O and [PtLCl3(H2O)]Cl·2H2O {where L was 1-(2-furylmethylene)-N-(3-phenylallylidene) methanamine} were synthesized and characterized by different techniques. From the analytical data, the stoichiometry of the complexes were 1:1 for Ag(I) and Pt(IV) complexes and 1:2 (M:L) for Mn(II) and Cu(II) complexes. Conductance data indicated that all complexes are electrolytic in nature while, Cu(II) complex was non-electrolyte. Spectroscopic data suggested that the ligand behaves as a neutral bidentate ligand towards the central metal ion with azomethine nitrogen and furan oxygen atoms as coordination sites. Tetrahedral structure has been proposed for Ag(I) complex, whereas the other complexes possess six coordinated octahedral geometry. TG-DTG study was done to track the thermal behavior of the complexes and the thermodynamic parameters were computed from the thermal data using Coats - Redfern method. The catalytic activity of the metal complexes was evaluated in the decomposition reaction of hydrogen peroxide at 313-333 K temperature range. The data reveal that metal complexes are effective in catalyzing the hydrogen peroxide decomposition and the decomposition percentage increased with temperature. The agar well diffusion technique was used to test the growth inhibition of the ligand and its complexes against different species of bacteria and fungi. The metal complexes are more potent in inhibiting the growth of microorganisms than the ligand and in some cases, the complexes were closed to and more active than the standard species.

  8. Synthesis and Antimicrobial Activity of SomeNovel Benzimidazolyl Chalcones

    Directory of Open Access Journals (Sweden)

    B. A. Baviskar

    2009-01-01

    Full Text Available Some novel benzimidazolyl chalcones were synthesized by condensation of N-(4-(1H-benzo[d]imidazol-2-ylphenylacetamide with aromatic aldehydes in presence of aqueous potassium hydroxide solution at room temperature. All the synthesized compounds were characterized on the basis of their IR, 1H NMR spectroscopic data and elemental analysis. All the compounds have been screened for antimicrobial activity by the cup-plate method.

  9. Isolation, Characterization and Antimicrobial Evaluation of Seed ...

    African Journals Online (AJOL)

    Powdered seed of J. gossypifolia was macerated using methanol as extracting solvent. The seed extract of Jatropha gossypifolia was subjected to phytochemical and antimicrobial investigation using standard screening procedures. The phytochemical studies revealed the presence of some secondary metabolites such as ...

  10. Antimicrobial coatings — obtaining and characterization

    Indian Academy of Sciences (India)

    ... activities and mechanisms of coatings for several pathogenic bacteria (Bacilius cereus and Staphylococcus aureus) were investigated. It was demonstrated that the obtained material with silver nanoparticles keep their antimicrobial effect even if they are subjected to several cycles of washing with water and detergent.

  11. Synthesis, characterization and antimicrobial potential of transition ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... chemistry. Coordination compounds are important due to their role in biological and chemical systems in various ways. It has been observed that metal complexes with appropriate ligands are chemically more ... hydrous Cobalt (II) chloride, Zinc (II) chloride, Mohr's salt, anhy- drous Manganese (II) chloride, ...

  12. Synthesis, Characterization, Antimicrobial Activity and Antioxidant ...

    African Journals Online (AJOL)

    MBI

    2015-12-08

    Dec 8, 2015 ... Transition metal complexes of Co(II) and Ni(II) with Schiff base ligand (HL) derived from condensation of 2- hydroxy-1-naphthaldehyde and ... coordination chemistry of these bases has been considerably enriched due to the .... It was complexed with Nickel. (II) chloride and Cobalt (II) chloride to obtain the.

  13. Synthesis, Characterization and Antimicrobial Activity of Mixed ...

    African Journals Online (AJOL)

    ADOWIE PERE

    phenanthroline, Salicylic acid, Mixed ligands-metal complexes, Transition metal, ... Cobalt is present in vitamin B12, a co-enzyme that plays significant roles in some biochemical processes. There are numerous lists of transition metals which are effective.

  14. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    construction of supramolecular blocks. In this context, Pyrazole derivatives are of particular interest because ... construction of new heterocycles. Their anti- microbial properties and molecular docking were ...... residues Thr58, Lys57 and Arg56 respectively of protein (Figure 2a), Alternatively, docking simulation with gyrase ...

  15. Synthesis, Characterization and Antimicrobial Studies of Some ...

    African Journals Online (AJOL)

    NICO

    1,3,5-thiadiazolium-2-thiolate 6(a–j) were prepared via a five step procedure from the starting material 1,3,5-triazine (1). Structures of all synthesized compounds were confirmed by spectral data and elemental analyses. Newly synthesized ...

  16. Synthesis, characterization and antimicrobial screening of hybrid ...

    Indian Academy of Sciences (India)

    drous potassium carbonate (0.02 mol) and morpholine. (0.01mol) in dry toluene was refluxed for about 8–. 10h. After completion of the reaction, potassium car- bonate was removed by filtration and excess of sol- vent was removed under reduced pressure. The obtained residues were filtered, dried and crystallized from.

  17. Synthesis, characterization and antimicrobial activity of some ...

    African Journals Online (AJOL)

    ... magnetic moment, molar conductivity, TGA, NMR, IR, UV-vis. and ESI-MS spectral techniques. All of the complexes except [Zn(L)(H2O)2] are paramagnetic. The CoCl2 gives a complex with 1:2 M:L ratio while the others form 1:1 non-ionic complexes with H2L. The ligand coordinated to the metal ions through the both OH ...

  18. Synthesis and Characterization of Antimicrobial Nanomaterials

    Science.gov (United States)

    2013-01-01

    2013-1007, 1 March 2013. 2. INTRODUCTION Throughout the plant and animal kingdoms , organisms possess mechanisms that actively protect against...phenomenon is of particular interest, as silver inhibits the growth of a wide range of pathogenic bacteria, fungi and viruses.19 Herein, we report...several examples of fortuitous silver nanoparticle formation by various species of bacteria, fungi , and plant extracts. 29 Biosynthesis of this type

  19. Synthesis, characterization and antimicrobial studies of transition ...

    African Journals Online (AJOL)

    A series of new biologically active complexes of Zn(II), Cu(II), Co(II) and Ni(II) with imidazole derivative have been synthesized. The synthesized chelating agent and metal(II) complexes were screened for antibacterial activities against four pathogenic species of bacteria namely; Eschereschi coli, Pseudomonas aeruginosa, ...

  20. Synthesis, characterization, thermal behavior and antimicrobial ...

    African Journals Online (AJOL)

    Reaction of the ligands, 3-methyl benzoic acid (mbH) and hydrazine with transition metal ions form the complexes of formulae, [M(N2H4)2(mb)2].H2O where M = Co(II) and Zn(II) at pH = 5-6, [M(N2H4)n(mb)2].xH2O where M = Ni(II), n = 2, x = 0 at pH = 5 and M = Cd, n = 1, x = 1 at pH = 6. The same acid also forms metal ...

  1. Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Marcos Díaz

    2009-01-01

    Full Text Available A silver-hydroxyapatite nanocomposite has been obtained by a colloidal chemical route and subsequent reduction process in H2/Ar atmosphere at 350∘C. This material has been characterized by TEM, XRD, and UV-Visible spectroscopy, showing the silver nanoparticles (∼65 nm supported onto the HA particles (∼130 nm surface without a high degree of agglomeration. The bactericidal effect against common Gram-positive and Gram-negative bacteria has been also investigated. The results indicated a high antimicrobial activity for Staphylococcus aureus, Pneumococcus and Escherichia coli, so this material can be a promising antimicrobial biomaterial for implant and reconstructive surgery applications.

  2. Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis.

    Science.gov (United States)

    Arockiaraj, Jesu; Chaurasia, Mukesh Kumar; Kumaresan, Venkatesh; Palanisamy, Rajesh; Harikrishnan, Ramasamy; Pasupuleti, Mukesh; Kasi, Marimuthu

    2015-04-01

    Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which

  3. Characterization of an Antimicrobial Extract from Elaeagnus angustifolia

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Dehghan

    2014-07-01

    Full Text Available Background: According to ethnobotanical data, Elaeagnus angustifolia fruit has wound healing activity, anti-inflammatory effect and antifebrile prosperities. Objectives: This study was performed as to the best of our knowledge; there has been no scientific report on the characterization of antimicrobial effect of E. angustifolia extract. Materials and Methods: An aqueous extract of Elaeagnus angustifolia was prepared and antimicrobial activity tests were performed on various target cultures. Minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of the extract was done using the broth dilution technique. To characterize the extract, shelf life, thermal and pH stability, effects of detergents such as Tween 80, Tween 20, Triton X100, toluene and enzymes on the antimicrobial activity of Elaeagnus angustifolia extract, were examined. Results: The MIC values ranged from 7.5 to 0.1 mg/mL, showing maximum activity (1.62 mg/mL against E. coli. Similarly, the MBC of the extract against E. coli was 1.62 mg/mL. Antimicrobial activity of the extract was relatively stable when kept in the refrigerator for 60 days. The antimicrobial activity of Elaeagnus angustifolia extract was absolutely stable at temperatures up to 700° C. After exposure of the Elaeagnus angustifolia extract to different pH solutions in the range of 4-10, almost 100% residual activity was found against E. coli at pH 4, 5, 6, and 7. Treatment of the extract with detergents, lipase and lysozyme eliminated its antimicrobial activity. Conclusions: Our study gives an indication of the presence of promising antimicrobial compounds and provides basic information about the nature of the Elaeagnus angustifolia extract. Future studies should elucidate the components responsible for antimicrobial activity of these extracts against target cultures.

  4. Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity

    Science.gov (United States)

    Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna

    2017-12-01

    The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.

  5. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  6. Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity

    Science.gov (United States)

    Sahni, Geetika; Panwar, Amit; Kaur, Balpreet

    2015-02-01

    A controlled "green synthesis" approach to synthesize silver nanoparticles by Allium cepa and Musa acuminata plant extract has been reported. The effect of different process parameters, such as pH, temperature and time, on synthesis of Ag nanoparticles from plant extracts has been highlighted. The work reports an easy approach to control the kinetics of interaction of metal ions with reducing agents, stabilized by ammonia to achieve sub-10 nm particles with narrow size distribution. The nanoparticles have been characterized by UV-Visible spectra and TEM analysis. Excellent antimicrobial activity at extremely low concentration of the nanoparticles was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Fusarium oxysporum which may allow their exploitation as a new generation nanoproduct in biomedical and agricultural applications.

  7. Characterization of a broad range antimicrobial substance from Bacillus cereus.

    Science.gov (United States)

    Risøen, P A; Rønning, P; Hegna, I K; Kolstø, A-B

    2004-01-01

    The aim of this research was to isolate and characterize an antimicrobial substance from the Bacillus cereus type strain ATCC 14579. A substance with antimicrobial activity was isolated from B. cereus ATCC 14579. The substance was produced during late exponential growth and well into the stationary phase with a maximum 9 h after inoculation. The inhibitory substance was purified by reverse-phase HPLC and shown to be highly active against closely related Bacillus spp. Clinically relevant species such as Staphylococcus aureus and Micrococcus luteus were also inhibited. The substance was characterized as a bacteriocin-like inhibitory substance (BLIS) with a molecular mass of ca 3.4 kDa. The BLIS was very heat stable, and sensitive only to pronase E and proteinase K. Antimicrobial activity was stable and high in the pH range of 2.0-9.0, and relatively unaffected by organic chemicals. An antimicrobial substance produced by the B. cereus type strain ATCC 14579 was characterized, with a wide spectrum of activity and the potential to be applied as a control agent against pathogenic bacteria. The present study is the first report of a substance with antimicrobial activity from the B. cereus type strain.

  8. Characterization of shallot, an antimicrobial extract of allium ascalonicum

    International Nuclear Information System (INIS)

    Amin, M.; Montazeri, E.A.; Mashhadizadeh, M.A.; Sheikh, A.F.

    2009-01-01

    Objective: The objective of this study was characterization of antimicrobial extract of shallot in terms of its stability at different pH, Heat, enzymes and detergents and also determination of its MIC and shelf life. Methodology: Active fraction was determined by column chromatography and agar diffusion test. The amount of carbohydrate and protein in different forms of shallot extract were estimated. Stability of antimicrobial activity of shallot extract at different pH and temperature, solubility in different solvent, determination of shelf life and susceptibility to enzymes and detergents were evaluated. Results: Shallot extract was active against microbes at pH 4-8. Relative activities of shallot extract at temperature -7 to 121 deg. C were 88 to 100 %. Extract of shallot only was soluble in dimethyl sulphoxide, dimethyl formamide and water. The enzymes and detergents used in this study had no effect on antimicrobial activity on water extract of shallot. Relative antimicrobial activity at incubation times of one hour to 6 mounts were 94 to 100 %. Conclusion: In this study antimicrobial properties of shallot were investigated for discovery of a new antibiotic. Based on this the antimicrobial compound can be an effective medicine for treatment of dermatomycosis and other infectious diseases. (author)

  9. Synthesis of new chalcone derivatives and their antimicrobial studies

    Science.gov (United States)

    Noorulhaq, Syed Shah Najib; Baseer, Mohammad Abdul

    2017-11-01

    Chalcones are the significant constituent of natural sources. Chalcones posses 1,3-diaryl-1-ones frame which withdraws the recognition of biological importance. Chalcones are not possible to separate from plants because it is transformed into flavonones due to the presence of enzyme chalcone synthetase. Chalcones are prepared by the Claisen-Schimdt condensation of equimolar ratios of aldehyde and ketone in presence of base. With this vision we accounted here the synthesis of some novel chalcones via Clasien-Schimdt condensation of substituted ketones containing hydroxy, chloro, fluoro groups and 4-(4-Methyl-piperazin-1-yl)-benzaldehyde in presence of alkali at room temperature. These recently synthesized γ, β unsaturated compounds that is chalcones were screened for their antimicrobial studies which show modest to good activity.

  10. Synthesis, spectral studies, antimicrobial and insect antifeedant potent keto oxiranes

    Directory of Open Access Journals (Sweden)

    Ganesamoorthy Thirunarayanan

    2016-09-01

    Full Text Available A series of ee (αS, βR biphenyl keto oxiranes (biphenyl-4-yl[3-(substituted phenyloxiran-2-yl]methanones have been synthesized by phase transfer catalysed epoxidation of biphenyl 2E-chalcones. The yields of oxiranes are more than 95%. The synthesized oxiranes have been characterized by IR, 1H, 13C and GC–MS spectra. The spectral data are correlated with Hammett substituent constants and Swain–Lupton parameters. From the regression analyses, the effect of substituent on the group frequencies has been predicted. The antimicrobial and insect antifeedant activities of all synthesized oxiranes have been evaluated.

  11. Synthesis, antimicrobial and antioxidative activity of some new isatin derivatives

    Directory of Open Access Journals (Sweden)

    Šekularac Gavrilo M.

    2014-01-01

    Full Text Available The isatin derivatives, Schiff bases, were synthesized by the reaction of isatin and various substituted primary amines and characterized by several spectroscopic methods. Investigation of the antimicrobial activity of the synthesized compounds was performed by the agar dilution method, against different strains of bacteria and one fungi. The antioxidative activity of the synthesized compounds was also determined. Some of the compounds have shown the significant activity against the selected strains of microorganisms and the antioxidative activity. [Projekat Ministarstva nauke Republike Srbije, br. 172013 i III 46010

  12. Synthesis, Characterization and Antimicrobial Studies of a New Mannich Base N-[Morpholino(phenylmethyl]acetamide and Its Cobalt(II, Nickel(II and Copper(II Metal Complexes

    Directory of Open Access Journals (Sweden)

    L. Muruganandam

    2012-01-01

    Full Text Available A new Mannich base N-[morpholino(phenylmethyl]acetamide (MBA, was synthesized and characterized by spectral studies. Chelates of MBA with cobalt(II, nickel(II and copper(II ions were prepared and characterized by elemental analyses, IR and UV spectral studies. MBA was found to act as a bidentate ligand, bonding through the carbonyl oxygen of acetamide group and CNC nitrogen of morpholine moiety in all the complexes. Based on the magnetic moment values and UV-Visible spectral data, tetracoordinate geometry for nitrato complexes and hexacoordinate geometry for sulphato complexes were assigned. The antimicrobial studies show that the Co(II nitrato complex is more active than the other complexes.

  13. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Directory of Open Access Journals (Sweden)

    Giulio Benetti

    2017-03-01

    Full Text Available Ultrathin coatings based on bi-elemental nanoparticles (NPs are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  14. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Science.gov (United States)

    Benetti, Giulio; Cavaliere, Emanuele; Canteri, Adalberto; Landini, Giulia; Rossolini, Gian Maria; Pallecchi, Lucia; Chiodi, Mirco; Van Bael, Margriet J.; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-03-01

    Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  15. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity

    Directory of Open Access Journals (Sweden)

    N.C. Desai

    2014-12-01

    Full Text Available We have described the conventional and microwave method for the synthesis of N-(4-((2-chloroquinolin-3-ylmethylene-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl(arylamides 3a–l. It is observed that the solvent-free microwave thermolysis is a convenient, rapid, high-yielding, and environmental friendly protocol for the synthesis of quinoline based imidazole derivatives when compared with conventional reaction in a solution phase. Antimicrobial activity of the newly synthesized compounds is screened in vitro on the following microbial cultures: Escherichia coli (MTCC 443, Pseudomonas aeruginosa (MTCC 1688, Staphylococcus aureus (MTCC 96, Streptococcus pyogenes (MTCC 442, Candida albicans (MTCC 227, Aspergillus niger (MTCC 282, Aspergillus clavatus (MTCC 1323. All the synthesized bio-active molecules are tested for their in vitro antimicrobial activity by bioassay namely serial broth dilution. Among these compounds 3c, 3d, 3f, 3h and 3j show significant potency against different microbial strains. All the compounds have been characterized by IR, 1H NMR, 13C NMR and mass spectral data. On the basis of statistical analysis, it is observed that these compounds give significant co-relation.

  16. Synthesis of Copper Nanoparticles Using a Different Method: Determination of Its Antioxidant and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Demet Demirci Gültekin

    2016-10-01

    Full Text Available In this study, it was aimed to obtain copper oxide nanoparticles (CuO NPs with the method of green synthesis by using peroxidase enzymes which were partly purified from fig (Ficus carica. Copper (II oxide nanoparticles are successfully synthesized with the green synthesis method on the experiments we performed.  UV-VIS spectroscopy of the characterization of acquired CuO NPs were performed with Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD. Optimum activation temperature for green synthesis was observed to be in 30 min, pH:8, at 25 oC and in the concentration of 1mM CuCl2. By using peroxidase enzymes with green synthesis, it was found out the results of SEM and XRD measurements that acquired CuO NPs were in the size of 50-120 nm. Afterwards, the antioxidant and antibacterial activities of these nanoparticles were measured and it was understood from the obtained results that CuO NPs had both antioxidant and antimicrobial activities.

  17. Synthesis, characterization, antimicrobial screening and computational studies of 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one

    Science.gov (United States)

    Obasi, L. N.; Kaior, G. U.; Rhyman, L.; Alswaidan, Ibrahim A.; Fun, Hoong-Kun; Ramasami, P.

    2016-09-01

    The Schiff base, 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (TPMC/AAP) was synthesized by the condensation of 4-aminoantipyrine (4-amino-1,5-dimethyl-2-phenylpyrazole-3-one) and trans-para-methoxycinnamaldehyde (trans-3,4-methoxyphenyl-2-propenal) in dry methanol at 75 °C. The compound was characterized using elemental microanalysis, IR, NMR, UV spectroscopies and single-crystal X-ray crystallography. The X-ray structure determination shows that the Schiff base, (TPMC/AAP) is orthorhombic with the Pbca space group. The anti-microbial screening of the compound was carried out with Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudemonas aeruginosa, Candida albicans and Aspergillus niger using agar well diffusion method. The Schiff base possesses significant antimicrobial activity. The minimum inhibitory concentration (MIC) of the compound was also determined and the activity was compared with that of conventional drugs ciprofloxacin and ketoconazole. The compound (TPMC/AAP) showed varying activity against the cultured bacteria and fungi used. To complement the experimental data, density functional theory (DFT) was used to have deeper understanding into the molecular parameters and infrared spectra of the compound.

  18. Synthesis and characterization of Taurine

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-10-01

    Full Text Available Have been obtained 2-aminoethanesulfonic acid (taurine from ethanolamine, sulfuric acid and sodium sulfite during the synthesis in laboratory condition. The process involves two steps of reactions, the first was esterification of ethanolamine with sulfuric acid to produce the intermediate product of 2-aminoethyl ester which than was extended to the second step by sulfonation with sodium sulfite to produce 2-aminoethanesulfonic acid. Resulting product was analyzed using 1H-NMR, IR, FAB-MS analysis and examined purity characterizations of the synthesized products. DOI: http://dx.doi.org/10.5564/mjc.v14i0.200 Mongolian Journal of Chemistry 14 (40, 2013, p57-60

  19. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains

    Science.gov (United States)

    Torres, Ieda Maria Sapateiro; Bento, Etiene Barbosa; Almeida, Larissa da Cunha; de Sá, Luisa Zaiden Carvalho Martins; Lima, Eliana Martins

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs. PMID:24031917

  20. Synthesis, spectroscopic characterization, molecular modeling and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) complexes containing the tetradentate aza Schiff base ligand

    Science.gov (United States)

    Chandra, Sulekh; Ruchi

    2013-02-01

    Mn(II), Co(II), Ni(II), and Cu(II) complexes with a tetradentate macrocyclic ligand [1.2.5.6tetraoxo-3,4,7,8tetraaza-(1,2,3,4,5,6,7,8)tetrabenzene(L)] were synthesized and characterized by elemental analysis, molar conductance measurements, mass, nmr, i.r., electronic and e.p.r. spectral studies. All the complexes are non electrolytes in nature and may be formulated as [M(L)X2] [where, M = Mn(II), Co(II), Ni(II), Cu(II) and X = Cl-, CH3COO-]. On the basis of i.r., electronic and e.p.r. spectral studies a distorted octahedral geometry has been assigned for all complexes. The antimicrobial activities and LD50 values of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against two different species of bacteria and plant pathogenic fungi.

  1. Synthesis and evaluation of antimicrobial and anthelmintic activity of ...

    Indian Academy of Sciences (India)

    compounds were screened for antimicrobial activity and anthelmintic activity. The structural assignments of compounds were made on the basis of spectroscopic data and elemental analysis. Keywords. 10H-phenothiazines; Smiles rearrangement; sulphones; ribofuranosides; antimicrobial activity; anthelmintic activity. 1.

  2. Silver nanoparticles: green synthesis and their antimicrobial activities.

    Science.gov (United States)

    Sharma, Virender K; Yngard, Ria A; Lin, Yekaterina

    2009-01-30

    This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.

  3. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies

    Directory of Open Access Journals (Sweden)

    Pasupuleti VR

    2013-09-01

    Full Text Available Visweswara Rao Pasupuleti,1 TNVKV Prasad,2 Rayees Ahmad Shiekh,3 Satheesh Krishna Balam,4 Ganapathi Narasimhulu,5 Cirandur Suresh Reddy,4 Ismail Ab Rahman,3 Siew Hua Gan1 1Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 2Institute of Frontier Technology, Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Tirupati, Andhra Pradesh, India; 3Biomaterial Research Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 4Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India; 5Pharmacology and Toxicology, Faculty of Pharmacy, University of Technology Mara, Malaysia Abstract: Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the

  4. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    Science.gov (United States)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  5. Antimicrobial compounds in polyethylene films - characterization and content measurement techniques

    International Nuclear Information System (INIS)

    Pires, Marcia; Santos, Ramon V.; Perao, Leandro; Ellwangler, Manoela W.; Nonemacher, Regina F.; Moraes, Lilian T. de; Gorski, Sandro; Staub, Simone; Petzhold, Cesar L.

    2009-01-01

    Developments have been done in the packaging market to attend the continuous changes in consumer demands and also to keep safety and shelf life of products during transportation and storage. Active packaging is the most innovative concepts in the market. It has been defined as a packaging that changes its conditions to extend shelf life. The objective of this work is the production and characterization of active polyethylene films with antimicrobial compounds. The initial results show that analytical techniques as RX fluorescence and FTIR can be used to characterize and quantify these compounds in polyethylene films. (author)

  6. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    International Nuclear Information System (INIS)

    Yu, Juhong; Chu, Xiaobing; Cai, Yurong; Tong, Peijian; Yao, Juming

    2014-01-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic

  7. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  8. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of saturated polyester and nanocomposites derived from glycolyzed PET waste ... construction industries. PET is widely used in the packaging of beverages and drugs. ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the estimation of the maximum. 277 ...

  9. Synthesis, characterization and application of semiconducting oxide ...

    Indian Academy of Sciences (India)

    Nanostructured; Cu2O nanostructures; electrolysis based oxidation; aligned ZnO nanorods. Abstract. In the present study, we report the synthesis, characterization and application of nanostructured oxide materials. The oxide ... The copper electrode served as a sacrificial anode for the synthesis of different nanostructures.

  10. Synthesis, Characterization and Antibacterial Activity of Imidazole ...

    African Journals Online (AJOL)

    NICO

    Synthesis, Characterization and Antibacterial Activity of. Imidazole Derivatives of 1,10-Phenanthroline and their .... Synthesis of Ligands (L1, L2). Ligands (L1. , L2) were synthesized by a method similar to one ... (50 mL). Dropwise addition of concentrated aqueaus ammonia to neutralize gave a yellow precipitate, which was ...

  11. Synthesis and characterization of tetraethylammonium tetrachloro ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and characterization of tetraethylammonium tetrachloro- cobaltate crystals. M A KANDHASWAMY and V SRINIVASAN*. Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India. MS received 7 February 2000; revised 27 December 2001. Abstract.

  12. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    Directory of Open Access Journals (Sweden)

    Youssef MM

    2016-03-01

    Full Text Available Magdy M Youssef,1,2 Reem K Arafa,3,4 Mohamed A Ismail1,21Department of Chemistry, College of Science, King Faisal University, Hofuf, Saudi Arabia; 2Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 4Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, EgyptAbstract: This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 µM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 µM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50, compound concentration causing 100% growth inhibition of tested cell (TGI, and compound concentration causing 50% lethality of tested

  13. Temporin A and its retro-analogues: synthesis, conformational analysis and antimicrobial activities.

    Science.gov (United States)

    Kamysz, Wojciech; Mickiewicz, Beata; Rodziewicz-Motowidło, Sylwia; Greber, Katarzyna; Okrój, Marcin

    2006-08-01

    Temporin A (TA) is a hydrophobic peptide isolated from the skin of the European red frog Rana temporaria. Strong antimicrobial activity against gram-positive cocci and Candida, as well as its small molecular weight (10-13 aa residues), makes TA an interesting antimicrobial compound. However, its synthesis is rather problematic. Here, the synthesis of two retro-analogues of TA--retro-TA and (6-1)(7-13)-TA--is reported. The synthesis of retro-TA was performed without any problems, while during the synthesis of (6-1)(7-13)-TA problems similar to those encountered during the synthesis of TA were faced. Antimicrobial assays showed minimal inhibitory concentration (MIC) values of retro-TA to be, in most cases, only one dilution higher than those of original TA, but still remained relatively low. An analysis of the circular dichroism spectra of the peptides shows that TA and (6-1)(7-13)-TA adopt an alpha-helical structure in a hydrophobic environment, while retro-TA forms mainly unordered conformation under both hydrophobic and hydrophilic conditions. One can postulate that differences in conformation of the peptide chain might be responsible for the lower antimicrobial activity of retro-TA as compared to that of the parent molecule. In any case, retro-TA can be interesting owing to its simple and nonproblematic synthesis. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.

  14. Synthesis and Antimicrobial Activity of New a-Aminophosphonic ...

    African Journals Online (AJOL)

    NJD

    The antimicrobial and antifungal activities of these compounds were evaluated and they exhibited significant activity. KEYWORDS. Phenyl glycine ethyl ester, aryl aldehydes, diethyl/dimethylphosphite, antimicrobial activity. 1. Introduction ... biologically attractive peptide mimics which have been employed, for example, as ...

  15. Synthesis, characterisation and antimicrobial studies of mixed nickel ...

    African Journals Online (AJOL)

    Conductance values indicated a 1:1 electrolyte for the complexes. The antimicrobial activities of the ligands and their mixed ligand complexes were screened using Agar diffusion method. It was found that the mixed metal complexes have higher antimicrobial activity than the free ligands. Keywords: Benzylhydrazone ...

  16. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Nakuleshwar Dut Jasuja

    2014-12-01

    Full Text Available In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO3 with the 5 mL plant peels extract (0.4% w/v at different NaOH concentration (5 mL. The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 g/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 µg/mL, 38 µg/mL, 35 µg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin.

  17. Characterization and antimicrobial activity of a pharmaceutical microemulsion.

    Science.gov (United States)

    Zhang, Hui; Cui, Yinan; Zhu, Songming; Feng, Fengqin; Zheng, Xiaodong

    2010-08-16

    The characterization of a pharmaceutical microemulsion system with glycerol monolaurate as oil, ethanol as cosurfactant, Tween 40 as surfactant, sodium diacetate and water, and the antimicrobial activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Aspergillus niger and Penicillium expansum have been studied. The influence of ethanol and sodium diacetate on oil solubilization capability was clearly reflected in the phase behavior of these systems. One microemulsion formulation was obtained and remained stable by physical stability studies. The antimicrobial assay using solid medium diffusion method showed that the prepared microemulsion was comparable to the commonly used antimicrobials as positive controls. The kinetics of killing experiments demonstrated that the microemulsion caused a complete loss of viability of bacterial cells (E. coli, S. aureus and B. subtilis) in 1 min, killed over 99% A. niger and P. expansum spores and 99.9% C. albicans cells rapidly within 2 min and resulted in a complete loss of fungal viability in 5 min. The fast killing kinetics of the microemulsion was in good agreement with the transmission electron microscopy observations, indicating the antimembrane activity of the microemulsion on bacterial and fungal cells due to the disruption and dysfunction of biological membranes and cell walls. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Synthesis of 2-phenylamino-thiazole derivatives as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Dominique Serge Ngono Bikobo

    2017-11-01

    Full Text Available A series of 10 new N-phenyl-4-(4-(thiazol-2-yl-phenyl-thiazol-2-amine derivatives (3a–j and 4 new 5-(2-(phenylamino-thiazol-4-yl-benzamide ethers (3′a–d were synthesized from 4-(2-phenylamino-thiazol-4-yl-benzothioamide and 2-hydroxy-5-(2-(phenylamino-thiazol-4-yl-benzamide with several α-halo-ketones, by the Hantzsch reaction. All compounds were characterized by elemental analysis and spectral data (MS, FT-IR and NMR. The final 14 substances were screened for antimicrobial activity, against two Gram-positive, one Gram-negative bacterial strains, and two fungal strains. Some of the synthesized molecules were more potent than the reference drugs, against the pathogenic strains used. The antibacterial activity of compounds was more pronounced against the Gram-positive strains. Compound 3e manifested the highest growth inhibitory effect against all pathogens tested (MIC of 31.25 μg/mL against the Gram-positive bacterial strains and 7.81 μg/mL against the Candida strains.

  19. Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens.

    Science.gov (United States)

    Wang, Chao; Singh, Priyanka; Kim, Yeon Ju; Mathiyalagan, Ramya; Myagmarjav, Davaajargal; Wang, Dandan; Jin, Chi-Gyu; Yang, Deok Chun

    2016-11-01

    Various microorganisms were found to be cable of synthesizing gold and silver nanoparticles when gold and silver salts were supplied in the reaction system. The main objective of this study was to evaluate the extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505]. The biosynthesized gold and silver nanoparticles were characterized by ultraviolet-visible spectroscopy (UV-Vis), field emission transmission electron micrograph (FE-TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, and dynamic light scattering (DLS). Moreover, the nanoparticles were evaluated for antimicrobial potential against various pathogenic microorganisms such as Vibrio parahaemolyticus [ATCC 33844], Salmonella enterica [ATCC 13076], Staphylococcus aureus [ATCC 6538], Bacillus anthracis [NCTC 10340], Bacillus cereus [ATCC 14579], Escherichia coli [ATCC 10798], and Candida albicans [KACC 30062]. The silver nanoparticles were found as a potent antimicrobial agent whereas gold nanoparticles not showed any ability. Therefore, the current study describes the simple, green, and extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505].

  20. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives

    Science.gov (United States)

    Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan

    2013-05-01

    Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.

  1. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Alaa A. A. Aljabali

    2018-03-01

    Full Text Available (1 Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2 Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of “greener” protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3 Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM, Scanning electron microscope (SEM, and Atomic Force microscopy (AFM, X-ray diffraction (XRD, UV-visible spectroscopy, energy dispersive X-ray (EDX, and thermogravimetric analyses (TGA; (4 Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents.

  2. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity.

    Science.gov (United States)

    Shende, Sudhir; Ingle, Avinash P; Gade, Aniket; Rai, Mahendra

    2015-06-01

    We report an eco-friendly method for the synthesis of copper nanoparticles (CuNPs) using Citron juice (Citrus medica Linn.), which is nontoxic and cheap. The biogenic copper nanoparticles were characterized by UV-Vis spectrophotometer showing a typical resonance (SPR) at about 631 nm which is specific for CuNPs. Nanoparticles tracking analysis by NanoSight-LM20 showed the particles in the range of 10-60 nm with the concentration of 2.18 × 10(8) particles per ml. X-ray diffraction revealed the FCC nature of nanoparticles with an average size of 20 nm. The antimicrobial activity of CuNPs was determined by Kirby-Bauer disk diffusion method against some selected species of bacteria and plant pathogenic fungi. It was reported that the synthesized CuNPs demonstrated a significant inhibitory activity against Escherichia coli followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Propionibacterium acnes and Salmonella typhi. Among the plant pathogenic fungi tested, Fusarium culmorum was found to be most sensitive followed by F. oxysporum and F. graminearum. The novelty of this work is that for the first time citron juice was used for the synthesis of CuNPs.

  3. Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects

    Science.gov (United States)

    Stanić, Vojislav; Dimitrijević, Suzana; Antonović, Dušan G.; Jokić, Bojan M.; Zec, Slavica P.; Tanasković, Sladjana T.; Raičević, Slavica

    2014-01-01

    Synthetic biomaterials based on fluorine substituted hydroxyapatite are potentially attractive for orthopedic and dental implant applications. The new synthesis of fluorine substituted hydroxyapatite samples were done by neutralization, which consists of adding the solution of HF and H3PO4 in suspension of Ca(OH)2. Characterization studies from XRD, SEM and FTIR spectra showed that crystals are obtained with apatite structure and those particles of all samples are nano size, with an average length of 80 nm and about 15-25 nm in diameter. The central composite design was used in order to determine the optimal conditions for the antimicrobial activity of the synthesized samples. In order to evaluate the influence of operating parameters on the percent of viable cell reduction of Streptococcus mutans, three independent variables were chosen: exposure time, pH of saline and floride concentration in apatite samples. The experimental and predicted antimicrobial activities were in close agreement. Antimicrobial activity of the samples increases with the increase of fluoride concentration and the decreased pH of saline. The maximum antimicrobial activity was achieved at the initial pH of 4.

  4. Synthesis and antimicrobial activity of some new pyrrole derivatives ...

    African Journals Online (AJOL)

    H NMR, 13C NMR, mass spectra, and elemental analyses data. The reaction was performed by using ordinary condensation type, which enabled to easy work-up and good yield. Synthesized compounds were screened for antimicrobial ...

  5. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION ... on the electron density in the phenyl ring and the respective accelerating and decelerating effects on the rate of ... compounds were determined using Nujol mulls and of liquids either in dichloromethane or chloroform ...

  6. SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED ...

    African Journals Online (AJOL)

    2016-07-30

    E-mail: b_mohtat@yahoo.com. This work is licensed under the Creative Commons ... Department of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran. (Received July 30, 2016; revised ..... Chem. 2013, 9, 2846-2851. 7. Mohamed, K.S.; Soliman, M.A.; El-Remaily, M.A.A.; Abdel-Ghany, H. Eco-friendly synthesis of ...

  7. Synthesis, antimicrobial and antifungal activities of novel 1H-1,4 ...

    Indian Academy of Sciences (India)

    Administrator

    Synthesis, antimicrobial and antifungal activities of novel. 1H-1,4-diazepines containing pyrazolopyrimidinone moiety. RAJESH KUMAR and YOGESH CHANDRA JOSHI*. Department of Chemistry, University of Rajasthan, Jaipur 302 004 e-mail: rnunia@yahoo.com. MS received 20 October 2008; revised 28 May 2009; ...

  8. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines.

  9. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification.

    Science.gov (United States)

    Mukherjee, S; Das, P; Sivapathasekaran, C; Sen, R

    2009-03-01

    To purify the biosurfactant produced by a marine Bacillus circulans strain and evaluate the improvement in surface and antimicrobial activities. The study of biosurfactant production by B. circulans was carried out in glucose mineral salts (GMS) medium using high performance thin layer chromatography (HPTLC) for quantitative estimation. The biosurfactant production by this strain was found to be growth-associated showing maximum biosurfactant accumulation at 26 h of fermentation. The crude biosurfactants were purified using gel filtration chromatography with Sephadex G-50 matrix. The purification attained by employing this technique was evident from UV-visible spectroscopy and TLC analysis of crude and purified biosurfactants. The purified biosurfactants showed an increase in surface activity and a decrease in critical micelle concentration values. The antimicrobial action of the biosurfactants was also enhanced after purification. The marine B. circulans used in this study produced biosurfactants in a growth-associated manner. High degree of purification could be obtained by using gel filtration chromatography. The purified biosurfactants showed enhanced surface and antimicrobial activities. The antimicrobial biosurfactant produced by B. circulans could be effectively purified using gel filtration and can serve as new potential drugs in antimicrobial chemotherapy.

  10. Phenylazoindole dyes--part I: the syntheses, characterizations, crystal structures, quantum chemical calculations and antimicrobial properties.

    Science.gov (United States)

    Seferoğlu, Zeynel; Yalçın, Ergin; Babür, Banu; Seferoğlu, Nurgül; Hökelek, Tuncer; Yılmaz, Ebru; Şahin, Ertan

    2013-09-01

    In this study, the synthesis of four new phenylazo indole dyes (dye 1-4) were carried out by diazotization of 4-aminoacetophenone and coupling with various 2- and 1,2-disubstituted indole derivatives. The dyes were characterized by UV-vis, FT-IR, (1)H NMR, HRMS and X-ray single crystal diffraction methods. Azo-hydrazone tautomeric bahavior of the dyes in different solvents (DMSO, methanol, acetic acid and chloroform) was investigated by using (1)H NMR and UV-vis results. The experimental results were compared with the corresponding calculated values. The results of experimental data and theoretical calculations showed that the azo tautomer is more stable than hydrazone tautomer. In addition to this, the antimicrobial activity of the dyes was also evaluated. Published by Elsevier B.V.

  11. Synthesis, spectral characterization, structural studies, molecular docking and antimicrobial evaluation of new dioxidouranium(VI) complexes incorporating tetradentate N.sub.2./sub.O.sub.2./sub. Schiff base ligands

    Czech Academy of Sciences Publication Activity Database

    Ebrahimipour, S.Y.; Sheikhshoaie, I.; Castro, J.; Dušek, Michal; Tohidiyan, Z.; Eigner, Václav; Khaleghi, M.

    2015-01-01

    Roč. 5, č. 115 (2015), 95104-95117 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : Schiff base * uranyl * X-ray diffraction * antimicrobial activity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.289, year: 2015

  12. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity.

    Science.gov (United States)

    Ahluwalia, Vivek; Elumalai, Sasikumar; Kumar, Vinod; Kumar, Sandeep; Sangwan, Rajender Singh

    2018-01-01

    In the present study, green synthesis of silver nanoparticles (AgNPs) is demonstrated using medicinal herb Swertia paniculata extract. The plant extract acted both as reducing and capping agents during synthesis process, where silver nitrate was used as silver source. Subsequent analysis revealed that particles had size range between 31 and 44 nm and were spherical in shape. Among reaction parameters, temperature and time had significantly influenced the synthesis reaction. Also, synthesized nanoparticles were found stable up to 90 days. Further, antimicrobial activity against gram negative and gram positive bacterial strains was done and results showed that synthesized AgNPs had better antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae under standard incubation conditions. Study shows that these particles can be very promising in biomedical applications in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis and Antimicrobial Activity of the Essential Oil Compounds ...

    African Journals Online (AJOL)

    In particular, it was found that the use of triethylamine as a co-solvent was necessary to avoid acid-mediated isomerization of the alkenes, which resulted in an inseparable mixture of products. The antimicrobial activity of the four hexenyl and hexyl nonanoate compounds was undertaken using microdilution minimum ...

  14. Synthesis and evaluation of antimicrobial and anthelmintic activity of ...

    Indian Academy of Sciences (India)

    compounds were made on the basis of spectroscopic data and elemental analysis. Keywords. 10H-phenothiazines; Smiles rearrangement; sulphones; ribofuranosides; antimicrobial activity; anthelmintic activity. 1. Introduction. A large number of publications and patents registered worldwide gave much emphasis on the ...

  15. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  16. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological me- thods of ... Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced ... for the biomimetic synthesis and characterization of protein capped silver nanoparticles.

  17. Synthesis and optical characterization of copper nanoparticles ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. SAMIRA MONIRI MAHMOOD GHORANNEVISS MOHAMMAD REZA HANTEHZADEH MOHSEN ASADI ASADABAD. Volume 40 Issue 1 February 2017 pp 37-43 ...

  18. Synthesis and characterization of gold nanoparticles incorporated ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). Pankaj Kumar Rastogi Dharmendra Kumar Yadav Shruti Pandey Vellaichamy Ganesan Piyush Kumar Sonkar Rupali Gupta. Regular Articles Volume 128 Issue 3 March 2016 pp 349-356 ...

  19. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 2. Synthesis and characterization of a ... Shivaiah Samar K Das. Inorganic and Analytical Volume 114 Issue 2 April 2002 pp 107-114 ... Compound (1) crystallizes in a cubic space group 3 ¯ , with = 22.2001(6) Å and = 8. The anion [VVO4W 10 VI V 2 ...

  20. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  1. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Synthesis, characterization and photochemistry of a new heptamolybdate supported magnesium-aqua coordination complex. Savita S Khandolkar Pallepogu Raghavaiah Bikshandarkoil R Srinivasan. Volume 127 Issue 9 September 2015 pp 1581-1588 ...

  2. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A BINUCLEAR. COMPLEX AND A COORDINATION POLYMER OF COPPER(II). Masoumeh Tabatabaee1*, Reza Mohamadinasab1, Kazem Ghaini1 and Hamid Reza Khavasi2. 1Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran.

  3. Synthesis, characterizations and applications of some nanomaterials

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT{blood platelet clusters). O N Srivastava A Srivastava D Dash D P Singh R M Yadava P R Mishra J ...

  4. Synthesis, characterization and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    Synthesis of a new nano hybrid of 5,10,15,20-mesotetra(4-aminophenyl) porphyrin (TAP) functionalized with multi-walled carbon nanotubes (MWCNTs) through an amide linkage is reported for the first time. ThisMWCNT-TAP hybrid was characterized by Raman, Fourier transform infrared (FT-IR), Transmissionelectron ...

  5. Synthesis, characterization and electrochemical performance of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Synthesis, characterization and electrochemical performance of Li 2 Ni x Fe 1 − x SiO 4 cathode materials for lithium ion batteries. A Y SHENOUDA M M S SANAD. Volume 40 Issue 6 October 2017 pp 1055-1060 ...

  6. Synthesis, characterizations and applications of some ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT{blood platelet clusters). O N Srivastava A Srivastava D Dash D P Singh R M Yadava P R Mishra J ...

  7. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Unknown

    disposal or to minimize the environmental impact. One of the approaches is the conversion of fly ash to zeolites, which have wide applications in ion exchange, as mole- cular sieves, catalysts, and adsorbents (Breck 1974). The present study is concerned with the synthesis of zeolite from coal fly ash and its characterization ...

  8. Synthesis, Characterization and Antibacterial Evaluations of the ...

    African Journals Online (AJOL)

    MBI

    2014-06-05

    Jun 5, 2014 ... 39. Synthesis, Characterization and Antibacterial Evaluations of the Schiff. Base 2-(1-(2-(Piperazin-1-yl)ethylimino)ethyl)Phenol and its Complexes of. Mn(II), Ni(II) and Zn(II). Salga, M. S., Sada, I. and Abdullahi, A. Department of Pure and Industrial Chemistry, Umaru Musa 'Yar Adua University, Katsina.

  9. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    Pope and Flynn reported a series of such compounds of the general formula VtVnW12−n. −+. )3(. 40. O n. (where Vt is the vanadium in the center of the tertrahedron, n = 2, 3, 4)5,6. The synthesis and characterization of these heteropolytungstovanadates have been described many years ago, but the reduced analogue of ...

  10. Synthesis and antimicrobial activity of some novel hydrazide, benzochromenone, dihydropyridine, pyrrole, thiazole and thiophene derivatives.

    Science.gov (United States)

    Refat, Hala M; Fadda, A A

    2013-01-01

    As a part of ongoing studies in developing new potent antimicrobial agents, a novel synthesis of 2-cyano-N-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)acetohydrazide (3) has been reported. The latter compound was reacted with different reagents to give new heterocyclic compounds. The structures of the newly synthesized compounds were confirmed by elemental analysis, IR, (1)H NMR, (13)C NMR and mass spectral data. Representative compounds of the synthesized products were tested and evaluated as antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Synthesis, antimicrobial and cytotoxicity studies of some novel modified Strobilurin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Sridhara, Ajjanna M.; Gopinath, Vadiraj S.; Bose, Prosenjit; Goud, Sanath Kumar [Advinus Therapeutics Pvt. Ltd., Bangalore (India); Reddy, Kallam R. Venugopala, E-mail: venurashmi30@rediffmail.co [Advinus Therapeutics Pvt. Ltd., Bangalore (India). Dept. of Studies in Industrial Chemistry; Keshavayya, Jathi [Advinus Therapeutics Pvt. Ltd., Bangalore (India). Dept. of Studies in Chemistry; Ambika, Dasannana Malige S. [Kuvempu University, Jnana Sahyadri, Karnataka (India). Dept. of Biochemistry; Peethambar, Sanenahalli K. [Kuvempu University, Jnana Sahyadri, Karnataka (India). Dept. of Plant Pathology

    2011-07-01

    A series of some new 3-isoxazoline substituted methyl-3-methoxy-2-(4-oxo-3,4- dihydrophthalazine-1-yl)prop-2-enoate derivatives were designed and synthesized from methyl- (4-oxo-3,4-dihydrophthalazine-1-yl)acetate, which in turn was prepared from phthalic anhydride. The structures of synthesized new compounds were characterized by spectral data and studied for their antimicrobial activities and cytotoxicity. Several of these compounds showed good antimicrobial activity (author)

  12. Synthesis, characterization and applications of different nanostructures

    Science.gov (United States)

    Snyder, Whitney Elaine

    There has been a growing interest in the field of nanoscience for the last several decades including the use in optical, electrical, biological and medicinal applications. This thesis focuses on the synthesis of different nanoparticles for their potential uses in drug delivery and antimicrobial agents as well as porous alumina membranes as surface enhanced Raman scattering or SERS substrates. The synthesis of nanocomposites (NCs) composed of silica and poly(4-vinyl pyridine) (P4VP) in a basic ethanol solution is presented in chapter 2. The composition of the NCs appears to be homogenous after synthesis and is greatly affected by heat and pH changes. When the NCs are heated, a core-shell nanostructure is produced with silica forming a shell around a P4VP core. At lower pHs, the NCs form a silica core with a P4VP shell while at higher pHs the silica is etched away causing the NC to decompose. A novel synthesis method of growing stable copper oxide nanoparticles with poly(acrylic acid) (PAA) is presented in chapter 3. Insoluble copper (I) oxide is dissolved with ammonium hydroxide and reduced using sodium borohydride to form metallic copper nanoparticles that oxidize overtime to form copper oxide nanoparticles stable in an aqueous environment. In addition to copper oxide nanoparticles, copper (I) iodide and copper (II) sulfide particles were also synthesized in the presence of PAA. In chapter 4, alumina membranes with 100nm and 200nm pores were coated with silver and used as SERS substrates to detect small molecules. The alumina membranes are coated with silver by reducing silver (I) oxide with ethanol. The thickness of the silver layer depends primarily on the length of time the substrate comes into contact with the Ag2O in solution with longer exposure times producing thicker films. Raman scattering of 10-100nM adenine concentrations were collected.

  13. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter

    OpenAIRE

    Mandal, Santi M; Sharma, Shalley; Pinnaka, Anil Kumar; Kumari, Annu; Korpole, Suresh

    2013-01-01

    Background Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strai...

  14. Synthesis of New Macrocyclic Polyamides as Antimicrobial Agent Candidates

    Directory of Open Access Journals (Sweden)

    Osama I. Abd El-Salam

    2012-12-01

    Full Text Available A series of macrocyclic imides and Schiff-bases have been prepared via the cyclocondensation of pyridine-2,6-dicarbonyl dichloride (1 with L-ornithine methyl ester to give the corresponding macrocyclic bisester 2. Treatment of 2 with hydrazine hydrate gave macrocyclic bisacid hydrazide 3, which was used as starting material. Condensation of bishydrazide 3 with diacid anhydrides or aromatic aldehydes in refluxing acetic acid or ethanol gave the corresponding macrocyclic bisimides 4, 5a,b and macrocyclic bis- hydrazones 6a–j, respectively. The structure assignments of the new compounds were based on chemical and spectroscopic evidence. The antimicrobial screening showed that many of these newly synthesized compounds have good antimicrobial activities, comparable to ampicillin and ketaconazole used as reference drugs.

  15. Screening And Optimizing Antimicrobial Peptides By Using SPOT-Synthesis

    Science.gov (United States)

    López-Pérez, Paula M.; Grimsey, Elizabeth; Bourne, Luc; Mikut, Ralf; Hilpert, Kai

    2017-04-01

    Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.

  16. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential

    Directory of Open Access Journals (Sweden)

    Hemali Padalia

    2015-09-01

    Full Text Available In the present study, silver nanoparticles were synthesized using flower broth of Tagetes erecta as reductant by a simple and eco-friendly route. The aqueous silver ions when exposed to flower broth were reduced and resulted in green synthesis of silver nanoparticles. The silver nanoparticles were characterized by UV–visible spectroscopy, zeta potential, Fourier transform infra-red spectroscopy (FTIR, X-ray diffraction, Transmission electron microscopy (TEM analysis, Energy dispersive X-ray analysis (EDX and selected area electron diffraction (SAED pattern. UV–visible spectrum of synthesized silver nanoparticles showed maximum peak at 430 nm. TEM analysis revealed that the particles were spherical, hexagonal and irregular in shape and size ranging from 10 to 90 nm and Energy dispersive X-ray (EDX spectrum confirmed the presence of silver metal. Synergistic antimicrobial potential of silver nanoparticles was evaluated with various commercial antibiotics against Gram positive (Staphylococcus aureus and Bacillus cereus, Gram negative (Escherichia coli and Pseudomonas aeruginosa bacteria and fungi (Candida glabrata, Candida albicans, Cryptococcae neoformans. The antifungal activity of AgNPs with antibiotics was better than antibiotics alone against the tested fungal strains and Gram negative bacteria, thus signification of the present study is in production of biomedical products.

  17. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent.

    Science.gov (United States)

    Hazarika, Munmi; Borah, Debajit; Bora, Popymita; Silva, Ana R; Das, Pankaj

    2017-01-01

    This paper describes a simple in-situ process of synthesizing highly dispersed palladium nanoparticles (PdNPs) using aqueous leaf extract of GarciniapedunculataRoxb as bio-reductant and starch (0.3%) as bio-stabilizer. The PdNPs are characterized by techniques like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis of nanoparticles was carried out in absence of starch, agglomeration of particles has been noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl bromides and iodides) with arylboronic acids; selective oxidations of alcohols to corresponding carbonyl compounds; and reduction of toxic Cr(VI) to nontoxic Cr(III). Our catalyst could be reused up to four cycles without much compromising with its activity. Furthermore, the material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PdNPswere found to be 0.06 and 0.12 mM respectively.

  18. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent.

    Directory of Open Access Journals (Sweden)

    Munmi Hazarika

    Full Text Available This paper describes a simple in-situ process of synthesizing highly dispersed palladium nanoparticles (PdNPs using aqueous leaf extract of GarciniapedunculataRoxb as bio-reductant and starch (0.3% as bio-stabilizer. The PdNPs are characterized by techniques like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis of nanoparticles was carried out in absence of starch, agglomeration of particles has been noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl bromides and iodides with arylboronic acids; selective oxidations of alcohols to corresponding carbonyl compounds; and reduction of toxic Cr(VI to nontoxic Cr(III. Our catalyst could be reused up to four cycles without much compromising with its activity. Furthermore, the material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of PdNPswere found to be 0.06 and 0.12 mM respectively.

  19. Semi-synthesis of new antimicrobial esters from the natural oleanolic and maslinic acids.

    Science.gov (United States)

    Chouaïb, Karim; Hichri, Fayçal; Nguir, Asma; Daami-Remadi, Majda; Elie, Nicolas; Touboul, David; Ben Jannet, Hichem; Hamza, M'hamed Ali

    2015-09-15

    In this article, we report an effective procedure for the selective isolation of oleanolic acid 1 and maslinic acid 2 (3.4 and 8.5mg/g DW, respectively) from pomace olive (Olea europaea L.) using an ultrasonic bath, and the synthesis of a series of new triterpenic acid esters. The compounds were characterized by their spectral data and were evaluated for their antimicrobial activity. Among the compounds tested, those having sulfur and chlorine atoms were found to be antibacterial. They showed activity against two Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis and two Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa (MICs within a range of 5-25μg/mL). The fungus Penicillium italicum was found to be the most sensitive to both sulfur derivatives: (3β)-3-((thiophene-2-carbonyl)oxy)-olean-12-en-28-oic acid (1a) (IZ=22mm) and (2α,3β-2,3-bis((thiophene-2-carbonyl)oxy)olean-12-en-28-oic acid (2a) (IZ=24mm). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis and antimicrobial activity of amphiphilic carbohydrate derivatives

    International Nuclear Information System (INIS)

    Reis, Roberta C.N.; Oda, Simone C.; Almeida, Mauro V. de; Le Hyaric, Mireille; Barbosa, Nadia R.; Trevizani, Rafael; Santos, Priscila L.C.

    2008-01-01

    N-monoalkylated diamines were synthesised and treated with D-ribonolactone or D-gluconolactone. The resulting aldonamides were evaluated for their antimicrobial activity against S. aureus, E. coli, M. tuberculosis and C. albicans. Two hydrazides were also prepared from ribonohydrazide and their biological activity was compared to their amide analogues. All the ribono-derivatives displayed moderated antitubercular activity, and some of them were also active against S. aureus. (author)

  1. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Sm3+-doped ZnAl2O4 phosphor was synthesized by citrate sol–gel method and characterized using. X-ray diffraction and scanning electron microscopy to identify the crystalline phase and determine the parti- cle size. Photoluminescence (PL) studies on the sample showed emission peaks at 563, 601, 646 and ...

  2. SYNTHESIS AND CHARACTERIZATION OF NANOCOMPOSITE ...

    African Journals Online (AJOL)

    ABSTRACT. In this work, nano ferrite spinel NiFe2O4 was synthesized by sol-gel method and characterized by. SEM, XRD, FT-IR, and VSM. In second step Schiff base made from salicylaldehyde and amino propyl triethoxy silane was used for modification of the synthesized nano ferrit. In the third step removal of Ni(II) was ...

  3. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    grinding and heating in (Ar + 10% H2) atmosphere. 2.2 Sample characterization. The as-synthesized ... with literature value of cell parameter a = 8⋅059 A. No impurity phase was observed. The XRD pattern was ..... are thankful to Dr N D Dahale, Fuel Chemistry Division,. BARC, Dr T K Seshagiri, former scientist, and Shri.

  4. Synthesis and antimicrobial activity of 2-chloroquinoline incorporated pyrazoline derivatives

    Directory of Open Access Journals (Sweden)

    Sandhya Bawa

    2009-01-01

    Full Text Available Purpose : A series of 2-chloroquinoline containing pyrazoline derivatives having 3,4-dichloro/ 3,4-dimethoxy in the phenyl ring were synthesized and screened for their antimicrobial activity against a panel of bacterial and fungal strains. Materials and Methods : The structures of the newly synthesized compounds were established on the basis of spectral data obtained from the FTIR, 1H and 13C-NMR, and mass spectrometry. All the compounds were evaluated for their antibacterial activity against Escherichia coli (NCTC, 10418, Staphylococcus aureus (NCTC, 65710, and Pseudomonas aeruginosa (NCTC, 10662. The compounds were also tested for antifungal activity aganist Aspergillus niger (MTCC, 281, Aspergillus flavus (MTCC, 277, Monascus purpureus (MTCC, 369 and Penicillium citrinum (NCIM, 768 by the cup-plate method. Results : Among the compounds tested, 3,4-dichloro derivatives were comparatively more active in antimicrobial screening with respect to their 3,4-dimethoxy analog. Conclusion : A careful analysis of the antimicrobial activity data of the compounds revealed that compounds 3a, 3b, 3c, and 3e exhibited potent antibacterial

  5. Reactions of copper(II), nickel(II), and zinc(II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities

    Czech Academy of Sciences Publication Activity Database

    Hosseini-Yazdi, S.A.; Mirzaahmadi, A.; Khandar, A.A.; Eigner, Václav; Dušek, Michal; Mahdavi, M.; Soltani, S.; Lotfipour, F.; White, J.

    2017-01-01

    Roč. 124, Mar (2017), s. 156-165 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : antimicrobial * antioxidant * cytotoxicity * thiosemicarbazone * water-soluble Schiff base Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.926, year: 2016

  6. Antimicrobial Evaluation and Synthesis of Some Phenylpyrazolo benzothiazolo quinoxaline Derivatives

    Directory of Open Access Journals (Sweden)

    CH. Sridevi

    2009-01-01

    Full Text Available 2,3-Diphenyl quinoxaline (SI was fused with 2-amino benzothiazoles (SII by a methylene bridge, which was then allowed for acetylation. The acetylated product (SIV was made to react with different aromatic aldehydes to give chalcones (SV1-SV5. Chalcones refluxed with substituted acid hydrazides to afford different phenyl pyrazolo benzothiazolo quinoxaline derivatives (SVI1-SVI15. The structure of chalcones and phenyl pyrazolo benzothiazolo quinoxaline derivatives were confirmed by M.P, TLC and spectral data. All the synthesized compounds were screened for their antimicrobial activities.

  7. Synthesis and Antimicrobial Activity of Some New Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    S. H. Ali Abdelwahed

    2000-12-01

    Full Text Available Reaction of 3-(2-methylbenzimidazol-1-ylpropanoic acid hydrazide (1 with CS2/KOH gave oxadiazole 2 which underwent Mannich reaction to give 3. Compound 2 was treated with hydrazine hydrate to give triazole 4 which was treated with both aldehydes and acetic anhydride to give 5 and 6, respectively. Carbohydrazide 1 was reacted with ethyl acetoacetate, acetylacetone and aldehydes to give 7, 8 and 9, respectively. Cyclocondensation of 9 with thioglycolic and thiolactic acids gave 10 and 11, respectively. Some of these compounds showed potential antimicrobial activities.

  8. Synthesis, antimicrobial and cytotoxic activities of sulfonamidomethane linked heterocycles.

    Science.gov (United States)

    Swapna, Mukkara; Premakumari, Chokkappagari; Reddy, Sanapalli Nagi; Padmaja, Adivireddy; Padmavathi, Venkatapuram; Kondaiah, Paturu; Krishna, Narra Siva

    2013-01-01

    A new class of sulfonamidomethane pyrrolyl-oxadiazoles/thiadiazoles and pyrazolyl-oxadiazoles/thiadiazoles was prepared from arylsulfonylaminoacetic acid hydrazides and E-cinnamic acid. The lead compounds were tested for antimicrobial and cytotoxic activities. The thiadiazole compounds having chloro substituent on the aromatic ring 4c, 8c and 10c exhibited comparable antibacterial activity against Pseudomonas aeruginosa and also antifungal activity against Penicillium chrysogenum. The styryl oxadiazole compound 3c showed appreciable cytotoxic activity on A549 lung carcinoma cells which can be used as a lead compound in the future studies.

  9. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  10. Synthesis of Chrysogeside B from Halotolerant Fungus Penicillium and Its Antimicrobial Activities Evaluation

    Science.gov (United States)

    Liu, Ruiquan; Wang, Lei; Li, Qibo; Liao, Min; Yang, Zhikun; Huang, Yun; Lv, Cong; Zheng, Bing; Zhong, Jiangchun; Bian, Qinghua; Wang, Min; Liu, Shangzhong

    2017-04-01

    Chrysogeside B, a natural cerebroside, was efficiently synthesized from commercial feedstocks. The bioassays showed that compounds 4, 5 and 6 exhibited enhanced biological activities compared Chrysogeside B. Further studies revealed that free hydroxyl groups and glycosidic bond have significant impact on the antimicrobial activities. The synthesis of Chrysogeside B and analogues designed to allow identification of the features of this glycolipid required for recognition by tested bacteria and Hela cells is described.

  11. Synthesis of Chrysogeside B from Halotolerant Fungus Penicillium and Its Antimicrobial Activities Evaluation

    OpenAIRE

    Liu, Ruiquan; Wang, Lei; Li, Qibo; Liao, Min; Yang, Zhikun; Huang, Yun; Lv, Cong; Zheng, Bing; Zhong, Jiangchun; Bian, Qinghua; Wang, Min; Liu, Shangzhong

    2017-01-01

    Chrysogeside B, a natural cerebroside, was efficiently synthesized from commercial feedstocks. The bioassays showed that compounds 4, 5 and 6 exhibited enhanced biological activities compared Chrysogeside B. Further studies revealed that free hydroxyl groups and glycosidic bond have significant impact on the antimicrobial activities. The synthesis of Chrysogeside B and analogues designed to allow identification of the features of this glycolipid required for recognition by tested bacteria and...

  12. Synthesis, DNA interaction and antimicrobial activities of three rimantadine analogues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing-Mi; Zhang, Jun [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Wang, Xin, E-mail: wangxinlnu@163.com [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Zhang, Li-Ping; Liu, Yang [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Niu, Hua-Ying [Jinan Dachpharm Development Co., Ltd., Jinan 250100 (China); Liu, Bin, E-mail: liubinzehao@163.com [Department of Pharmacy, Liaoning University, Shenyang 110036 (China)

    2015-03-15

    The interactions of three rimantadine analogues (RAs) with calf thymus deoxyribonucleic acid (ct-DNA) in buffer solution (pH 7.4) were investigated using berberine (BR) as a probe by various methods. Fluorescence studies revealed that the RAs interacted with DNA in vitro and the quenchings were all static. Furthermore, the binding modes of these compounds to DNA were disclosed as groove binding supported by absorption spectroscopy, viscosity measurement and denatured DNA experiment. The antimicrobial activities of the RAs were also evaluated in Staphylococcus aureus and Escherichia coli, and they all exhibited good bacteriostasic effects. The results might provide an important reference for investigation of the molecular mechanism associated with the DNA binding of the RAs. - Highlights: • Three rimantadine analogues were synthesized. • The RAs effectively quenched the intrinsic fluorescence of DNA via a static combination. • These analogues can bind to DNA via groove binding mode. • The antimicrobial activities of three analogues were also evaluated by the disk diffusion method.

  13. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  14. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  15. Synthesis and characterization of -phosphorylated thioureas ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 3. Synthesis and characterization of -phosphorylated thioureas RNHC(S)NHP(O)(OPr)2 (R = 2-MeC6H4, 2,6-Me2C6H3, 2,4,6-Me3C6H2). Damir A Safin Maria G Babashkina Michael Bolte Axel Klein. Full Papers Volume 122 Issue 3 May 2010 pp 409- ...

  16. Synthesis and characterization of a reduced heteropoly ...

    Indian Academy of Sciences (India)

    compounds of the general formula VtVnW12−n. −+. )3(. 40. O n. (where Vt is the vanadium in the center of the tertrahedron, n = 2, 3, 4)5,6. The synthesis and characterization of these heteropolytungstovanadates have been described many years ago, but the reduced analogue of any of these in the series has yet to be ...

  17. Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. SYNTHESIS AND IN VITRO ANTIMICROBIAL EVALUATION OF 5 ...

    African Journals Online (AJOL)

    Preferred Customer

    creation of molecular diversity and complexity [1-3]. One of the main challenges in medicinal chemistry is the design and synthesis of biologically active molecules. 4H-pyran play an essential role as biologically active compounds and represent an interesting template for medicinal chemistry. Many of these compounds are.

  19. Synthesis, anti-microbial activity and molecular docking studies on ...

    Indian Academy of Sciences (India)

    inflammatory,6 anti-coagulant7 and as inhibitors of lipoxygenase8 and cyclooxygenase.9. Click chemistry10–12 has emerged as a reliable approach for the stereo selective synthesis of 1,2,3- triazole with desired properties. Cycloaddition of azide to alkyne in the presence of copper sulphate and sodium ascorbate to give 1 ...

  20. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  1. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand

    2015-01-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag + to Ag 0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC 50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of

  2. Novel polymers for biomedical and pharmaceutical applications: synthesis and characterization

    OpenAIRE

    Taresco, Vincenzo

    2014-01-01

    The aim of this PhD thesis work has been the synthesis of novel antimicrobial amphiphilic polymers to prevent microbial biofilm related-infections and counteract microbial resistance onset. In fact, microbial biofilms are difficultly eradicable due to their high antibiotic resistance. To reach this purpose different strategies along this work were exploited.

  3. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  4. Synthesis and Antimicrobial Activities of Some Novel Quinoxalinone Derivatives

    Directory of Open Access Journals (Sweden)

    Y. A. Ammar

    2000-06-01

    Full Text Available Condensation of 4-benzoyl-1,2-phenylenediamine with sodium pyruvate in acetic acid furnished two products which were identified as 6-benzoyl and 7-benzoyl-3-methyl-2(1Hquinoxalinones (1a,b. Fusion of 1a with aromatic aldehydes furnished the styryl derivatives 2a-c. Alkylation of 1a,b with dimethyl sulphate or ethyl chloroacetate produced the N-alkyl derivatives 3a,b and 4a,b. Hydrazinolysis of the ester derivative 4a with hydrazine hydrate afforded the hydrazide derivative 5 which underwent condensation with aldehydes to give the corresponding hydrazone derivatives 6a,b. In addition, chlorination of 1a with thionyl chloride afforded the 2-chloro derivative 7 which was subjected to reaction with sodium azide and n-butylamine to yield the corresponding tetrazolo (8 and n-butylamino (9 derivatives, respectively. The structures of the compounds prepared were confirmed by analytical and spectral data. Also, some of the synthesized compounds were screened for antimicrobial activity.

  5. Synthesis and Antimicrobial Activity of Sulfur Derivatives of Quinolinium Salts

    Directory of Open Access Journals (Sweden)

    Anna Empel

    2018-01-01

    Full Text Available A novel method for cleavage of the dithiine ring in 5,12-(dimethyl-thioqinantrenium bis-chloride 1 “via” reaction with sodium hydrosulfide leads to 1-methyl-3-mercaptoquinoline-4(1H-thione 2. Further transformation of thiol and thione functions of compound 2 leads to a series of sulfide and disulfide derivatives of quinolinium salts 4 and 6. 1-Methyl-4-chloro-3-benzylthioquinoline chloride 8 was obtained by N-alkylating 4-chloro-3-benzylthioquinoline using dimethyl sulfate. Antimicrobial activity of the obtained compounds was investigated using six Gram-positive and six Gram-negative bacterial strains, as well as Candida albicans yeast. Greater activity was demonstrated towards Gram-positive strains. MIC values for compounds and with benzylthio 4d and benzoylthio 4f substituents in 3-quinoline position were found to be in the 0.5–1 μg/mL range, at a level similar to that of ciprofloxacin (reference. Compounds 4d and 4f also demonstrated interesting antifungal properties (MIC = 1.

  6. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    Science.gov (United States)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  7. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities.

    Science.gov (United States)

    Thakkar, Sampark S; Thakor, Parth; Doshi, Hiren; Ray, Arabinda

    2017-08-01

    1,2,4-Triazole and 1,3,4-oxadiazole analogues are of interest due to their potential activity against microbial and malarial infections. In search of suitable antimicrobial and antimalarial compounds, we report here the synthesis, characterization and biological activities of 1,2,4-triazole and 1,3,4-oxadiazole analogues (SS 1-SS 10). The molecules were characterized by IR, mass, 1 H NMR, 13 C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains, the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR computationally as well as in vitro to prove their candidature as lead dihydrofolate reductase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis of Silver Nanoparticles Using Hydroxyl Functionalized Ionic Liquids and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Young Key Shim

    2008-05-01

    Full Text Available We report a new one phase method for the synthesis of uniform monodisperse crystalline Ag nanoparticles in aqueous systems that has been developed by using newly synthesized mono and dihydroxylated ionic liquids and cationic surfactants based on 1,3-disubstituted imidazolium cations and halogens anions. The hydroxyl functionalized ionic liquids (HFILs and hydroxyl functionalized cationic surfactants (HFCSs also simultaneously acts both as the reductant and protective agent. By changing the carbon chain length, alcohol structure and anion of the 1,3-imidazolium based HFILs and HFCSs the particle size, uniform and dispersibility of nanoparticles in aqueous solvents could be controlled. Transmission electron microscopy (TEM, electron diffraction, UV-Vis and NMR, were used for characterization of HFILs, HFCSs and silver nanoparticles. TEM studies on the solution showed representative spherical silver nanoparticles with average sizes 2-8 nm, particularly 2.2 nm and 4.5 nm in size range and reasonable narrow particle size distributions (SD-standard distribution 0.2 nm and 0.5 nm respectively. The all metal nanoparticles are single crystals with face centered cubic (fcc structure. The silver nanoparticles surface of plasmon resonance band (λmax around 420 nm broadened and little moved to the long wavelength region that indicating the formation of silver nanoparticles dispersion with broad absorption around infrared (IR region. Silver complexes of these HFILs as well as different silver nanoparticles dispersions have been tested in vitro against several gram positive and gram negative bacteria and fungus. The silver nanoparticles providing environmentally friendly and high antimicrobial activity agents.

  9. Synthesis, Characterization and Antimicrobial Studies of a New Mannich Base N-[Morpholino(phenyl)methyl]acetamide and Its Cobalt(II), Nickel(II) and Copper(II) Metal Complexes

    OpenAIRE

    L. Muruganandam; K. Krishnakumar

    2012-01-01

    A new Mannich base N-[morpholino(phenyl)methyl]acetamide (MBA), was synthesized and characterized by spectral studies. Chelates of MBA with cobalt(II), nickel(II) and copper(II) ions were prepared and characterized by elemental analyses, IR and UV spectral studies. MBA was found to act as a bidentate ligand, bonding through the carbonyl oxygen of acetamide group and CNC nitrogen of morpholine moiety in all the complexes. Based on the magnetic moment values and UV-Visible spectral data, tetrac...

  10. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    Directory of Open Access Journals (Sweden)

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  11. Synthesis and Antimicrobial Studies of Pyrimidine Pyrazole Heterocycles

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2014-01-01

    Full Text Available Prompted from the diversity of the wider use and being an integral part of genetic material, an effort was made to synthesize pyrimidine pyrazole derivatives of pharmaceutical interest by oxidative cyclization of chalcones with satisfactory yield and purity. A novel series of 1,3-dimethyl-6-hydroxy-2,4-dioxo-5-(1′-phenyl-3′-aryl-1H-pyrazol-5′-yl-1,2,3,4-tetrahydropyrimidines (5a–d and 1,3-diaryl-6-hydroxy-4-oxo-2-thioxo-5-(1′-phenyl-3′-aryl-1H-pyrazol-5′-yl-1,2,3,4-tetrahydropyrimidines (5e–l has been synthesized. The structures of these compounds were established on the basis of FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. All the synthesized compounds were screened for their antimicrobial activity against bacteria and fungi. Among all the compounds, 5g was found to be the most active as its MIC was 31.25 µg/mL against S. aureus and B. cereus. The compounds 5h, 5c, and 5e also possess antibacterial activity with MIC values as 62.50, 125.00, and 500.00 µg/mL, respectively. The compounds 5c and 5j were found to have antifungal activity against Aspergillus spp. As antifungal drugs lag behind the antibacterial drugs, therefore we tried in vitro combination of these two compounds with standard antifungal drugs (polyene and azole against Aspergillus spp. The combination of ketoconazole with 5c and 5j showed synergy at 1 : 8 (6.25 : 50.00 µg/mL and 1 : 4 (25 : 100 µg/mL against A. fumigatus (ITCC 4517 and A. fumigatus (VPCI 190/96, respectively.

  12. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  13. Design, synthesis, characterization and study of novel conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wu [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.

  14. Synthesis and Antimicrobial Activity of Bis-4,6-sulfonamidated 5,7-Dinitrobenzofuroxans

    Directory of Open Access Journals (Sweden)

    Irina V. Galkina

    2014-01-01

    Full Text Available A new series of bis-4,6-sulfonamidated 5,7-dinitrbenzofuroxans  7–11 had been synthesized and tested for antimicrobial activity. The structures of new sulfanilamide derivatives were characterized by elemental analysis, IR spectroscopy, and mass spectrometry (MALDITOF. The synthesized compounds were tested for their in vitro antimicrobial activity using the disk diffusion method against Gram-positive bacteria Staphylococcus aureus; the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis; the fungal strain Aspergillus niger; and the yeast-like pathogenic fungus Candida albicans. Our results indicate that the compounds 7–11 exhibit potent antimicrobial activity. The stability of the compounds was evaluated by TG and DSC methods.

  15. Synthesis and Characterization of Novel Quaternary Thioaluminogermanates

    KAUST Repository

    Al-Bloushi, Mohammed

    2013-05-01

    Metal chalcogenides form an important class of inorganic materials, which include several technologically important applications. The design of metal chlcogenides is of technological interest and has encouraged recent research into moderate temperature solid-state synthetic methods for the single crystal growth of new materials. The aim of this project is the investigation and development of synthetic methodology for the synthesis of novel metal chlcogenides. The new inorganic compounds of the type “M(AlS2)(GeS2)” (M = Na and K) are new metal-chalcogenides, synthesized by the classical solid state approach. The characterization of these compounds was carried out by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Single crystal and powder X-ray diffraction, solid state Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-VIS), Infrared (IR) and Raman spectroscopy. These theses study the synthesis of metal chalcogenides through the use of standard chemical techniques. The systematic studies demonstrate the effect of the reactants ratio and reaction temperature on the synthesis and growth of the single crystals. Metal chalcogenides have several potential applications in gas separation, ion exchange, environmental remediation, and energy storage. Especially, the ion exchange materials have found\\tpossible applications in waste-water treatment, water softening, metal separation, and production of high purity water.

  16. New hydrazide-hydrazones of isonicotinic acid: synthesis, lipophilicity and in vitro antimicrobial screening.

    Science.gov (United States)

    Popiołek, Łukasz; Biernasiuk, Anna; Berecka, Anna; Gumieniczek, Anna; Malm, Anna; Wujec, Monika

    2018-04-01

    This study describes the synthesis, lipophilicity and in vitro antimicrobial assays of 15 new hydrazide-hydrazones of isonicotinic acid. New derivatives were obtained on the basis of the condensation reaction of isonicotinic acid hydrazide with different aromatic aldehydes. The chemical structure of synthesized compounds was confirmed by spectral methods. Experimental lipophilicity of new isonicotinic acid derivatives was determined using reversed-phase thin-layer chromatography. All synthesized compounds were subjected to in vitro antimicrobial assays against reference strains of Gram-positive bacteria, Gram-negative bacteria and fungi belonging to Candida spp. Some of the synthesized hydrazide-hydrazones proved to be significant antibacterial compounds and more potent than commonly used chemotherapeutic agents. © 2017 John Wiley & Sons A/S.

  17. Synthesis, biological activity and solution structure of new analogues of the antimicrobial Gramicidin S.

    Science.gov (United States)

    Kamysz, Elżbieta; Mickiewicz, Beata; Kamysz, Wojciech; Bielińska, Sylwia; Rodziewicz-Motowidło, Sylwia; Ciarkowski, Jerzy

    2011-03-01

    Gramicidin S (GS) is a cyclo-decapeptide antibiotic isolated from Bacillus brevis. The structural studies have shown that GS forms a two-stranded antiparallel β-sheet imposed by two II' β-turns. Despite its wide Gram+ and Gram- antimicrobial spectrum, GS is useless in therapy because of its high hemotoxicity in humans. It was found, however, that the analogues of GS-14 (GS with 14 amino acid residues) attained a better antimicrobial selectivity when their amphipatic moments were perturbed. In this study, we report effects of similar perturbations imposed on GS cyclo-decapeptide analogues. Having solved their structures by NMR/molecular dynamics and having tested their activities/selectivities, we have concluded that the idea of perturbation of the amphipatic moment does not work for GS-10_0 analogues. An innovative approach to the synthesis of head-to-tail cyclopeptides was used. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  18. Microwave assisted synthesis and antimicrobial activity of some novel pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    S. J. VAGHASIA

    2007-02-01

    Full Text Available The synthesis of thiazolo [5,4-d]pyrimidines can be achieved from different 5-thiazolidinones, 2-butyl-1H-imidazole-5-carbaldehyde and thiourea using microwave irradiation within 5 min. The structures of the products were supported by FTIR, PMR and mass spectral data. The in vitro antimicrobial activity of the synthesized thiazolo [5,4-d]pyrimidines 1a-j, having substituents at the 1- and 3-positions, were determined by the cup-plate method against several standard strains chosen to define the spectrum and potency of the new compounds. The antimicrobial activities of the thiazolo [5,4-d]pyrimidines 1a-j are compared with those of known chosen standard drugs, viz. ampicillin, chloramphenicol, ciprofloxacin, norfloxacin and griseofulvin.

  19. Total Synthesis and Antimicrobial Activity of a Natural Cycloheptapeptide of Marine Origin

    Directory of Open Access Journals (Sweden)

    Hemendra Gautam

    2010-08-01

    Full Text Available The present study deals with the first total synthesis of the proline-rich cyclopolypeptide stylisin 2 via a solution phase technique by coupling of the Boc-l-Pro-l-Ile-l-Pro-OH tripeptide unit with the l-Phe-l-Pro-l-Pro-l-Tyr-OMe tetrapeptide unit, followed by cyclization of the resulting linear heptapeptide fragment. The chemical structure of the finally synthesized peptide was elucidated by FTIR, 1H/13C-NMR and FAB MS spectral data, as well as elemental analyses. The newly synthesized peptide was subjected to antimicrobial screening against eight pathogenic microbes and found to exhibit potent antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans, in addition to moderate antidermatophyte activity against pathogenic Trichophyton mentagrophytes and Microsporum audouinii when compared to standard drugs—gatifloxacin and griseofulvin.

  20. Plant antimicrobial peptides snakin-1 and snakin-2: chemical synthesis and insights into the disulfide connectivity.

    Science.gov (United States)

    Harris, Paul W R; Yang, Sung-Hyun; Molina, Antonio; López, Gemma; Middleditch, Martin; Brimble, Margaret A

    2014-04-22

    Antimicrobial peptides and proteins represent an important class of plant defensive compounds against pathogens and provide a rich source of lead compounds in the field of drug discovery. We describe the effective preparation of the cysteine-rich snakin-1 and -2 antimicrobial peptides by using a combination of solid-phase synthesis and native chemical ligation. A subsequent cysteine/cystine mediated oxidative folding to form the six internal disulfide bonds concurrently gave the folded proteins in 40-50 % yield. By comparative evaluation of mass spectrometry, HPLC, biological data and trypsin digest mapping of folded synthetic snakin-2 compared to natural snakin-2, we demonstrated that synthetic snakin-2 possesses full antifungal activity and displayed similar chromatographic behaviour to natural snakin-2. Trypsin digest analysis allowed tentative assignment of three of the purported six disulfide bonds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis, antiproliferative and antimicrobial activity of new Mannich bases bearing 1,2,4-triazole moiety.

    Science.gov (United States)

    Popiołek, Łukasz; Rzymowska, Jolanta; Kosikowska, Urszula; Hordyjewska, Anna; Wujec, Monika; Malm, Anna

    2014-12-01

    Abstract This study presents the synthesis, antiproliferative and antimicrobial evaluation of a new series of Mannich base derivatives containing 1,2,4-triazole system. New compounds were prepared by the reaction of 4,5-disubstituted 1,2,4-triazole-3-thiones with formaldehyde and various amines. The structures of the prepared compounds were confirmed by means of (1)H NMR, (13)C NMR and elemental analyses. Twelve compounds were evaluated for their in vitro antiproliferative activities against six chosen cancer cell lines. All synthesized compounds were screened for their in vitro antimicrobial activity by using the agar dilution technique. For 17 potentially active compounds, their antibacterial activity was confirmed on the basis of MIC (minimal inhibitory concentration) by broth microdilution method using the reference Gram-positive and Gram-negative bacterial strains.

  2. Synthesis and antimicrobial activity of 4', 5, 7-trihydroxy-3 ...

    Indian Academy of Sciences (India)

    4',5,7-Trihydroxy-3'-prenylflavanone was synthesized and tested for antibacterial effects against Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The synthesized compounds were characterized using UV, IR, MS and 1H and 13C NMR data. The antibacterial screening of the ...

  3. Synthesis, Antimicrobial and Antitubercular Activities of Some Novel ...

    African Journals Online (AJOL)

    The newly synthesized compounds were characterized by infrared spectroscopy (IR), mass spectroscopy (MS) and proton nuclear magnetic spectroscopy (1H NMR) and elemental analysis; they were also screened for in vitro antibacterial, antifungal and antitubercular activities. Ciprofloxacin and ketoconazole were used as ...

  4. Synthesis, antimicrobial activity of lamotrigine and its ammonium ...

    Indian Academy of Sciences (India)

    Antiepileptic drug lamotrigine and its thirteen ammonium salt complexes (4a-4m) were synthesized and characterized by IR, elemental analysis, 1H-NMR, and MS spectral methods. Many of the ammonium salts (4a-4m) were first reported. Furthermore, the crystal structure of compound 3 was determined by single crystal ...

  5. Synthesis and characterization of peapods and DWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Anis, B.; Kuntscher, C.A. [Experimentalphysik 2, Universitaet Augsburg, 86195 Augsburg (Germany); Fischer, M.; Schreck, M. [Experimentalphysik 4, Universitaet Augsburg, 86195 Augsburg (Germany); Haubner, K.; Dunsch, L. [Center of Spectroelectrochemistry, IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany)

    2012-12-15

    We report the synthesis and characterization of C{sub 60} rate at SWCNT peapods and double-walled carbon nanotubes (DWCNTs) derived from the peapods. Single-walled carbon nanotubes (SWCNTs), C{sub 60} rate at SWCNT peapods, and DWCNTs were characterized by Raman and optical spectroscopy. The radial breathing modes (RBMs) of the tubes in C{sub 60} rate at SWCNT peapods are shifted to higher energies compared to the RBMs in SWCNTs, while in the case of DWCNTs the RBMs related to the outer tubes are shifted to lower energies compared to SWCNTs. A similar trend is observed for the absorption bands. These results suggest that the filling of the SWCNTs with C{sub 60} molecules decreases the average diameter of the electron cloud around the tubes, whereas the filling with an inner tube increases it. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa

    Directory of Open Access Journals (Sweden)

    Anjum S

    2016-04-01

    Full Text Available Sumaira Anjum, Bilal Haider Abbasi Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan Abstract: In vitro-derived cultures of plants offer a great potential for rapid biosynthesis of chemical-free antimicrobial silver nanoparticles (AgNPs by enhancing their phytochemical reducing potential. Here, we developed an efficient protocol for in vitro micropropagation of a high-value endangered medicinal plant species, Phlomis bracteosa, in order to explore its biogenic potential in biomimetic synthesis of antimicrobial AgNPs. Murashige and Skoog medium supplemented with 2.0 mg/L thidiazuron was found to be more efficient in inducing optimum in vitro shoot regeneration (78%±4.09%, and 2.0 mg/L indole-3-butyric acid was used for maximum root induction (86%±4.457%. Antimicrobial AgNPs were successfully synthesized by using aqueous extract (rich in total phenolics and flavonoids content of in vitro derived plantlets of P. bracteosa. Ultraviolet–visible spectroscopy of synthesized AgNPs showed characteristic surface plasmon band in the range of 420–429 nm. The crystallinity, size, and shape of the AgNPs were characterized by X-ray diffraction and scanning electron microscopy. Face-centered cubic AgNPs of almost uniform spherical size (22.41 nm were synthesized within a short time (1 hour at room temperature. Fourier-transform infrared spectroscopy revealed that the polyphenols were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further endorsed the presence of elemental silver in synthesized AgNPs. These biosynthesized AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens. The present work highlighted the potent role of in vitro-derived plantlets of P. bracteosa for feasible biosynthesis of antimicrobial AgNPs, which can be used as nanomedicines in many biomedical applications. Keywords: silver nanoparticles, Phlomis

  7. SYDNONE DERIVATIVES A SYNTHONS FOR NOVEL MESOIONIC COMPOUNDS. SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL EVALUATION OF SOME 2-(4`-SUBSTITUTED ANILINOSYNDON-3`-YL-1, 3, 4-THIADIAZINO (6, 5-B INDOLES

    Directory of Open Access Journals (Sweden)

    Hemant Panwar

    2011-12-01

    Full Text Available In the present study, a series of 2-(4´-Substitutedanilinosydnon-3´-yl-1, 3, 4-thiadiazino (6, 5-b indoles 7a-j have been synthesized. All the synthesized compounds have been characterized by elemental and spectral (I R, 1H- NMR and Mass spectrometric analysis. Furthermore, above mentioned compounds were evaluated for their antibacterial and antifungal activities against selected panel of pathogenic strains. Ampicillin trihydrate, ofloxacin and fluconazole, griseofulvin were used as standard drugs for antibacterial and anifungal activity respectively. Compound 7j was found the most potent one with lesser toxicity in the prepared indole derivatives.

  8. Synthesis, Transfer, and Characterization of Nanoscale 2-Dimensional Materials

    Science.gov (United States)

    2015-09-01

    stack is floating on top of the DDI water surface. Instead of removing the stack with the target substrate, a graphene/copper foil substrate (graphene...demonstrated the synthesis of graphene, hexagonal boron nitride, and bismuth telluride using chemical and physical vapor deposition techniques. Making...for material synthesis, transfer, and characterization. 15. SUBJECT TERMS graphene, hexagonal boron nitride, bismuth telluride, synthesis, transfer

  9. Gemini alkyldeoxy-D-glucitolammonium salts as modern surfactants and microbiocides: synthesis, antimicrobial and surface activity, biodegradation.

    Directory of Open Access Journals (Sweden)

    Bogumił Brycki

    Full Text Available Dimeric quaternary alkylammonium salts possess a favourable surface and antimicrobial activity. In this paper we describe synthesis, spectroscopic analysis, surface and antimicrobial activity as well as biodegradability of polymethylene-α,ω-bis(N,N-dialkyl-N-deoxy-D-glucitolammonium iodides, a new group of dimeric quaternary ammonium salts. This new group of gemini surfactants can be produced from chemicals which come from renewable sources. The structure of products has been determined by the FTIR and (1H and (13C NMR spectroscopy. The biodegradability, surface activity and antimicrobial efficacy against Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger and Penicillium chrysogenum were determined. The influence of the number of alkyl chains and their lengths on surface and antimicrobial properties has been shown. In general, dimeric quaternary alkyldeoxy-D-glucitolammonium salts with long alkyl substituents show favourable surface properties and an excellent antimicrobial activity.

  10. Gemini alkyldeoxy-D-glucitolammonium salts as modern surfactants and microbiocides: synthesis, antimicrobial and surface activity, biodegradation.

    Science.gov (United States)

    Brycki, Bogumił; Szulc, Adrianna

    2014-01-01

    Dimeric quaternary alkylammonium salts possess a favourable surface and antimicrobial activity. In this paper we describe synthesis, spectroscopic analysis, surface and antimicrobial activity as well as biodegradability of polymethylene-α,ω-bis(N,N-dialkyl-N-deoxy-D-glucitolammonium iodides), a new group of dimeric quaternary ammonium salts. This new group of gemini surfactants can be produced from chemicals which come from renewable sources. The structure of products has been determined by the FTIR and (1)H and (13)C NMR spectroscopy. The biodegradability, surface activity and antimicrobial efficacy against Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger and Penicillium chrysogenum were determined. The influence of the number of alkyl chains and their lengths on surface and antimicrobial properties has been shown. In general, dimeric quaternary alkyldeoxy-D-glucitolammonium salts with long alkyl substituents show favourable surface properties and an excellent antimicrobial activity.

  11. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    Science.gov (United States)

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  12. Serotype distribution, antimicrobial resistance, and molecular characterization of invasive group B Streptococcus isolates recovered from Chinese neonates

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-08-01

    Conclusion: Serotype distribution, antimicrobial susceptibility, and sequence type characterization in Asia and in other global regions may contribute to improve the prevention and treatment of neonatal GBS infections.

  13. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    Science.gov (United States)

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  14. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    Directory of Open Access Journals (Sweden)

    Wataru Aoki

    2013-08-01

    Full Text Available Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.

  15. Synthesis, characterization, computational studies, antimicrobial activities and carbonic anhydrase inhibitor effects of 2-hydroxy acetophenone-N-methyl p-toluenesulfonylhydrazone and its Co(II), Pd(II), Pt(II) complexes

    Science.gov (United States)

    Özbek, Neslihan; Alyar, Saliha; Memmi, Burcu Koçak; Gündüzalp, Ayla Balaban; Bahçeci, Zafer; Alyar, Hamit

    2017-01-01

    2-Hydroxyacetophenone-N-methyl p-toluenesulfonylhydrazone (afptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Co(II), Pd(II), Pt(II) complexes were synthesized for the first time. Synthesized compounds were characterized by spectroscopic methods (FT-IR, 1Hsbnd 13C NMR, LC-MS, UV-vis), magnetic susceptibility and conductivity measurements. 1H and 13C shielding tensors for crystal structure of ligand were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The antibacterial activities of synthesized compounds were studied against some Gram positive and Gram negative bacteria by using microdilution and disc diffusion methods. In vitro enzyme inhibitory effects of the compounds were measured by UV-vis spectrophotometer. The enzyme activities against human carbonic anhydrase II (hCA II) were evaluated as IC50 (the half maximal inhibitory concentration) values. It was found that afptsmh and its metal complexes have inhibitory effects on hCA II isoenzyme. General esterase activities were determined using alpha and beta naphtyl acetate substrates (α- and β-NAs) of Drosophila melanogaster (D. melanogaster). Activity results show that afptsmh does not strongly affect the bacteria strains and also shows poor inhibitory activity against hCAII isoenzyme whereas all complexes posses higher biological activities.

  16. Synthesis and Antimicrobial Studies of New Series of Pyrazoline Bearing Bis-Heterocycles via 1,3-Dipolar Cycloaddition Reactions

    Directory of Open Access Journals (Sweden)

    B. Jayashankara

    2008-01-01

    Full Text Available Biologically interesting bis-heterocycles bearing pyrazoline and imidazole moieties have been synthesized. 1H NMR, 13C NMR, IR and elemental analyses characterized the newly synthesized compounds. All the synthesized compounds were evaluated for their antimicrobial activity and were compared with the standard drugs. All the compounds demonstrated potent to weak antimicrobial activity.

  17. Synthesis and Characterization of a Schiff Base Cobalt (III) Complex ...

    African Journals Online (AJOL)

    2017-12-18

    Dec 18, 2017 ... Synthesis and Characterization of a Schiff Base Cobalt (III) Complex and ... zinc, palladium, magnesium and gold and most ..... Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5 ...

  18. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential

    Science.gov (United States)

    Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick

    2018-03-01

    In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.

  19. Synthesis and characterization of zeolite L

    International Nuclear Information System (INIS)

    Ko, Yong Sig; Ahn, Wha Seung

    1999-01-01

    Substantial reduction in synthesis time was achieved for zeolite L crystallization by attempting a hydrothermal synthesis at elevated temperature of 443K in a Na + /K+ mixed alkali system. Pure zeolite L could be obtained from a gel with the molar composition 5.4K 2 O-5.7Na 2 O-Al 2 O 3 -30SiO 2 -500H 2 O after 24h. Zeolite L could be obtained in high purity at the optimum Na 2 O/(K 2 O+Na 2 O) ratio of around 0.5, while zeolite W was formed when the Na 2 O/(K 2 O+Na 2 O) ratio was more than 0.66. The crystalline zeolite L samples obtained were characterized by means of elemental chemical analysis, XRD, SEM, FTi.r. spectroscopy, and particle size analyzer. In addition, two probe reaction studies were conducted. In toluene alkylation, H-L catalyst showed high catalytic activity at the beginning, but was deactivated quickly probably due to one-dimensional pore structure being blocked by the coke formed. High amounts of trimethylbenzene or diethylbenzene were observed due to the large 12-membered ring pore structure of zeolite L. Pt/NaKL catalyst prepared showed a high conversion of n-hexane and high selectivity to benzene in n-hexane aromatization reaction

  20. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  1. Green synthesis and characterization of graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Farnosh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-03-15

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductant but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.

  2. Synthesis, Characterization and Reactions of (Azidoethynyltrimethylsilane

    Directory of Open Access Journals (Sweden)

    Klaus Banert

    2015-12-01

    Full Text Available Synthesis of azido(trimethylsilylacetylene (6 was performed by treating the iodonium salt 5 with highly soluble hexadecyltributylphosphonium azide (QN3 at −40 °C. Although this product is very unstable, it can nevertheless be trapped by the click reaction with cyclooctyne to give the corresponding 1,2,3-triazole, and also directly characterized by 1H- and 13C-NMR data as well as IR-spectra, which were measured in solution at low temperature and in the gas phase. The thermal or photochemical decay of azide 6 leads to cyano(trimethylsilylcarbene. This is demonstrated not only by quantum chemical calculations, but also by the trapping reactions with the help of isobutene.

  3. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  4. Synthesis and characterization of a cerebral radiotracer

    International Nuclear Information System (INIS)

    Ben hamouda, Salem

    2010-01-01

    The development of nuclear medicine is based on research of new radiopharmaceuticals, in particular, relying on technetium-99m, the most used radioisotope in terms of availability and low cost. A similar study on Rhenium (185/187Re) is essential for monitoring physico-chemical studies due to the high specific activity of technetium-99m. During this work, we have synthesized and labeled with technetium the N-methyl-4-hydroxy piperidinyl ferrocenyl carboxylate. The marking is done by exchange of ligands between the iron group of ferrocene and tricabonyl technetium core. We have succeeded to synthesis the N-methyl-4-hydroxy piperidinyl carboxyl cyclopentadienyl tricarbonyl rhenium (the molecular analogue of the technetium). We characterized it by MS, IR and NMR (1H, 13C) The structure of N-methyl-4-hydroxy piperidinyl carboxyl cyclopentadienyl tricarbonyl technetium is well justified.

  5. Physicochemical and Antimicrobial Characterization of Beeswax–Starch Food-Grade Nanoemulsions Incorporating Natural Antimicrobials

    Directory of Open Access Journals (Sweden)

    Teresita Arredondo-Ochoa

    2017-12-01

    Full Text Available Nanoemulsions are feasible delivery systems of lipophilic compounds, showing potential as edible coatings with enhanced functional properties. The aim of this work was to study the effect of emulsifier type (stearic acid (SA, Tween 80 (T80 or Tween 80/Span 60 (T80/S60 and emulsification process (homogenization, ultrasound or microfluidization on nanoemulsion formation based on oxidized corn starch, beeswax (BW and natural antimicrobials (lauric arginate and natamycin. The response variables were physicochemical properties, rheological behavior, wettability and antimicrobial activity of BW–starch nanoemulsions (BW–SN. The BW–SN emulsified using T80 and microfluidized showed the lowest droplet size (77.6 ± 6.2 nm, a polydispersion index of 0.4 ± 0.0 and whiteness index (WI of 31.8 ± 0.8. This BW–SN exhibited a more negative ζ-potential: −36 ± 4 mV, and Newtonian flow behavior, indicating great stability. BW–SN antimicrobial activity was not affected by microfluidization nor the presence of T80, showing inhibition of the deteriorative fungi R. stolonifer, C. gloeosporioides and B. cinerea, and the pathogenic bacterium S. Saintpaul. In addition, regardless of emulsifier type and emulsification process, BW–SN applied on the tomato surface exhibited low contact angles (38.5° to 48.6°, resulting in efficient wettability (−7.0 mN/m to −8.9 mN/m. These nanoemulsions may be useful to produce edible coatings to preserve fresh-produce quality and safety.

  6. Physicochemical and Antimicrobial Characterization of Beeswax–Starch Food-Grade Nanoemulsions Incorporating Natural Antimicrobials

    Science.gov (United States)

    Arredondo-Ochoa, Teresita; García-Almendárez, Blanca E.; Escamilla-García, Monserrat; Martín-Belloso, Olga; Rossi-Márquez, Giovanna; Medina-Torres, Luis

    2017-01-01

    Nanoemulsions are feasible delivery systems of lipophilic compounds, showing potential as edible coatings with enhanced functional properties. The aim of this work was to study the effect of emulsifier type (stearic acid (SA), Tween 80 (T80) or Tween 80/Span 60 (T80/S60)) and emulsification process (homogenization, ultrasound or microfluidization) on nanoemulsion formation based on oxidized corn starch, beeswax (BW) and natural antimicrobials (lauric arginate and natamycin). The response variables were physicochemical properties, rheological behavior, wettability and antimicrobial activity of BW–starch nanoemulsions (BW–SN). The BW–SN emulsified using T80 and microfluidized showed the lowest droplet size (77.6 ± 6.2 nm), a polydispersion index of 0.4 ± 0.0 and whiteness index (WI) of 31.8 ± 0.8. This BW–SN exhibited a more negative ζ-potential: −36 ± 4 mV, and Newtonian flow behavior, indicating great stability. BW–SN antimicrobial activity was not affected by microfluidization nor the presence of T80, showing inhibition of the deteriorative fungi R. stolonifer, C. gloeosporioides and B. cinerea, and the pathogenic bacterium S. Saintpaul. In addition, regardless of emulsifier type and emulsification process, BW–SN applied on the tomato surface exhibited low contact angles (38.5° to 48.6°), resulting in efficient wettability (−7.0 mN/m to −8.9 mN/m). These nanoemulsions may be useful to produce edible coatings to preserve fresh-produce quality and safety. PMID:29244710

  7. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    International Nuclear Information System (INIS)

    Rao, N.Hanumanta; Lakshmidevi, N.; Pammi, S.V.N.; Kollu, Pratap; Ganapaty, S.; Lakshmi, P.

    2016-01-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  8. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.Hanumanta [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Lakshmidevi, N. [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India); Pammi, S.V.N. [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon (Korea, Republic of); Kollu, Pratap [DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Ganapaty, S. [GITAM Institute of Pharmacy, GITAM University, Visakhapatnam (India); Lakshmi, P., E-mail: lmkandregula@gmail.com [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India)

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  9. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.

    Science.gov (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa Gm; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas

    2017-01-01

    Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag + to Ag 0 . AgNO 3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397-410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10-35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP-impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.

  10. Synthesis, XRD and spectroscopic characterization of pharmacologically active Cu(II) and Zn(II) complexes

    Science.gov (United States)

    Gull, Parveez; Hashmi, Athar Adil

    2017-07-01

    The present contribution accounts for the synthesis and structural elucidation of a newly synthesised copper and zinc containing schiff base compounds obtained by the condensation of 1, 2-diphenylethane-1, 2-dione and dinitrophenyl hydrazine as main ligand and benzene-1,2-diamine as co-ligand respectively. The synthesised compounds were characterized by several techniques, including elemental analysis, molar conductance and electronic, FT-IR, XRD, mass and 1H NMR spectral studies. The analytical and molar conductance values indicated that the complexes have square planar and tetrahedral geometry respectively. X-ray powder diffraction illustrates that they are crystalline in nature. The copper and zinc complexes were screened for their antimicrobial potential against some bacterial and fungi strains and the assay indicate that these complexes are good antimicrobial agents against these tested pathogens.

  11. Green synthesis of silver nano particles from Atalantia monophylla (L) Correa leaf extract, their antimicrobial activity and sensing capability of H2O2.

    Science.gov (United States)

    Mahadevan, S; Vijayakumar, S; Arulmozhi, P

    2017-12-01

    In the present study deals with the green synthesis of silver nano particles from methanolic leaf extracts of Atalantia monophylla. The synthesized nano-particles are characterized by UV-vis spectroscopy, PL, FTIR, XRD, SEM with EDAX and TEM. The nano-particles are indicated in absorption peak at 404 nm in the absorption spectrum. Further micro graphical analysis confirmed the average size was estimated about 35 nm and SEAD pattern authorized well crystalline materials. The FTIR studies help to confirm the functional group of synthesized silver nano particles. The XRD data shown the crystalline nature of nano particles and EDAX measurement indicates the purity of silver metal. The antimicrobial effect of silver nanoparticles was tested on pathogenic organisms using agar well diffusion method. Minimum inhibitory concentration (MIC) and Minimum bactericidal/fungicidal concentration (MBC/MFC) were also investigated in different concentrations of leaf extract. The results indicated that synthesized silver nano particle of A. monophylla leaf extract has the potential of antimicrobial activity against pathogenic microorganism. In addition, this is the first report on leaf synthesized silver nano particles of A. monophylla. The antimicrobial activity against pathogenic microorganisms and the ability to detect hydrogen peroxide using the silver nanoparticles were confirmed which would find applications in the development of new antimicrobial drugs and new biosensors to detect the presence of hydrogen peroxide in various samples respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis, characterization and antimicrobial studies of cadmium(II ...

    Indian Academy of Sciences (India)

    Md Shah Alam

    2018-03-20

    Mar 20, 2018 ... The antibacterial activities of the ligands, metal salts and complexes have been tested against two selected gram ... the various biological roles played by natural coun- terparts can be mainly determined by the ... synthesized by using proper alkalyting agent and prepa- ration of cadmium(II) complexes of LB ...

  13. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    intermolecular N3—H1N1•••O1 hydrogen bonds. (Table 2), resulting in the formation of zigzag layers lying parallel to (100) (Fig. 2b). The existence of π•••π interactions involving the centroid of the N4/C9-C13 pyridine ring (π•••π distance = 3.5108(18) Å) further stabilize the molecular packing. The structure of compound 2.

  14. Synthesis, characterization and antimicrobial studies of Mn(II ...

    African Journals Online (AJOL)

    Solubility test carried out in some common solvents showed that it is soluble in methanol, DMSO, acetone and diethylether but insoluble in benzene and ether, while in toluene is slightly soluble and these suggested the polar nature of the complex. The molar conductance measurement of the complex is 2.5 Ω-1 cm2 mol-1 ...

  15. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    chlorophenyl)-2-(pyridin-4- ylcarbonyl) hydrazinecarbothioamide. ... Conclusion: The title compound represents a good lead for the development of potent antibacterial agent against Gram positive bacteria and MRSA strains. Keywords: Isoniazid ...

  16. Solid State Synthesis, Characterization and Antimicrobial Study of 4 ...

    African Journals Online (AJOL)

    MBI

    2014-11-10

    Nov 10, 2014 ... respectively. The molar conductivity measurement was found to be 40.2 Ω-1cm2 mole-1 and the electrical conductivity was 40.2 x 10-6 Ω-1cm-1, these low values revealed that there is no free ion out of the coordination sphere and the complex is non- electrolyte. The decomposition temperature is. 171oC ...

  17. Synthesis, Characterization and Anti-Microbial Assessment of N, N ...

    African Journals Online (AJOL)

    The infrared spectral data of the Schiff base showed a band at 1590cm-1, which is attributable to v(C=O) stretching frequency. The same band was observed in the manganese(II) complex but at a lower frequency of 1565cm-1, suggesting coordination of the Schiff base ligand. The bands in the region 586cm-1 and 500cm-1 ...

  18. Synthesis and characterization of dental composites

    Science.gov (United States)

    Djustiana, Nina; Greviana, Nadia; Faza, Yanwar; Sunarso

    2018-02-01

    During the last few decades, the increasing demands in esthetic dentistry have led to the development of dental composites material that provide similar appearance to the natural teeth. Recently, esthetic trend was an issue which increase the demand for teeth restorations that is similar with the origin. The esthetics of dental composite are more superior compared to amalgam, since its color look similar with natural teeth. Various dental composites have been developed using many type of fillers such as amorphous silica, quartz), borosilicate, Li-Sr-Ba-Al glass and oxide: zirconia and alumina. Researchers in Faculty of Dentistry University of Padjadjaran have prepared dental composites using zirconia-alumina-silica (ZAS) system as the filler. The aim is to improve the mechanical properties and the esthetic of the dental composites. The ZAS was obtained from chemical grade purity chemicals and Indonesia's natural sand as precursors its characterization were also presented. This novel method covers the procedure to synthesis and characterize dental composites in Padjadjaran University and some review about dental composites in global research.

  19. Characterization and antimicrobial activity of vaginal lactobacillus isolate

    Directory of Open Access Journals (Sweden)

    Zavišić Gordana

    2011-01-01

    Full Text Available The aim of this study was to investigate the probiotic potential of bacteriocin-producing lactobacilli strain Lactobacillus plantarum G2 isolated from the vaginal mucus of healthy women. The antimicrobial effect of G2 was confirmed in the mixed culture with pathogenic Escherichia coli, Staphylococcus aureus, Salmonella abony and Pseudomonas aeruginosa, while bacteriocine activity was detected against S. aureus and S. abony only. The strain showed an excellent survival rate in low pH and in the presence of bile salts. The percentage of adhered cells of L. plantarum G2 to hexadecane was 63.85±2.0 indicating the intermediate hydrophobicity.

  20. Synthesis and characterization of fluorine compounds

    International Nuclear Information System (INIS)

    Martinez Carrillo, M.

    1991-01-01

    The ( 18 F) D-glucose, 2-deoxy fluorine ( 18 FDG) is a radio pharmaceutic that is used in nuclear medicine it is utilized mainly in the glucose metabolism. It allows recently to observe the tumors accumulation and growing. The obtention of this radio pharmaceutic can realize by a nucleophilic or electrophilic process through the use of different fluorinated agents obtained as intermediates for introducing the 18 F radionuclide in a final step of synthesis. The first methods already has been studied in the National Institute of Nuclear Research. The second one which is based this work and it was realized through the reaction of acetyl hypo fluorite (CH 3 COOF) with tri acetyl glucal (TAG) in turn they require the obtention of several fluorated compounds that they serve as intermediates for their obtention so that objective of this work was to find the adequate technique for the obtention of anhydride hydrofluoric acid (HF), KF.2 HF and elemental fluorine so as the design and construction of the systems and equipment used for carry out each one of the reactions. Moreover it was designed the system that will be used for the obtention of acetyl hypo fluoride and the synthesis of composite tetraacetilide 3,4,6 tri-D-glucopyranosil fluoride (TAG-F) for that finally by hydrolysis it was obtained the 2-deoxy fluoride-D-glucose (TAG) in inactive. In this system were realized several preliminary tests. The results are showed in the content of this work also the techniques for compounds characterization were given. (Author)

  1. Design, synthesis, and in vitro antimicrobial activity of hydrazide-hydrazones of 2-substituted acetic acid.

    Science.gov (United States)

    Popiołek, Łukasz; Biernasiuk, Anna

    2016-12-01

    In this study, 30 hydrazide-hydrazones of phenylacetic (3-10) and hydroxyacetic acid (11-32) were synthesized by the condensation reaction of appropriate 2-substituted acetic acid hydrazide with different aromatic aldehydes. The obtained compounds were characterized by spectral data and evaluated in vitro for their potential antimicrobial activities against a panel of reference strains of micro-organisms, including Gram-positive bacteria, Gram-negative bacteria, and fungi belonging to the Candida spp. The results from our antimicrobial assays indicated that among synthesized compounds 3-32, especially compounds 6, 14, and 26 showed high bactericidal activity (MIC = 0.488-7.81 μg/ml) against reference Gram-positive bacteria, and in some cases, their activity was even better than that of commonly used antibiotics, such as cefuroxime or ampicillin. © 2016 John Wiley & Sons A/S.

  2. Synthesis of a Novel Quinoline Skeleton Introduced Cationic Polyfluorene Derivative for Multimodal Antimicrobial Application.

    Science.gov (United States)

    Sun, Han; Yin, Bohan; Ma, Hongli; Yuan, Huanxiang; Fu, Bin; Liu, Libing

    2015-11-18

    A new functional polyfluorene derivative containing quinoline skeleton and quarternary ammonium group (QAG) modified side chains (PFPQ) was synthesized and characterized. The multimodal antimicrobial effect toward Gram-negative E. coli was achieved by the dark toxicity resulting from the quinoline skeleton, QAG, and light toxicity resulting from reactive oxygen species (ROS) produced by the main backbone of PFPQ under white light. The mechanism of interaction between PFPQ and bacteria was also demonstrated. PFPQ bound to E. coli mainly through electrostatic interactions causing nearly 50% bacterial death in the absence of light irradiation, and the huge capability of PFPQ to generate ROS under white light opened another bactericidal mode. The killing efficiency was more than 99% upon relatively mild irradiation under white light (400-800 nm) with a light dose of 18 J·cm(-2). PFPQ with the incorporation of quinoline into the backbones will provide a new versatile strategy to achieve the multimodal antimicrobial effect to fight against resistant bacteria.

  3. Synthesis and Antimicrobial Studies of Some Novel Pyrazoline and Isoxazoline Derivatives

    Directory of Open Access Journals (Sweden)

    S. B. jadhav

    2009-01-01

    Full Text Available A new series of 1H-3-(4’-substituted phenyl-5-(6’’-methoxy napthaline-2-pyrazolines (4a-e and 1H-3-(4’-substituted phenyl-5-(6’’-methoxynapthaline-2-isoxazolines (5a-e were synthesized by reacting 1-(4’-substituted phenyl-3-(6’’-methoxynapthaline-2-propene-1-one (3a-e with hydrazine hydrate and hydroxylamine hydrochloride respectively. All these compounds were characterized by means of their IR, 1H NMR, spectroscopic data and microanalysis. All the synthesized products were evaluated for their antimicrobial activity. All the compounds exhibited significant to moderate antimicrobial activity.

  4. Synthesis and Antimicrobial Evaluation of Some Novel 2-(4-Chlorophenylimino) thiazolidin-4-one Derivatives

    International Nuclear Information System (INIS)

    B'Bhatt, H.; Sharma, S.

    2012-01-01

    A series of 2-(4-chlorophenylimino)-5-((3-(p-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl) methylene) thiazolidin-4-one (3a-h) compounds were prepared from the 2-(4-chlorophenylimino) thiazolidin-4-one (1) and 1-phenyl-3-(psubstituted phenyl)-1H-pyrazole-4-carbaldehyde (2a-h). All compounds were characterized by elemental (C, H, N) analysis and spectral (FT-IR, 1 H NMR and GC-MS) analysis. These newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial activity was observed and evaluated against the bacterial strains like Eschericha coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442) and against the fungal strains like Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323). All the synthesized compounds were found to possess moderate to excellent antimicrobial activity against above selected strains

  5. Synthesis and Antimicrobial Evaluation of Some Novel 2-(4-Chlorophenylimino) thiazolidin-4-one Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    B' Bhatt, H.; Sharma, S. [Hemchandracharya North Gujarat Univ., Gujarat (India)

    2012-06-15

    A series of 2-(4-chlorophenylimino)-5-((3-(p-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl) methylene) thiazolidin-4-one (3a-h) compounds were prepared from the 2-(4-chlorophenylimino) thiazolidin-4-one (1) and 1-phenyl-3-(psubstituted phenyl)-1H-pyrazole-4-carbaldehyde (2a-h). All compounds were characterized by elemental (C, H, N) analysis and spectral (FT-IR, {sup 1}H NMR and GC-MS) analysis. These newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial activity was observed and evaluated against the bacterial strains like Eschericha coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442) and against the fungal strains like Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323). All the synthesized compounds were found to possess moderate to excellent antimicrobial activity against above selected strains.

  6. Synthesis and Characterization of Nano Scale YBCO

    International Nuclear Information System (INIS)

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  7. MOLECULAR-PHYLOGENETIC CHARACTERIZATION AND ANTIMICROBIAL RESISTANCE OF Escherichia coli ISOLATED FROM GOATS WITH DIARRHEA

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida Guimarães

    2015-10-01

    Full Text Available Neonatal diarrhea determines significant changes in feed conversion, causing productivity loss in caprine herds. The antimicrobial resistance in bacteria is characterized as an important public health issue; therefore, Escherichia coli may be characterized as an important pathogen due to expressing virulence mechanisms responsible for significant clinical conditions in humans and animals. The present study evaluated the presence of E. coli among 117 caprine fecal samples and analyzed the isolates for antimicrobial resistance. Suggestive colonies were submitted to biochemical screening followed by genotypic group determination and phylogenetic analysis; further, the samples were submitted to antimicrobials susceptibility test. E. coli, Salmonella spp, Shigella sonnei and Enterobacter aerogenes were identified. E. coli isolates were phylogenetically classified as B2 (9/39, D (19/39, B1 (7/39 e A (4/29 groups. The analysis of the isolates also revealed the presence of K99 (04/39 and Stx (02/39 virulence factors. Antimicrobial susceptibility test revealed sensitive isolates to Chloramphenicol, Streptomycin, Amoxicillin and Ciprofloxacin, being all resistant to Lincomycin, Vancomycin and Penicillin. The results support the need of establishing restricted protocols for antimicrobial use, a fundamental procedure for health improvement in Brazilian caprine herds.

  8. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

    Science.gov (United States)

    Prabhu, Sukumaran; Poulose, Eldho K.

    2012-10-01

    Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

  9. Characterization and Activity of an Immobilized Antimicrobial Peptide Containing Bactericidal PEG-Hydrogel

    NARCIS (Netherlands)

    Cleophas, Rik T. C.; Sjollema, Jelmer; Busscher, Henk J.; Kruijtzer, John A. W.; Liskamp, Rob M. J.

    A single step immobilization-polymerization strategy of a highly active antimicrobial peptide into a soft hydrogel network on a poly(ethylene terephthalate) surface using thiol-ene chemistry is described. The bactericidal hydrogel was molecularly characterized via Coomassie and Lowry assay protein

  10. Characterization and activity of an immobilized antimicrobial peptide containing bactericidal PEG-hydrogel

    NARCIS (Netherlands)

    Cleophas, Rik T C|info:eu-repo/dai/nl/341566578; Sjollema, Jelmer; Busscher, Henk J; Kruijtzer, John A W|info:eu-repo/dai/nl/15207449X; Liskamp, Rob M J|info:eu-repo/dai/nl/069091315

    2014-01-01

    A single step immobilization-polymerization strategy of a highly active antimicrobial peptide into a soft hydrogel network on a poly(ethylene terephthalate) surface using thiol-ene chemistry is described. The bactericidal hydrogel was molecularly characterized via Coomassie and Lowry assay protein

  11. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract

    Directory of Open Access Journals (Sweden)

    Afrah Eltayeb Mohammed

    2015-05-01

    Conclusions: Our findings indicated that extracellular synthesis of AgNPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgNPs and also to characterize the toxicity effect of these particles.

  12. Synthesis, characterization and evaluation of biological activities of ...

    African Journals Online (AJOL)

    Purpose: To synthesize, characterize and investigate the antimicrobial properties of pure and manganese-doped zinc oxide nanoparticles. Method: Un-doped and manganese-doped zinc oxide (Mn-doped ZnO) nanoparticles were prepared using co-precipitation method. The synthesized Mn-doped ZnO nanoparticles were ...

  13. Synthesis and antimicrobial evaluation of nanostructures ZrO2:AG against staphylococcus aureus by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Nova, C.V.; Reis, K.H.; Galico, D.A.; Venturini, J.; Pontes, F.M.L.; Pinheiro, A.L. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Longo, E. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Nanostructures of zirconia (ZrO2) has shown great prominence in the area of advanced materials and shows excellent properties such as chemical stability, mechanical strength, electrical and optical properties. When certain metals are supported on the compound, such as Fe, Ag, Au and Al, a potentiation of some properties, such as bactericide and fungicide can occur. Thus, this work deals with the synthesis and characterization of ZrO2 and ZrO2:Ag (1% and 10 % of Ag) nanostructures and the study of the influence of the antimicrobial activity against Staphylococcus aureus. X-ray powder diffractograms of the zirconia and silver with zirconia shown the formation of well defined peaks of tetragonal zirconia in all the samples. Although the ZrO2:Ag (10 % of Ag) shown the characteristics peaks of cubic silver, these peaks do not appear in ZrO2:Ag (1 % of Ag) due to the small amount of silver in comparison with zirconium. The crystal size was estimated by the Scherrer equation and the calculated values for zirconia were 12.84, 12.27 and 12.61 nm for ZrO2, ZrO2 : Ag (1%) and ZrO2 : Ag (10%) respectively and the silver crystal size was 8,09 nm. Diffuse reflectance of the silver particles shown a broad plasmon band at 405 and 424 nm for the ZrO2 : Ag (1%) and ZrO2 : Ag (10%). Antimicrobial assay demonstrated that ZrO2 showed a bacteriostatic effect (61 %) and the inclusion of the silver in the ZrO2 matrix enhanced this effect to 65-72 %. Both particles with different silver content shown similar effect {[ZrO2:Ag 1%] = [ZrO2:Ag 10%]>[ZrO2]}.(author)

  14. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  15. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  16. Synthesis and characterization of cuprate superconductors

    International Nuclear Information System (INIS)

    Schaeffer, R.W. III.

    1992-01-01

    Superconducting powders and films were synthesized by a variety of methods and solvent systems: chemical solidification, freeze drying, and spray pyrolysis from livid ammonia (to form powders and films); reactions in molten sodium hydroxide/sodium peroxide and sodium nitrate/potassium nitrate mixtures (to form powders); and gel formation, coprecipitation, and spray drying from aqueous/organic mixtures (to form powders and films). These materials were characterized for elemental content and phase purity by gravimetric and volumetric analysis, atomic absorption spectroscopy, x-ray fluorescence and x-ray diffraction techniques. Particle size and surface morphology were determined by scanning electron microscopy and x-ray diffraction analysis. Also, precursor reactions were followed as a function of temperature with thermal gravimetric analysis and differential scanning calorimetry. Finally, physical properties determined for the resulting superconducting phases included resistivity, magnetic susceptibility, critical current, and percent Meissner effect. These results are discussed as a function of process parameters with particular attention to the role of atomic level mixing in solid state synthesis

  17. Synthesis and Characterization of 2-D Materials

    Science.gov (United States)

    Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.

    Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.

  18. Synthesis and characterization of novel nanothermometers

    Energy Technology Data Exchange (ETDEWEB)

    Baumert, Delphine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Larsen, George [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Schyck, Sarah [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-23

    A straightforward approach was developed for the synthesis of Pd, Pd-Fe2O3, Au-Fe2O3, and Au-Pd-Fe2O3 nanothermometers, using a single SL DNA. These NP-DNA conjugates were characterized using techniques including EDX measurements, ζ-potential of NPs before and after DNA functionalization, electron microscopy studies and fluorescence spectroscopy. The fluorescence studies of the NP-DNA demonstrate the interaction between the NP and the fluorophore, which is quenched in the case of Au-Pd-Fe2O3 NPs and is perhaps enhanced (when compared to AuNPs) in the case of Pd and Pd-Fe2O3 NPs. In order to achieve more accurate and reproducible measurements, designing a system that is able to hold the NP-DNA conjugates at a temperature for a longer period of time to allow them to 12 equilibrate is currently underway. Our studies show that Au-Pd-Fe2O3 NPs are the best candidate material to serve as nanothermometers when compared to Pd, Pd-Fe2O3, and Au-Fe2O3 materials.

  19. SYNTHESIS AND CHARACTERIZATION OF IRON (II) AND NICKEL ...

    African Journals Online (AJOL)

    DR. AMINU

    SYNTHESIS AND CHARACTERIZATION OF IRON (II) AND NICKEL (II). SCHIFF BASE COMPLEXES. * Aliyu, H. N. and A. S. ... synthesis and magnetic studies on schiff base complexes of copper (II). Recently, Xishi et al. (2003) .... pyridylmethanimines as Tuneable Alternatives to Bipyridine Ligan in Copper Medicated Atom.

  20. Synthesis and characterization of six-membered pincer ...

    Indian Academy of Sciences (India)

    0013167

    SUPPORTING INFORMATION. REGULAR ARTICLE. Synthesis and characterization of six-membered pincer nickelacycles and application in alkylation of benzothiazole. †. HANUMANPRASAD PANDIRI,a DIPESH M SHARMA,a RAJESH G GONNADEb and. BENUDHAR PUNJI*,a. aOrganometallic Synthesis and Catalysis ...

  1. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Zhihui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Wang, Zhihua [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@henu.edu.cn [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie [Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified.

  2. Convenient Synthesis and Antimicrobial Activity of Some Novel Amino Acid Coupled Triazoles

    Directory of Open Access Journals (Sweden)

    S. M. El Rayes

    2010-09-01

    Full Text Available This study describes a promising one-pot synthesis of [2-(5-benzyl-4-phenyl-4H-[1,2,4]triazol-3-thio-acetyl]-amino acid methyl esters 6a-h and dipeptides 10a-e, which were successfully synthesized starting from amino acid esters 5a-h, 9a-e and azides 4, 8a,b, respectively. On the other hand, azide 4 underwent Curtius rearrangement to the corresponding isocyanate, which subsequently reacted with selected aliphatic amine and/or aniline derivatives to give the corresponding urea derivatives 11 and 12a,b. Reactions of the isocyanate with secondary amines gave amide derivatives 13a,b. The structural elucidation of products is reported and some of the products were also screened for their antimicrobial activity.

  3. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters.

    Science.gov (United States)

    Ahmad, Anis; Ahmad, Aiman; Sudhakar, Raja; Varshney, Himani; Subbarao, Naidu; Ansari, Saba; Rauf, Abdul; Khan, Asad U

    2017-11-01

    In this study, a novel series of oxazoline and thiazoline were designed as inhibitors of cytochrome P450 14 alpha-sterol demethylase (CYP51) from Candida albicans and peptide deformylase (PDF) of Escherichia coli. The long chain dibromo derivative of fatty acid esters on reaction with urea and thiourea gave their corresponding oxazolines and thiazolines, respectively. All the compounds were characterized by their spectral data (IR, 1 H NMR, 13 C NMR and MS) and tested for antibacterial and antifungal activity by disk diffusion assay and minimum inhibitory concentration by the broth microdilution method against gram-positive and gram-negative strains of bacteria as well as fungus strains. The investigation into antimicrobial screening revealed that all the compounds were found to be potent antimicrobial agents. After calculating likeness drug properties of the compounds by Prediction of Activity Spectra for Substances software, ADMET-related descriptors were computed to predict the pharmacokinetic properties for the active and bioavailable compounds by discovery studio 2.5. Molecular docking studies have been performed on PDF of E. coli and CYP 450-14DM of C. albicans to understand the mode of binding of the molecules in the active site of the receptor. Compounds (2-amino-5-(carbomethoxyoctyl)-1,3-oxazoline, 2-amino-5-(carbomethoxyoctyl)-1,3-thiazoline and 2-amino-4-pentyl-5-[(8'R)-8' hydroxy (carbomethoxydecyl)-1,3-oxazoline) showed excellent antimicrobial activity nearly equivalent to the control compounds and compounds, 2-amino-4-octyl-5-(carbomethoxyheptyl)-1,3-oxazolin, 2-amino-4-(2'R)(2'-hydroxy octyl)-5-(carbomethoxyheptyl)-1,3-oxazoline and 2-amino-4-pentyl-5-[(8'R)-8'-hydroxy(carbomethoxy decyl)-1,3-oxazolineshowed vasodilation and antihypertensive properties. Furthermore, a computational analysis of physicochemical parameters revealed that the most of the compounds possessed drug-like attributes. Using Bioinformatics approach, we found a correlation

  4. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  5. Synthesis, spectroscopic and DFT characterization of 4 β -(4- tert ...

    African Journals Online (AJOL)

    Synthesis, spectroscopic and DFT characterization of 4 β -(4-tert-butylphenoxy) phthalocyanine positional isomers for non-linear optical absorption. Denisha Gounden, Grace N. Ngubeni, Marcel S. Louzada, Samson Khene, Jonathan Britton, Nolwazi Nombona ...

  6. Gold (I)-selenolate complexes: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    selenolate complexes: Synthesis, characterization and ligand exchange reactions. Krishna P Bhabak ... This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the ...

  7. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 116; Issue 5. Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. Bikash Kumar Panda. Volume 116 ... Keywords. Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium.

  8. Synthesis and characterization of ceria nanomaterials

    Science.gov (United States)

    Cheong Ng, Nitzia

    Cerium dioxide or ceria, CeO2, has been widely used in industry as catalyst for automotive exhaust controls, chemical mechanical polishing (CMP) slurries, and high temperature fuel cells because of its unique metal oxide properties. This well-known rare metal oxide has high thermal stability, electrical conductivity and chemical diffusivity. Proper synthesis method requires knowledge of reaction temperature, concentration, and time effects on the synthesis. In this work, ceria nanomaterials were prepared via the hydrothermal method using a Teflon autoclave. Cerium nitrate solution was used as the source and three different precursors: NaOH, H2O 2, and NH4OH were used as the oxidizing agents. CeO 2 nanoplates, nanocubes and nanorods were produced and studied using transmission electron microscopy (TEM), BET specific surface area, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Through characterization, CeO2 nanomaterials showed the presence of mixed valence states (Ce3+ and Ce4+) through XPS spectra. Deconvolution was performed to investigate the ratio of Ce 3+/Ce4+ concentration in the synthesized CeO2 nanostructures. Nanocubes showed a higher Ce3+ concentration. CeO2 nanomaterials were found to be mesoporous. Nanoplates synthesized with H2O2, and NH4OH were found with surface areas of 95.11 m2/g and 62.07 m2/g, respectively. Nanorods and nanocubes showed surface areas of 16.77 m2/g and 16.55 m2/g, respectively. The prepared ceria nanoplates, nanocubes and nanorods had crystallite size in the range of 5--25 nm and pore size range of 7--15 nm. XRD spectra confirmed that the peaks were indexed to the cubic phase of CeO2 with fluorite structure and with an average lattice parameter, 5.407 A. Higher Ce3+ concentration and exposed surface of crystalline planes suggest that nanorods are better catalyst for CO oxidation and oxygen storage capacity (OSC).

  9. Synthesis, characterization and biological evaluation of ...

    Indian Academy of Sciences (India)

    5H-thiazolo[3,2-a]pyrimidine-2,6-dicarboxylic acid diethyl ester (3e) was verified by single crystal X-ray diffraction method. The antimicrobial activity was evaluated against four bacterial strains and one fungal species. Few of the derivatives ...

  10. Synthesis, characterization and antibacterial evaluation of some ...

    African Journals Online (AJOL)

    NMR, 13C-NMR, mass spectrometry and elemental analysis and screened for antimicrobial activity against two Gram-positive strains (Staphylococcus aureus and Bacillus subtilis) and two ... DOI: http://dx.doi.org/10.4314/bcse.v28i3.14 ...

  11. Synthesis, characterization and biological evaluation of ...

    Indian Academy of Sciences (India)

    treatment of AIDS.11 This is due to the fact that their particular structure has been found in the natural marine ... of AIDS therapy.11 Moreover, thiazole derivatives have acquired a conspicuous significance due to their use ...... The investigation of antimicrobial screen- ing reveals that the compounds 3a, 3c, 3e and 3g.

  12. Preparation and Characterizations of Chitosan/Citral Nanoemulsions and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Gehan I. Kh. Marei

    2018-03-01

    Full Text Available Background and Objective: The antimicrobial activity of essential oils has been long recognized, however, they easily evaporate and/or decompose during preparation, owing to direct exposure to heat, pressure and light. The current study deals with the formulation and characterization of bio-based oil in water nanoemulsions and their antimicrobial activity against plant pathogens.Material and Methods: Citral oil and low molecular weight chitosan were used for preparation of nanoemulsions in the presence of sodium tripolyphosphate. Nanoemulsions were prepared by adding dropwise citral at different ratios into an aqueous solution containing chitosan, sodium tripolyphosphate and surfactant with continuous stirring and then ultrasonication. The success of formulation was confirmed by dynamic light scattering and scanning electron microscopy techniques. Physical stability and viscosity were investigated in details. The antimicrobial activity was evaluated against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer. Results and Conclusion: The nanoemulsions had a polydispersity index ranged from 0.508 to 0.614 and particle size from 27 to 1283 nm. The highest antimicrobial activity was observed with F1 formulation (EC50 = 23, 278 and 221 mg L-1, against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer, respectively. Based on the antimicrobial activity, the prepared chitosan/citral nanoemulsions can be a cost-effective way to protect crops from microbial pathogens. Because such formulations contain bioactive products, the development of resistant pathogens can be delayed.Conflict of Interest: The authors declare no conflict of interest. 

  13. [Purification and characterization of an antimicrobial peptide from Paris polyphylla var. chinensis].

    Science.gov (United States)

    Cheng, Yuanyuan; Yong, Bin; Zhang, Chao; Liu, Qiang; Yan, Wei; Wang, Yiding

    2009-04-01

    We isolated an endophyte PCE45 from the rhizome of Paris polyphylla var. chinensis. From PCE45, we purified and characterized an antimicrobial peptide. After ammonium sulfate salting-out, acetone precipitation, SephadexG75, DE52 and SephadexG25 column chromatography, we separated an antimicrobial peptide PCP-1 from the strain PCE45. The stability against high temperature and proteinase, and antimicrobial activity were also analyzed. The antimicrobial peptide PCP-1 was stable to proteinase and tolerated high temperature, strong acid and strong base. PCP-1 caused deformation of the hyphae of Pyrictlaria oryzae and prohibited the spore germination. It also inhibited fungi such as Curvularia lunata and bacteria such as Escherichia colli. Mass spectrogram measurement revealed its molecular weight of 1058.3 Da. The amino acid composition of the peptide composed of 7 amino acids. Ninhydrin reaction showed negative trait whereas after acid hydrolysis with positive ninhydrin reaction and biuret reaction. The ninhydrin reaction and biuret reaction imply that the peptide PCP-1 is a cyclic lipeptide. This is the first report about antimicrobial peptide from Paris polyphylla var. chinensis.

  14. Novel Green Synthesis and Characterization of Nanopolymer ...

    African Journals Online (AJOL)

    Purpose: To develop a novel approach to green synthesis of nano-polymer porous gold oxide nanoparticles, and examine the effects of the temperatures on their surface. Methods: Green synthesis of nano-polymer porous gold oxide nanoparticles (GONPs) using cetyle trimethylammonium bromide (CTAB) surfactant with a ...

  15. Synthesis, spectroscopic characterization and electronic structure of ...

    Indian Academy of Sciences (India)

    Unknown

    Copper(I) carbene complex; carbene complex synthesis; Cu(I)–carbene electronic structure. 1. Introduction. Metal carbene complexes are arguably the most ver- satile organometallic reagents that have been devel- oped for organic synthesis.1 Different reactions of these complexes have been reported since their dis-.

  16. Origin vegetation as a parameter for characterization antimicrobial of propolis

    Directory of Open Access Journals (Sweden)

    Sosa-López Ángela Antonia

    2016-05-01

    Full Text Available The propolises are resinous complex sustances produced by bees. Their chemical composition is variable in according to the vegetal source. This study was realized with samples from northeast of Argentina. The aim of work were to check the fungicide and bactericide effects of etanolic solutions of propolis from different sites in Misiones province, on plant pathogens, considering the predominant vegetation in the original areas on the oxidation indexandfenolic compositions. As results in three studied areas the vegetation has been modified anthropically in different form, and the products are corresponding with the introduced flora characteristics, composed of 7 different plant species in El Soberbio, 7 species in El Dorado and 10 species in Apostoles. The physic and chemical proprieties and therapeutic action in propolis from the three collection areas in the Misiones province were similar. The oxidation rate was different in the three study areas (7.37, 1.30 y 18.4, while the phenolic content showed no significant difference. Their antimicrobial activity to probed concentrations (2, 4, 6, 8 y 10 %, don’t were effectives for control on the fungical strains but it is positive by the bacterial control of genus Bacillus.

  17. Characterization and antimicrobial activity of lectins from Penicillium sp.

    Science.gov (United States)

    Singh, R S; Jain, P; Kaur, H P

    2013-11-01

    Ten Penicillium sp. were screened for lectin activity for occurrence of lectins. Mycelial extracts from submerged cultures of P. corylophilum, P. expansum and P. purpurogenum showed agglutination against human (A, B, AB and O), goat, sheep, pig and rabbit erythrocytes. Neuraminidase treatment to human blood- type O erythrocytes substantially increased their agglutinability by all the lectins as compared to untreated erythrocytes. Modification of erythrocyte surfaces by protease increased the lectin titre only of P. corylophilum with no effect on other two lectins. P. corylophilum and P. expansum displayed relatively lower titres in mycelial extracts prepared from agar plate cultures as compared to broth cultures. A panel of sugars was tested for inhibition of lectin activity. All the lectins were found to be specific for asialofetuin, bovine submaxillary mucin, porcine stomach mucin, chondroitin-6-sulphate, D-sucrose and D-glucose. P. corylophilum lectin was expressed (Titre 8) by 5 day old cultures, reaching its maximum level (Titre 32) upon 8 days of cultivation, thereafter declin in lectin activity was observed. P. purpurogenum lectin was expressed by 7-10 days old cultures, while in P. expansum maximum lectin activity was elaborated by 5-8 days old cultures. Lectin extracts from all the three species were found to possess antimicrobial activities. Lectin extracts from the three Penicillium species displayed antifungal activity and antibacterial activity against Gram-negative and Gram-positive bacterial strains.

  18. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  19. Synthesis, Structure and Antimicrobial Properties of Novel Benzalkonium Chloride Analogues with Pyridine Rings

    Directory of Open Access Journals (Sweden)

    Bogumił Brycki

    2017-01-01

    Full Text Available Quaternary ammonium compounds (QACs are a group of compounds of great economic significance. They are widely used as emulsifiers, detergents, solubilizers and corrosion inhibitors in household and industrial products. Due to their excellent antimicrobial activity QACs have also gained a special meaning as antimicrobials in hospitals, agriculture and the food industry. The main representatives of the microbiocidal QACs are the benzalkonium chlorides (BACs, which exhibit biocidal activity against most bacteria, fungi, algae and some viruses. However, the misuses of QACs, mainly at sublethal concentrations, can lead to an increasing resistance of microorganisms. One of the ways to avoid this serious problem is the introduction and use of new biocides with modified structures instead of the biocides applied so far. Therefore new BAC analogues P13–P18 with pyridine rings were synthesized. The new compounds were characterized by NMR, FT-IR and ESI-MS methods. PM3 semiempirical calculations of molecular structures and the heats of formation of compounds P13–P18 were also performed. Critical micellization concentrations (CMCs were determined to characterize the aggregation behavior of the new BAC analogues. The antimicrobial properties of novel QACs were examined by determining their minimal inhibitory concentration (MIC values against the fungi Aspergillus niger, Candida albicans, Penicillium chrysogenum and bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. The MIC values of N,N-dimethyl-N-(4-methylpyridyl-N-alkylammonium chlorides for fungi range from 0.1 to 12 mM and for bacteria, they range from 0.02 to 6 mM.

  20. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Science.gov (United States)

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018

  1. Synthesis, Structure and Antimicrobial Properties of Novel Benzalkonium Chloride Analogues with Pyridine Rings.

    Science.gov (United States)

    Brycki, Bogumił; Małecka, Izabela; Koziróg, Anna; Otlewska, Anna

    2017-01-13

    Quaternary ammonium compounds (QACs) are a group of compounds of great economic significance. They are widely used as emulsifiers, detergents, solubilizers and corrosion inhibitors in household and industrial products. Due to their excellent antimicrobial activity QACs have also gained a special meaning as antimicrobials in hospitals, agriculture and the food industry. The main representatives of the microbiocidal QACs are the benzalkonium chlorides (BACs), which exhibit biocidal activity against most bacteria, fungi, algae and some viruses. However, the misuses of QACs, mainly at sublethal concentrations, can lead to an increasing resistance of microorganisms. One of the ways to avoid this serious problem is the introduction and use of new biocides with modified structures instead of the biocides applied so far. Therefore new BAC analogues P13 - P18 with pyridine rings were synthesized. The new compounds were characterized by NMR, FT-IR and ESI-MS methods. PM3 semiempirical calculations of molecular structures and the heats of formation of compounds P13 - P18 were also performed. Critical micellization concentrations (CMCs) were determined to characterize the aggregation behavior of the new BAC analogues. The antimicrobial properties of novel QACs were examined by determining their minimal inhibitory concentration (MIC) values against the fungi Aspergillus niger , Candida albicans , Penicillium chrysogenum and bacteria Staphylococcus aureus , Bacillus subtilis , Escherichia coli and Pseudomonas aeruginosa . The MIC values of N , N -dimethyl- N -(4-methylpyridyl)- N -alkylammonium chlorides for fungi range from 0.1 to 12 mM and for bacteria, they range from 0.02 to 6 mM.

  2. Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties.

    Science.gov (United States)

    Gómez-Graña, Sergio; Perez-Ameneiro, María; Vecino, Xanel; Pastoriza-Santos, Isabel; Perez-Juste, Jorge; Cruz, José Manuel; Moldes, Ana Belén

    2017-06-06

    A new and promising biosurfactant extracted from corn steep liquor has been used for the green synthesis of gold and silver nanoparticles (NPs) in a one-step procedure induced by temperature. Most of the biosurfactants proposed in the literature are produced by pathogenic microorganisms; whereas the biosurfactant used in the current work was extracted from a liquid stream, fermented spontaneously by lactic acid bacteria, which are "generally recognized as safe" (GRAS) microorganisms. The reduction of a gold precursor in the presence of a biosurfactant gives rise to a mixture of nanospheres and nanoplates with distinct optical features. Moreover, the growth of nanoplates can be promoted by increasing the reaction temperature to 60 °C. In the case of silver, the biosurfactant just induces the formation of pseudo-spherical NPs. The biosurfactant plays a key role in the reduction of the metal precursor, as well as in the stabilization of the resulting NPs. Furthermore, the antimicrobial activity of the resulting silver colloids has been analyzed against Escherichia coli , Pseudomonas aeruginosa and Staphylococcus aureus . The biosurfactant stabilized NPs slightly increased the inhibition of E. coli in comparison with citrate stabilized Ag NPs. The use of this biosurfactant extracted from corn steep liquor for the synthesis of metal NPs contributes to enhancing the application of green technologies and increasing the utilization of clean, non-toxic and environmentally safe production processes. Therefore, it can help to reduce environmental impact, minimize waste and increase energy efficiency in the field of nanomaterials.

  3. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    Science.gov (United States)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-10-01

    In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms ( Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  4. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  5. Synthesis and antimicrobial activity of some novel fused heterocyclic 1,2,4-triazolo [3,4-b][1,3,4] thiadiazine derivatives

    Directory of Open Access Journals (Sweden)

    Jagdish K. Sahu

    2014-01-01

    Full Text Available In the present investigation, the synthesis and antimicrobial evaluation of 1,2,4-triazolo [3,4-b][1,3,4] thiadiazine including different pharmacophores are aimed at. In this study, a series of 6-aryl-3- (3,4 -dialkoxyphenyl-7H -[1,2,4]triazolo [3,4-b][1,3,4] thiadiazine (7a-7k was synthesized by condensing 4-amino-5-(3,4-dialkoxyphenyl-4H-[1,2,4]- triazole-3-thiol (6 with various aromatic carboxylic acids in the presence of phenacyl bromides through one-pot reaction. Eleven fused heterocyclic derivatives were successfully synthesized. The structures of these newly synthesized compounds were characterized by IR, 1 H NMR and mass spectroscopic studies. All the synthesized compounds were screened for their antimicrobial evaluation. Some of the compounds exhibited promising antimicrobial activity. From the present study it may be concluded that synthesized compounds are fruitful in terms of their structural novelty and marked biological activities. These compounds could be further modified to develop potential and safer antifungal agents.

  6. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities.

    Science.gov (United States)

    Khan, Zaheer; Al-Thabaiti, Shaeel Ahmad

    2018-03-01

    Biomimetic method was used for the synthesis of Fe-nanoparticles (FeNPs). FeCl 3 and Hibiscus sabdariffa, Roselle flower aqueous extract (HBS) were employed in the present studies. The FeNPs have been characterized by using UV-visible spectroscopy, transmission electron microscope (TEM), and energy dispersion X-ray spectroscopy (EDS). The average particles diameter was found to be 18 nm. The as prepared FeNPs were used as a catalyst to the oxidative degradation of rhodamine B (RB) in presence of NaBH 4 . The effects of various quencher on the degradation rates were examined by employing ammonium oxalate (AO), benzoquinone (BQ), isopropyl alcohol (IPA), and potassium iodide (KI). The interactions of FeNPs with bovine serum albumin (BSA) have been determined and discussed. Adsorption of FeNPs into the core of BSA changes the tryptophan environment from hydrophobic to hydrophilic (from folding to partially folded and/or unfolded). Tryptophan residues, indole moieties of BSA were responsible to complex formation with FeNPs in excited states via electrostatic, van der Waals, hydrogen bonding, hydrophobic and hydrophilic interactions with static quenching. The antimicrobial activities of FeNPs have been determined against human pathogens. Hibiscus sabdariffa flower extract shows mild antimicrobial activities against all target pathogenic organisms. FeNPs have potential antimicrobial activity against both bacterial strains and candida fungus even at low concentration, and retains potential application in biomedical industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Synthesis of a novel multi N-halamines siloxane precursor and its antimicrobial activity on cotton

    Science.gov (United States)

    Wu, Lin; Xu, Yan; Cai, Lu; Zang, Xiong; Li, Zhanxiong

    2014-09-01

    A novel N-halamine siloxane antibacterial precursor N-(3-triethoxysilylpropyl)-N‧- (N″‧-heptylcarbamido-N″-ethyl)-butanediamide (TSHCEB) was synthesized and characterized in this study. The compound was then tethered to the surface of cotton fabrics through covalent ether linkages, followed by exposure to dilute sodium hypochlorite solutions to confer the cotton fabrics antibacterial property. The chemical structure of the monomer was confirmed by FTIR, 1H NMR and MS, and the surface of the treated cotton fabrics was characterized by FTIR, TGA, SEM, and XPS analysis. The antimicrobial cotton materials were then challenged with Gram-negative Escherichia coli O157:H7 (ATCC 43895) and Gram-positive Staphylococcus aureus (ATCC 6538). Results showed that it provided excellent antimicrobial properties against E. coli O157:H7 and S. aureus via direct contacting for 2-15 min. The controlled release of diverse chlorines was proved by inhibition zone. The chlorine bonded to the coating was stable under standard washing test and routine storage, stability toward UVA irradiation was also investigated, and the lost chlorine could be regenerated by rechlorination. The new N-halamine antibacterial precursor can provide superior antibacterial property within a short contact time.

  8. PLGA/Nano-Zn O Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    International Nuclear Information System (INIS)

    Stankovic, A.; Stevanovic, M.; Sezen, M.; Milenkovic, M.; Kaisarevic, S.; Andric, N.

    2016-01-01

    Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (Zn O) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical Zn O nanoparticles (nano-Zn O) have been synthesized via microwave synthesis method. In addition to obtaining nano-Zn O, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-Zn O) and this was done by a simple physicochemical solvent/non solvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-Zn O particles are spherical, uniform, and with diameters below 1μ. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG 2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth micro dilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans)

  9. Synthesis, characterization and ion exchange properties of ...

    Indian Academy of Sciences (India)

    –1 dry exchanger, respectively. The material ... been found to have better properties than the simple salts of metals. The selectivity may be enhanced ... capacity and higher stability at elevated temperature. This paper deals with the synthesis, ...

  10. Identification and primary characterization of a plant antimicrobial ...

    African Journals Online (AJOL)

    Then an agar-overlay method using fully separated proteins on sodium dodecyl sulphate-polyacryliamide gel electrophoresis (SDS-PAGE) gels was used for initial determination and primary characterization of active putative defensins in the plant seeds. Clear and remarkable zones of inhibition in a region corresponding to ...

  11. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter.

    Science.gov (United States)

    Mandal, Santi M; Sharma, Shalley; Pinnaka, Anil Kumar; Kumari, Annu; Korpole, Suresh

    2013-07-08

    Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strains from fecal contaminated soil sample. The phenotypic and 16S rRNA gene sequence analysis of all isolates identified them as different species of Gram-negative genera Citrobacter and Enterobacter. They exhibited common phenotypic traits like citrate utilization, oxidase negative and facultative anaerobic growth. The HPLC analysis of solvent extracts obtained from cell free fermented broth revealed the presence of multiple antimicrobial lipopeptides. The comprehensive mass spectral analysis (MALDI-TOF MS and GC-MS) of HPLC purified fractions of different isolates revealed that the lipopeptides varied in their molecular weight between (m/z) 607.21 to 1536.16 Da. Isomers of mass ion m/z 984/985 Da was produced by all strains. The 1495 Da lipopeptides produced by strains S-3 and S-11 were fengycin analogues and most active against all strains. While amino acid analysis of lipopeptides suggested most of them had similar composition as in iturins, fengycins, kurstakins and surfactins, differences in their β-hydroxy fatty acid content proposed them to be isoforms of these lipopeptides. Although antimicrobial producing strains can be used as biocontrol agents in food preservation, strains with ability to produce multiple antimicrobial lipopeptides have potential applications in biotechnology sectors such as pharmaceutical and cosmetic industry. This is the first report on antibacterial lipopeptides production by strains of Citrobacter and Enterobacter.

  12. Polysaccharides from Dolichos biflorus Linn and Trachyspermum ammi Linn seeds: isolation, characterization and remarkable antimicrobial activity.

    Science.gov (United States)

    Basu, Shibani; Ghosh, Manojit; Bhunia, Rupam Kumar; Ganguly, Jhuma; Banik, Bimal K

    2017-11-21

    Polysaccharides are structurally complex and essential constituents of life, and therefore, studies directed to these kinds of molecules have received scientific attention. Despite an easy availability of Dolichos biflorus Linn and Trachyspermum ammi (Linn) seeds isolation, characterization and antimicrobial studies of polysaccharides derived from these two natural sources have not been investigated. Therefore, we report here isolation of polysaccharides, their purification and characterization from Dolichos biflorus Linn and Trachyspermum ammi (Linn) seeds. Gel permeation chromatography, GC-MS, SEM, XRD, EDX and FT-IR analyses show the presence of three pentose sugar such as D-ribose, D-arabinose, D-xylose and hexose sugar such as D-mannose, D-galactose and D-glucose. Unprecedented antimicrobial activity of these polysaccharides against Gram positive bacteria such as Staphylococcus aureus and Bacillus subtilis and Gram negative bacteria such as Escherichia coli and Pseudomonas aeruginosa are established.

  13. Synthesis and characterization of poly(2,5-dimethoxyaniline) and ...

    Indian Academy of Sciences (India)

    Unknown

    Mater. Sci., Vol. 24, No. 4, August 2001, pp. 389–396. © Indian Academy of Sciences. 389. Synthesis and characterization of poly(2,5-dimethoxyaniline) and poly(aniline-Co-2 ... remarkably improved solubility in common organic solvents, were obtained by chemical polymerization, and characterized by a host of physical ...

  14. Cu(II AND Zn(II COMPLEX COMPOUNDS WITH BIGUANIDES AROMATIC DERIVATIVES. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ticuţa Negreanu-Pîrjol

    2011-05-01

    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  15. Jabuticaba (Myrciaria cauliflora) Seeds: Chemical Characterization and Extraction of Antioxidant and Antimicrobial Compounds.

    Science.gov (United States)

    Hacke, Ana Carolina Mendes; Granato, Daniel; Maciel, Laércio Galvão; Weinert, Patrícia Los; Prado-Silva, Leonardo do; Alvarenga, Verônica Ortiz; de Souza Sant'Ana, Anderson; Bataglion, Giovana Anceski; Eberlin, Marcos Nogueira; Rosso, Neiva Deliberali

    2016-09-01

    This study was aimed to assess the effect of time and temperature on the extraction of antioxidant compounds from jabuticaba seeds (Myrciaria cauliflora cv. Sabará), to optimize the solvent proportion (water, ethyl alcohol, and propanone), and to characterize the extract according to the chemical composition, antioxidant, and antimicrobial properties. Proximal composition, total phenolic content (TPC), antioxidant, and antimicrobial activities were analyzed. The optimized solvent ratio of 60% water and 40% propanone provided a mean TPC of 8.65 g GAE/100 g seeds and the antioxidant activity toward 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 82.79% ± 0.50%. Time and temperature parameters did not influence the yield of TPC. The gross seed extract was partially purified and both exhibited a high antioxidant activity and antimicrobial potential toward Gram-positive and Gram-negative bacteria. The purified jabuticaba seed lyophilized extract contained a higher (P < 0.05) TPC, o-diphenols, flavonols, and antioxidant activity measured by the DPPH assay and total reducing capacity as compared to the gross lyophilized extract. Electrospray ionization coupled with tandem mass spectrometry (ESI-MS/MS) data showed the presence of ellagitannins and ellagic acid in the extracts, which are probably the responsible for the antimicrobial and antioxidant activities. © 2016 Institute of Food Technologists®

  16. Characterization of a Bacillus subtilis surfactin synthetase knockout and antimicrobial activity analysis.

    Science.gov (United States)

    Liu, Hongxia; Qu, Xiaoxu; Gao, Ling; Zhao, Shengming; Lu, Zhaoxin; Zhang, Chong; Bie, Xiaomei

    2016-11-10

    Gene knockout is an important approach to improve the production of antimicrobial compounds. B. subtilis PB2-LS10, derived from B. subtilis PB2-L by a surfactin synthetase (srf) genes knockout, exhibits stronger inhibitory action than its parental strain against all tested pathogenic bacteria and fungi. The antimicrobial extracts produced by B. subtilis PB2-L and B. subtilis PB2-LS10 respectively were characterized by the high-resolution LC-ESI-MS. To provide further insight into the distinct antimicrobial activities, we investigated the impact of the srf genes deletion on the growth and gene transcriptional profile of the strains. The mutant strain grew quickly and reached stationary phase 2h earlier than the wild-type. Prominent expression changes in the modified strain involved genes that were essential to metabolic pathways and processes. Genes related to amino acid transport, ATP-binding cassette (ABC) transporters and protein export were up-regulated in strain PB2-LS10. However, amino acid metabolism, carbohydrate metabolism and fatty acid metabolism were repressed. Because of its excellent antimicrobial activity, strain PB2-LS10 has potential for use in food preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  18. Synthesis of mixed-linked xylans for enzyme characterization

    DEFF Research Database (Denmark)

    Boos, Irene; Clausen, Mads Hartvig

    of arabinoxylans. This can be achieved by chemical synthesis of well-defined oligosaccharides as models for the more complex macromolecules. Moreover, the utilization of enzyme resistant substrates can support the mapping of the active site of glycosyl-hydrolases. The talk will highlight the synthesis of mixed O......- and S-linked tetraxylans as possible interesting candidates for the investigation and characterization of arabinoxylan degrading enzymes....

  19. Studies on bismuth carboxylates—synthesis and characterization of ...

    Indian Academy of Sciences (India)

    synthesis and characterization of a new structural form of bismuth(III) dipicolinate ... Synthesis and X-ray structure of a new bismuth dipicolinate cooordination polymer, {[Bi((2,6-O2C)2C5H3N)((2-HO2C-6-O2C)C5H3N)(H2O)]2.5H2O} (7) are ...

  20. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    of silver tungstate nanoparticles. 2. Experimental. Silver tungstate nanoparticles were synthesized by reacting AR grade silver nitrate. (AgNO3) and sodium tungstate (Na2WO4) using distilled water as solvent at room temperature. The method followed for this synthesis is similar to that used by. Takahashi et al [9]. However ...

  1. Synthesis and Characterization of Colloidal MCM-41

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Zukalová, Markéta; Kooyman, P. J.; Zukal, Arnošt

    2004-01-01

    Roč. 241, - (2004), s. 81-86 ISSN 0927-7757 Institutional research plan: CEZ:AV0Z4040901 Keywords : colloidal MCM-41 * homogeneous precipitation * salt effect in the synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.513, year: 2004

  2. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    NARCIS (Netherlands)

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.

    2010-01-01

    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  3. Synthesis and Characterization of Nanostructured Sulfated Zirconias

    Czech Academy of Sciences Publication Activity Database

    Lutecki, M.; Šolcová, Olga; Werner, S.; Breitkopf, C.

    2010-01-01

    Roč. 53, č. 1 (2010), s. 13-20 ISSN 0928-0707 Grant - others:DFG(DE) BR2068/2-1; DFG(DE) BR2068/2-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : sulfated zirconia * template assisted synthesis * porous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  4. Ionothermal synthesis and structural characterization of [Cu ...

    Indian Academy of Sciences (India)

    bSchool of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Shida Road Limin development Zone, Harbin 150025, P. R. China e-mail: caiqinghai@yahoo.com. MS received 29 December 2014; revised 2 April 2015; accepted 3 April 2015. Abstract. The ionothermal synthesis and spectroscopic, thermal ...

  5. Synthesis, spectral characterization and in vitro antibacterial ...

    African Journals Online (AJOL)

    Shafqat Nadeem

    2015-12-17

    Dec 17, 2015 ... Petra/Osiris/Molinspiration analysis. Abstract The paper emphasizes on the synthesis of Palladium(II) iodide complexes containing based ligands. The new compounds .... The spectral conditions were as follows: 32 K data points,. 1.822 s acquisition time, 2.00 s pulse delay and 6.00 ls pulse width. The 13C ...

  6. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    Abstract. The synthesis, crystal structure, redox characteristics and photochemistry of a new heptamolyb- date supported magnesium-aqua coordination complex viz. (hmtH)2[{Mg(H2O)5}2{Mo7O24}]·3H2O 1 (hmt. = hexamethylenetetramine) is reported. The cyclic voltammogram reveals quasireversible redox behaviour.

  7. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    ... nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent ...

  8. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    eral plant extracts, particularly Lantana camara, Moringa oleifera, Catharanthus roseus, Eucalyptus hybrid, Cassia auriculata.23 However, potential of the plants as biologi- cal materials for the synthesis of nanoparticles is still under exploitation. In the present study, we developed an optimized method for syntheses of silver ...

  9. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes ..... 6. Benzyl alcohol. Benzaldehyde. 57. 1-Phenylethanol. Acetophenone. 65. Cyclohexanol. Cyclohexanone. 49 a Reaction time, 5 h. b Yields based on substrate.

  10. Synthesis, stabilization, and characterization of metal nanoparticles

    Science.gov (United States)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  11. Synthesis, Characterization and Application of Nano Lepidocrocite ...

    African Journals Online (AJOL)

    NICO

    were finely ground with a pestle in an agate mortar and were stored in an airtight bottle. 2.3. Synthesis of Magnetite (Fe3O4) Nanoparticles. Fe3O4 nanoparticles were synthesized in a similar fashion as mentioned for FeOOH except that the washing was done 3–4. RESEARCH ARTICLE. A. Agarwal, H. Joshi and A. Kumar,.

  12. Synthesis and characterization of silver molybdate nanowires ...

    Indian Academy of Sciences (India)

    Wintec

    approaches have been proved to provide an alternative route for the synthesis of 1-D nanomaterials (Buhro et al ... magnetic stirring to form a homogeneous greenish-yellow precipitate. The resulting precipitate was ... the size-dependent optical properties of the nanomaterials, due to the quantum confinements of the photo- ...

  13. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    tion in the development of catalysis, magnetism, molec- ular architectures and materials chemistry. Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes used for oxidation reactions are cytochrome P-450, per- oxidases ...

  14. Synthesis, spectral studies and antimicrobial activities of some 2-naphthyl pyrazoline derivatives

    Science.gov (United States)

    Sakthinathan, S. P.; Vanangamudi, G.; Thirunarayanan, G.

    A series of 2-naphthyl pyrazolines were synthesized by the cyclization of 2-naphthyl chalcones and phenylhydrazine hydrochloride in the presence of sodium acetate. The yields of pyrazoline derivatives are more than 80%. The synthesized pyrazolines were characterized by their physical constants, IR, 1H, 13C and MS spectra. From the IR and NMR spectra the Cdbnd N (cm-1) stretches, the pyrazoline ring proton chemical shifts (ppm) of δ, Hb and Hc and also the carbon chemical shifts (ppm) of δCdbnd N are correlated with Hammett substituent constants, F and R, and Swain-Lupton's parameters using single and multi-regression analyses. From the results of linear regression analysis, the effect of substituents on the group frequencies has been predicted. The antimicrobial activities of all synthesized pyrazolines have been studied.

  15. Synthesis, antimicrobial, antioxidant and molecular docking studies of thiophene based macrocyclic Schiff base complexes

    Science.gov (United States)

    Rathi, Parveen; Singh, D. P.

    2015-11-01

    The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.

  16. Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives

    Directory of Open Access Journals (Sweden)

    Vikas S. Padalkar

    2016-11-01

    Full Text Available In an endeavor to find a new class of antimicrobial agents, a series of 2-(1H-benzimidazol-2-yl-5-(diethylaminophenol, 2-(1,3-benzoxazol-2-yl-5-(diethylaminophenol, 2-(1,3-benzothiazol-2-yl-5-(diethylaminophenol and their derivatives were synthesized starting from p-N,N-diethyl amino salicylaldehyde with different substituted o-phenylenediamine or o-aminophenol or o-aminothiophenol. The newly synthesized compounds were characterized by FT-IR, 1H NMR and LC–MS analysis. All compounds were evaluated for in vitro antibacterial activities against Escherichia coli and Staphylococcus aureus strains and in vitro antifungal activity against Candida albicans and Aspergillus niger strains by using serial dilution method. The antibacterial activities were expressed as the minimum inhibitory concentration (MIC in μg/mL.

  17. Synthesis and Biological Evaluation of Mannich Bases of Isoxazoline Derivatives as Novel Anti-Microbial Agents

    Directory of Open Access Journals (Sweden)

    Pawar Sudhir

    2012-01-01

    Full Text Available A novel series of compounds were synthesized by condensation reaction of substituted acetophenone (1a-b with substituted aldehyde (2a-b in presence of alcoholic sodium hydroxide to get intermediate chalcones (3a-c, which were further treated with hydroxylamine hydrochloride in presence of sodium hydroxide to get isoxazolines derivatives (4a-c. The latter were refluxed with substituted primary amines and formaldehyde for 6-10 h to afford Mannich bases. The synthesized compounds were characterized on the basis of their spectral (IR, 1HNMR data and evaluated for the antimicrobial activity by using Zone of Inhibition by cup plate method and Minimum Inhibitory Concentration by broth dilution method.

  18. Synthesis and Antimicrobial Screening of Some Novel 2, 5-Disubstituted 1, 3, 4-oxadiazole Derivatives

    Directory of Open Access Journals (Sweden)

    P. Panneerselvam

    2011-01-01

    Full Text Available The syntheses of series of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives are described. A total of twelve new compounds were synthesized and characterized by IR, 1H-NMR and Mass spectral data. All newly synthesized compounds were screened for their antimicrobial activity i.e. antibacterial activity against S. aureus and E. coli and antifungal activity against fungus A. nigar. Compounds G5 and G7 exhibited significant both antibacterial and antifungal activity while G2, G10 and G3, G9 showed antibacterial and antifungal activity respectively. These compounds were 2, 5-disubstituted 1, 3, 4-oxadiazole moiety at position two and five showed reasonable antibacterial and antifungal activity.

  19. Synthesis, characterization and biological evaluation of tryptamine based benzamide derivatives.

    Science.gov (United States)

    Aftab, Kiran; Aslam, Kinza; Kousar, Shazia; Nadeem, Muhammad Jawad Ul Hasan

    2016-03-01

    Benzamides and tryptamine are biologically significant compounds, therefore, various benzamide analogous of tryptamine have been efficiently synthesized using tryptamine and different benzoyl chlorides, in order to find new biologically active compounds. The resulting products were then characterized by melting point determination, calculation of Rf values and LC-MS techniques. At last, structure activity relationship (SAR) of the synthesized compounds was evaluated against two microbial strains; Bacillus subtilis and Aspergillus niger. All the five prepared products have shown high yield, sharp characterization and significant resistance against the growth of tested microorganism, providing a new range of tryptamine based benzamide derivatives having significant antimicrobial activities.

  20. Synthesis of metallocomplexes of water soluble bisquinolinylporhyrins as potential antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Yu. V. Ishkov

    2017-12-01

    Full Text Available At present, extensive research is being carried out on the phenomenon of resistance of microbes to antibiotics, including the newest of them. Among the most promising drug candidates for treatment such superbugs is derivatives of 5,15-disubstituted water-soluble porphyrins developed and patented by Destiny Pharma, UK. Here, we continued of our investigation of quinolinylporphyrins and report about synthesis of 5,15-di(n-propyl-10,20-di(3-quinolinylporphyrine and its isomer - 5,10-di(n-propyl-15,20-di(3-quinolinylporphyrine and their complexes with Fe and Mn. The porphyrins was obtained by mixed aldehydes condensation of mixture quinoline-3-carbaldehyde and n-butyraldehyde with pyrrole in propionic acid with small amount propionic anhydride. Above mentioned porphyrins was separated and purified by column chromatography on silica gel and their Fe and Mn complexes was synthesized in refluxing DMF by treatment respectively FeCl3 and Mn(CH3CO22. Water-soluble form of the metalloporphyrines was obtained by quaternization of nitrogen atom of quinolinyl substituents by methyl-paratoluenesulfonate for further investigation their antimicrobial properties.

  1. Synthesis and Antimicrobial Activities of Some New 1,2,4-Triazole Derivatives

    Directory of Open Access Journals (Sweden)

    Hakan Bektaş

    2010-04-01

    Full Text Available Some novel 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one (3, 6, 8, 9 derivatives and or 3-(4-methylphenyl[1,2,4]triazolo[3,4-b][1,3]benzoxazole (5 were synthesized from the reaction of various ester ethoxycarbonylhydrazones (1a-e with several primary amines. The synthesis of 4-amino-5-(4-chlorophenyl-2-[(5-mercapto-1,3,4-oxadiazol-2-ylmethyl]-2,4-dihydro-3H-1,2,4-triazol-3-one (13 was performed starting from 4-Amino-5-(4-chlorophenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (2 by four steps; then 13 was converted to the corresponding Schiff base (14 by using 4-methoxybenzaldehyde. Finally, two Mannich base derivatives of 14 were obtained by using morpholine or methyl piperazine as amine component. All newly synthesized compounds were screened for their antimicrobial activities and some of which were found to possess good or moderate activities against the test microorganisms.

  2. Synthesis of some new quinazolinone derivatives and evaluation of their antimicrobial activities.

    Science.gov (United States)

    Khodarahmi, Ghadamali; Jafari, Elham; Hakimelahi, Gholamhossein; Abedi, Daryoush; Rahmani Khajouei, Marzieh; Hassanzadeh, Farshid

    2012-01-01

    antibacterial, anticancer, and anti-inflammatory activities encouraged us to synthesis some fused quinazolinone derivatives. Anthranilic acid was condensed with chloro acylchloride followed by dehydration to form the benzoxazinone intermediate; subsequent addition of an amine provided the fused quinazolinones. Deoxyvasicinone which was previously synthesized by a multi step complex reactions was prepared in three steps using the following procedure: Log P values of the compounds were measured using the shake flask method in octanol/water solvent system. The synthesized compounds were evaluated against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Overall results of antimicrobial tests showed that the compounds had better bacteriostatic activity against Gram-negative bacteria. The obtained results of MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Almost all of the screened compounds showed good activity against C. albicans and A. niger. The obtained results of MFC indicated that these compounds had more significant fungistatic than fungicidal activities.

  3. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies

    Science.gov (United States)

    Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji

    2012-06-01

    A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.

  4. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety.

    Science.gov (United States)

    Snyder, Abigail B; Worobo, Randy W

    2014-01-15

    Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization. © 2013 Society of Chemical Industry.

  5. Synthesis and characterization of hybrid nanostructures

    OpenAIRE

    Mokari, Taleb

    2011-01-01

    There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal...

  6. Nontoxic, Inexpensive, Ammonium Chloride-Mediated (In Water) Synthesis of Some Novel 1,5-benzothiazepine Derivatives and Their Antimicrobial Activity

    International Nuclear Information System (INIS)

    Coskun, D.; Kirbag, S.

    2015-01-01

    In the present study, a new, nontoxic, easy and inexpensive method for the synthesis of 1,5-benzothiazepine derivatives was described and a mechanism for this reactions was proposed. Ammonium chloride which is inexpensive and readily available reagent catalyzes the thia-michael addition reaction of thiols in water efficiently. 1,5-benzothiazepines derivatives were synthesized by the condensation reactions of o-aminothiophenol (o-ATP) with chalcone derivatives by using saturated solution of NH/sub 4/Cl in water. The products were characterized by the elemental analysis, NMR and FT-IR techniques. Synthesized compounds were tested for antimicrobial activity against. Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 25922, Bacillus subtilis IMG22 and Candida albicans ATCC 10231. Among the synthesized compounds 2b was found to be most active derivative against Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. The other compounds didn't exhibit any activity against the other test microorganisms. (author)

  7. Biogenesis of silver nanoparticles using selected plant leaf extract; characterization and comparative analysis of their antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Nagarajan Arumugam

    2017-10-01

    Full Text Available Objective(s: To study the antimicrobial property of green synthesised silver nano metals with M.balbisiana, A.indica and O.tenuiflorm and their enhanced antibacterial activity, assessment of antimicrobial effect. And to explore the possible mechanism of AgNPs synthesis in the active constitutions of selected temperate plant extracts Materials and methods:Biosynthesis of AgNPs using plant extract was carried out and formation of AgNPs confirmed by perceptible observation, UV spectroscopy, Scanning electron microscope (SEM and Dynamic light scattering (DLS were used to characterize the AgNPs.  Results:Screening of the M.balbisiana, A.indica and O.tenuiflorm extracts was carried out using standard methods to find their constitutions. The antibacterial screening was carried out by agar well diffusion method against selected microorganisms. The absorption maxima of UV visible spectrum found in the range between 300 nm to 800 nm confirmed the formation of AgNPs. SEM images revealed relatively spherical shaped of AgNPs of biosynthesized AgNPs with mean diameter about 14.51±1.5nm in O.tenuiflourum, 09.10±1.50nm M.barbisiana and 11.00±1.50 in A indica. FTIR results expounded the functional groups of plant extract responsible for the bio-reduction of silver ions and their interaction between them. Conclusion:These results showed with changes in plants constituents are may be responsible to form nanoparticles with different size and characteristics

  8. Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

    Science.gov (United States)

    Giessen, Tobias W; Silver, Pamela A

    2016-12-16

    Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.

  9. Synthesis and antimicrobial properties of 1,3,4-oxadiazole analogs containing dibenzosuberone moiety

    Energy Technology Data Exchange (ETDEWEB)

    Moger, Manjunath [Mangalore University, Karnataka (India). Department of Chemistry; Satam, Vijay; Paniraj, A.S.; Gopinath, Vadiraj S.; Hindupur, Rama Mohan; Pati, Hari N., E-mail: hari.pati@advinus.com [Advinus Therapeutics Ltd., 21 and 22, Phase II, Peenya Industrial Area, Karnataka (India); Govindaraju, Darshan Raj C. [Department of Bio-Medicinal Research, Vidya Herbs Pvt. Ltd., Karnataka (India)

    2014-01-15

    A series of ten novel 1,3,4-oxadiazole analogs containing dibenzosuberone moiety were synthesized using linear as well as convergent synthesis approach. All the compounds were characterized by mass spectrometry, infrared (IR), {sup 1}H and {sup 13}C nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR) spectroscopies and elemental analysis. These compounds were evaluated for antibacterial and antifungal activities. Among ten analogs, four compounds, namely, 8a, 8d, 8e and 8j were found to be highly active antibacterial and antifungal agents (author)

  10. Synthesis, Characterization, and Biological Activity of Nickel (II and Palladium (II Complex with Pyrrolidine Dithiocarbamate (PDTC

    Directory of Open Access Journals (Sweden)

    Sk Imadul Islam

    2016-01-01

    Full Text Available The synthesis of square planar Ni(II and Pd(II complexes with pyrrolidine dithiocarbamate (PDTC was characterized by elemental, physiochemical, and spectroscopic methods. Two complexes were prepared by the reaction of nickel acetate and palladium acetate with pyrrolidine dithiocarbamate (PDTC in 1 : 2 molar ratio. The bovine serum albumin (BSA interaction with complexes was examined by absorption and fluorescence spectroscopic techniques at pH 7.4. All the spectral data suggest that coordination of the pyrrolidine dithiocarbamate (PDTC takes place through the two sulphur atoms in a symmetrical bidentate fashion. All the synthesized compounds were screened for their antimicrobial activity against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia, and Bacillus cereus. It has been observed that complexes have higher activity than the free ligand.

  11. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  12. Synthesis and characterization of Trichloroisocyanouric acid ...

    Indian Academy of Sciences (India)

    Abstract. Trichloroisocyanouric acid (TCCA)-functionalized mesoporous silica nanocomposites (SBA/. TCCA) were synthesized and characterized for the acylation of indole. The uniform incorporation of TCCA inside the SBA-15 matrix was confirmed by standard characterization techniques (PXRD, Adsorption studies,. FT-IR ...

  13. Genotypic and phenotypic characterization of antimicrobial-resistant Escherichia coli from farm-raised diarrheic sika deer in Northeastern China.

    Directory of Open Access Journals (Sweden)

    Rui Li

    Full Text Available In China, overuse and/or abuse of antimicrobials are common in stockbreeding, which possess high risks of antimicrobial-resistant contaminations. The serogroups, major virulence genes, and antimicrobial resistant patterns of the antimicrobial-resistant Escherichia coli (E. coli were investigated in the feces of diarrheic farm-raised sika deer from 50 farms in three Northeastern provinces of China. A total of 220 E. coli isolates were obtained and characterized. Twenty-eight O serogroups were identified from the obtained E. coli isolates with O2, O26, O128, O142 and O154 being dominant. Nearly all the isolates were resistant to at least four of the tested antimicrobials. More than 90% of the E. coli isolates carried at least one of the tested virulence genes. About 85% of the E. coli isolates carried one or more antimicrobial-resistant genes responsible for resistant phenotypes of sulfonamides, streptomycin/spectionomycin or tetracycline. The antimicrobial resistant level and pathogenic group occurrences of the obtained E. coli isolates were higher than that of livestock and wild animals reported in some developed countries. Thus, the fecal-carrying antimicrobial-resistant E. coli from the farm-raised sika deer is potentially a significant contamination source for freshwater systems and food chain, and may pose great health risks for human and animals in Northeastern China.

  14. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  15. Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand

    Directory of Open Access Journals (Sweden)

    Sarika M. Jadhav

    2014-01-01

    Full Text Available A series of metal complexes of Cu(II, Ni(II, Co(II, Fe(III and Mn(II have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H pyran-2,4(3H-dione or DHA, o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40% solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.

  16. Synthesis, characterization and biological studies of substituted quinozoline-4-(3H)-ones containing diazepine moiety.

    Science.gov (United States)

    Narayana Rao, D V; Raghavendra Guru Prasad, A; Spoorthy, Y N; Pariplavi, M; Ravindranath, L K

    2014-01-01

    The synthesis and characterization of new series of 1,4-benzodiazepine derivatives have been presented. The structures were confirmed by elemental analyses, IR spectral, (1)H NMR spectral and mass spectral data. All the compounds were screened for in vitro antimicrobial and anthelmintic activities. The antibacterial activity was tested against Staphylococcus aureus (Gram positive), Bacillus cereus (Gram positive), Escherichia coli (Gram negative) and Pseudomonas aeruginosa (Gram negative). The antifungal activity was tested against Aspergillus niger and Candida albicans. All the compounds showed considerable antimicrobial activity against the microorganism studied. The significant anthelmintic activity of all novel compounds was demonstrated against Pheretima posthuma. Based on the nature of substituent present, the structure-activity correlation of novel compounds was discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Synthesis and characterization of nanosize sodium titanates

    Energy Technology Data Exchange (ETDEWEB)

    Elvington, M. C.; Tosten, M.; Taylor-Pashow, K. M. L.; Hobbs, D. T., E-mail: david.hobbs@srnl.doe.gov [Savannah River National Laboratory (United States)

    2012-11-15

    This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST). The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST). Key modifications to this process include altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The BET surface area and isoelectric point of the nMST measured 285 m{sup 2} g{sup -1} and 3.34 pH units, respectively, which is more than an order of magnitude higher in surface area and a pH unit lower than that measured for the microsize MST. The nMST material serves as an effective ion exchanger under both weakly acidic and strongly alkaline conditions and was converted to a peroxotitanate form by reaction with hydrogen peroxide.

  18. Synthesis and characterization of CuO nanoparticles using strong ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of CuO nanoparticles using strong base electrolyte ... Fourier transform infrared spectrum showed that the CuO ..... Hydrogen bub- bles play a key role in generation of sparks and metal removal in the electrochemical discharge process. Flower-like morphology could be attained with both the.

  19. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    School of Chemistry, University College of Science, University of Tehran, Tehran, Iran. Email: alnema@khayam.ut.ac.ir ... nation polymers and coordination complexes, is a suit- able building block for supramolecular ..... Kianpour G, Salavati-Niasari M and Emadi H 2013. Precipitation synthesis and characterization of cobalt.

  20. Synthesis and characterization of cupric oxide (CuO) nanoparticles ...

    African Journals Online (AJOL)

    Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. ... Thermodynamic and kinetic studies were also performed to determine the feasibility of the process. The maximum MB removal was observed to be 88.93%. The pH of point zero charge (pHPZC) of adsorbent ...

  1. Synthesis, spectral characterization and redox properties of iron (II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, spectral characterization and redox properties of iron. (II) complexes of 1-alkyl-2-(arylazo)imidazole. U S RAY, D BANERJEE and C SINHA*. Department of Chemistry, The University of Burdwan, Burdwan 713 104,. India e-mail: c_r_sinha@yahoo.com. MS received 26 February 2003; revised 12 May 2003.

  2. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  3. Synthesis and characterization of nano silicon and titanium nitride ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique ... nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor.

  4. Synthesis, characterization, crystal structure and DNA-binding study ...

    Indian Academy of Sciences (India)

    BOLIN

    SYNOPSIS. Synthesis and characterization of four mononuclear eight coordinated cadmium(II) complexes with newly explored carboxamide derivatives and study of interaction with calf-thymus DNA are reported. The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, ...

  5. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics. BIKASH KUMAR PANDA. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032,. India e-mail: b_panda@hotmail.com. MS received 2 June 2004; revised 21 July 2004.

  6. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  7. Synthesis, characterization of N-, S-, O-substituted naphtho- and ...

    Indian Academy of Sciences (India)

    Sci. Vol. 124, No. 3, May 2012, pp. 657–667. c Indian Academy of Sciences. Synthesis, characterization of N-, S-, O-substituted naphtho- and benzoquinones and a structural study. CEMIL IBIS. ∗ and NAHIDE GULSAH DENIZ. Engineering Faculty, Department of Chemistry, Division of Organic Chemistry, Istanbul University,.

  8. Synthesis, characterization and self-assembly of Co 3 complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups. Afsar Ali Deepak Bansal Rajeev Gupt. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1535-1546 ...

  9. Synthesis, characterization and investigation of catalytic activity of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 827–834. c Indian Academy of Sciences. Synthesis, characterization and investigation of catalytic activity ..... 2004 J. Catal. 222 107. 8. Rajgopal R, Vetrivel R and Rao B S 2000 Catal. Lett. 65 99. 9. Rao B S, Sreekumar K and Jyothi T M 1998 Indian. Patent 2707/98. 10.

  10. Synthesis, spectral characterization and antihaemostatic activity of 1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 2. Synthesis, spectral characterization and antihaemostatic activity of 1,2,4-triazoles ... Author Affiliations. Ravindra R Kamble1 Belgur S Sudha1. Department of Chemistry and Food Science, Yuvaraja's College, University of Mysore, Mysore 570 005 ...

  11. Synthesis and photoelectrochemical characterization of a high molar ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 4. Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex. L Giribabu Vrun Kumar Singh M Srinivasu Ch Vijay Kumar V Gopal Reddy Y Soujnya P Yella Reddy. Volume 123 Issue 4 July ...

  12. An efficient synthesis, X-ray and spectral characterization of ...

    Indian Academy of Sciences (India)

    An efficient synthesis, X-ray and spectral characterization of biphenyl derivatives. Ravindra R Kamble Dharesh B Biradar Gangadhar Y Meti Tasneem Taj Tegginamath Gireesh Imthiyaz Ahmed M Khazi Sundar T Vaidyanathan Raju Mohandoss Balasubramanian Sridhar Viraraghav Parthasarathi. Volume 123 Issue 4 July ...

  13. Synthesis and characterization of magnetite/hydroxyapatite tubes ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Synthesis and characterization of magnetite/hydroxyapatite tubes using natural template for biomedical applications. M SNEHA N MEENAKSHI SUNDARAM A KANDASWAMY. Volume 39 Issue 2 April ...

  14. Synthesis, characterization and magnetic properties of polyaniline/ γ ...

    Indian Academy of Sciences (India)

    Administrator

    deposition technique by placing fine-graded γ-Fe2O3 in a polymerization mixture of aniline. The composites are characterized by using ... All chemicals of analytical grade procured from Sigma-. Aldrich were used for the synthesis of .... PANI seem to exhibit transition peaks in the temperature range of 125–175°C. In case of ...

  15. Synthesis, characterization of N-, S-, O-substituted naphtho- and ...

    Indian Academy of Sciences (India)

    657–667. c Indian Academy of Sciences. Synthesis, characterization of ... naphthoquinone) were investigated.16 Novel vitamin K3 analogues were ... 1.2Ueq(C). The selected bond distances, bond and tor- sion angles for compound 13 were listed in tables 2 and 3, respectively. Drawings were performed with the program ...

  16. organic-inorganic hybrid materials. i: synthesis, characterization and ...

    African Journals Online (AJOL)

    a

    organic-inorganic nanocomposites, and models in the area of biomimetics [13]. Hence, with a focus towards developing a potential photoresist material that has a lithographic action [14], we report herein the facile synthesis, characterization and properties of a novel octasilsesquioxane, which by virtue of its terminal chlorine ...

  17. Synthesis, characterization, X-ray crystal structure, electrochemical ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0978-8. Synthesis, characterization, X-ray crystal structure, electrochemical evaluation and anti-cancer studies of a mixed ligand Cu(II) complex of (E)-N -((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide. IRAN SHEIKHSHOAIEa, S YOUSEF EBRAHIMIPOURa,∗, MAHDIEH SHEIKHSHOAIEa,.

  18. Synthesis, characterization and isotherm studies of new composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Synthesis, characterization and isotherm ... With different methods, different molar ratios and different surfactants have been investigated to reach the optimum conditions for synthesized zirconium tungstate (Zr(IV)W). Zr(IV)W with different molar ratios of ...

  19. Synthesis, characterization and ion recognition studies of lower rim ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6. Synthesis, characterization and ion recognition studies of lower rim 1,3-di{rhodamine} conjugate of calix[4]arene. Jugun Prakash Chinta Jayaraman Dessingou Chebrolu Pulla Rao. Regular Articles Volume 125 Issue 6 November 2013 pp 1455-1461 ...

  20. Synthesis and characterization of new meso-substituted ...

    Indian Academy of Sciences (India)

    The synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins has been described. A new modified Adler method ... P Bandgar1 Pradip B Gujarathi1. Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431 606 ...