WorldWideScience

Sample records for synthase mrna content

  1. Analysis of mRNA recognition by human thymidylate synthase.

    Science.gov (United States)

    Brunn, Nicholas D; Dibrov, Sergey M; Kao, Melody B; Ghassemian, Majid; Hermann, Thomas

    2014-12-23

    Expression of hTS (human thymidylate synthase), a key enzyme in thymidine biosynthesis, is regulated on the translational level through a feedback mechanism that is rarely found in eukaryotes. At low substrate concentrations, the ligand-free enzyme binds to its own mRNA and stabilizes a hairpin structure that sequesters the start codon. When in complex with dUMP (2'-deoxyuridine-5'-monophosphate) and a THF (tetrahydrofolate) cofactor, the enzyme adopts a conformation that is unable to bind and repress expression of mRNA. Here, we have used a combination of X-ray crystallography, RNA mutagenesis and site-specific cross-linking studies to investigate the molecular recognition of TS mRNA by the hTS enzyme. The interacting mRNA region was narrowed to the start codon and immediately flanking sequences. In the hTS enzyme, a helix-loop-helix domain on the protein surface was identified as the putative RNA-binding site.

  2. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress.

    Science.gov (United States)

    Uematsu, M; Ohara, Y; Navas, J P; Nishida, K; Murphy, T J; Alexander, R W; Nerem, R M; Harrison, D G

    1995-12-01

    Shear stress enhances expression of Ca(2+)-calmodulin-sensitive endothelial cell nitric oxide synthase (ecNOS) mRNA and protein in bovine aortic endothelial cells (BAEC). The present studies were performed to investigate mechanisms responsible for regulation of ecNOS mRNA expression by shear stress and to determine if this induction of ecNOS mRNA is accompanied by an enhanced nitric oxide (NO) production. Shear stresses of 15 dyn/cm2 for 3-24 h resulted in a two- to threefold increase of ecNOS mRNA content quantified by Northern analysis in BAEC. Shear stresses (1.2-15 dyn/cm2) for 3 h resulted in an induction of ecNOS mRNA in a dose-dependent manner. In human aortic endothelial cells, shear stresses of 15 dyn/cm2 for 3 h also resulted in ecNOS mRNA induction. In BAEC, this induction in ecNOS mRNA was prevented by coincubation with actinomycin D (10 micrograms/ml). The K+ channel antagonist tetraethylammonium chloride (3 mM) prevented increase in ecNOS mRNA in response to shear stress. The ecNOS promotor contains putative binding domains for AP-1 complexes, potentially responsive to activation of protein kinase C (PKC). However, selective PKC inhibitor calphostin C (100 nM) did not inhibit ecNOS induction by shear stress. Finally, production of nitrogen oxides under both basal conditions and in response to the calcium ionophore A-23187 (1 microM) by BAEC exposed to shear stress was increased approximately twofold compared with cells not exposed to shear stress. These data suggest that ecNOS mRNA expression is regulated by K+ channel opening, but not by activation of PKC, and that shear not only enhances ecNOS mRNA expression but increases capacity of endothelial cells to release NO.

  3. In situ localization of chalcone synthase mRNA in pea root nodule development.

    NARCIS (Netherlands)

    Yang, W.C.; Canter Cremers, H.C.J.; Hogendijk, P.; Katinakis, P.; Wijffelman, C.A.; Franssen, H.J.; Kammen, van A.; Bisseling, T.

    1992-01-01

    In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it

  4. Increased thymidylate synthase mRNA concentration in blood leukocytes following an experimental stressor

    DEFF Research Database (Denmark)

    Ehrnrooth, Eva; Zacharia, Robert; Svendsen, Gunner

    2002-01-01

    of an experimental stressor on mRNA levels in peripheral blood leukocytes of thymidylate synthase (TS), a gene necessary for cell division, while investigating possible individual differences in stress reactivity. METHODS: Fifteen healthy subjects were investigated under three experimental conditions: (1) exposure...... to a computerized mental stressor; (2) relaxation, and (3) control. Measurements included TS mRNA levels, total leukocyte number, leukocyte subtypes, and serum cortisol before (baseline), immediately after, and 1 h after each experimental condition. RESULTS: While no significant differences were found between...... in percentage of neutrophil cells after stress. CONCLUSION: The results suggest that TS mRNA levels in peripheral leukocytes may be sensitive to mental stress and confirm previous findings indicating that subjects scoring high on the personality trait of absorption exhibit greater physiological stress...

  5. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas (UCSD)

    2011-09-27

    A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as a strategy to reduce TS levels in anticancer therapy. Rapidly proliferating cells require high TS activity to maintain the production of thymidine as a building block for DNA synthesis. The crystal structure of a model oligonucleotide (TS1) that represents the TS-binding site of the mRNA has been determined. While fluorescence studies showed that the TS1 RNA preferentially adopts a hairpin structure in solution, even at high RNA concentrations, an asymmetric dimer of two hybridized TS1 strands was obtained in the crystal. The TS1 dimer contains an unusual S-turn motif that also occurs in the 'off' state of the human ribosomal decoding site RNA.

  6. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  7. A small RNA activates CFA synthase by isoform-specific mRNA stabilization

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-01-01

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880

  8. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress

    National Research Council Canada - National Science Library

    Uematsu, M; Ohara, Y; Navas, J P; Nishida, K; Murphy, T J; Alexander, R W; Nerem, R M; Harrison, D G

    1995-01-01

    ... by an enhanced nitric oxide (NO) production. Shear stresses of 15 dyn/cm2 for 3-24 h resulted in a two- to threefold increase of ecNOS mRNA content quantified by Northern analysis in BAEC. Shear stresses (1.2-15 dyn/cm2...

  9. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set.

    Directory of Open Access Journals (Sweden)

    Monika Mahajan

    Full Text Available Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi through post-transcriptional gene silencing (PTGS of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  10. Interaction between thymidylate synthase and its cognate mRNA in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Yuyan Zhang

    Full Text Available Thymidylate synthase (TS, which catalyzes the de novo synthesis of dUMP, is an important target for cancer therapy. In this report, the effects of 5-fluorouracil (5-FU and ZD1694 on the regulation of TS gene expression were evaluated in zebrafish embryos. Our results revealed that the expression of TS was increased by about six-fold when embryos were treated with 1.0 microM 5-FU and there was a greater than 10-fold increase in the TS protein level after treatment with 0.4 microM ZD1694. Northern blot analysis confirmed that expression of TS mRNA was identical in treated or untreated embryos. Gel shift and immunoprecipitation assays revealed that zebrafish TS was specifically bound with its cognate mRNA in vitro and in vivo. We identified a 20 nt RNA sequence, TS:N20, localized to the 5'-UTR of TS mRNA, which corresponded to nt 13-32; TS:N20 bound to the TS protein with an affinity similar to that of the full-length TS mRNA. The MFold program predicted that TS:N20 formed a stable stem-loop structure similar to that of the cis-acting element found in human TS mRNA. Variant RNAs with either a deletion or mutation in the core motif of TS:N20 were unable to bind to the TS protein. In vitro translation experiments, using the rabbit lysate system, confirmed that zebrafish TS mRNA translation was significantly repressed when an excess amount of TS protein was included in the system. Additionally, a TS stability experiment confirmed that treatment of zebrafish embryos with 5-FU could increase the TS stability significantly, and the half life of TS protein was about 2.7 times longer than in untreated embryos. Our study revealed a structural requirement for the interaction of TS RNA with TS protein. These findings also demonstrated that the increase in TS protein induced by 5-FU occurs at the post-transcriptional level and that increased stability and translation efficiency both contributed to the increase in TS protein levels induced by TS inhibitors.

  11. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron.

    Science.gov (United States)

    Zhang, Jianzhen; Zhu, Kun Yan

    2006-09-01

    Chitin synthase (EC 2.4.1.16) is a crucial enzyme responsible for chitin biosynthesis in all chitin-containing organisms. This paper reports a complete cDNA encoding chitin synthase 1 (AqCHS1), change of AqCHS1 mRNA level in response to diflubenzuron exposure, and concentration-dependent effect of diflubenzuron on chitin synthesis in the common malaria mosquito (Anopheles quadrimaculatus). The cDNA consists of 5723 nucleotides, including an open reading frame (ORF) of 4734 nucleotides that encode 1578 amino acid residues and a non-translated region of 989 nucleotides. The deduced amino acid sequence contains all the chitin synthase signature motifs (EDR, QRRRW and SWGTR) and shows 97% identity to that of An. gambiae (AgCHS1, XM_321337). Northern blot and real-time quantitative PCR analyses revealed a significant increase of AqCHS1 mRNA level in the larvae exposed to diflubenzuron at 100 and 500 microg/L. As confirmed by real-time quantitative PCR, AqCHS1 mRNA level was enhanced by 2-fold in the larvae exposed to diflubenzuron at 500 microg/L for 24 h. In contrast, exposures of the larvae to diflubenzuron at 4.0, 20, 100 and 500 microg/L for 48 h resulted in decreases of chitin content by 9.0%, 43%, 58% and 76%, respectively. Significantly increased AqCHS1 mRNA level associated with decreased chitin synthesis may imply possible inhibition of chitin synthase, or abnormal chitin synthase translocation or chitin microfibril assembly conferred by diflubenzuron. Increased AqCHS1 expression due to increased transcription and/or increased mRNA stability may serve as a feedback mechanism to compensate such an effect in the mosquitoes. Further studies are necessary to elucidate the relationship between reduced chitin synthesis and increased expression of AqCHS1 in order to shed new light on trafficking and regulation of chitin biosynthesis in the mosquito affected by diflubenzuron.

  12. An in situ hybridization study of Hyaluronan synthase (Has) mRNA in developing mouse molar and incisor tooth germs.

    Science.gov (United States)

    Morita, Tsuyoshi; Fujikawa, Kaoru; Baba, Otto; Shibata, Shunichi

    2016-05-01

    Hyaluronan (HA) is a major constituent molecule in most extracellular matrices and is synthesized by Hyaluronan synthase (Has). In the present study, we examined expression patterns of Has1, -2, -3 mRNA in developing mouse molar and incisor tooth germs from embryonic day (E) 11.5 to postnatal day (P) 7, focusing on Hertwig's epithelial root sheath (HERS) and the apical bud in particular. Has1 mRNA expression was not detected in all tooth germs examined. Has2 mRNA was expressed in the surrounding mesenchyme from E12.0 to 18.0 in both molar and incisor tooth germs, but disappeared after birth. Meanwhile, Has3 mRNA was exclusively expressed within the enamel organ, especially in the inner enamel epithelium (IEE), stellate reticulum (SR), and stratum intermedium (SI) until the early bell stage at E16.0. Has3 mRNA disappeared as IEE differentiated into differentiating ameloblasts (dABs), but remained in SI until the root developmental stage of the molar tooth germ at P7. Has3 mRNA was also expressed in HERS until P7. In incisors, Has3 mRNA was expressed in the apical bud, especially in the transit-amplifying (TA) cell region from E16.0 to P7, and in the papillary layer (PL) adjacent to the mature enamel. These gene expression patterns suggested that Has3 is the main control factor for prenatal and postnatal HA synthesis of the tooth germ, and may in part regulate crown and root formation of the tooth germ, maintenance of stem cell niches in the apical bud as well as mineral transport in PL. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Changes in thymidylate synthase mRNA in blood leukocytes from patients with colorectal cancer after bolus administration of 5-fluorouracil

    DEFF Research Database (Denmark)

    Ehrnrooth, E; Sørensen, B; Poulsen, J H

    2000-01-01

    target enzyme, thymidylate synthase (TS) mRNA, in blood leukocytes before and after courses 1 and 3 in 21 patients with colorectal cancer. TS mRNA expression was quantified using an RT-PCR assay with an internal RNA standard. Median TS mRNA expression decreased significantly 30 min after course no. 1 (p....... The present results indicate that TS mRNA in blood leukocytes may be an early indicator of an RNA damaging effect after i.v. bolus infusion of 5-FU....

  14. Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients

    DEFF Research Database (Denmark)

    Vestergaard, H; Bjørbaek, C; Andersen, P H

    1991-01-01

    Based on recent studies of the abnormal physiology and biochemistry of the glycogen synthesis in skeletal muscle of non-insulin-dependent diabetes mellitus (NIDDM) patients and their first-degree relatives, the key enzyme of this pathway, glycogen synthase (GS), is considered a candidate gene...... in the pathogenesis of insulin resistance. Comparing matched groups of 14 NIDDM patients with 14 control subjects, we found that impaired insulin-stimulated nonoxidative glucose metabolism of peripheral tissue (P less than 0.02) and reduced total GS activity (P less than 0.05) of vastus lateralis muscle from patients...... analysis of the entire coding sequence of the GS gene, we were unable to detect any genetic variants in a subset of eight NIDDM patients. We conclude that abnormal pretranslational regulation of the GS gene may contribute to impaired glycogen synthesis of muscle in NIDDM. Our studies give no evidence...

  15. Positive correlation between patency and mRNA levels for cyclooxygenase-2 and prostaglandin E synthase in the uterine cervix of bitches with pyometra.

    Science.gov (United States)

    Tamada, Hiromichi; Adachi, Nahoko; Kawate, Noritoshi; Inaba, Toshio; Hatoya, Shingo; Sawada, Tsutomu

    2016-03-01

    Factors involved in patency of uterine cervices in the bitch with pyometra remain to be clarified. This study examined relationship between patency and mRNA levels for inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1, COX-2 and prostaglandin E synthase (PGES) in the uterine cervix of bitches with pyometra. Cervical patency was measured by inserting the stainless steel rods with different diameter into cervical canals. Levels of mRNA expression were determined by semi-quantitative reverse transcription-polymerase chain reaction. The cervical patency was positively correlated with mRNA levels for COX-2 and PGES, but not those for iNOS and COX-1. The results suggest that gene expression of COX-2 and PGES may be involved in the regulation of patency in the uterine cervix of bitches with pyometra.

  16. Regulation of galactan synthase expression to modify galactan content in plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-22

    The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.

  17. Thymidylate synthase (TS) protein expression as a prognostic factor in advanced colorectal cancer: a comparison with TS mRNA expression.

    Science.gov (United States)

    Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru

    2012-06-01

    The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.

  18. Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase.

    Science.gov (United States)

    Malek, A M; Jiang, L; Lee, I; Sessa, W C; Izumo, S; Alper, S L

    1999-01-08

    We have investigated the signaling pathways by which shear stress induces accumulation of endothelial nitric oxide synthase (eNOS) mRNA in bovine aortic endothelial cells (BAEC). Steady laminar fluid shear stress (20 dyn/cm2) induced a time-dependent increase in eNOS mRNA levels that did not require de novo protein synthesis and was in part transcriptional. Shear responsiveness was conferred on a luciferase reporter by a portion of the eNOS gene promoter encoding the 5'-flanking region between nt -1600 and -779. Shear-mediated induction of eNOS mRNA was abolished by chelation of intracellular calcium ([Ca2+]i) with BAPTA-AM, and inhibited by blockade of calcium entry with SKF96535. In contrast, eNOS mRNA upregulation by shear was potentiated by thapsigargin-mediated depletion of Ca2+i stores. Pertussis toxin (PTX) inhibited both the shear-induced elevation in [Ca2+]i and the subsequent increase in eNOS mRNA, implicating a PTX-sensitive G-protein in both responses. Shear-induced upregulation of eNOS mRNA was unaffected by the calmodulin inhibitor W-7 and by the tyrosine kinase inhibitor herbimycin A, suggesting that neither calmodulin nor tyrosine kinases are required. However, eNOS mRNA upregulation was potentiated by the PI 3-kinase inhibitors wortmannin and LY294002, suggesting that PI 3-kinase inhibits the shear response. Although microtubule integrity is required for the shear-induced regulation of endothelin-1 mRNA and the morphological and cytoskeletal responses to flow, neither microtubule dissolution with nocodazole nor microtubule stabilization with taxol altered shear-induced [Ca2+]i elevation or upregulation of eNOS mRNA. In conclusion, shear stress of BAEC increases eNOS transcriptional rate and upregulates eNOS mRNA levels by a process that requires calmodulin-independent [Ca2+]i signaling and a PTX-sensitive G-protein, is inhibited by PI 3-kinase, and is independent of microtubule integrity and tyrosine kinase activity. Copyright 1999 Academic Press.

  19. Comparison of Protamine 1 to Protamine 2 mRNA Ratio and YBX2 gene mRNA Content in Testicular Tissue of Fertile and Azoospermic Men

    Directory of Open Access Journals (Sweden)

    Sahar Moghbelinejad

    2015-10-01

    Full Text Available Background: Although aberrant protamine (PRM ratios have been observed in infertile men, the mechanisms that implicit the uncoupling of PRM1 and PRM2 expression remain unclear. To uncover these mechanisms, in this observational study we have compared the PRM1/PRM2 mRNA ratio and mRNA contents of two regulatory factors of these genes. Materials and Methods: In this experimental study, sampling was performed by a multi- step method from 50 non-obstructive azoospermic and 12 normal men. After RNA extraction and cDNA synthesis, real-time quantitative polymerase chain reaction (RTQPCR was used to analyze the PRM1, PRM2, Y box binding protein 2 (YBX2 and JmjC-containing histone demethylase 2a (JHDM2A genes in testicular biopsies of the studied samples. Results: The PRM1/PRM2 mRNA ratio differed significantly among studied groups, namely 0.21 ± 0.13 in azoospermic samples and -0.8 ± 0.22 in fertile samples. The amount of PRM2 mRNA, significantly reduced in azoospermic patients. Azoospermic men exhibited significant under expression of YBX2 gene compared to controls (P<0.001. mRNA content of this gene showed a positive correlation with PRM mRNA ratio (R=0.6, P=0.007. JHDM2A gene expression ratio did not show any significant difference between the studied groups (P=0.3. We also observed no correlation between JHDM2A mRNA content and the PRM mRNA ratio (R=0.2, P=0.3. Conclusion: We found significant correlation between the aberrant PRM ratio (PRM2 under expression and lower YBX2 mRNA content in testicular biopsies of azoospermic men compared to controls, which suggested that downregulation of the YBX2 gene might be involved in PRM2 under expression. These molecules could be useful biomarkers for predicting male infertility.

  20. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism.

    Directory of Open Access Journals (Sweden)

    Christina R Muratore

    Full Text Available The folate and vitamin B12-dependent enzyme methionine synthase (MS is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.

  1. Clinical significance of the thymidylate synthase, dihydropyrimidine dehydrogenase, and thymidine phosphorylase mRNA expressions in hepatocellular carcinoma patients receiving 5-fluorouracil-based transarterial chemoembolization treatment

    Directory of Open Access Journals (Sweden)

    Zhao H

    2013-07-01

    Full Text Available Hongyun Zhao,1,* Yuanyuan Zhao,2,* Ying Guo,1 Yan Huang,2 Suxia Lin,3 Cong Xue,2 Fei Xu,2 Yang Zhang,1 Liping Zhao,2 Zhihuang Hu,2 Li Zhang1,2 1State Key Laboratory of Oncology in South China and National Anti-Cancer Drug Clinical Research Centre, 2State Key Laboratory of Oncology in South China and Department of Medical Oncology, 3Department of Pathological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China*These authors contributed equally to this workPurpose: To determine whether 5-fluorouracil (5-FU sensitivity is associated with the mRNA expressions of thymidylate synthase (TS, dihydropyrimidine dehydrogenase (DPD, and thymidine phosphorylase (TP in patients with hepatocellular carcinoma (HCC treated with 5-FU-based transarterial chemoembolization (TACE.Methods: Formalin-fixed, paraffin-embedded tumor specimens from 40 patients treated with 5-FU-based TACE were selected for the examination of TS, DPD, and TP expression level by a quantitative real-time reverse transcription- polymerase chain reaction (PCR technique. Patients were categorized into high and low expression groups according to the median expression level of each enzyme. Associations between the mRNA expression levels of TS, DPD, and TP and clinical parameters including treatment efficacies, clinicopathological factors, and prognosis were assessed.Results: High DPD expression was associated with worse treatment outcome, including intrahepatic disease progression rate (hazard ratio [HR] for high DPD versus low DPD, 2.212; 95% confidence interval [CI], 1.030–4.753; P = 0.042, extrahepatic disease progression rate (HR for high versus low DPD, 3.171; 95% CI, 1.003–10.023; P = 0.049, and progression-free survival (HR for high versus low DPD, 2.308; 95% CI, 1.102–4.836; P = 0.027. No correlation was found between the mRNA expression of TS/TP and treatment outcome.Conclusion: DPD mRNA expression level was negatively correlated with the clinical

  2. Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content

    Science.gov (United States)

    Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.

    2003-01-01

    The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.

  3. Molecular Cloning, Characterization and mRNA Expression of a Chitin Synthase 2 Gene from the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Kang-Kang Xu

    2013-08-01

    Full Text Available Chitin synthase (CHS, a potential target for eco-friendly insecticides, plays an essential role in chitin formation in insects. In this study, a full-length cDNA encoding chitin synthase 2 (BdCHS2 was cloned and characterized in the oriental fruit fly, Bactrocera dorsalis. The BdCHS2 cDNA had 4417 nucleotides, containing an open reading frame of 4122 nucleotides, which encoded 1373 amino acid residues with a predicted molecular weight of 158.5 kDa. Phylogenetic analysis with other insect CHSs suggested that BdCHS2 belongs to insect CHS2. The BdCHS2 transcript was predominately found in midgut but was detected at low levels in fat body, Malpighian tubules, integument, and trachea. Moreover, BdCHS2 was expressed in all developmental stages, and highly expressed in the feeding stages. There was a positive relationship between BdCHS2 expression and total chitin content during development. Furthermore, both the gene expression and chitin content in midgut decreased when the insect was fed for 24 h, then starved for 24 h, while they increased dramatically and rapidly under the condition of starvation for 24 h then feeding for 24 h. These results suggest that BdCHS2 may play an important role in regulating chitin content of the midgut, and subsequently affect the growth and development of B. dorsalis.

  4. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level

    DEFF Research Database (Denmark)

    Xue, Z T; Larsen, K; Jochimsen, B U

    1991-01-01

    The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere. Quantitative mRNA hybridization experiments using nodule-s...... was about 5-fold at 4% oxygen. No expression at atmospheric oxygen or in response to low oxygen was observed when using cDNA probes for other nodulin genes such as leghemoglobin c3, nodulin-22 and nodulin-44. Udgivelsesdato: 1991-May...

  5. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine.

    Science.gov (United States)

    Song, Shikui; Hou, Wensheng; Godo, Itamar; Wu, Cunxiang; Yu, Yang; Matityahu, Ifat; Hacham, Yael; Sun, Shi; Han, Tianfu; Amir, Rachel

    2013-04-01

    Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.

  6. Silybin content and overexpression of chalcone synthase genes in Silybum marianum L. plants under abiotic elicitation.

    Science.gov (United States)

    El-Garhy, Hoda A S; Khattab, Salah; Moustafa, Mahmoud M A; Abou Ali, Rania; Abdel Azeiz, Ahmed Z; Elhalwagi, Abeer; El Sherif, Fadia

    2016-11-01

    Silymarin, a Silybum marianum seed extract containing a mixture of flavonolignans including silybin, is being used as an antihepatotoxic therapy for liver diseases. In this study, the enhancing effect of gamma irradiation on plant growth parameters of S. marianum under salt stress was investigated. The effect of gamma irradiation, either as a single elicitor or coupled with salinity, on chalcone synthase (CHS) gene expression and silybin A + B yield was also evaluated. The silybin A + B content in S. marianum fruits was estimated by liquid chromatography-mass spectrometry (LC-MS/MS). An increase in silybin content was accompanied by up-regulation of the CHS1, CHS2 and CHS3 genes, which are involved in the silybin biosynthetic pathway. The highest silybin A + B production (0.77 g/100 g plant DW) and transcript levels of the three studied genes (100.2-, 91.9-, and 24.3-fold increase, respectively) were obtained with 100GY gamma irradiation and 4000 ppm salty water. The CHS2 and CHS3 genes were partially sequenced and submitted to the NCBI database under the accession numbers KT252908.1 and KT252909.1, respectively. Developing new approaches to stimulate silybin biosynthetic pathways could be a useful tool to potentiate the use of plants as renewable resources of medicinal compounds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content.

    Science.gov (United States)

    Eloy, Nubia B; Voorend, Wannes; Lan, Wu; Saleme, Marina de Lyra Soriano; Cesarino, Igor; Vanholme, Ruben; Smith, Rebecca A; Goeminne, Geert; Pallidis, Andreas; Morreel, Kris; Nicomedes, José; Ralph, John; Boerjan, Wout

    2017-02-01

    Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis.

    Science.gov (United States)

    Shin, Sang-Min; Song, Sung-Hyun; Lee, Jin-Woo; Kwak, Min-Kyu; Kang, Sa-Ouk

    2017-10-01

    Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA - ) and -overexpressing (mgsA OE ) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB - and speE - ) and -overexpressing (speB OE and speE OE ) mutants. Importantly, both mgsA-depleted speB OE and speE OE mutants (speB OE /mgsA - and speE OE /mgsA - ) were drastically shortened to 24.5% and 23.8% of parental speB OE and speE OE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Geraniol synthase whose mRNA is induced by host-selective ACT-toxin in the ACT-toxin-insensitive rough lemon (Citrus jambhiri).

    Science.gov (United States)

    Shishido, Hodaka; Miyamoto, Yoko; Ozawa, Rika; Taniguchi, Shiduku; Takabayashi, Junji; Akimitsu, Kazuya; Gomi, Kenji

    2012-09-15

    Host-selective toxins (HSTs) produced by some strains of Alternaria alternata are selectively toxic to certain cultivars of plants. However, the role of HSTs in toxin-insensitive plants is currently unknown. Here, we studied the role of ACT-toxin using an ACT-toxin producing A. alternata strain SH20 and the ACT-toxin-insensitive plant rough lemon. Induction of some defense related genes in response to SH20 were faster or stronger than in response to the ACT-toxin deficient SH20 mutant. By sequencing subtractive PCR clones obtained from mRNA of rough lemon leaves inoculated with SH20 after subtraction with that of the ACT-toxin deficient SH20 mutant, we isolated the SH20-responsive genes in rough lemon. Among the SH20-responsive genes analyzed in this study, we isolated a terpene synthase (TPS) gene, RlemTPS3. We also determined that RlemTPS3 localizes to the chloroplast and produces the monoterpene geraniol. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  11. Effect of chronic ethanol feeding on digestive enzyme synthesis and mRNA content in rat pancreas.

    Science.gov (United States)

    Perkins, P S; Rutherford, R E; Pandol, S J

    1995-01-01

    Chronic ethanol ingestion is a primary factor in the development of pancreatitis in humans. Alterations in both enzyme secretion and protein synthesis have been implicated as causative factors. We determined the effect of chronic ethanol feeding on the content and synthesis rates of digestive enzymes in dispersed acini from rats that were pair-fed isocaloric diets with or without ethanol for 3-6 months. Total protein content and synthesis were unchanged. The relative synthetic rates of individual digestive enzymes were analyzed using scanning laser densitometry of 1-D sodium dodecylsulfate (SDS) gels. The content of all measurable digestive enzymes except amylase increased in acini from ethanol-fed rats. Relative synthetic rates were examined in pancreatic acini labeled in vitro with [35S]methionine. Liquid scintillation counting of radiolabeled digestive enzymes extracted from gel slices revealed that amylase synthesis in ethanol-fed rats decreased 2.8-fold compared with controls whereas the synthetic rates of proelastase 1 and 2, chymotrypsinogen, and trypsinogen increased by 1.5-, 1.4-, 1.8-, and 1.6-fold, respectively. Total cellular RNA was extracted from control and ethanol-fed rats and subjected to Northern and dot blot analysis. Amylase mRNA decreased in ethanol-fed rats whereas chymotrypsinogen and trypsinogen mRNA content increased, indicating that the effect of ethanol on expression of these genes was regulated at a step prior to translation. Elastase mRNA content was not altered, suggesting that the increased synthesis of proelastase may be regulated posttranscriptionally.

  12. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after...... kinase phosphorylation, peroxisome proliferator activated receptor ¿ coactivator-1a and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. Conclusion: The present findings indicate that only 7 days of physical inactivity reduce skeletal muscle metabolic...... capacity as well as abolish exercise-induced adaptive gene responses likely reflecting the interference with the ability of skeletal muscle to adapt to exercise....

  13. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Larsen, F S

    1993-01-01

    -limiting enzymes in glycogen synthesis and glycolysis, glycogen synthase (GS) and phosphofructokinase (PFK), respectively. Analysis of biopsies of quadriceps muscle from 19 NIDDM patients and 19 control subjects showed in the basal state a 30% decrease (P

  14. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti

    Czech Academy of Sciences Publication Activity Database

    Baumgardt, K.; Šmídová, Klára; Rahn, H.; Lochnit, G.; Robledo, M.; Evguenieva-Hackenberg, E.

    2016-01-01

    Roč. 13, č. 5 (2016), s. 486-499 ISSN 1547-6286 Institutional support: RVO:61388971 Keywords : Agrobacterium * autoinducer synthase * degradosome Subject RIV: EE - Microbiology, Virology Impact factor: 3.900, year: 2016

  15. Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm.

    Science.gov (United States)

    Wang, Xiaoqiu; Frank, James W; Xu, Jing; Dunlap, Kathrin A; Satterfield, M Carey; Burghardt, Robert C; Romero, Jared J; Hansen, Thomas R; Wu, Guoyao; Bazer, Fuller W

    2014-09-01

    Nitric oxide (NO) is a gaseous molecule that regulates angiogenesis and vasodilation via activation of the cGMP pathway. However, functional roles of NO during embryonic development from spherical blastocysts to elongated filamentous conceptuses (embryo and extraembryonic membrane) during the peri-implantation period of pregnancy have not been elucidated in vivo. In order to assess roles of NO production in survival and development of the ovine conceptus, we conducted an in vivo morpholino antisense oligonucleotide (MAO)-mediated knockdown trial of nitric oxide synthase-3 (NOS3) mRNA, the major isoform of NO synthase, in ovine conceptus trophectoderm (Tr). Translational knockdown of NOS3 mRNA results in small, thin, and underdeveloped conceptuses, but normal production of interferon-tau, the pregnancy recognition signal in sheep. MAO-NOS3 knockdown in conceptuses decreased the abundance of NOS3 (72%, P nitric oxide synthase-1 (NOS1) or nitric oxide synthase-2 (NOS2) or in expression of enzymes for synthesis of polyamines (ornithine decarboxylase, arginine decarboxylase, agmatinase) from arginine or ornithine with which to rescue development of MAO-NOS3 conceptuses. Thus, the adverse effect of MAO-NOS3 to reduce NO generation and the transport of arginine and ornithine into conceptuses is central to an explanation for failure of normal development of MAO-NOS3, compared to control conceptuses. The study, for the first time, created an NO-deficient mammalian conceptus model in vivo and provided new insights into the orchestrated events of conceptus development during the peri-implantation period of pregnancy. Our data suggest that NOS3 is the key enzyme for NO production by conceptus Tr and that this protein also regulates the availability of arginine in conceptus tissues for synthesis of polyamines that are essential for conceptus survival and development. © 2014 by the Society for the Study of Reproduction, Inc.

  16. Carotenoid content and expression of phytoene synthase and phytoene desaturase genes in bitter melon (Momordica charantia).

    Science.gov (United States)

    Tuan, Pham Anh; Kim, Jae Kwang; Park, Nam Il; Lee, Sook Young; Park, Sang Un

    2011-06-15

    Momordica charantia, a tropical plant, produces a fruit that has a β-carotene concentration five times higher than that of carrot. To elucidate the molecular basis of β-carotene accumulation in M. charantia, the gene expression levels of phytoene synthase (McPSY) and phytoene desaturase (McPDS) were determined. These levels were particularly high in the flowers of M. charantia. During fruit maturation, the expression levels of McPSY and McPDS decreased during the mid-stages but increased in the fully mature fruit. In addition, carotenoids accumulated as the peel changed from green to orange. Thus, McPSY and McPDS expression correlated with carotenoid accumulation during fruit maturation. Principal component analysis (PCA) also was used to evaluate the differences among the profiles of seven carotenoids identified in the fruit at several maturation stages. Riper fruits had higher carotenoid concentrations than less ripe fruits. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  17. Expression of inducible nitric oxide synthase mRNA and nitric oxide production during the development of liver abscess in hamster inoculated with Entamoeba histolytica.

    Science.gov (United States)

    Ramírez-Emiliano, Joel; González-Hernández, Angélica; Arias-Negrete, Sergio

    2005-06-01

    The present study analyzed iNOS and eNOS mRNA expression and NO production during development of hepatic abscess caused by Entamoeba histolytica trophozoites. One 374-bp sequence, which displayed 88% identity to mammalian iNOS protein, was isolated from LPS-stimulated peritoneal hamster macrophages. A separate 365-bp cDNA sequence showed 99% identity with eNOS protein. iNOS mRNA was detected in hamsters during formation of amoebic liver abscesses, but not in control hamsters. eNOS mRNA expression was not modified. Serum nitrite concentration in hamsters infected with E. histolytica was 33 +/- 6 microM, in control hamsters was 20 +/- 3 microM. The study shows that iNOS mRNA expression and NO production are induced by E. histolytica trophozoites during amoebic liver abscess formation. However, in spite of iNOS mRNA expression and NO production, E. histolytica trophozoites induced liver abscess formation in hamster.

  18. Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis.

    Science.gov (United States)

    Kato, Shota; Soshino, Mika; Takaichi, Shinichi; Ishikawa, Takahiro; Nagata, Noriko; Asahina, Masashi; Shinomura, Tomoko

    2017-07-17

    Photosynthetic organisms utilize carotenoids for photoprotection as well as light harvesting. Our previous study revealed that high-intensity light increases the expression of the gene for phytoene synthase (EgcrtB) in Euglena gracilis (a unicellular phytoflagellate), the encoded enzyme catalyzes the first committed step of the carotenoid biosynthesis pathway. To examine carotenoid synthesis of E. gracilis in response to light stress, we analyzed carotenoid species and content in cells grown under various light intensities. In addition, we investigated the effect of suppressing EgcrtB with RNA interference (RNAi) on growth and carotenoid content. After cultivation for 7 days under continuous light at 920 μmol m-2 s-1, β-carotene, diadinoxanthin (Ddx), and diatoxanthin (Dtx) content in cells was significantly increased compared with standard light intensity (55 μmol m-2 s-1). The high-intensity light (920 μmol m-2 s-1) increased the pool size of diadinoxanthin cycle pigments (i.e., Ddx + Dtx) by 1.2-fold and the Dtx/Ddx ratio from 0.05 (control) to 0.09. In contrast, the higher-intensity light treatment caused a 58% decrease in chlorophyll (a + b) content and diminished the number of thylakoid membranes in chloroplasts by approximately half compared with control cells, suggesting that the high-intensity light-induced accumulation of carotenoids is associated with an increase in both the number and size of lipid globules in chloroplasts and the cytoplasm. Transient suppression of EgcrtB in this alga by RNAi resulted in significant decreases in cell number, chlorophyll, and total major carotenoid content by 82, 82 and 86%, respectively, relative to non-electroporated cells. Furthermore, suppression of EgcrtB decreased the number of chloroplasts and thylakoid membranes and increased the Dtx/Ddx ratio by 1.6-fold under continuous illumination even at the standard light intensity, indicating that blocking carotenoid synthesis increased the susceptibility

  19. Induction of mRNA for Phosphoenolpyruvate Carboxylase Is Correlated with a Decrease in Shoot Water Content in Well-Irrigated Mesembryanthemum crystallinum 1

    Science.gov (United States)

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    The abundance of mRNA specific for phosphoenolpyruvate carboxylase (PEPCase) was measured in leaves from well-watered plants of Mesembryanthemum crystallinum. Plants grown side by side in pots of four different volumes (0.16, 0.74, 2.6, 6.5 liters) were compared. The time of increase in the steady-state level of PEPCase mRNA in well-watered plants was dependent on soil volume. The larger the pot, the later PEPCase transcripts were increased. PEPCase mRNA induction started when shoot water content decreased to well below 4000% of dry weight. No positive correlation with the developmental status of the plants could be found. The data indicate that PEPCase mRNA induction in well-watered plants up to 10 weeks of age is controlled environmentally rather than developmentally. ImagesFigure 2 PMID:16668951

  20. Tobacco seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit elevated content of methionine and altered primary metabolic profile

    Science.gov (United States)

    2013-01-01

    Background The essential sulfur-containing amino acid methionine plays a vital role in plant metabolism and human nutrition. In this study, we aimed to elucidate the regulatory role of the first committed enzyme in the methionine biosynthesis pathway, cystathionine γ-synthase (CGS), on methionine accumulation in tobacco seeds. We also studied the effect of this manipulation on the seed’s metabolism. Results Two forms of Arabidopsis CGS (AtCGS) were expressed under the control of the seeds-specific promoter of legumin B4: feedback-sensitive F-AtCGS (LF seeds), and feedback-insensitive T-AtCGS (LT seeds). Unexpectedly, the soluble content of methionine was reduced significantly in both sets of transgenic seeds. Amino acids analysis and feeding experiments indicated that although the level of methionine was reduced, the flux through its synthesis had increased. As a result, the level of protein-incorporated methionine had increased significantly in LT seeds by up to 60%, but this was not observed in LF seeds, whose methionine content is tightly regulated. This increase was accompanied by a higher content of other protein-incorporated amino acids, which led to 27% protein content in the seeds although this was statistically insignificantly. In addition, the levels of reducing sugars (representing starch) were slightly but significantly reduced, while that of oil was insignificantly reduced. To assess the impact of the high expression level of T-AtCGS in seeds on other primary metabolites, metabolic profiling using GC-MS was performed. This revealed significant alterations to the primary seed metabolism manifested by a significant increase in eight annotated metabolites (mostly sugars and their oxidized derivatives), while the levels of 12 other metabolites were reduced significantly in LT compared to wild-type seeds. Conclusion Expression of T-AtCGS leads to an increase in the level of total Met, higher contents of total amino acids, and significant changes in the

  1. Correlation between spermatogenesis disorders and rat testes CYP2E1 mRNA contents under experimental alcoholism or type I diabetes.

    Science.gov (United States)

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Matvienko, Anatoliy V; Kovalenko, Valentina M

    2014-09-01

    The aim of the study was to investigate the correlation between spermatogenesis disorders and CYP2E1 mRNA contents in testes of rats with experimental alcoholism or type I diabetes. Two pathological states characterized by CYP2E1 induction were simulated on Wistar male rats: experimental alcoholism and type I diabetes. As controls for each state, equal number of animals (of the same age and weight) were used. Morphological evaluation of rat testes was carried out. The spermatogenic epithelium state was estimated by four points system. CYP2E1 mRNA expression was rated by method of reverse transcriptase polymerase chain reaction. Pearson correlation coefficients were used for describing relationships between variables. The presence of alcoholism and diabetes-mediated quantitative and qualitative changes in male rat spermatogenic epithelium in comparison with norm has been demonstrated. The increased levels of testes CYP2E1 have been fixed simultaneously. CYP2E1 mRNA content negatively strongly correlated with spermatogenic index value (r=-0.99; Palcoholism. The strong correlation between CYP2E1 mRNA content and number of spermatogonia (r=0.99; P<0.001) and "windows" occurrence (r=0.96; P<0.001) has been fixed in diabetic rats testes. Present investigation has demonstrated that the testicular failure following chronic ethanol consumption and diabetes type I in male rats accompanied CYP2E1 mRNA over-expression in testes. The correlation between the levels of CYP2E1 mRNA in testes and spermatogenesis disorders allow supposing the involvement of CYP2E1 into the non-specific pathogenetic mechanisms of male infertility under above-mentioned pathologies. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. SNP in Chalcone Synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale.Roscoe.

    Science.gov (United States)

    Ghosh, Subhabrata; Mandi, Swati Sen

    2015-07-25

    Zingiber officinale, medicinally the most important species within Zingiber genus, contains 6-gingerol as the active principle. This compound obtained from rhizomes of Z.officinale, has immense medicinal importance and is used in various herbal drug formulations. Our record of variation in content of this active principle, viz. 6-gingerol, in land races of this drug plant collected from different locations correlated with our Gene expression studies exhibiting high Chalcone Synthase gene (Chalcone Synthase is the rate limiting enzyme of 6-gingerol biosynthesis pathway) expression in high 6-gingerol containing landraces than in the low 6-gingerol containing landraces. Sequencing of Chalcone Synthase cDNA and subsequent multiple sequence alignment revealed seven SNPs between these contrasting genotypes. Converting this nucleotide sequence to amino acid sequence, alteration of two amino acids becomes evident; one amino acid change (asparagine to serine at position 336) is associated with base change (A→G) and another change (serine to leucine at position 142) is associated with the base change (C→T). Since asparagine at position 336 is one of the critical amino acids of the catalytic triad of Chalcone Synthase enzyme, responsible for substrate binding, our study suggests that landraces with a specific amino acid change viz. Asparagine (found in high 6-gingerol containing landraces) to serine causes low 6-gingerol content. This is probably due to a weak enzyme substrate association caused by the absence of asparagine in the catalytic triad. Detailed study of this finding could also help to understand molecular mechanism associated with variation in 6-gingerol content in Z.officinale genotypes and thereby strategies for developing elite genotypes containing high 6-gingerol content. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J

    2008-01-01

    to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P enhanced (P RNA level fourfold above resting levels. VEGF mRNA and MMP-2 mRNA levels were...... unaffected. The results show that a session of passive leg movement, elevating blood flow and causing passive stretch, augments the interstitial concentrations of VEGF, the proliferative effect of interstitial fluid, and eNOS mRNA content in muscle tissue. We propose that enhanced blood flow and passive......The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P

  4. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  5. Platelet content of nitric oxide synthase 3 phosphorylated at Serine 1177 is associated with the functional response of platelets to aspirin.

    Directory of Open Access Journals (Sweden)

    Javier Modrego

    Full Text Available OBJECTIVE: To analyse if platelet responsiveness to aspirin (ASA may be associated with a different ability of platelets to generate nitric oxide (NO. PATIENTS/METHODS: Platelets were obtained from 50 patients with stable coronary ischemia and were divided into ASA-sensitive (n = 26 and ASA-resistant (n = 24 using a platelet functionality test (PFA-100. RESULTS: ASA-sensitive platelets tended to release more NO (determined as nitrite + nitrate than ASA-resistant platelets but it did not reach statistical significance. Protein expression of nitric oxide synthase 3 (NOS3 was higher in ASA-sensitive than in ASA-resistant platelets but there were no differences in the platelet expression of nitric oxide synthase 2 (NOS2 isoform. The highest NOS3 expression in ASA-sensitive platelets was independent of the presence of T-to-C mutation at nucleotide position -786 (T(-786 → C in the NOS3-coding gene. However, platelet content of phosphorylated NOS3 at Serine (Ser(1177, an active form of NOS3, was higher in ASA-sensitive than in ASA-resistant platelets. The level of platelet NOS3 Ser(1177 phosphorylation was positively associated with the closure time in the PFA-100 test. In vitro, collagen failed to stimulate the aggregation of ASA-sensitive platelets, determined by lumiaggregometry, and it was associated with a significant increase (p = 0.018 of NOS3 phosphorylation at Ser(1177. On the contrary, collagen stimulated the aggregation of ASA-resistant platelets but did not significantly modify the platelet content of phosphorylated NOS3 Ser(1177. During collagen stimulation the release of NO from ASA-sensitive platelets was significantly enhanced but it was not modified in ASA-resistant platelets. CONCLUSIONS: Functional platelet responsiveness to ASA was associated with the platelet content of phosphorylated NOS3 at Ser(1177.

  6. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato.

    Science.gov (United States)

    Wang, Yannan; Li, Yan; Zhang, Huan; Zhai, Hong; Liu, Qingchang; He, Shaozhen

    2017-05-24

    Soluble starch synthase I (SSI) is a key enzyme in the biosynthesis of plant amylopectin. In this study, the gene named IbSSI, was cloned from sweet potato, an important starch crop. A high expression level of IbSSI was detected in the leaves and storage roots of the sweet potato. Its overexpression significantly increased the content and granule size of starch and the proportion of amylopectin by up-regulating starch biosynthetic genes in the transgenic plants compared with wild-type plants (WT) and RNA interference plants. The frequency of chains with degree of polymerization (DP) 5-8 decreased in the amylopectin fraction of starch, whereas the proportion of chains with DP 9-25 increased in the IbSSI-overexpressing plants compared with WT plants. Further analysis demonstrated that IbSSI was responsible for the synthesis of chains with DP ranging from 9 to 17, which represents a different chain length spectrum in vivo from its counterparts in rice and wheat. These findings suggest that the IbSSI gene plays important roles in determining the content, composition, granule size and structure of starch in sweet potato. This gene may be utilized to improve the content and quality of starch in sweet potato and other plants.

  7. The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content.

    Science.gov (United States)

    Ampomah-Dwamena, Charles; Driedonks, Nicky; Lewis, David; Shumskaya, Maria; Chen, Xiuyin; Wurtzel, Eleanore T; Espley, Richard V; Allan, Andrew C

    2015-07-28

    Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.

  8. Effect of PGD2 on middle meningeal artery and mRNA expression profile of L-PGD2 synthase and DP receptors in trigeminovascular system and other pain processing structures in rat brain

    DEFF Research Database (Denmark)

    Sekeroglu, Aysegül; Jacobsen, Julie Mie; Jansen-Olesen, Inger

    2017-01-01

    and PGI2 dilate the middle meningeal artery (MMA), and mRNA for PGE2 and PGI2 receptors is present in rat trigeminovascular system (TVS) and in the brain structures associated with pain. In the present study, we have characterized the dilatory effect of PGD2 on rat MMA and studied the relative m....... Results PGD2 infusion evoked a dose-dependent dilation of the rat MMA. The calculated mean pED50 value was 5.23 ± 0.10 and Emax was 103 ± 18% (n = 5). MK-0524 significantly (∼61%, p MMA. mRNA for the DP1, DP2 and L-PGDS were expressed differentially in all...... tested tissues. DP1 receptor mRNA was expressed maximally in trigeminal ganglion (TG) and in cervical dorsal root ganglion (DRG). Conclusions High expression of DP1 mRNA in the TG and DRG suggest that PGD2 might play a role in migraine pathophysiology. Activation of the DP1 receptor in MMA was mainly...

  9. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    Science.gov (United States)

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  10. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  11. Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.

    Science.gov (United States)

    Guerriero, Gea; Spadiut, Oliver; Kerschbamer, Christine; Giorno, Filomena; Baric, Sanja; Ezcurra, Inés

    2012-10-01

    Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed.

  12. The 5' untranslated mRNA region base content can greatly affect translation initiation in the absence of secondary structures in Prevotella bryantii TC1-1.

    Science.gov (United States)

    Seničar, Lenart; Accetto, Tomaž

    2015-01-01

    It has become clear lately that many bacteria and even whole bacterial phyla do not use the classical Shine-Dalgarno sequence mediated pathway of protein translation initiation. The prominent phylum Bacteroidetes is one of them, and this was shown not only using bioinformatic but also functional reporter gene studies in its representative Prevotella bryantii. The latter studies revealed much higher sensitivity toward secondary structures in 5(') untranslated mRNA regions (5(') UTRs) during translation initiation compared to Escherichia coli. It was proposed that in the absence of Shine-Dalgarno sequence interaction the key elements enabling translation initiation are local absence of secondary structures in 5(') UTRs, and the ribosomal protein S1 which binds to mRNA. Here, we evaluate the 5(') UTRs devoid of secondary structures but containing divergent nucleotide compositions in P. bryantii reporter assay. We show that base composition profoundly affects the amount of the reporter synthesized, and further that these amounts were in agreement with S1 protein binding affinity for adenine/uracil bases in mRNA. This is the first, though indirect, clue that S1 is actually involved in translation initiation in Bacteroidetes and adds the second layer of control beside mRNA secondary structure affecting translation initiation in this phylum. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum.

    Science.gov (United States)

    Bitencourt, Tamires Aparecida; Komoto, Tatiana Takahasi; Massaroto, Bruna Gabriele; Miranda, Carlos Eduardo Saraiva; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2013-09-17

    Fatty acid synthase (FAS) is a promising antifungal target due to its marked structural differences between fungal and mammalian cells. The aim of this study was to evaluate the antifungal activity of flavonoids described in the scientific literature as FAS inhibitors (quercetin, trans-chalcone, ellagic acid, luteolin, galangin, and genistein) against the dermatophyte Trichophyton rubrum and their effects on fatty acid and ergosterol synthesis. The antifungal activity of the natural products was tested by the microdilution assay for determination of the minimum inhibitory concentration (MIC). The effect of the compounds on the cell membrane was evaluated using a protoplast regeneration assay. Ergosterol content was quantified by spectrophotometry. Inhibition of FAS by flavonoids was evaluated by an enzymatic assay to determine IC50 values. Quantitative RT-PCR was used to measure transcription levels of the FAS1 and ERG6 genes involved in fatty acid and ergosterol biosynthesis, respectively, during exposure of T. rubrum to the flavonoids tested. The flavonoids quercetin and trans-chalcone were effective against T. rubrum, with MICs of 125 and 7.5 μg/mL for the wild-type strain (MYA3108) and of 63 and 1.9 μg/mL for the ABC transporter mutant strain (ΔTruMDR2), respectively. The MICs of the fluconazole and cerulenin controls were 63 and 125 μg/mL for the wild-type strain and 30 and 15 μg/mL for the mutant strain, respectively. Quercetin and trans-chalcone also reduced ergosterol content in the two strains, indicating that interference with fatty acid and ergosterol synthesis caused cell membrane disruption. The MIC of quercetin reduced the number of regenerated protoplasts by 30.26% (wild-type strain) and by 91.66% (mutant strain). Half the MIC (0.5 MIC) of quercetin did not reduce the number of regenerated wild-type fungal colonies, but caused a 36.19% reduction in the number of mutant strain protoplasts. In contrast, the MIC and 0.5 MIC of trans-chalcone and

  14. IUGR decreases elastin mRNA expression in the developing rat lung and alters elastin content and lung compliance in the mature rat lung

    Science.gov (United States)

    Wang, Yan; Yu, Xing; Campbell, Michael S.; Callaway, Christopher W.; McKnight, Robert A.; Wint, Albert; Dahl, Mar Janna; Dull, Randal O.; Albertine, Kurt H.; Lane, Robert H.

    2011-01-01

    Complications of intrauterine growth restriction (IUGR) include increased pulmonary morbidities and impaired alveolar development. Normal alveolar development depends upon elastin expression and processing, as well as the formation and deposition of elastic fibers. This is true of the human and rat. In this study, we hypothesized that uteroplacental insufficiency (UPI)-induced IUGR decreases mRNA levels of elastin and genes required for elastin fiber synthesis and assembly, at birth (prealveolarization) and postnatal day 7 (midalveolarization) in the rat. We further hypothesized that this would be accompanied by reduced elastic fiber deposition and increased static compliance at postnatal day 21 (mature lung). We used a well characterized rat model of IUGR to test these hypotheses. IUGR decreases mRNA transcript levels of genes essential for elastic fiber formation, including elastin, at birth and day 7. In the day 21 lung, IUGR decreases elastic fiber deposition and increases static lung compliance. We conclude that IUGR decreases mRNA transcript levels of elastic fiber synthesis genes, before and during alveolarization leading to a reduced elastic fiber density and increased static lung compliance in the mature lung. We speculate that the mechanism by which IUGR predisposes to pulmonary disease may be via decreased lung elastic fiber deposition. PMID:21363967

  15. [Effect of preventive acupuncture and moxibustion at "Guanyuan" (CV 4) on the expression of HSP 70 and HSP 70 mRNA in spleen and the contents of serum IL-2, TNF-alpha in menopausal rats].

    Science.gov (United States)

    Li, Xiao-Hong; Wang, Hong-Bin; Xu, Li-Li; Song, Xiao-Lin; Zheng, Ling; He, Yu-Wei; Zhang, Lu-Fen

    2009-04-01

    To observe the influence of preventive acupuncture (PA) and preventive moxibustion (PM) at "Guanyuan" (CV 4) on the immune function in natural climacteric rats. A total of 160 female SD rats were randomized into control, PA and PM groups, the former one group was further divided into 10 month (mon), 12 mon, 14 mon and 16 mon subgroups, and the later two groups were further divided into 12 mon, 14 mon and 16 mon subgroups, with 16 rats in each. In addition, other 16 female SD rats aged 3.5 mon were used as the young control (YC) group. "Guanyuan" (CV 4) was punctured with an acupuncture needle and the needle was retained for 20 min, or given with one ignited moxa-cone from the age of 10 mon on. The treatment was conducted twice every week, 8 weeks altogether. The expression of HSP 70 and HSP 70 mRNA of the spleen tissue was detected by using immunohistochemistry and in situ hybridization respectively, and serum IL-2 and TNF-alpha contents were assayed by using radio-immunoassay. In comparison with YC group, 1) the expression of spleen HSP 70 and HSP 70 mRNA increased significantly in 10 mon control (mon-C), 12 mon-PM and 12 mon-PA groups, and 14 mon-PA group (only HSP 70 mRNA) (P 0.05). Both preventive acupuncture and preventive moxibustion can upregulate the expression of spleen HSP 70 and HSP 70 mRNA and serum IL-2 and TNF-alpha levels, which may contribute to their effects in enhancing the immune function in menopausal rats.

  16. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007...... a theoretical approach, which takes complexity as fundamental premise for modern society (Luhmann, 1985, 2002). In educational situations conditionally valuable content generally will exceed what can actually be taught within the frames of an education. In pedagogy this situation is often referred...... to as ‘abundance of material’, and in many cases it is not obvious, how the line between actually chosen and conditionally relevant content can be draw. Difficulties in drawing the line between actual educational content and conditionally relevant content can be handled in different way. One way, quite efficient...

  17. Relationship between Fecal Content of Fatty Acids and Cyclooxygenase mRNA Expression and Fatty Acid Composition in Duodenal Biopsies, Serum Lipoproteins, and Dietary Fat in Colectomized Familial Adenomatous Polyposis Patients

    Directory of Open Access Journals (Sweden)

    K. Almendingen

    2010-01-01

    Full Text Available A few familial adenomatous polyposis studies have focused upon faecal sterols and bile acids but none has analysed the fecal content of fatty acids. We report here findings of an observational study on 29 colectomized familial adenomatous polyposis patients that describe the fecal content of fatty acids, and relate this to the proportions of fatty acids and levels of cyclooxygenase mRNA expression in duodenal biopsies, levels of serum lipoproteins, and diet. In the ileostomy group separately (n=12, the fecal content of arachidonic acid was correlated negatively to the proportions of eicosapentaenoic acid and docosahexaenoic acid in duodenal biopsies. Total serum-cholesterol was negatively correlated to the fecal content of saturates and monounsaturates. The fecal palmitoleic acid/palmitic acid ratio was positively correlated to the levels of cyclooxygease-2 expression in duodenal biopsies.In the ileal-pouch-anal anastomosis group separately (n=17, significant correlations were found between the fecal contents of oleic acid, linoleic acid, and alpha-linolenic acid, and the proportions of myristic acid, oleic acid and eicosaenoic acid in duodenal biopsies. Dietary monounsaturates were positively correlated to different fecal fatty acids. Future studies should focus on molecular mechanisms relevant to fatty acid metabolism, inflammation, and angiogenesis, in addition to nutrition.

  18. The effect of porphyrin and radiation on ferrochelatase and 5-aminolevulinic acid synthase in epidermal cells

    Energy Technology Data Exchange (ETDEWEB)

    He, D.; Behar, S.; Nomura, N.; Lim, H.W. [New York Univ. School of Medicine, Dermatology Service, Dept. of Veterans Affairs Medical Center, and Ronald O. Perelman Dept. of Dermatology (United States); Sassa, S. [The Rockefeller University, New York (United States); Taketani, S. [Kansai Medical Univ., Moriguchi (Japan)

    1995-12-31

    The effects of ultraviolet A (UVA) and blue light on ferrochelatase protein, and its mRNA level, in 5-aminolevulinic acid (ALA)-loaded A431 cells was evaluated. Western blot analysis of ferrochelatase protein showed a protein band of 43 kDA. There was a decrease in the protein concentration 24 h and 48 h after irradiation of these cells. In contrast, as judged by Northern blot analysis, there was no change in ferochelatase mRNA level. Measurement of ALA synthase activity showed an ALA dose-dependent but radiation-independent decrease of enzyme activity, suggesting an end-product feedback inhibition. Since reactive oxygen species generated by porphyrin-induced photochemical reaction may be involved in the decrease in ferrochelatase protein, the effect of scavengers of reactive oxygen species was evaluated by measuring porphyrin accumulation in irradiated, ALA-loaded A431 cells. Porphyrin accumulation was significantly decreased in the presence of singlet oxygen scavenger sodium azide (0.05 mM, 40.6% suppression) or hydroxyl radical scavenger mannitol (5.0 mM, 45% suppression). These data suggest that the photochemical reaction induced by porphyrin and irradiation resulted in a decrease in ferrochelatase protein content, but had no effect on ferrochelatase mRNA level nor on ALA synthase activity. The decrease in protein was partly mediated by the reactive oxygen species. (au).

  19. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle.

    Directory of Open Access Journals (Sweden)

    Johann Edge

    Full Text Available Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% VO2speak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID or calcium carbonate (PLA the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α, citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P0.05; the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08. Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle.

  20. Ursolic acid and luteolin-7-glucoside improves rat plasma lipid profile and increases liver glycogen content through glycogen synthase kinase-3

    OpenAIRE

    Azevedo, Marisa; Camsari, Çagri; Sá, Carla M.; Lima, Cristóvão F.; Ferreira, Manuel Fernandes; Wilson, Cristina Pereira

    2010-01-01

    Documento submetido para revisão pelos pares. A publicar em Phytotherapy Research. ISSN 0951-418X In the present study, two phytochemicals – ursolic acid (UA) and luteolin-7-glucoside (L7G) – were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profi le (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucos...

  1. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED

    2012-11-01

    Full Text Available International Journal of Renewable Energy Development www.ijred.com Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  2. Reduced CD300LG mRNA tissue expression, increased intramyocellular lipid content and impaired glucose metabolism in healthy male carriers of Arg82Cys in CD300LG a novel genometabolic cross-link between CD300LG and common metabolic phenotypes

    DEFF Research Database (Denmark)

    Støy, Julie; Kampmann, Ulla; Mengel, Annette

    2015-01-01

    by the hyperinsulinemic euglycemic clamp, intrahepatic lipid content (IHLC) and intramyocellular lipid content (IMCL) by MR spectroscopy, and β-cell function by an intravenous glucose tolerance test. Changes in insulin signaling and CD300LG mRNA expression were determined by western blotting and quantitative PCR...... with extracellular lipids. We tested whether this specific polymorphism results in abnormal lipid accumulation in skeletal muscle and liver and other indices of metabolic dysfunction. METHODS: 40 healthy men with a mean age of 55 years were characterized metabolically including assessment of insulin sensitivity......: The CD300LG polymorphism was associated with decreased CD300LG mRNA expression in muscle and adipose tissue, increased IMCL, and abnormalities of glucose metabolism. CD300LG mRNA levels correlated with IMCL and forearm glucose uptake. These findings link a specific CD300LG polymorphism with features...

  3. Lipoic Acid Synthase (LASY)

    National Research Council Canada - National Science Library

    Indira Padmalayam; Sumera Hasham; Uday Saxena; Sivaram Pillarisetti

    2009-01-01

    Lipoic Acid Synthase (LASY) A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance Indira Padmalayam 1 , Sumera Hasham 2 , Uday Saxena 1 and Sivaram Pillarisetti 1 1 Discovery Research, ReddyUS...

  4. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins.

    Science.gov (United States)

    Fujita, Akiko; Goto-Yamamoto, Nami; Aramaki, Isao; Hashizume, Katsumi

    2006-03-01

    In order to investigate the control mechanism of flavonol biosynthesis of grapevine, we obtained five genomic sequences (FLS1 to FLS5) of putative flavonol synthase genes from Vitis vinifera cv. Cabernet Sauvignon. The mRNA of five FLSs accumulated in flower buds and flowers, while the mRNA of FLS2, FLS4, and FLS5 accumulated in small berry skins and then decreased toward veraison. At the ripening stage, the mRNA of only FLS4 and FLS5 accumulated again. This change in mRNA accumulation did not contradict the flavonol accumulation in the berry skins. Shading of the berries completely inhibited the increase in flavonol content and mRNA accumulation of FLS4, but did not affect the mRNA accumulation of FLS5. The effects of light and plant hormones on flavonol accumulation were different from those on anthocyanin accumulation. Thus flavonol biosynthesis appears to be under a different control system from that of anthocyanin biosynthesis.

  5. Anticonvulsion effect of acupuncture might be related to the decrease of neuronal and inducible nitric oxide synthases.

    Science.gov (United States)

    Yang, R; Huang, Z N; Cheng, J S

    1999-01-01

    To measure the levels of hippocampal nitric oxide synthase isoforms in penicillin induced epilepsy and to test the effect of electroacupuncture (EA) on changes of these levels during epilepsy, we injected penicillin into rat hippocampus to make an epilepsy model and performed electroacupuncture treatment on "Feng Fu" (DU 16) and "Jin Suo" (DU 8) points in Wistar rats. Nitric oxide synthase (NOS) mRNA levels of rat hippocampus were determined by reverse transcription-polymerase chain reaction (RT-PCR). The neuronal nitric oxide synthase (nNOS) mRNA markedly increased (pepilepsy, whereas no significant change in epithelial nitric oxide synthase (eNOS) mRNA was observed. EA inhibited the epilepsy and decreased nNOS (pepilepsy caused an increase in nNOS and iNOS, and the EA anticonvulsant effect might be related to the decrease of these nitric oxide synthases.

  6. The Arabidopsis thaliana Knockout Mutant for Phytochelatin Synthase1 (cad1-3 Is Defective in Callose Deposition, Bacterial Pathogen Defense and Auxin Content, But Shows an Increased Stem Lignification

    Directory of Open Access Journals (Sweden)

    Maria De Benedictis

    2018-01-01

    Full Text Available The enzyme phytochelatin synthase (PCS has long been studied with regard to its role in metal(loid detoxification in several organisms, i.e., plants, yeasts, and nematodes. It is in fact widely recognized that PCS detoxifies a number of heavy metals by catalyzing the formation of thiol-rich oligomers, namely phytochelatins, from glutathione and related peptides. However, recent investigations have highlighted other possible roles played by the PCS enzyme in the plant cell, e.g., the control of pathogen-triggered callose deposition. In order to examine novel aspects of Arabidopsis thaliana PCS1 (AtPCS1 functions and to elucidate its possible roles in the secondary metabolism, metabolomic data of A. thaliana wild-type and cad1-3 mutant were compared, the latter lacking AtPCS1. HPLC-ESI-MS analysis showed differences in the relative levels of metabolites from the glucosinolate and phenylpropanoid pathways between cad1-3 and wild-type plants. Specifically, in control (Cd-untreated plants, higher levels of 4-methoxy-indol-3-ylmethylglucosinolate were found in cad1-3 plants vs. wild-type. Moreover, the cad1-3 mutant showed to be impaired in the deposit of callose after Cd exposure, suggesting that AtPCS1 protects the plant against the toxicity of heavy metals not only by synthesizing PCs, but also by contributing to callose deposition. In line with the contribution of callose in counteracting Cd toxicity, we found that another callose-defective mutant, pen2-1, was more sensitive to high concentrations of Cd than wild-type plants. Moreover, cad1-3 plants were more susceptible than wild-type to the hemibiotrophic bacterial pathogen Pseudomonas syringae. The metabolome also revealed differences in the relative levels of hydroxycinnamic acids and flavonols, with consequences on cell wall properties and auxin content, respectively. First, increased lignification in the cad1-3 stems was found, probably aimed at counteracting the entry of Cd into the inner

  7. TS mRNA levels can predict pemetrexed and raltitrexed sensitivity in colorectal cancer.

    Science.gov (United States)

    Zhang, Qun; Shen, Jie; Wang, Hao; Hu, Jing; Yu, Lixia; Xie, Li; Wei, Jia; Liu, Baorui; Guan, Wenxian; Qian, Xiaoping

    2014-02-01

    The purpose of the study is to analyze the relationship between tumor thymidylate synthase (TS) mRNA expression levels and raltitrexed/pemetrexed/5-FU sensitivity. We collected freshly removed colorectal tumor specimens from 50 patients. Chemosensitivities to anticancer drugs were evaluated by histoculture drug response assay. We adopted quantitative reverse transcription polymerase chain reaction for TS mRNA detection and immunohistochemical staining for assessing TS expression in tumor tissues. There is a significant relationship between TS mRNA expression levels and in vitro chemosensitivity of freshly removed colorectal tumor specimens to pemetrexed (P TS mRNA expression levels can predict pemetrexed and raltitrexed sensitivity in colorectal cancer.

  8. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  9. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  10. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  11. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Monogalactosyldiacylglycerol: An abundant galactosyllipid of Cirsium brevicaule A. GRAY leaves inhibits the expression of gene encoding fatty acid synthase.

    Science.gov (United States)

    Inafuku, Masashi; Takara, Kensaku; Taira, Naoyuki; Nugara, Ruwani N; Kamiyama, Yasuo; Oku, Hirosuke

    2016-05-15

    The leaves of Cirsium brevicaule A. GRAY (CL) significantly decreased hepatic lipid accumulation and the expression of fatty acid synthase gene (FASN) in mice. We aimed to purify and identify the active compound(s) from CL and determine the inhibitory mechanism of expression of FASN. We purified monogalactosyldiacylglycerol (MGDG) from extracts of CL (CL-MGDG) and showed that it was the active CL component through analyses of its effects on the expression of genes of human breast cancer cell line, SKBR-3. The content and fatty acid composition of CL-MGDG are distinctly different from those of other vegetable-derived MGDGs. Treatment of SKBR-3 cells with MGDG decreased the level of FASN mRNA as well as the levels of mRNA encoding other protein involved in lipogenesis. Further, MGDG treatments significantly inhibited luciferase activities of constructs containing liver X receptor response element in FASN promoter region without altering the levels of mRNA encoding transcription factors. MGDG and the FASN inhibitor C75 decreased the viabilities of SKBR-3 cells in a concentration-dependent manner. CL-MGDG more potently inhibited cell viability than a commercial MGDG preparation. CL represents a good source of glycoglycerolipids with potential as functional ingredients of food. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Monoterpene synthases from common sage (Salvia officinalis)

    Science.gov (United States)

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  14. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C.; Bach, T.J.; Rohmer, M.

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally,

  16. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Science.gov (United States)

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  17. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  18. Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    2015-08-01

    Full Text Available Carotenoids exert beneficial effects on human health through their excellent antioxidant activity. To increase carotenoid productivity in the marine Pennales Phaeodactylum tricornutum, we genetically engineered the phytoene synthase gene (psy to improve expression because RNA-sequencing analysis has suggested that the expression level of psy is lower than other enzyme-encoding genes that are involved in the carotenoid biosynthetic pathway. We isolated psy from P. tricornutum, and this gene was fused with the enhanced green fluorescent protein gene to detect psy expression. After transformation using the microparticle bombardment technique, we obtained several P. tricornutum transformants and confirmed psy expression in their plastids. We investigated the amounts of PSY mRNA and carotenoids, such as fucoxanthin and β-carotene, at different growth phases. The introduction of psy increased the fucoxanthin content of a transformants by approximately 1.45-fold relative to the levels in the wild-type diatom. However, some transformants failed to show a significant increase in the carotenoid content relative to that of the wild-type diatom. We also found that the amount of PSY mRNA at log phase might contribute to the increase in carotenoids in the transformants at stationary phase.

  19. Translocation of the potato 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase into isolated spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianmin; Weaver, L.M.; Herrmann, K.M. (Purdue Univ., West Lafayette, IN (USA))

    1990-05-01

    A cDNA for potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, encodes a 56 KD polypeptide whose amino terminus resembles a chloroplast transit sequence. The cDNA was placed downstream of the phage T7 polymerase recognition sequence in plasmid pGEM-3Z. DNA of the resulting plasmid pGEM-DWZ directed T7 polymerase to synthesize potato DAHP synthase mRNA in vitro. The mRNA was used in wheat germ and rabbit reticulocyte lysates for the synthesis of {sup 35}S-labeled pro-DAHP synthase. The predominant translation product is a 59 KD polypeptide that can be immunoprecipitated by rabbit polyclonal antibodies raised against the 53 KD DAHP synthase purified from potato tubers. Isolated spinach chloroplasts process the 59 KD pro-DAHP synthase to a 50 KD polypeptide. The processed polypeptide is protected from protease degradation, suggesting uptake of the enzyme into the cell organelle. Fractionation of reisolated chloroplasts after import of pro-DAHP synthase showed mature enzyme in the stroma. The uptake and processing of DAHP synthase is inhibited by antibodies raised against the mature enzyme. Our results are consistent with the assumption that potato contains a nuclear DNA encoded DAHP synthase that is synthesized as a proenzyme and whose mature form resides in the chloroplasts. Our data provide further evidence that green plants synthesize aromatic amino acids in plastids.

  20. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse i...

  1. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Science.gov (United States)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  2. Increase in Catalase mRNA in Wounded Sweet Potato Tuberous Root Tissue

    OpenAIRE

    Shigeru, Sakajo; Kenzo, Nakamura; Tadashi, Asahi; Laboratory of Biochemistry, Faculty of Agriculture, Nagoya University

    1987-01-01

    Catalase protein, as well as its activity, increases in wounded sweet potato tuberous root tissue [Esaka et al. (1983) Plant Cell Physiol. 24: 615]. Whether catalase mRNA increases in wounded tissue was examined with a hybridization probe of a cDNA for sweet potato catalase mRNA. The content of catalase mRNA in the tissue increased after a lag phase of 10 h to reach a maximum at 30 h after wounding, whereas total RNA content increased without a lag phase. The increase in the mRNA content afte...

  3. Isolation of streptococcal hyaluronate synthase.

    OpenAIRE

    Prehm, P; Mausolf, A

    1986-01-01

    Hyaluronate synthase was isolated from protoblast membranes of streptococci by Triton X-114 extraction and cetylpyridinium chloride precipitation. It was identified as a 52,000-Mr protein, which bound to nascent hyaluronate and was affinity-labelled by periodate-oxidized UDP-glucuronic acid and UDP-N-acetylglucosamine. Antibodies directed against the 52,000-Mr protein inhibited hyaluronate synthesis. Mutants defective in hyaluronate synthase activity lacked the 52,000-Mr protein in membrane e...

  4. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase.

    Science.gov (United States)

    Ellison, Haley E; Estévez-Lao, Tania Y; Murphree, C Steven; Hillyer, Julián F

    2015-03-01

    Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: anne.kultti@uku.fi [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Pasonen-Seppaenen, Sanna [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Jauhiainen, Marjo [Department of Pharmaceutical Chemistry, University of Kuopio, FIN-70211 Kuopio (Finland); Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I. [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland)

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  6. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  7. REDUCED NITRIC OXIDE PRODUCTION AND INOS MRNA EXPRESSION IN IFN-G STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH INOS SIRNAS

    Science.gov (United States)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the inhibition or knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-y' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biolo...

  8. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    Science.gov (United States)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  9. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  10. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  11. Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry (Rubus idaeus L.).

    Science.gov (United States)

    Rafique, Muhammad Z; Carvalho, Elisabete; Stracke, Ralf; Palmieri, Luisa; Herrera, Lorena; Feller, Antje; Malnoy, Mickael; Martens, Stefan

    2016-01-01

    Yellow raspberry fruits have reduced anthocyanin contents and offer unique possibility to study the genetics of pigment biosynthesis in this important soft fruit. Anthocyanidin synthase (Ans) catalyzes the conversion of leucoanthocyanidin to anthocyanidin, a key committed step in biosynthesis of anthocyanins. Molecular analysis of the Ans gene enabled to identify an inactive ans allele in a yellow fruit raspberry ("Anne"). A 5 bp insertion in the coding region was identified and designated as ans+5. The insertion creates a premature stop codon resulting in a truncated protein of 264 amino acids, compared to 414 amino acids wild-type ANS protein. This mutation leads to loss of function of the encoded protein that might also result in transcriptional downregulation of Ans gene as a secondary effect, i.e., nonsense-mediated mRNA decay. Further, this mutation results in loss of visible and detectable anthocyanin pigments. Functional characterization of raspberry Ans/ans alleles via complementation experiments in the Arabidopsis thaliana ldox mutant supports the inactivity of encoded protein through ans+5 and explains the proposed block in the anthocyanin biosynthetic pathway in raspberry. Taken together, our data shows that the mutation inside Ans gene in raspberry is responsible for yellow fruit phenotypes.

  12. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  13. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  14. Elevated expression of thymidylate synthase cycle genes in cisplatin-resistant human ovarian carcinoma A2780 cells

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, K.J.; Kashani-Sabet, M.

    1988-02-01

    Activity of the thymidylate synthase cycle was compared in the human ovarian carcinoma cell line A2780 and a subline that is resistant to cisplatin by a factor of 3. Resistant cells exhibited a 3-fold increase in mRNA for both dihydrofolate reductase and thymidylate synthase when compared with the parent line. Resistance to cisplatin also resulted in a 2.5-fold increase in enzyme activity for dihydrofolate reductase and thymidylate synthase; however, this increase did not result from amplification of the genes for these two enzymes. These data suggest that the initial step of cisplatin resistance in A2780 cells is a consequence of enhanced expression of the thymidylate synthase cycle.

  15. Suppressed expression of cystathionine β-synthase and smaller cerebellum in Wistar Kyoto rats.

    Science.gov (United States)

    Nagasawa, Mao; Ikeda, Hiromi; Kawase, Takahiro; Iwamoto, Ayaka; Yasuo, Shinobu; Furuse, Mitsuiro

    2015-10-22

    We previously reported that Wistar Kyoto rats, an animal model of depression, have a characteristically abnormal serine metabolism in the brain, i.e., lower serine and cystathionine, which is a metabolite of serine, concentrations in the brain. To explore the mechanism underlying this abnormality, the expression of cystathionine β-synthase and serine racemase, which are the enzymes involved in the serine metabolism, was investigated in the cerebellum and hippocampus of Wistar and Wistar Kyoto rats. Wistar Kyoto rats exhibited a significantly lower mRNA expression of cystathionine β-synthase in the cerebellum in comparison with Wistar rats, while expression levels in the hippocampus did not differ between strains. Previous study indicated that the reduction of cystathionine β-synthase in the brain induced cerebellar aplasia in mice. Therefore, the cerebellar size was compared between Wistar rats and Wistar Kyoto rats. Wistar Kyoto rats displayed a lower ratio of cerebellum weight to whole-brain weight compared with Wistar rats of the same generation or similar body weight, suggesting that Wistar Kyoto rats exhibit smaller cerebellum. These results suggest that the lower mRNA expression of cystathionine β-synthase in the cerebellum and the smaller size of cerebellum may be related to the depression-like behavior in Wistar Kyoto rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Catalysis by nitric oxide synthase.

    Science.gov (United States)

    Marletta, M A; Hurshman, A R; Rusche, K M

    1998-10-01

    The enzyme nitric oxide synthase catalyzes the oxidation of the amino acid L-arginine to L-citrulline and nitric oxide in an NADPH-dependent reaction. Nitric oxide plays a critical role in signal transduction pathways in the cardiovascular and nervous systems and is a key component of the cytostatic/cytotoxic function of the immune system. Characterization of nitric oxide synthase substrates and cofactors has outlined the broad details of the overall reaction and suggested possibilities for chemical steps in the reaction; however, the molecular details of the reaction mechanism are still poorly understood. Recent evidence suggests a role for the reduced bound pterin in the first step of the reaction--the hydroxylation of L-arginine.

  17. Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum

    Directory of Open Access Journals (Sweden)

    Drillich Marc

    2010-12-01

    Full Text Available Abstract Background Inflammatory processes and infections of the uterine wall must be accepted as a physiological event in dairy cows after calving. This might result in clinical or subclinical endometritis which is assumed to impair reproductive performance in the current lactation. Several cytokines and acute phase proteins have been discussed as local and systemic mediators of these inflammatory processes. The aim of the present study was to investigate the endometrial mRNA expression of the chemokine CXC ligand 5 (CXCL5, interleukin 1β (IL1B, IL6, IL8, tumour necrosis factor alpha (TNF, prostaglandin-endoperoxide synthase 2 (PTGS2 and haptoglobin (HP in the postpartum period. Methods Endometrial samples were obtained from primiparous cows (n = 5 on days 10, 17, 24, 31, 38 and 45 postpartum (pp using the cytobrush technique. Cytological smears were prepared from cytobrush samples to determine the proportion of polymorphonuclear neutrophils (PMN. Total RNA was extracted from endometrial samples, and real-time RT-PCR was performed. Results A time-dependent mRNA expression of the investigated factors was found for the course of the postpartum period. In detail, a significantly higher expression of these factors was observed on day 17 pp compared to day 31 pp. Furthermore, the proportion of PMN peaked between days 10-24 pp and decreased thereafter to low percentages (CXCL5, IL1B, IL8 and HP mRNA expression correlated significantly with the proportion of PMN (P CXCL5, IL1B, IL6, IL8, PTGS2 and TNF mRNA content was observed in samples from cows with an inflamed endometrium compared with samples from cows with a healthy endometrium (P Conclusions These results show that inflammatory cytokines and acute phase proteins are expressed in the bovine endometrium in a time-related manner during the postpartum period, with a significant expression peak on day 17 pp as a possible mucosal immune response in the uterus. The evaluation of the expression

  18. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... diabetic patients showed a normal total glycogen synthase activity but a 48% decrease (p = 0.006) in glycogen synthase fractional velocity (0.1 mmol/l glucose 6-phosphate) (FV0.1) and a 45% increase (p = 0.01) in the half-maximal activation constant of glycogen synthase (A0.5). The activity...... of phosphofructokinase and the specific mRNA and immunoreactive protein levels of both glycogen synthase and phosphofructokinase were similar in the two groups. The 2.8-fold increase in serum insulin levels and the halving of the plasma glucose level for at least 15 h were associated with a normalization of glycogen...

  19. Monoterpene synthase from Dracocephalum kotschyi and SPME-GC-MS analysis of its aroma profile

    Directory of Open Access Journals (Sweden)

    S. Saeidnia

    2014-04-01

    Full Text Available Dracocephalum kotschyi (Lamiaceae, as one of the remarkable aromatic plants, widely grows and also is cultivated in various temperate regions of Iran. There are diverse reports about the composition of the oil of this plant representing limonene derivatives as its major compounds. There is no report on cloning of mono- or sesquiterpene synthases from this plant. In the present study, the aroma profile of D. kotschyi has been extracted and analyzed via Headspace Solid-Phase Microextraction technique coupled with Gas Chromatography- Mass Spectroscopy. In order to determine the sequence of the active terpene synthase in this plant, first mRNA was prepared and cloning was performed by 3’ and 5’-RACEs-PCR method, then cDNA was sequenced and finally aligned with other recognized terpene synthases. The results showed that the plant leaves mainly comprised geranial (37.2%, limonene-10-al (28.5%, limonene (20.1% and 1,1-dimethoxy decane (14.5%. Sequencing the cDNA cloned from this plant revealed the presence of a monoterpene synthase absolutely similar to limonene synthase, responsible in formation of limonene, terpinolene, camphene and some other cyclic monoterpenes in its young leaves.

  20. Exogenous glucagon-like peptide-2 (GLP-2) augments GLP-2 receptor mRNA and maintains proglucagon mRNA levels in resected rats

    DEFF Research Database (Denmark)

    Koopmann, Matthew C; Nelson, David W; Murali, Sangita G

    2008-01-01

    ), crypt-villus height, and crypt cell proliferation (by bromodeoxyuridine staining) were determined. Plasma bioactive GLP-2 (by radioimmunoassay), proglucagon and GLP-2 receptor mRNA expression (by Northern blot and real-time reverse transcriptase quantitative polymerase chain reaction) were measured. GLP...... activity. Plasma bioactive GLP-2 concentration increased 70% upon resection, with an additional 54% increase upon GLP-2 infusion in resected rats (P ... GLP-2 receptor expression 3-fold in resected animals and was colocalized to vasoactive intestinal peptide-positive and endothelial nitric oxide synthase-expressing enteric neurons and serotonin-containing enteroendocrine cells in the jejunum and ileum of resected rats. CONCLUSIONS: Exogenous GLP-2...

  1. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only...

  2. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review......Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase...

  3. A functional cellulose synthase from ascidian epidermis

    OpenAIRE

    Matthysse, Ann G.; Deschet, Karine; Williams, Melanie; Marry, Mazz; White, Alan R.; Smith, William C.

    2004-01-01

    Among animals, urochordates (e.g., ascidians) are unique in their ability to biosynthesize cellulose. In ascidians cellulose is synthesized in the epidermis and incorporated into a protective coat know as the tunic. A putative cellulose synthase-like gene was first identified in the genome sequences of the ascidian Ciona intestinalis. We describe here a cellulose synthase gene from the ascidian Ciona savignyi that is expressed in the epidermis. The predicted C. savignyi cellulose synthase ami...

  4. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  5. Gene expression and characterization of isoprene synthase from Populus alba.

    Science.gov (United States)

    Sasaki, Kanako; Ohara, Kazuaki; Yazaki, Kazufumi

    2005-04-25

    Isoprene synthase cDNA from Populus alba (PaIspS) was isolated by RT-PCR. This PaIspS mRNA, which was predominantly observed in the leaves, was strongly induced by heat stress and continuous light irradiation, and was substantially decreased in the dark, suggesting that isoprene emission was regulated at the transcriptional level. The subcellular localization of PaIspS protein with green fluorescent protein fusion was shown to be in plastids. PaIspS expressed in Escherichia coli was characterized enzymatically: it had an optimum pH of approximately 8.0, and an optimum temperature 40 degrees C. Its preference for divalent cations for its activity was also studied.

  6. Hyaluronan synthases (HAS1-3 and hyaluronidases (HYAL1-2 in the accumulation of hyaluronan in endometrioid endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Kosma Veli-Matti

    2010-09-01

    Full Text Available Abstract Background Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (HAS1, HAS2 and HAS3 and hyaluronidases (HYAL1 and HYAL2, and correlated them with hyaluronan content and HAS1-3 immunoreactivity. Methods A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10, post-menopausal proliferative endometrium (n = 5, complex atypical hyperplasia (n = 4, grade 1 (n = 8 and grade 2 + 3 (n = 8 endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry. Results The mRNA levels of HAS1-3 were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, HAS3 mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003. The median of HYAL1 mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006, and post-menopausal endometrium (p = 0.002, respectively. HYAL2 mRNA was also reduced in cancer (p = 0.02 and correlated with HYAL1 (r = 0.8, p = 0.0001. There was an inverse correlation between HYAL1 mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001. Conclusion The results indicated that HYAL1 and HYAL2 were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for HASs were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan.

  7. Synthesis and evaluation of a fluorine-18 labeled antisense oligonucleotide as a potential PET tracer for NOS mRNA expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vroegh, J; Dijkstra, G; Moshage, H; Elsinga, PH; Jansen, PLM; Vaalburg, W

    Inducible NO synthase (iNOS) is overexpressed in inflammatory bowel diseases. An antisense oligonucleotide with good hybridization properties for iNOS mRNA was selected using RT-PCR. The oligonucleotide was reliably labeled with fluorine-18 using N-(4-[F-18]fluorobenzyl)-2-bromoacetamide. Cellular

  8. NITRIC OXIDE PRODUCTION AND iNOS mRNA EXPRESSION IN IFN-8-STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH iNOS siRNAs

    Science.gov (United States)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biological pathway i...

  9. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Ha, S B; Smith, A P; Howden, R; Dietrich, W M; Bugg, S; O'Connell, M J; Goldsbrough, P B; Cobbett, C S

    1999-06-01

    Phytochelatins (PCs), a family of heavy metal-inducible peptides important in the detoxification of heavy metals, have been identified in plants and some microorganisms, including Schizosaccharomyces pombe, but not in animals. PCs are synthesized enzymatically from glutathione (GSH) by PC synthase in the presence of heavy metal ions. In Arabidopsis, the CAD1 gene, identified by using Cd-sensitive, PC-deficient cad1 mutants, has been proposed to encode PC synthase. Using a positional cloning strategy, we have isolated the CAD1 gene. Database searches identified a homologous gene in S. pombe, and a mutant with a targeted deletion of this gene was also Cd sensitive and PC deficient. Extracts of Escherichia coli cells expressing a CAD1 cDNA or the S. pombe gene catalyzing GSH-dependent, heavy metal-activated synthesis of PCs in vitro demonstrated that both genes encode PC synthase activity. Both enzymes were activated by a range of metal ions. In contrast, reverse transcription-polymerase chain reaction experiments showed that expression of the CAD1 mRNA is not influenced by the presence of Cd. A comparison of the two predicted amino acid sequences revealed a highly conserved N-terminal region, which is presumed to be the catalytic domain, and a variable C-terminal region containing multiple Cys residues, which is proposed to be involved in activation of the enzyme by metal ions. Interestingly, a similar gene was identified in the nematode, Caenorhabditis elegans, suggesting that PCs may also be expressed in some animal species.

  10. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    Science.gov (United States)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  11. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  12. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  13. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  14. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...... analysis revealed lower activity of GSK-3β in spring and summer compared with the fall season. No correlation was observed between GSK-3β activity and emotional lability, subjective mood fluctuations or cognitive function. The results suggest that intra- and interindividual variation in GSK-3β activity...

  15. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene

    Energy Technology Data Exchange (ETDEWEB)

    Feinbaum, R.L.; Ausubel, F.M.

    1988-05-01

    The authors cloned an Arabiodpsis thaliana chalcone synthase (CHS) gene on the basis of cross-hybridization with a Petroselinum hortense CHS cDNA clone. The protein sequence deduced from the A. thaliana CHS DNA sequence is at least 85% homologous to the CHS sequences from P. hortense, Antirrhinum majus, and Petunia hybrida. Southern blot analysis indicated that CHS is a single-copy gene in A. thaliana. High-intensity light treatment of A. thaliana plants for 24 h caused a 50-fold increase in CHS enzyme activity and an accumulation of visibly detectable levels of anthocyanin pigments in the vegetative structures of these plants. A corresponding increase in the steady-state level of CHS mRNA was detected after high-intensity light treatment for the same period of time. The accumulation of CHS mRNA in response to high-intensity light was due, at least in part, to an increased rate of transcription of the CHS gene as demonstrated by nuclear runoff experiment.

  16. Intestinal PTGS2 mRNA Levels, PTGS2 Gene Polymorphisms, and Colorectal Carcinogenesis

    DEFF Research Database (Denmark)

    Vogel, Lotte K.; Saebo, Mona; Hoyer, Helle

    2014-01-01

    Background & Aims: Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation....... Methods: PTGS2 mRNA levels were determined in intestinal tissues from 85 intestinal adenoma cases, 115 CRC cases, and 17 healthy controls. The functional PTGS2 polymorphisms A-1195G (rs689466), G-765C (rs20417), T8473C (rs5275) were assessed in 200 CRC cases, 991 adenoma cases and 399 controls from...

  17. Molecular Cloning, Expression, Purification, and Functional Characterization of Dammarenediol Synthase from Panax ginseng

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2013-01-01

    Full Text Available The objective of this study is to clone and charecterize the expression of dammarenediol synthase gene and then to determine the relationship between the expression of dammarenediol synthase gene that is involved in the ginsenoside biosynthetic pathway and the ginsenoside content. A cDNA phage library was constructed from a five-year-old ginseng root. The cDNA library was screened for the dammarenediol synthase gene by using its specific primers. It was further cloned and expressed in pET-30a vector. The recombinant plasmid pET-30a-DS was expressed in Rosetta E. coli. The recombinant DS protein was purified by affinity chromatography. The production of dammarenediol was detected by liquid chromatography-mass spectrometry (LC-MS. Results showed that dammarenediol synthase gene was cloned from the cDNA library and was expressed in Rosetta E. coli and the SDS-PAGE analysis showed the presence of purified DS protein. LS-MS showed the activity of DS protein, as the protein content increases the dammarenediol increases. Our results indicate that the recombinant dammarenediol synthase protein could increase the production of dammarenediol and the expression of DS played a vital role in the biosynthesis of ginsenosides in P. ginseng.

  18. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... statistics provide? Why are some genetic conditions more common in particular ethnic groups? ... an enzyme called GM3 synthase, which carries out a chemical reaction that is the first step in the production ...

  19. Nitric oxide synthases: structure, function and inhibition

    National Research Council Canada - National Science Library

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family...

  20. Differential response of methionine metabolism in two grain legumes, soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine γ-synthase.

    Science.gov (United States)

    Hanafy, Moemen S; Rahman, Shaikh M; Nakamoto, Yumi; Fujiwara, Toru; Naito, Satoshi; Wakasa, Kyo; Ishimoto, Masao

    2013-02-15

    Methionine (Met) is a sulfur-containing amino acid that is essential in mammals and whose low abundance limits the nutritional value of grain legumes. Cystathionine γ-synthase (CGS) catalyzes the first committed step of Met biosynthesis, and the stability of its mRNA is autoregulated by the cytosolic concentration of S-adenosyl-l-methionine (SAM), a direct metabolite of Met. The mto1-1 mutant of Arabidopsis thaliana harbors a mutation in the AtCGS1 gene that renders the mRNA resistant to SAM-dependent degradation and therefore results in the accumulation of free Met to high levels in young leaves. To manipulate Met biosynthesis in soybean and azuki bean, we introduced the AtCGS1 mto1-1 gene into the two grain legumes under the control of a seed-specific glycinin gene promoter. Transgenic seeds of both species accumulated soluble Met to levels at least twice those apparent in control seeds. However, the increase in free Met did not result in an increase in total Met content of the transgenic seeds. In transgenic azuki bean seeds, the amount of cystathionine, the direct product of CGS, was markedly increased whereas the total content of Met was significantly decreased compared with control seeds. Similar changes were not detected in soybean. Our data suggest that the regulation of Met biosynthesis differs between soybean and azuki bean, and that the expression of AtCGS1 mto1-1 differentially affects the metabolic stability of sulfur amino acids and their metabolites in the two grain legumes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Identification of avian wax synthases.

    Science.gov (United States)

    Biester, Eva-Maria; Hellenbrand, Janine; Gruber, Jens; Hamberg, Mats; Frentzen, Margrit

    2012-02-04

    Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities.

  2. Identification of avian wax synthases

    Directory of Open Access Journals (Sweden)

    Biester Eva-Maria

    2012-02-01

    Full Text Available Abstract Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities.

  3. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  4. Terpene synthases from Cannabis sativa.

    Directory of Open Access Journals (Sweden)

    Judith K Booth

    Full Text Available Cannabis (Cannabis sativa plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E-β-ocimene, (--limonene, (+-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  5. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    Science.gov (United States)

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. ATP synthase β-subunit abnormality in pancreas islets of rats with polycystic ovary syndrome and type 2 diabetes mellitus.

    Science.gov (United States)

    Li, Wei; Li, Sai-Jiao; Yin, Tai-Lang; Yang, Jing; Cheng, Yan

    2017-04-01

    This study investigated the abnormal expression of ATP synthase β-subunit (ATPsyn-β) in pancreas islets of rat model of polycystic ovary syndrome (PCOS) with type 2 diabetes mellitus (T2DM), and the secretion function changes after up-regulation of ATP5b. Sixty female SD rats were divided into three groups randomly and equally. The rat model of PCOS with T2DM was established by free access to the high-carbohydrate/high-fat diet, subcutaneous injections of DHEA, and a single injection of streptozotocin. The pancreas was removed for the detection of the ATPsyn-β expression by immunohistochemical staining, Western blotting and reverse transcription-PCR (RT-PCR). The pancreas islets of the rats were cultured, isolated with collagenase V and purified by gradient centrifugation, and the insulin secretion after treatment with different glucose concentrations was tested. Lentivirus ATP5b was successfully constructed with the vector of GV208 and transfected into the pancreas islets for the over-expression of ATPsyn-β. The insulin secretion and intracellular ATP content were determined after transfection of the PCOS-T2DM pancreas islets with Lenti-ATP5b. The results showed that the expression of ATPsyn-β protein and mRNA was significantly decreased in the pancreas of PCOS-T2DM rats. The ATP content in the pancreas islets was greatly increased and the insulin secretion was improved after the up-regulation of ATPsyn-β in the pancreas islets transfected with lenti-ATP5b. These results indicated that for PCOS, the ATPsyn-β might be one of the key factors for the attack of T2DM.

  7. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed

    Directory of Open Access Journals (Sweden)

    Michelle F. Valentine

    2017-05-01

    Full Text Available Soybean [Glycine max (L. Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2, to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets.

  8. Expression of thromboxane A2 receptor gene and thromboxane A2 synthase in bovine corpora lutea.

    Science.gov (United States)

    Lei, Z M; Rao, C V; Chakraborty, C

    1992-08-01

    Studies were undertaken to investigate the expression of thromboxane (TXA2) receptor gene, from mRNA to functional receptor protein in terms of ligand binding, along with the cellular and subcellular distribution of the enzyme that catalyzes the formation of the ligand for the receptors. Bovine corpora lutea contained a single TXA2 receptor mRNA transcript of 2.8 kb. All the cell types in bovine corpora lutea contained immunoreactive TXA2 synthase, TXB2, TXA2 receptor transcripts, and receptor protein that bound the TXA2 antagonist 9,11-dimethylmethano-11,12-methano-16 (3-iodo-4-hydroxyphenyl)-13-14-dihydro-13-aza-15 alpha beta-omega-tetranor TXA2. The large luteal cells (20-35 microns) contained more receptor transcripts, receptor protein, and immunoreactive TXA2 synthase than did the small luteal cells (12-19 microns), luteal blood vessels, and nonluteal cells (7-12 microns). After correction for the cellular area differences, small luteal cells were seen to contain more receptor protein than did large luteal cells and nonluteal cells. All the cells showed an increase of TXA2 receptors and catalytically active TXA2 synthase from mid-luteal phase to early pregnancy, suggesting the possibility that TXA2 could be a luteotropic eicosanoid. Bovine lung homogenates (a positive control), bovine luteal plasma membranes-mitochondria-lysosomes fraction, rough-smooth endoplasmic reticulum-Golgi fraction, and highly purified nuclei contained 65-kDa immunoreactive protein, presumably representing TXA2 synthase. In addition, the luteal fractions, but not bovine lung, contained other small and large molecular-size immunoreactive proteins. Immunogold electron microscopy showed that immunoreactive TXA2 synthase was present primarily in plasma membranes, rough endoplasmic reticulum, nuclear membranes, and chromatin; and immunoreactive TXB2 was present primarily in different-size vesicles and nuclear chromatin. In summary, the present studies demonstrate for the first time that

  9. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Gerber, Lucie; Madsen, Steffen S; Jensen, Frank B

    2017-01-01

    Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na(+)/K(+)-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production...... in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects...

  10. Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree (Murraya koenigii).

    Science.gov (United States)

    Meena, Seema; Rajeev Kumar, Sarma; Dwivedi, Varun; Kumar Singh, Anup; Chanotiya, Chandan S; Akhtar, Md Qussen; Kumar, Krishna; Kumar Shasany, Ajit; Nagegowda, Dinesh A

    2017-03-08

    Curry tree (Murraya koenigii L.) is a rich source of aromatic terpenes and pharmacologically important carbazole alkaloids. Here, M. koenigii leaf transcriptome was generated to gain insight into terpenoid and alkaloid biosynthesis. Analysis of de novo assembled contigs yielded genes for terpene backbone biosynthesis and terpene synthases. Also, gene families possibly involved in carbazole alkaloid formation were identified that included polyketide synthases, prenyltransferases, methyltransferases and cytochrome P450s. Further, two genes encoding terpene synthases (MkTPS1 and MkTPS2) with highest in silico transcript abundance were cloned and functionally characterized to determine their involvement in leaf volatile formation. Subcellular localization using GFP fusions revealed the plastidial and cytosolic localization of MkTPS1 and MkTPS2, respectively. Enzymatic characterization demonstrated the monoterpene synthase activity of recombinant MkTPS1, which produced primarily (-)-sabinene from geranyl diphosphate (GPP). Recombinant MkTPS2 exhibited sesquiterpene synthase activity and formed (E,E)-α-farnesene as the major product from farnesyl diphosphate (FPP). Moreover, mRNA expression and leaf volatile analyses indicated that MkTPS1 accounts for (-)-sabinene emitted by M. koenigii leaves. Overall, the transcriptome data generated in this study will be a great resource and the start point for characterizing genes involved in the biosynthetic pathway of medicinally important carbazole alkaloids.

  11. Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species--a domestication footprint.

    Science.gov (United States)

    Pathak, N; Bhaduri, A; Bhat, K V; Rai, A K

    2015-09-01

    Sesamin and sesamolin are the major oil-soluble lignans present in sesame seed, having a wide range of biological functions beneficial to human health. Understanding sesame domestication history using sesamin synthase gene expression could enable delineation of the sesame putative progenitor. This report examined the functional expression of sesamin synthase (CYP81Q1) during capsule maturation (0-40 days after flowering) in three wild Sesamum species and four sesame cultivars. Among the cultivated accessions, only S. indicum (CO-1) exhibited transcript abundance of sesamin synthase along with high sesamin content similar to S. malabaricum, while the other cultivated sesame showed low expression. The sesamin synthase expression analysis, coupled with quantification of sesamin level, indicates that sesamin synthase was not positively favoured during domestication. The sesamin synthase expression pattern and lignan content, along with phylogenetic analysis suggested a close relationship of cultivated sesame and the wild species S. malabaricum. The high genetic identity between the two species S. indicum and S. malabaricum points towards the role of the putative progenitor S. malabaricum in sesame breeding programmes to broaden the genetic base of sesame cultivars. This study emphasises the need to investigate intraspecific and interspecific variation in the primary, secondary and tertiary gene pools to develop superior sesame genotypes. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. 18-Hydroxydolabella-3,7-diene synthase - a diterpene synthase from Chitinophaga pinensis

    NARCIS (Netherlands)

    Dickschat, Jeroen S.; Rinkel, Jan; Rabe, Patrick; Kashkooli, Arman Beyraghdar; Bouwmeester, Harro J.

    2017-01-01

    The product obtained in vitro from a diterpene synthase encoded in the genome of the bacterium Chitinophaga pinensis, an enzyme previously reported to have germacrene A synthase activity during heterologous expression in Escherichia coli, was identified by extensive NMR-spectroscopic methods as

  13. Terpene synthases are widely distributed in bacteria

    Science.gov (United States)

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  14. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Maiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Sugiura, Kazumitsu [Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Koichi, E-mail: koichi@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Keiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan)

    2014-03-07

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  15. [Influence of Heat-reinforcing Needling on Expression of Plasma Atp 5 O mRNA and Atp 6 V 1 B 2 mRNA in Patients with Rheumatoid Arthritis of Wind-cold-damp Retention Type].

    Science.gov (United States)

    Du, Xiao-Zheng; Wang, Jin-Hai; Zhang, Xing-Hua; Tian, Jie-Xiang; Qin, Xiao-Guang; Fang, Xiao-Li; Tian, Liang; Yuan, Bo

    2016-08-25

    To observe influences of heat-reinforcing needling (HRN) on scores of traditional Chinese medicine (TCM) symptoms and expression of plasma ATP synthase subunit O (Atp 5 O) mRNA and lysosomal V 1 subunit B 2 (Atp 6 V 1 B 2) mRNA in patients with wind-cold-damp retention type rheumatoid arthritis (RA), so as to investigate its biological mechanisms in "heat production". Sixty wind-cold-damp retention type RA patients were randomly allocated to HRN group (n=30) and control group (n=30). Guanyuan (CV 4), Qihai (CV 6), bilateral Zusanli (ST 36), and local acupoints near the knee-joint were selected for needling stimulation. Patients of the HRN group were treated by manipulating the acupuncture needle with HRN, and those of the control group treated by manipulating the needle with uniform reinforcing-reducing method. The treatments were performed once daily, 5 days a week, and two weeks altogether. The other 30 healthy volunteers were recruited as the normal control group. The TCM symptom scoring system (0-31 points, 11 items as the severities of pain, swelling and tenderness of the knee-joint) was used to evaluate the status of RA, and quantitative real-time PCR (RT-PCR) was used to detect the expression of plasma Atp 5 O mRNA and Atp 6 V 1 B 2 mRNA following removal of red blood cells. After the treatment, the TCM scores of both the HRN and control groups were significantly decreased (PB 2 mRNA in RA patients were significantly lower than those of the normal group (PB 2 mRNA were significantly increased in both HRN and control groups compared to pre-treatment in the same one group (PB 2 mRNA levels were remarkably higher in the control group than in the HRN group (PB 2 mRNA.

  16. Estrogen modulates osteogenic activity and estrogen receptor mRNA in mesenchymal stem cells of women.

    Science.gov (United States)

    Chen, F-P; Hu, C-H; Wang, K-C

    2013-02-01

    To determine whether estrogen regulates mesenchymal stem cell (MSC) activity in bone marrow from osteoporotic postmenopausal women. MSCs were collected from bone marrows which were aspirated simultaneously during iliac bone graft procedures in spine fusion surgery in osteoporotic postmenopausal women. We investigated proliferation, differentiation, osteogenic activity, and estrogen receptor (ER) α and β mRNA expression of primary culture MSCs isolated from four osteoporotic postmenopausal women, treated in vitro with or without 17β-estradiol. The expression of alkaline phosphatase (ALP), osteocalcin, interleukin-6, ERα and ERβ mRNA was evaluated. The expression of ALP and osteocalcin mRNA was detected during the cultures of MSCs and was observed to increase up to day 20. As compared with MSCs not treated with estradiol, a significant increase in DNA content, ERα mRNA, and ALP mRNA expression was observed in cultures with estradiol. The mRNA expression of osteocalcin and interleukin-6 was significantly lower in MSCs treated with estradiol than those without estradiol. There was no significant difference in the mRNA expression of ERβ between MSCs cultured with and without estradiol. In the proper environment, MSCs from osteoporotic women can differentiate into osteoblasts and estrogen enhances the osteogenic activity possibly via ERα activity.

  17. Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis.

    Science.gov (United States)

    Lee, James J; Natsuizaka, Mitsuteru; Ohashi, Shinya; Wong, Gabrielle S; Takaoka, Munenori; Michaylira, Carmen Z; Budo, Daniela; Tobias, John W; Kanai, Michiyuki; Shirakawa, Yasuhiro; Naomoto, Yoshio; Klein-Szanto, Andres J P; Haase, Volker H; Nakagawa, Hiroshi

    2010-03-01

    Hypoxia-inducible factors (HIFs), in particular HIF-1alpha, have been implicated in tumor biology. However, HIF target genes in the esophageal tumor microenvironment remain elusive. Gene expression profiling was performed upon hypoxia-exposed non-transformed immortalized human esophageal epithelial cells, EPC2-hTERT, and comparing with a gene signature of esophageal squamous cell carcinoma (ESCC). In addition to known HIF-1alpha target genes such as carbonic anhydrase 9, insulin-like growth factor binding protein-3 (IGFBP3) and cyclooxygenase (COX)-2, prostaglandin E synthase (PTGES) was identified as a novel target gene among the commonly upregulated genes in ESCC as well as the cells exposed to hypoxia. The PTGES induction was augmented upon stabilization of HIF-1alpha by hypoxia or cobalt chloride under normoxic conditions and suppressed by dominant-negative HIF-1alpha. Whereas PTGES messenger RNA (mRNA) was negatively regulated by normoxia, PTGES protein remained stable upon reoxygenation. Prostaglandin E(2) (PGE(2)) biosynthesis was documented in transformed human esophageal cells by ectopic expression of PTGES as well as RNA interference directed against PTGES. Moreover, hypoxia stimulated PGE(2) production in a HIF-1alpha-dependent manner. In ESCC, PTGES was overexpressed frequently at the mRNA and protein levels. Finally, COX-2 and PTGES were colocalized in primary tumors along with HIF-1alpha and IGFBP3. Activation of the COX-2-PTGES axis in primary tumors was further corroborated by concomitant upregulation of interleukin-1beta and downregulation of hydroxylprostaglandin dehydrogenase. Thus, PTGES is a novel HIF-1alpha target gene, involved in prostaglandin E biosynthesis in the esophageal tumor hypoxic microenvironment, and this has implications in diverse tumors types, especially of squamous origin.

  18. Topoisomerase 2α and thymidylate synthase expression in adrenocortical cancer.

    Science.gov (United States)

    Roca, Elisa; Berruti, Alfredo; Sbiera, Silviu; Rapa, Ida; Oneda, Ester; Sperone, Paola; Ronchi, Cristina L; Ferrari, Laura; Grisanti, Salvatore; Germano, Antonina; Zaggia, Barbara; Scagliotti, Giorgio Vittorio; Fassnacht, Martin; Volante, Marco; Terzolo, Massimo; Papotti, Mauro

    2017-07-01

    Topoisomerase II alpha (TOP2A) and thymidylate synthase (TS) are known prognostic parameters in several tumors and also predictors of efficacy of anthracyclines, topoisomerase inhibitors and fluoropirimidines, respectively. Expression of TOP2A and TS mRNA was assessed in 98 patients with adrenocortical carcinoma (ACC) and protein expression was assessed by immunohistochemistry in a subset of 39 tumors. Ninety-two patients were radically resected for stage II-III disease and 38 of them received adjuvant mitotane. Twenty-six patients with metastatic disease received the EDP-M (etoposide, doxorubicin, Adriamycin, cisplatin plus mitotane). TOP2A and TS expression in ACC tissue was directly correlated with the clinical data. Both markers were not associated with either disease free survival (DFS) or overall survival (OS) in multivariate analyses and failed to be associated to mitotane efficacy. Disease response or stabilization to EDP-M treatment was observed in 12/17 (71%) and 1/9 (11%) patients with high and low TOP2A expressing tumors (P = 0.0039) and 9/13 (69%) and 4/13 (31%) patients with high and low TS expressing ACC, respectively (P = 0.049). High TOP2A expression was significantly associated with longer time to progression (TTP) after EDP-M. TOP2A and TS proteins assessed by immunohistochemistry significantly correlated with mRNA expression. Immunohistochemical TOP2A expression was associated with a non-significant better response and longer TTP after EDP-M. TOP2A and TS were neither prognostic nor predictive of mitotane efficacy in ACC patients. The predictive role of TOP2A expression of EDP-M activity suggests a significant contribution of Adriamycin and etoposide for the efficacy of the EDP scheme. © 2017 Society for Endocrinology.

  19. Chitin synthase homologs in three ectomycorrhizal truffles.

    Science.gov (United States)

    Lanfranco, L; Garnero, L; Delpero, M; Bonfante, P

    1995-12-01

    Degenerate PCR primers were used to amplify a conserved gene portion coding chitin synthase from genomic DNA of six species of ectomycorrhizal truffles. DNA was extracted from both hypogeous fruitbodies and in vitro growing mycelium of Tuber borchii. A single fragment of about 600 bp was amplified for each species. The amplification products from Tuber magnatum, T. borchii and T. ferrugineum were cloned and sequenced, revealing a high degree of identity (91.5%) at the nucleotide level. On the basis of the deduced amino acid sequences these clones were assigned to class II chitin synthase. Southern blot experiments performed on genomic DNA showed that the amplification products derive from a single copy gene. Phylogenetic analysis of the nucleotide sequences of class II chitin synthase genes confirmed the current taxonomic position of the genus Tuber, and suggested a close relationship between T. magnatum and T. uncinatum.

  20. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Endothelial nitric oxide synthase in rat brain is downregulated by sub-chronic antidepressant treatment.

    Science.gov (United States)

    Yoshino, Yuta; Ochi, Shinichiro; Yamazaki, Kiyohiro; Nakata, Shunsuke; Iga, Jun-Ichi; Ueno, Shu-Ichi

    2017-06-01

    Nitric oxide (NO) is a neurotransmitter that may be related to major depressive disorder (MDD) because the selective neuronal NO synthase (NOS) inhibitor, 7-nitroindazole, induces a dose-dependent antidepressant-like effect. NO modulates major neurotransmitters involved in the neurobiology of MDD, such as norepinephrine, serotonin, dopamine, and glutamate. In this study, we investigated the effects of antidepressants as NO modulators in acute and sub-chronic treatments. Rats were injected with the SSRI paroxetine (PAR, 10 mg/kg), the SNRI milnacipran (MIL, 30 mg/kg), or the NaSSA mirtazapine (MIR, 10 mg/kg) for acute (1 h) or sub-chronic (3 weeks) treatment prior to analysis of nine brain regions (frontal cortex, temporal cortex, striatum, thalamus, hippocampus, midbrain, pons, cerebellum, and olfactory bulb). The mRNA expression levels of three NOS subtypes (neuronal: nNOS, inducible: iNOS, and endothelial: eNOS) were analyzed using real-time PCR with Taqman probes. Acute MIR treatment significantly increased nNOS mRNA expression in the hippocampus, midbrain, cerebellum and olfactory bulb, and iNOS mRNA expression in the frontal cortex and midbrain. Acute PAR and MIR treatments significantly increased eNOS mRNA expression in most brain regions. Conversely, sub-chronic treatment with all types of antidepressants resulted in significant decreases of eNOS mRNA expression in most brain regions. Sub-chronic treatment with the three types of antidepressants consistently decreased eNOS mRNA expression levels in the rat brain. These effects may be associated with the involvement of the NO system in the mechanism of action of antidepressants.

  2. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase.

    Science.gov (United States)

    Nishida, K; Harrison, D G; Navas, J P; Fisher, A A; Dockery, S P; Uematsu, M; Nerem, R M; Alexander, R W; Murphy, T J

    1992-11-01

    The constitutive endothelial cell nitric oxide synthase (NOS) importantly regulates vascular homeostasis. To gain understanding of this enzyme, a pEF BOS cDNA library of 5 x 10(5) clones was prepared from bovine aortic endothelial cells (BAEC) and screened with a 2.8-kb cDNA BamHI fragment of rat brain NOS. Clone pBOS13 was found to express NO synthase activity when transfected into COS-7 cells. Sequence analysis revealed sequences compatible with binding domains for calcium/calmodulin, flavin mononucleotide, flavin adenine nucleotide and NADPH. The deduced amino acid sequence revealed a protein with a relative mol mass of 133,286, which is 58% homologous to the rat cerebellar NOS and 51% homologous to the mouse macrophage NOS. The amino-terminal portion of the protein exhibits several characteristics peculiar to the endothelial cell NOS. These include a proline-rich region and several potential sites for proline-directed phosphorylation as well as a potential substrate site for acyl transferase. Northern hybridization to mRNA from cultured BAEC revealed an abundant 4.8-kb message, which was not increased by coincubation with tumor necrosis factor alpha, but was markedly increased by exposure to shear stress for 24 h. The unique features of the endothelial cell NO synthase, particularly in the amino terminal portion of the molecule, may provide for novel regulatory influences of enzyme activity and localization.

  3. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes.

    Science.gov (United States)

    Last, R L; Bissinger, P H; Mahoney, D J; Radwanski, E R; Fink, G R

    1991-01-01

    The cruciferous plant Arabidopsis thaliana has two closely related, nonallelic tryptophan synthase beta genes (TSB1 and TSB2), each containing four introns and a chloroplast leader sequence. Both genes are transcribed, although TSB1 produces greater than 90% of tryptophan synthase beta mRNA in leaf tissue. A tryptophan-requiring mutant, trp2-1, has been identified that has about 10% of the wild-type tryptophan synthase beta activity. The trp2-1 mutation is complemented by the TSB1 transgene and is linked genetically to a polymorphism in the TSB1 gene, strongly suggesting that trp2-1 is a mutation in TSB1. The trp2-1 mutants are conditional: they require tryptophan for growth under standard illumination but not under very low light conditions. Presumably, under low light the poorly expressed gene, TSB2, is capable of supporting growth. Genetic redundancy may be common to many aromatic amino acid biosynthetic enzymes in plants because mutants defective in two other genes (TRP1 and TRP3) also exhibit a conditional tryptophan auxotrophy. The existence of two tryptophan pathways has important consequences for tissue-specific regulation of amino acid and secondary metabolite biosynthesis. PMID:1840915

  4. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    Energy Technology Data Exchange (ETDEWEB)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-10-05

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and)2numberSPO4/mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the TUPO4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro.

  5. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting.

    Science.gov (United States)

    Ito, Junta; Uchida, Hiroyuki; Machida, Naomi; Ohtake, Kazuo; Saito, Yuki; Kobayashi, Jun

    2017-04-01

    We investigated the effects of endogenous inducible (iNOS) and neuronal nitric oxide synthase on recovery from intestinal mucosal atrophy caused by fasting-induced apoptosis and decreased cell proliferation during refeeding in rats. Rats were divided into five groups, one of which was fed ad libitum, and four of which underwent 72 h of fasting, followed by refeeding for 0, 6, 24, and 48 h, respectively. iNOS and neuronal nitric oxide synthase mRNA and protein levels in jejunal tissues were measured, and mucosal height was histologically evaluated. Apoptotic indices, interferon-γ (IFN-γ) transcription levels, nitrite levels (as a measure of nitric oxide [NO] production),8-hydroxydeoxyguanosine formation (indicating reactive oxygen species [ROS] levels), crypt cell proliferation, and the motility indices (MI) were also estimated. Associations between mucosal height and NOS protein levels were determined using Spearman's rank correlation test. Notably, we observed significant increases in mucosal height and in neuronal nitric oxide synthase mRNA and protein expression as refeeding time increased. Indeed, there was a significant positive correlation between neuronal nitric oxide synthase protein level and mucosal height during the 48-h refeeding period ( r = 0.725, P fasting. Our finding suggests that refeeding likely repairs fasting-induced jejunal atrophy by suppressing iNOS expression and subsequently inhibiting NO, ROS, and IFN-γ as apoptosis mediators, and by promoting neuronal nitric oxide synthase production and inducing crypt cell proliferation via mechanical stimulation. Impact statement Besides providing new data confirming the involvement of iNOS and nNOS in intestinal mucosal atrophy caused by fasting, this study details their expression and function during recovery from this condition following refeeding. We demonstrate a significant negative correlation between iNOS and nNOS levels during refeeding, and associate this with cell proliferation

  6. Evaluation of the inclusion of circular RNAs in mRNA profiling in forensic body fluid identification.

    Science.gov (United States)

    Zhang, Yaqi; Liu, Baonian; Shao, Chengchen; Xu, Hongmei; Xue, Aimin; Zhao, Ziqin; Shen, Yiwen; Tang, Qiqun; Xie, Jianhui

    2017-09-25

    The use of messenger RNA (mRNA) profiling is considered a promising method in the identification of forensically relevant body fluids which can provide crucial information for reconstructing a potential crime. However, casework samples are usually of limited quantity or have been subjected to degradation, which requires improvement of body fluid identification. Circular RNAs (circRNAs), a class of products from the backsplicing of pre-mRNAs, are shown to have high abundance, remarkable stability, and cell type-specific expression in human cells. In this study, we investigated whether the inclusion of circRNAs in mRNA profiling improve the detection of biomarkers including δ-aminolevulinate synthase 2 (ALAS2) and matrix metallopeptidase 7 (MMP7) in body fluid identification. The major circRNAs of ALAS2 and MMP7 were first identified and primer sets for the simultaneous detection of linear and circular transcripts were developed. The inclusion of circRNAs in mRNA profiling showed improved detection sensitivity and stability of biomarkers revealed by using serial dilutions, mixed samples, and menstrual bloodstains as well as degraded and aged samples. Therefore, the inclusion of circRNAs in mRNA profiling should facilitate the detection of mRNA markers in forensic body fluid identification.

  7. Relationship Between the DPD and TS mRNA Expression and the Response to S-1-Based Chemotherapy and Prognosis in Patients with Advanced Gastric Cancer.

    Science.gov (United States)

    Shen, Xiao-Ming; Zhou, Chong; Lian, Lian; Li, Li-Qun; Li, Wei; Tao, Min

    2015-04-01

    The aim was to determine changes in dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) mRNAs in the blood of advanced gastric cancer (AGC) patients to see whether these enzymes affected the patients' response to S-1-based chemotherapy and prognosis. For this purpose, pretreatment DPD/TS mRNA expressions were determined in 40 AGC patients using RT-PCR. The patients were then administered with S-1-based regimen (S-1 + cisplatin) and toxicities were recorded. The relationship between the DPD/TS mRNA expressions and the chemotherapy response, drug resistance, and prognosis was analyzed. The data show that DPD mRNA expression correlated significantly with Lauren type while TS mRNA expression correlated with distant metastasis. Patients with higher DPD and/or TS mRNA expression(s) showed poor response, while those with low DPD mRNA expression showed better response to the chemotherapy. Pooled analysis showed that the patients with low DPD/TS mRNA expressions had better therapeutic response. The incidence of bone marrow suppression, diarrhea, and oral mucositis was high in patients with low DPD mRNA expression. Median overall survival (OS) in 40 patients was 13.5 months. It was 17 months for low and 10 months for high DPD (P = 0.044) and TS mRNA expression (P = 0.047). Pooled analysis showed that the patients with both low DPD/TS mRNA expressions had longer OS (P = 0.001). In conclusion, the detection of DPD and/or TS mRNA expression can be used to predict the response to S-1-based chemotherapy, drug resistance, and prognosis in AGC patients as well as to help guide the individualized treatment of gastric cancer.

  8. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained from the ... Key words: Periodontal diseases, nitric oxide synthases gene, DNA, PCR. INTRODUCTION ... various diseases' pathogenesis because of its dual role. *Corresponding author.

  9. Glutamate synthase: An archaeal horizontal gene transfer?

    Indian Academy of Sciences (India)

    (GOGAT) which is a key enzyme in ammonia assimilation in bacteria, algae and plants. It catalyzes the reductive transamidation of amido nitrogen from glutamine to 2-oxoglutarate to form two molecules of glutamate (Temple et al 1998). Glutamate synthases differ according to their molecular weights, subunit compositions, ...

  10. Protective role of endothelial nitric oxide synthase

    NARCIS (Netherlands)

    Albrecht, Ester W J A; Stegeman, Coen A; Heeringa, Peter; Henning, Robert; van Goor, Harry

    Nitric oxide is a versatile molecule, with its actions ranging from haemodynamic regulation to anti-proliferative effects on vascular smooth muscle cells. Nitric oxide is produced by the nitric oxide synthases, endothelial NOS (eNOS), neural NOS (nNOS), and inducible NOS (iNOS). Constitutively

  11. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the

  12. Relationship between endothelial nitric oxide synthase gene ...

    African Journals Online (AJOL)

    Introduction: Endothelial nitric oxide synthase (eNOS), the enzyme in charge of nitric oxide production, plays a crucial role in vascular biology. However, the impact of single nucleotide polymorphisms (SNPs) affecting the gene encoding for eNOS (eNOS) on coronary artery diseases remains under debate and no data were ...

  13. Redox Regulation of Arabidopsis Mitochondrial Citrate Synthase

    National Research Council Canada - National Science Library

    Elisabeth Schmidtmann Ann-Christine Konig Anne Orwat Dario Leister Markus Hartl Iris Finkemeier

    2014-01-01

    Citrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it cata- lyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA...

  14. Producing alpha-olefins using polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.; Keasling, Jay D.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  15. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  16. Expression of Deinococcus geothermalis trehalose synthase gene ...

    African Journals Online (AJOL)

    A novel trehalose synthase gene from Deinococcus geothermalis (DSMZ 11300) containing 1692 bp reading-frame encoding 564 amino acids was amplified using polymerase chain reaction (PCR). The gene was ligated into pET30Ek/LIC vector and expressed after isopropyl β-D-thiogalactopyranoside induction in ...

  17. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  18. Biochemical changes in progressive muscular dystrophy. XIV. Skeletal muscle myosin mRNA translatability in dystrophic mice.

    Science.gov (United States)

    Srivastava, U S; Sugden, E A; Majumdar, P K; Thakur, M L; Bhatnagar, G M

    1987-09-01

    Variations in the content and translatability of the poly(A)+ RNA and mRNA molecules coding for myosin (M) were studied in the hind leg muscles of genetically dystrophic mice. The poly(A)+ RNA content of total skeletal muscle failed to increase normally during progression of the disease. M mRNA, isolated from dystrophic normally during progression of the disease. M mRNA, isolated from dystrophic murine muscle poly(A)+ RNA, was mostly found to be associated with the 26S RNA species. The translation of M mRNA in an in vitro heterologous wheat germ system was lower at 8 and 16 weeks in the dystrophic group as compared with the controls. Analysis of the translation products via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and densitometric autoradiographic tracing demonstrated the gradual disappearance of a protein band corresponding to M, the major component of skeletal muscle. cDNA was synthesized, using M mRNA that was isolated and purified from normal and dystrophic mouse muscle as a template. Total radioactivity was measured in some cDNA fractions produced from normal and dystrophic mouse muscle, while other fractions were utilized for separation and sizing of cDNA by disc gel electrophoresis. The cDNA from normal muscle was hybridized with M mRNA from normal and 16-week-old dystrophic mouse muscles. The cDNA probe, hybridization experiments, and studies involving the content and synthesis of M mRNA suggest that murine muscular dystrophy elicited a shorter species of mRNA or shorter sequences of the same species of mRNA coding for M. Not all poly(A)+ mRNA sequences coding for M, found in control mice, were present in their dystrophic counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Prevents Dihydrofolate Reductase Degradation via Promoting S-Nitrosylation.

    Science.gov (United States)

    Cai, Zhejun; Lu, Qiulun; Ding, Ye; Wang, Qilong; Xiao, Lei; Song, Ping; Zou, Ming-Hui

    2015-11-01

    Dihydrofolate reductase (DHFR) is a key protein involved in tetrahydrobiopterin (BH4) regeneration from 7,8-dihydrobiopterin (BH2). Dysfunctional DHFR may induce endothelial nitric oxide (NO) synthase (eNOS) uncoupling resulting in enzyme production of superoxide anions instead of NO. The mechanism by which DHFR is regulated is unknown. Here, we investigate whether eNOS-derived NO maintains DHFR stability. DHFR activity, BH4 content, eNOS activity, and S-nitrosylation were assessed in human umbilical vein endothelial cells and in aortas isolated from wild-type and eNOS knockout mice. In human umbilical vein endothelial cells, depletion of intracellular NO by transfection with eNOS-specific siRNA or by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)-both of which had no effect on DHFR mRNA levels-markedly reduced DHFR protein levels in parallel with increased DHFR polyubiquitination. Supplementation of S-nitroso-l-glutathione (GSNO), a NO donor, or MG132, a potent inhibitor of the 26S proteasome, prevented eNOS silencing and PTIO-induced DHFR reduction in human umbilical vein endothelial cells. PTIO suppressed S-nitrosylation of DHFR, whereas GSNO promoted DHFR S-nitrosylation. Mutational analysis confirmed that cysteine 7 of DHFR was S-nitrosylated. Cysteine 7 S-nitrosylation stabilized DHFR from ubiquitination and degradation. Experiments performed in aortas confirmed that PTIO or eNOS deficiency reduces endothelial DHFR, which can be abolished by MG132 supplementation. We conclude that S-nitrosylation of DHFR at cysteine 7 by eNOS-derived NO is crucial for DHFR stability. We also conclude that NO-induced stabilization of DHFR prevents eNOS uncoupling via regeneration of BH4, an essential eNOS cofactor. © 2015 American Heart Association, Inc.

  20. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence

    Science.gov (United States)

    2014-01-01

    Background Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Methods Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Results Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Conclusions Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene. PMID:24716800

  1. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence.

    Science.gov (United States)

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-04-09

    Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.

  2. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  3. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    OpenAIRE

    Thi Le Nhung Nguyen-Deroche; Aurore Caruso; Thi Trung Le; Trang Viet Bui; Benoît Schoefs; Gérard Tremblin; Annick Morant-Manceau

    2012-01-01

    Zinc-supplementation (20  μ M) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Z...

  4. Oxidized galectin-1 reduces lipopolysaccharide-induced increase of proinflammatory cytokine mRNA in cultured macrophages

    Science.gov (United States)

    Kogawa, Yukie; Nakajima, Kou; Sasaguri, Kenichi; Hamada, Nobushiro; Kawasaki, Haruhisa; Sato, Sadao; Kadoya, Toshihiko; Horie, Hidenori

    2011-01-01

    Background Periodontitis is prevalent in older humans. Limiting the inflammation associated with periodontitis may provide a therapy for this condition, because Gram-negative bacteria expressing lipopolysaccharide (LPS) have a key role in initiation of inflammation by activating macrophage functions. Because oxidized galectin-1 regulates macrophage functions in other systems, we sought to establish whether this galectin-1 mRNA is expressed in the oral cavity, and whether it could dampen LPS-induced macrophage activation in vitro. Methods Using the reverse transcriptase polymerase chain reaction (RT-PCR), we measured galectin-1 mRNA expression to clarify its localization to rat gingival tissues and studied the effect of Porphyromonas gingivalis challenge on galectin-1 expression. Next, we tested the effects of adding oxidized galectin-1 to cultured LPS-activated peritoneal macrophages on mRNA expression of proinflammatory factors by RT-PCR and real-time RT-PCR. Results We established that galectin-1 mRNA is expressed in gingival tissues and also showed that galectin-1 mRNA was significantly increased by challenge with P. gingivalis, indicating that galectin-1 may regulate oral inflammation. On the other hand, LPS 100 ng/mL in serum-containing medium induced macrophages to upregulate mRNA associated with a proinflammatory response, ie, interleukins 1β and 6, and inducible nitric oxide synthase. We showed that application of 0.1–10 ng/mL of oxidized galectin-1 to LPS-treated macrophages reduced the intense LPS- induced increase by serum in proinflammatory mRNA expression in a concentration-dependent manner. Furthermore, application of oxidized galectin-1 10 ng/mL to LPS-treated macrophages in serum-free medium also showed a similar effect on LPS activity. Conclusion Oxidized galectin-1 restricts the proinflammatory actions of LPS, and this protein could limit the negative effects of inflammation. PMID:23674908

  5. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  6. ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level

    Directory of Open Access Journals (Sweden)

    Kexiu Song

    2014-01-01

    Full Text Available HDL cholesterol is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. SR-BI mediates the selective uptake of HDL-C. SR-BI knockout diminishes but does not completely block the transport of HDL; other receptors may be involved. Ectopic ATP synthase β-chain in hepatocytes has been previously characterized as an apoA-I receptor, triggering HDL internalization. This study was undertaken to identify the overexpression of ectopic ATP synthase β-chain on DIL-HDL uptake in primary hepatocytes in vitro and on plasma HDL levels in SR-BI knockout mice. Human ATP synthase β-chain cDNA was delivered to the mouse liver by adenovirus and GFP adenovirus as control. The adenovirus-mediated overexpression of β-chain was identified at both mRNA and protein levels on mice liver and validated by its increasing of DiL-HDL uptake in primary hepatocytes. In response to hepatic overexpression of β-chain, plasma HDL-C levels and cholesterol were reduced in SR-BI knockout mice, compared with the control. The present data suggest that ATP synthase β-chain can serve as the endocytic receptor of HDL, and its overexpression can reduce plasma HDL-C.

  7. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.; (MSU)

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  8. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  9. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  10. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  11. Modulation of inducible nitric oxide synthase expression by sumoylation

    Directory of Open Access Journals (Sweden)

    Feinstein Douglas L

    2009-03-01

    Full Text Available Abstract Background In astrocytes, the inflammatory induction of Nitric Oxide Synthase type 2 (NOS2 is inhibited by noradrenaline (NA at the transcriptional level however its effects on specific transcription factors are not fully known. Recent studies show that the activity of several transcription factors including C/EBPβ, which is needed for maximal NOS2 expression, is modulated by conjugation of the small molecular weight protein SUMO. We examined whether the expression of SUMO Related Genes (SRGs: SUMO-1, the conjugating enzyme Ubc9, and the protease SENP1 are affected by inflammatory conditions or NA and whether SUMO-1 regulates NOS2 through interaction with C/EBPβ. Methods Bacterial endotoxin lipopolysaccharide (LPS was used to induce inflammatory responses including NOS2 expression in primary astrocytes. The mRNA levels of SRGs were determined by QPCR. A functional role for SUMOylation was evaluated by determining effects of over-expressing SRGs on NOS2 promoter and NFκB binding-element reporter constructs. Interactions of SUMO-1 and C/EBPβ with the NOS2 promoter were examined by chromatin immunoprecipitation assays. Interactions of SUMO-1 with C/EBPβ were examined by immunoprecipitation and Western blot analysis and by fluorescence resonance energy transfer (FRET assays. Results LPS decreased mRNA levels of SUMO-1, Ubc9 and SENP1 in primary astrocytes and a similar decrease occurred during normal aging in brain. NA attenuated the LPS-induced reductions and increased SUMO-1 above basal levels. Over-expression of SUMO-1, Ubc9, or SENP1 reduced the activation of a NOS2 promoter, whereas activation of a 4 × NFκB binding-element reporter was only reduced by SUMO-1. ChIP studies revealed interactions of SUMO-1 and C/EBPβ with C/EBP binding sites on the NOS2 promoter that were modulated by LPS and NA. SUMO-1 co-precipitated with C/EBPβ and a close proximity was confirmed by FRET analysis. Conclusion Our results demonstrate that

  12. Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated.

    Science.gov (United States)

    Xiao, Z; Zhang, Z; Ranjan, V; Diamond, S L

    1997-05-01

    Arterial levels of shear stress (25 dynes/cm2) can elevate constitutive endothelial nitric oxide synthase (eNOS) gene expression in cultured endothelial cells (Ranjan et al., 1995). By PhosphorImaging of Northern blots, we report that the eNOS/glyceraldehyde 3-phosphate dehydrogenase (GAPDH) messenger RNA (mRNA) ratio in bovine aortic endothelial cells (BAEC) increased by 4.8- and 7.95-fold after 6-hr shear stress exposure of 4 and 25 dynes/cm2, respectively. Incubation of BAEC with dexamethasone (1 microM) had no effect on shear stress induction of eNOS mRNA. Buffering of intracellular calcium in BAEC with bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester (BAPTA/AM) reduced shear stress induction of eNOS mRNA by 70%. Yet, stimulation of BAEC with ionomycin (0.1-1.0 microM) for 6-24 hr to elevate intracellular calcium had no effect on eNOS mRNA. These studies indicated that the shear stress induction of eNOS mRNA was a calcium-dependent, but not calcium-activated, process. Shear stress was a very potent and rapid inducer of the eNOS mRNA, which could not be mimicked with phorbol myristrate acetate or endotoxin. Inhibition of tyrosine kinases with genistein (10 microM) or tyrphostin B46 (10 microM) or inhibition of G-protein signaling with guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) (600 microM, 6-hr preincubation) did not block the shear stress elevation of eNOS mRNA.

  13. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    Science.gov (United States)

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Integrating iron and oxygen/antioxidant signals via a combinatorial array of DNA - (antioxidant response elements) and mRNA (iron responsive elements) sequences.

    Science.gov (United States)

    Theil, Elizabeth C

    2006-12-01

    Fe (cellular iron), O (dioxygen, antioxidant inducers, hydrogen peroxide), and P (protein phosphorylation) signals combine to regulate DNA activity (transcription/mRNA synthesis) for antioxidant/Phase II response proteins (e.g., ferritin H, ferritin L, thioredoxin reductase I, NAD(P)H quinone oxido-reductase, heme oxygenase1 and beta-globin) and mRNA activity for proteins of iron transport, storage or oxygen metabolism (e.g., ferritin H, ferritin L, transferrin receptor1, ferroportin, mt-aconitase-TCA cycle and aminolevulinate synthase - heme biosynthesis). Ferritin regulation links the two groups of genetic controls via DNA (ARE-antioxidant response element) and mRNA (IRE-iron responsive element) structures. More is known about the IRE-mRNA and protein repressors, IRPs (iron regulatory proteins/aconitase homologues), than the DNA-ARE and protein repressors, e.g., Bach1. Iron responsive elements are very similar (65-80% sequence identity), but each mRNA has sufficient IRE specificity (>90% phylogenetic sequence conservation), that IRP binding and signal responses vary quantitatively. The structural specificity of each IRE-RNA provides an opportunity for finding small molecule regulators in vitro, and possibly in vivo. The potential of manipulating mRNA function with small molecules targeted to specific RNA regulatory structures, e.g., ferritin mRNA in iron overload, or viral mRNA control structures for replication, is high.

  15. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  16. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  17. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases

    OpenAIRE

    Aaron, Julie A.; Christianson, David. W.

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster n...

  18. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability.

    Science.gov (United States)

    Kedersha, N; Anderson, P

    2002-11-01

    Mammalian stress granules (SGs) are cytoplasmic domains into which mRNAs are sorted dynamically in response to phosphorylation of eukaryotic initiation factor (eIF) 2alpha, a key regulatory step in translational initiation. The activation of one or more of the eIF2alpha kinases leads to SG assembly by decreasing the levels of eIF2-GTP-tRNA(Met), the ternary complex that is normally required for loading the initiator methionine onto the 48 S preinitiation complex to begin translation. This stress-induced scarcity of eIF2-GTP-tRNA(Met) allows the RNA-binding proteins TIA-1 (T-cell internal antigen-1) and TIAR (TIA-1-related protein) to bind the 48 S complex in lieu of the ternary complex, thereby promoting polysome disassembly and the concurrent routing of the mRNA into a SG. The actual formation of SGs occurs upon auto-aggregation of the prion-like C-termini of TIA-1 proteins; this aggregation is reversed in vivo by overexpression of the heat-shock protein (HSP) chaperone HSP70. Remarkably, HSP70 mRNA is excluded from SGs and is preferentially translated during stress, indicating that the RNA composition of the SG is selective. Moreover, the effects of HSP70 on TIA aggregation suggest a feedback loop whereby HSP70 synthesis is auto-regulated. Proteins that promote mRNA stability [e.g. HuR (Hu protein R)] and destabilize mRNA [i.e. tristetraprolin (TTP)] are also recruited to SGs, suggesting that SGs effect a process of mRNA triage, by promoting polysome disassembly and routing mRNAs to cytoplasmic domains enriched for HuR and TTP. This model reveals connections between the eIF2alpha kinase system, mRNA stability and cellular chaperone levels.

  19. mRNA quality control pathways in Saccharomyces cerevisiae

    Indian Academy of Sciences (India)

    2013-07-10

    Jul 10, 2013 ... mRNPs in the nucleus very often leads to the formation of aberrant and faulty messages along with their functional .... Figure 1. mRNA life-cycle in eukaryotic cell: Schematic view of the nuclear and cytoplasmic phases of mRNA life cycle, namely ..... structure is characteristic and critical feature of an mRNA.

  20. mRNA expression and localization of bNOS, eNOS and iNOS in human cervix at preterm and term labour

    Directory of Open Access Journals (Sweden)

    Byström Birgitta

    2005-08-01

    Full Text Available Abstract Background Preterm birth is the primary cause of the neonatal mortality and morbidity. There will be no preterm birth without a cervical softening. Nitric oxide (NO is shown to be a mediator of term cervical ripening. The aim of this study was to investigate mRNA expression of the three isomers of NO synthases (NOS and to identify them by immunohistochemistry in the human cervix at preterm birth compared to term. Methods The three isomers of NOS- inducible (iNOS, endothelial (eNOS and neuronal (bNOS – were investigated in the human cervix. The expression of mRNA was determined using Real-Time Multiplex RT-PCR. The localisation of synthases in the cervical tissue was analysed using immunohistochemistry. Cervical biopsies were obtained from 4 groups of women without clinical signs of infection: preterm (PTL, term labour (TL, preterm not in labour (PTnotL and term not in labour (TnotL patients. One-Way ANOVA, Kruskal-Wallis, Student t-test or Mann-Whitney test were applied as appropriate to determine statistically significant differences among the groups. Results Patients in preterm labour had significantly (p Conclusion The mRNA levels were higher in the preterm labour group compared to the women at term labour. The significant increase of the eNOS mRNA expression, from the unripe to the favourable cervical state during labour, may indicate a role of eNOS and supports the role of NO in the cervical ripening process. All the three synthases were identified by immunohistochemistry in all the groups of study.

  1. EXPRESSION OF AID-SPECIFIC mRNA IN PERIPHERAL BLOOD LYMPHOCYTES IN BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    V. N. Mineev

    2015-01-01

    Full Text Available The aim of this study was to evaluate a possible role of AID (AICDA – activation-induced (cytidine deaminase in the bronchial asthma (BA pathogenesis. Materials and methods. We have examined twelve healthy control persons, forty-two patients with allergic bronchial asthma (ABA and twenty-seven patients with non-allergic bronchial asthma (NABA. The AID mRNA expression was evaluated by means of RT-PCR. Results: AID mRNA was more significantly expressed in BA, than in healthy controls. Meanwhile, no significant differences were revealed between ABA and NABA groups. Correlation analysis of AID mRNA expression levels in peripheral blood lymphocytes has shown that CHε mRNA and total serum IgE revealed significant negative correlation, in the NABA group only. The levels of AID mRNA expression in peripheral blood lymphocytes exhibited positive and significant correlations with clinical characteristics, reflecting severity and stage of the disease, in BA patients. Moreover, a significant positive correlation was revealed with eosinophil contents in sputum. Conclusion. It was concluded that normal regulation of IgE class switching normally based on feedback regulation, was impaired in ABA but not affected in NABA. 

  2. Local Content

    CSIR Research Space (South Africa)

    Gibberd, Jeremy

    2016-10-01

    Full Text Available is also delineated in order to demonstrate the implications of local content on building design, construction and operation. The advantages and disadvantages of local content approaches are discussed and illustrated through examples. Finally, broad...

  3. Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer

    Directory of Open Access Journals (Sweden)

    Chu Edward

    2006-04-01

    Full Text Available Abstract Background Thymidylate synthase (TS is a critical target for cancer chemotherapy and is one of the most extensively studied biomarkers for fluoropyrimidine-based chemotherapy. In addition to its critical role in enzyme catalysis, TS functions as an RNA binding protein to regulate the expression of its own mRNA translation and other cellular mRNAs, such as p53, at the translational level. In this study, a comprehensive gene expression analysis at the levels of both transcriptional and post-transcriptional regulation was conducted to identify response markers using human genome array with TS-depleted human colon cancer HCT-C18 (TS- cells and HCT-C18 (TS+ cells stably transfected with the human TS cDNA expression plasmid. Results A total of 38 genes were found to be significantly affected by TS based on the expression profiles of steady state mRNA transcripts. However, based on the expression profiles of polysome associated mRNA transcripts, over 149 genes were affected by TS overexpression. This indicates that additional post-transcriptionally controlled genes can be captured with profiling polysome associated mRNA population. This unique approach provides a comprehensive overview of genes affected by TS. Additional novel post-transcriptionally regulated genes affected by 5-fluorouracil (5-FU treatment were also discovered via similar approach. Conclusion To our knowledge, this is the first time that a comprehensive gene expression profile regulated by TS and 5-FU was analyzed at the multiple steps of gene regulation. This study will provide candidate markers that can be potentially used for predicting therapeutic outcomes for fluoropyrimidine-based cancer chemotherapy.

  4. Hepatic inducible nitric oxide synthase expression increases upon exposure to hypergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pathology and Translational Genomics, Seoul (Korea, Republic of); Republic of Korea Air Force Medical Center, Aerospace Medicine Research Center, Cheongju (Korea, Republic of); Jung, Y.Y. [Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pathology and Translational Genomics, Seoul (Korea, Republic of); Do, S.I. [Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Department of Pathology, Seoul (Korea, Republic of)

    2014-08-29

    Stimulation by a number of conditions, including infection, cytokines, mechanical injury, and hypoxia, can upregulate inducible nitric oxide synthase (iNOS) in hepatocytes. We observed that exposure to hypergravity significantly upregulated the transcription of the hepatic iNOS gene. The aim of this study was to confirm our preliminary data, and to further investigate the distribution of the iNOS protein in the livers of mice exposed to hypergravity. ICR mice were exposed to +3 Gz for 1 h. We investigated the time course of change in the iNOS expression. Hepatic iNOS mRNA expression progressively increased in centrifuged mice from 0 to 12 h, and then decreased rapidly by 18 h. iNOS mRNA levels in the livers of centrifuged mice was significantly higher at 3, 6, and 12 h than in uncentrifuged control mice. The pattern of iNOS protein expression paralleled that of the mRNA expression. At 0 and 1 h, weak cytoplasmic iNOS immunoreactivity was found in some hepatocytes surrounding terminal hepatic venules. It was noted that at 6 h there was an increase in the number of perivenular hepatocytes with moderate to strong cytoplasmic immunoreactivity. The number of iNOS-positive hepatocytes was maximally increased at 12 h. The majority of positively stained cells showed a strong intensity of iNOS expression. The expression levels of iNOS mRNA and protein were significantly increased in the livers of mice exposed to hypergravity. These results suggest that exposure to hypergravity significantly upregulates iNOS at both transcriptional and translational levels.

  5. Characterisation and vascular expression of nitric oxide synthase 3 in amphibians.

    Science.gov (United States)

    Cameron, Melissa S; Trajanovska, Sofie; Forgan, Leonard G; Donald, John A

    2016-12-01

    In mammals, nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) localised in vascular endothelial cells is an important vasodilator but the presence of NOS3 in the endothelium of amphibians has been concluded to be absent, based on physiological studies. In this study, a nos3 cDNA was sequenced from the toad, Rhinella marina. The open reading frame of R. marina nos3 encoded an 1170 amino acid protein that showed 81 % sequence identity to the recently cloned Xenopus tropicalis nos3. Rhinella marina nos3 mRNA was expressed in a range of tissues and in the dorsal aorta and pulmonary, mesenteric, iliac and gastrocnemius arteries. Furthermore, nos3 mRNA was expressed in the aorta of Xenopus laevis and X. tropicalis. Quantitative real-time PCR showed that removal of the endothelium of the lateral aorta of R. marina significantly reduced the expression of nos3 mRNA compared to control aorta with the endothelium intact. However, in situ hybridisation was not able to detect any nos3 mRNA in the dorsal aorta of R. marina. Immunohistochemistry using a homologous R. marina NOS3 antibody showed immunoreactivity (IR) within the basal region of many endothelial cells of the dorsal aorta and iliac artery. NOS3-IR was also observed in the proximal tubules and collecting ducts of the kidney but not within the capillaries of the glomeruli. This is the first study to demonstrate that vascular endothelial cells of an amphibian express NOS3.

  6. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  7. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  8. Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia.

    Science.gov (United States)

    Greco, Rosaria; Demartini, Chiara; Zanaboni, Anna Maria; Blandini, Fabio; Amantea, Diana; Tassorelli, Cristina

    2017-04-05

    The receptor for advanced glycation endproducts (RAGE) is a key mediator of neuroinflammation following cerebral ischemia. Nitric oxide (NO) plays a dualistic role in cerebral ischemia, depending on whether it originates from neuronal, inducible or endothelial synthase. Although a dynamic interplay between RAGE and NO pathways exists, its relevance in ischemic stroke has not been investigated. The aim of this study is to evaluate the effect of the NO synthase (NOS) inhibition on RAGE expression in rats subjected to transient middle cerebral artery occlusion (tMCAo). Full-length (fl-RAGE) gene expression was elevated in the striatum and, to a lesser extent, in the cortex of rats undergone tMCAo. The exacerbation of cortical damage caused by systemic administration of L-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective inhibitor of endothelial NOS (eNOS), was associated with elevated mRNA levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and fl-RAGE in both the cortex and the striatum. Conversely, NG-nitro-l-arginine methyl ester (L-NAME), a non-selective NOS inhibitor, decreased cortical damage, did not affect cerebral cytokine mRNA levels, while it increased fl-RAGE mRNA expression only in the striatum. Fl-RAGE striatal protein levels varied accordingly with observed mRNA changes in the striatum, while in the cortex, RAGE protein levels were reduced by tMCAo and further decreased following L-NIO treatment. Modulation of RAGE expression by different inhibitors of NOS may have opposite effects on transient cortical ischemia: the non selective inhibition of NOS activity is protective, while the selective inhibition of eNOS is harmful, probably via the activation of inflammatory pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pre- and posttranslational upregulation of muscle-specific glycogen synthase in athletes

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    Expression of muscle-specific glycogen synthase (GS) and phosphofructokinase (PFK) was analyzed in seven athletes and eight control subjects who were characterized using the euglycemic, hyperinsulinemic (2 mU.kg-1.min-1) clamp technique in combination with indirect calorimetry and biopsy sampling.......005) and both nonoxidative (P metabolism were significantly higher in athletes. In parallel, after hyperinsulinemia, the relative activation of GS by G-6-P was significantly higher in athletes, whereas total activity and gene expression of both GS and PFK were unaffected...... by insulin. We conclude that athletes have increased whole body insulin-stimulated nonoxidative glucose metabolism associated with both pretranslational (mRNA) and posttranslational (enzyme activity) upregulation of GS. However, the immunoreactive mass of GS is normal, emphasizing that posttranslational...

  10. mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii.

    Science.gov (United States)

    Nakamoto, Margaret A; Lovejoy, Alexander F; Cygan, Alicja M; Boothroyd, John C

    2017-12-01

    RNA contains over 100 modified nucleotides that are created post-transcriptionally, among which pseudouridine (Ψ) is one of the most abundant. Although it was one of the first modifications discovered, the biological role of this modification is still not fully understood. Recently, we reported that a pseudouridine synthase (TgPUS1) is necessary for differentiation of the single-celled eukaryotic parasite Toxoplasma gondii from active to chronic infection. To better understand the biological role of pseudouridylation, we report here gel-based and deep-sequencing methods to identify TgPUS1-dependent Ψ's in Toxoplasma RNA, and the use of TgPUS1 mutants to examine the effect of this modification on mRNAs. In addition to identifying conserved sites of pseudouridylation in Toxoplasma rRNA, tRNA, and snRNA, we also report extensive pseudouridylation of Toxoplasma mRNAs, with the Ψ's being relatively depleted in the 3'-UTR but enriched at position 1 of codons. We show that many Ψ's in tRNA and mRNA are dependent on the action of TgPUS1 and that TgPUS1-dependent mRNA Ψ's are enriched in developmentally regulated transcripts. RNA-seq data obtained from wild-type and TgPUS1-mutant parasites shows that genes containing a TgPUS1-dependent Ψ are relatively more abundant in mutant parasites, while pulse/chase labeling of RNA with 4-thiouracil shows that mRNAs containing TgPUS1-dependent Ψ have a modest but statistically significant increase in half-life in the mutant parasites. These data are some of the first evidence suggesting that mRNA Ψ's play an important biological role. © 2017 Nakamoto et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Para-aminobenzoic acid (PABA synthase enhances thermotolerance of mushroom Agaricus bisporus.

    Directory of Open Access Journals (Sweden)

    Zhonglei Lu

    Full Text Available Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  12. Messenger RNA (mRNA) nanoparticle tumour vaccination

    Science.gov (United States)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  13. pre-mRNA processing includes N6 methylation of adenosine residues that are retained in mRNA exons and the fallacy of "RNA epigenetics".

    Science.gov (United States)

    Darnell, Robert B; Ke, Shengdong; Darnell, James E

    2017-12-08

    By using a cell fraction technique that separates chromatin associated nascent RNA, newly completed nucleoplasmic mRNA and cytoplasmic mRNA, we have shown that residues in exons are methylated (m6A) in nascent pre-mRNA and remain methylated in the same exonic residues in nucleoplasmic and cytoplasmic mRNA. Thus, there is no evidence of a substantial degree of demethylation in mRNA exons that would correspond to so-called "epigenetic" demethylation. The turnover rate of mRNA molecules is faster depending on m6A content in HeLa cell mRNA suggesting specification of mRNA stability may be the major role of m6A exon modification. In mouse embryonic stem cells (mESCs) lacking Mettl3, the major mRNA methylase, the cells continue to grow, making the same mRNAs with unchanged splicing profiles in the absence (>90%) of m6A in mRNA suggesting no common obligatory role of m6A in splicing. All these data argue strongly against a commonly used "reversible dynamic methylation/demethylation" of mRNA, calling into question the concept of "RNA epigenetics" that parallels the well-established role of dynamic DNA epigenetics. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Treatment of bile duct-ligated rats with the nitric oxide synthase transcription enhancer AVE 9488 ameliorates portal hypertension.

    Science.gov (United States)

    Biecker, Erwin; Trebicka, Jonel; Kang, Alice; Hennenberg, Martin; Sauerbruch, Tilman; Heller, Jörg

    2008-03-01

    Nitric oxide levels are decreased in the cirrhotic liver and increased in the systemic vasculature. We investigated whether the nitric oxide synthase (NOS) transcription enhancer AVE 9488 ameliorates portal hypertension in cirrhotic rats. Rats with secondary biliary cirrhosis [bile duct ligation (BDL)] were treated with AVE 9488. BDL animals without treatment served as controls. Blood flow was determined with the microsphere technique. Intrahepatic resistance was measured by in situ perfusion. NOS-3 mRNA and protein levels in the liver, aorta and superior mesenteric artery (SMA) were measured. Arterial pressure did not differ between treated and non-treated animals. Portal pressure, hepatic portal-vascular resistance and perfusion pressure of the in situ perfused liver were lower in the AVE 9488-treated animals. Arterial splanchnic resistance, portal venous inflow and shunt volume were increased by AVE 9488. N (G)-nitro-l-arginine methyl ester abolished the effect of AVE 9488. AVE 9488-treated rats had higher liver NOS-3 mRNA and protein levels, whereas NOS-3 mRNA and protein in the aorta and the SMA did not vary between groups. Phosphorylation of liver vasodilator-stimulated phosphoprotein (VASP) and NOS-3 as well as hepatic nitrite/nitrate was increased by AVE 9488. Treatment of BDL rats with the NOS transcription enhancer AVE 9488 induces an increase in NOS-3 mRNA and protein in the liver. This is associated with an amelioration of portal hypertension.

  15. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  16. Sequence analysis of cereal sucrose synthase genes and isolation ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... Full Length Research Paper. Sequence analysis of cereal sucrose synthase genes and isolation of sorghum sucrose synthase gene fragment. T. Sivasudha1* and P. A. Kumar2. 1Department of Environmental Biotechnology, Bharathidasan University, Tiruchy-620 024, India. 2NRC on Plant Biotechnology, ...

  17. ATP synthases from archaea: the beauty of a molecular motor.

    Science.gov (United States)

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    DEFF Research Database (Denmark)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2...

  19. RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.

    Science.gov (United States)

    Baumgardt, Kathrin; Charoenpanich, Pornsri; McIntosh, Matthew; Schikora, Adam; Stein, Elke; Thalmann, Sebastian; Kogel, Karl-Heinz; Klug, Gabriele; Becker, Anke; Evguenieva-Hackenberg, Elena

    2014-04-01

    Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.

  20. Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system.

    Science.gov (United States)

    Lan, John Chi-Wei; Yeh, Chun-Yi; Wang, Chih-Chi; Yang, Yu-Hsuan; Wu, Ho-Shing

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are renewable and biodegradable polyesters which can be synthesized either by numerous of microorganisms in vivo or synthase in vitro. The synthesis of PHAs in vitro requires an efficient separation for high yield of purified enzyme. The recombinant Escherichia coli harboring phaC gene derived from Ralstonia eutropha H16 was cultivated in the chemically defined medium for overexpression of synthase in the present work. The purification and characteristics of PHA synthase from clarified feedstock by using aqueous two-phase systems (ATPS) was investigated. The optimized concentration of ATPS for partitioning PHA synthase contained polyethylene glycol 6000 (30%, w/w) and potassium phosphate (8%, w/w) with 3.25 volume ratio in the absence of NaCl at pH 8.7 and 4°C. The results showed that the partition coefficient of enzyme activity and protein content are 6.07 and 0.22, respectively. The specific activity, selectivity, purification fold and recovery of phaC(Re) achieved 1.76 U mg⁻¹, 29.05, 16.23 and 95.32%, respectively. Several metal ions demonstrated a significant effect on activity of purified enzyme. The purified enzyme displayed maximum relative activity as operating condition at pH value of 7.5 and 37°C. As compared to conventional purification processes, ATPS can be a promising technique applied for rapid recovery of PHA synthase and preparation of large quantity of PHA synthase on synthesis of P(3HB) in vitro. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available The opaque-2 (o2 mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2 called "Quality Protein Maize" (QPM have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms.

  2. Synthèse bibliographique: la divinyl éther synthase de plantes

    Directory of Open Access Journals (Sweden)

    Fauconnier M.L.

    2001-01-01

    Full Text Available Divinyl ether synthase in plants: a review. Divinyl ether synthase, an enzyme of the lipoxygenase pathway transforms, in potato tubers, 9-hydroperoxides of fatty acids into colneleic and colnelenic acid, two divinyl ethers of fatty acids. The enzyme has been described in a limited number of quite different plants. The enzyme has also been detected in tomato roots, garlic bulbs, tobacco plants and in marine algae. The enzyme is bound to membranes and is located in the microsomal fraction. The molecular weight of the enzyme exceeds 100,000 Da, its optimal pH is around 9 and its high specificity for 9-hydroperoxides as substrate is described. The reactional mechanism has been elucidated using radio-labelled molecules. Colneleic and colnelenic acid can be degraded enzymatically or not into aldehydes and oxo-acids. Those last compounds are also formed by the action of hydroperoxide lyase on 9-hydroperoxides of fatty acids. As other enzymes of the lipoxygenase pathway, reaction products of divinyl ether synthase are involved in pathogenic resistance. Colneleic and colnelenic acid content in potato plants has been corelated with resistance to Phytophthora infestans.

  3. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Bai

    Full Text Available Bioactive gibberellins (GAs comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

  4. Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: effect on HMG-CoA synthase.

    Science.gov (United States)

    Andringa, Kelly K; Bajt, Mary Lynn; Jaeschke, Hartmut; Bailey, Shannon M

    2008-04-01

    Acetaminophen (APAP) overdose is the leading cause of drug related liver failure in many countries. N-acetyl-p-benzoquinone imine (NAPQI) is a reactive metabolite that is formed by the metabolism of APAP. NAPQI preferentially binds to glutathione and then cellular proteins. NAPQI binding is considered an upstream event in the pathophysiology, especially when binding to mitochondrial proteins and therefore leads to mitochondrial toxicity. APAP caused a significant increase in liver toxicity 3h post-APAP administration as measured by increased serum alanine aminotransferase (ALT) levels. Using high-resolution mitochondrial proteomics techniques to measure thiol and protein changes, no significant change in global thiol levels was observed. However, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMG-CoA synthase) had significantly decreased levels of reduced thiols and activity after APAP treatment. HMG-CoA synthase is a key regulatory enzyme in ketogenesis and possesses a number of critical cysteines in the active site. Similarly, catalase, a key enzyme in hydrogen peroxide metabolism, also showed modification in protein thiol content. These data indicate post-translational modifications of a few selected proteins involved in mitochondrial and cellular regulation of metabolism during liver toxicity after APAP overdose. The pathophysiological relevance of these limited changes in protein thiols remains to be investigated.

  5. Conservation and Role of Electrostatics in Thymidylate Synthase

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-11-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  6. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Simon Czolkoss

    Full Text Available Cardiolipin (CL is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG by phospholipase D-type cardiolipin synthases (PLD-type Cls. In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1 and atu2486 (cls2, coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants.

  7. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens.

    Science.gov (United States)

    Czolkoss, Simon; Fritz, Christiane; Hölzl, Georg; Aktas, Meriyem

    2016-01-01

    Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants.

  8. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  9. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models.

    Science.gov (United States)

    Sardi, S Pablo; Viel, Catherine; Clarke, Jennifer; Treleaven, Christopher M; Richards, Amy M; Park, Hyejung; Olszewski, Maureen A; Dodge, James C; Marshall, John; Makino, Elina; Wang, Bing; Sidman, Richard L; Cheng, Seng H; Shihabuddin, Lamya S

    2017-03-07

    Mutations in the glucocerebrosidase gene (GBA) confer a heightened risk of developing Parkinson's disease (PD) and other synucleinopathies, resulting in a lower age of onset and exacerbating disease progression. However, the precise mechanisms by which mutations in GBA increase PD risk and accelerate its progression remain unclear. Here, we investigated the merits of glucosylceramide synthase (GCS) inhibition as a potential treatment for synucleinopathies. Two murine models of synucleinopathy (a Gaucher-related synucleinopathy model, GbaD409V/D409V and a A53T-α-synuclein overexpressing model harboring wild-type alleles of GBA, A53T-SNCA mouse model) were exposed to a brain-penetrant GCS inhibitor, GZ667161. Treatment of GbaD409V/D409V mice with the GCS inhibitor reduced levels of glucosylceramide and glucosylsphingosine in the central nervous system (CNS), demonstrating target engagement. Remarkably, treatment with GZ667161 slowed the accumulation of hippocampal aggregates of α-synuclein, ubiquitin, and tau, and improved the associated memory deficits. Similarly, prolonged treatment of A53T-SNCA mice with GZ667161 reduced membrane-associated α-synuclein in the CNS and ameliorated cognitive deficits. The data support the contention that prolonged antagonism of GCS in the CNS can affect α-synuclein processing and improve behavioral outcomes. Hence, inhibition of GCS represents a disease-modifying therapeutic strategy for GBA-related synucleinopathies and conceivably for certain forms of sporadic disease.

  10. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    Science.gov (United States)

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  11. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  12. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    Science.gov (United States)

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  13. Brain mRNA translatability in rats: changes during long-term dietary restriction in the developmental period of life.

    Science.gov (United States)

    Srivastava, U S; Majumdar, P K; Thakur, M L

    1984-12-01

    We studied the effects of graded dietary restriction on the amount and translatability of messenger RNA (mRNA) molecule coding for brain proteins during the developmental period of life. Control experiments were performed on newborn, 1-, 3-, 6- and 27-week-old rats, whereas the dietary restriction studies, involving 10, 30 or 50% food deprivation, were conducted on weanling rats for periods of 3 or 24 weeks. Graded dietary restriction for 3 or 24 weeks caused a progressive reduction of the amount and translatability of mRNA in the rat brain. Complementary DNA (cDNA) probe and hybridization studies with [3H]cDNA revealed that food deprivation elicited a shorter species of mRNA or shorter sequences of the same species of mRNA coding for brain proteins and that not all polyadenylates mRNA [poly(A)+ mRNA] sequences found in control rats were present in the dietary-restricted animals. Furthermore, it appeared that food deprivation produced a shorter species of pre-mRNA via decreased polynucleotide elongation. The mRNA content of 27-week-old rat brains increased 12.5 times in comparison to newborns, representing an augmentation that was progressive and related to the developmental period of life of the animals. The translatability of mRNA was enhanced in the brain of 3-week-old rats, as compared to 1-week-old pups, and did not show any change thereafter. From these studies, it can be concluded that graded dietary restriction considerably modified the metabolism of mRNA in the rat brain, whereas minor alterations occurred during the developmental period of life in control animals.

  14. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Directory of Open Access Journals (Sweden)

    Elin S. Blom

    2011-01-01

    Full Text Available Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2 and v-myc myelocytomatosis viral oncogene homolog (MYC, were increased in Alzheimer's disease (AD (P<.05. Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis.

  15. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle...... was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  16. Riboflavin Accumulation and Molecular Characterization of cDNAs Encoding Bifunctional GTP Cyclohydrolase II/3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase, Lumazine Synthase, and Riboflavin Synthase in Different Organs of Lycium chinense Plant

    Directory of Open Access Journals (Sweden)

    Pham Anh Tuan

    2014-10-01

    Full Text Available Riboflavin (vitamin B2 is the precursor of flavin mononucleotide and flavin adenine dinucleotide—essential cofactors for a wide variety of enzymes involving in numerous metabolic processes. In this study, a partial-length cDNA encoding bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase (LcRIBA, 2 full-length cDNAs encoding lumazine synthase (LcLS1 and LcLS2, and a full-length cDNA encoding riboflavin synthase (LcRS were isolated from Lycium chinense, an important traditional medicinal plant. Sequence analyses showed that these genes exhibited high identities with their orthologous genes as well as having the same common features related to plant riboflavin biosynthetic genes. LcRIBA, like other plant RIBAs, contained a DHBPS region in its N terminus and a GCHII region in its C-terminal part. LcLSs and LcRS carried an N-terminal extension found in plant riboflavin biosynthetic genes unlike the orthologous microbial genes. Quantitative real-time polymerase chain reaction analysis showed that 4 riboflavin biosynthetic genes were constitutively expressed in all organs examined of L. chinense plants with the highest expression levels found in the leaves or red fruits. LcRIBA, which catalyzes 2 initial reactions in riboflavin biosynthetic pathway, was the highest transcript in the leaves, and hence, the richest content of riboflavin was detected in this organ. Our study might provide the basis for investigating the contribution of riboflavin in diverse biological activities of L. chinense and may facilitate the metabolic engineering of vitamin B2 in crop plants.

  17. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    Science.gov (United States)

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  18. Conventional and unconventional mechanisms for capping viral mRNA.

    Science.gov (United States)

    Decroly, Etienne; Ferron, François; Lescar, Julien; Canard, Bruno

    2011-12-05

    In the eukaryotic cell, capping of mRNA 5' ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5'-3' exonucleases and allows recognition of foreign RNAs (including viral transcripts) as 'non-self'. However, viruses have evolved mechanisms to protect their RNA 5' ends with either a covalently attached peptide or a cap moiety (7-methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5'-caps and escape innate immunity.

  19. Hydroxymethylbilane synthase: Complete genomic sequence and amplifiable polymorphisms in the human gene

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hanwook; Warner, C.A.; Chen, Chiahsiang; Desnick, R.J. (Mount Sinai School of Medicine, New York, NY (United States))

    1993-01-01

    Acute intermittent porphyria (AIP), an autosomal dominant inborn error of heme biosynthesis, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (HMB-synthase). Heterozygous individuals are prone to life-threatening acute neurologic attacks, which are precipitated by certain drugs and other metabolic, hormonal, and nutritional factors. Since the biochemical diagnosis of heterozygous individuals has been problematic, recent efforts have focused on the identification of mutations and diagnostically useful restriction fragment length polymorphisms (RFLPS) in the HMB-synthase gene. To facilitate these endeavors, the human HMB-synthase gene, including 1.1 kb of the 5[prime] flanking region, was isolated and completely sequenced in both orientations. The 10,024-bp gene contained 15 exons ranging in size from 39 to 438 bp and 14 introns ranging from 87 to 2913 bp. All intron/exon boundaries conformed to the GT/AG consensus rule. There were six Alu repetitive elements, one of the J and five of the Sa subfamilies. Analysis of the 1. I -kb 5[prime]flanking region revealed putative regulatory elements for the housekeeping promoter including AP1, AP4, SP1, TRE, ENH, and CAC. This region contained 10 HpaII sites and had an overall GC content of 54%. Three new polymorphic sites were identified by the single-strand conformation polymorphism (SSCP) technique, a common BsmAI site in intron 3 (3581 A/G), a common HinfI RFLP in intron 10 (7064 C/A), and a rare MnlI site in intron 14 (7998G/A). The allele frequencies of five previously known and the new polymorphic sites in a normal Caucasian population indicated that the intron 1 and intron 3 RFLPs were in linkage disequilibrium; however, the Hint I site segregated independently. 54 refs., 6 figs., 3 tabs.

  20. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    Science.gov (United States)

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-05

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Thymidylate synthase-catalyzed reaction mechanism].

    Science.gov (United States)

    Rode, Wojciech; Jarmuńa, Adam

    2015-01-01

    Thymidylate synthase ThyA (EC 2.1.1.45;-encoded by the Tyms gene), having been for 60 years a molecular target in chemotherapy, catalyses the dUMP pyrimidine ring C(5) methylation reaction, encompassing a transfer of one-carbon group (the methylene one, thus at the formaldehyde oxidation level) from 6R-N5,10-methylenetetrahydrofolate, coupled with a reduction of this group to the methyl one, with concomitant generation of 7,8-dihydrofolate and thymidylate. New facts are presented, concerning (i) molecular mechanism of the catalyzed reaction, including the substrate selectivity mechanism, (ii) mechanism of inhibition by a particular inhibitor, N4-hydroxy-dCMP, (iii) structural properties of the enzyme, (iv) cellular localization, (v) potential posttranslational modifications of the enzyme protein and their influence on the catalytic properties and (vi) non-catalytic activities of the enzyme.

  2. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  3. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry...... and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here...... shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding....

  4. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Directory of Open Access Journals (Sweden)

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  5. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  6. Inorganic Polyphosphate Suppresses Lipopolysaccharide-Induced Inducible Nitric Oxide Synthase (iNOS) Expression in Macrophages

    Science.gov (United States)

    Harada, Kana; Shiba, Toshikazu; Doi, Kazuya; Morita, Koji; Kubo, Takayasu; Makihara, Yusuke; Piattelli, Adriano; Akagawa, Yasumasa

    2013-01-01

    In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO), to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P)], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS) expression induced by lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P) with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P) decreased LPS-induced NO release. Moreover, poly(P) suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P) reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P) did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P) may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages. PMID:24040305

  7. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    Science.gov (United States)

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  8. Biosynthetic potential of sesquiterpene synthases: product profiles of Egyptian Henbane premnaspirodiene synthase and related mutants.

    Science.gov (United States)

    Koo, Hyun Jo; Vickery, Christopher R; Xu, Yi; Louie, Gordon V; O'Maille, Paul E; Bowman, Marianne; Nartey, Charisse M; Burkart, Michael D; Noel, Joseph P

    2016-07-01

    The plant terpene synthase (TPS) family is responsible for the biosynthesis of a variety of terpenoid natural products possessing diverse biological functions. TPSs catalyze the ionization and, most commonly, rearrangement and cyclization of prenyl diphosphate substrates, forming linear and cyclic hydrocarbons. Moreover, a single TPS often produces several minor products in addition to a dominant product. We characterized the catalytic profiles of Hyoscyamus muticus premnaspirodiene synthase (HPS) and compared it with the profile of a closely related TPS, Nicotiana tabacum 5-epi-aristolochene synthase (TEAS). The profiles of two previously studied HPS and TEAS mutants, each containing nine interconverting mutations, dubbed HPS-M9 and TEAS-M9, were also characterized. All four TPSs were compared under varying temperature and pH conditions. In addition, we solved the X-ray crystal structures of TEAS and a TEAS quadruple mutant complexed with substrate and products to gain insight into the enzymatic features modulating product formation. These informative structures, along with product profiles, provide new insight into plant TPS catalytic promiscuity.

  9. mRNA vaccines - a new era in vaccinology.

    Science.gov (United States)

    Pardi, Norbert; Hogan, Michael J; Porter, Frederick W; Weissman, Drew

    2018-01-12

    mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.

  10. Identification of genes coding for putative wax ester synthase/diacylglycerol acyltransferase enzymes in terrestrial and marine environments

    OpenAIRE

    Lanfranconi, Mariana P.; Alvarez, Adri?n F; Alvarez, H?ctor M.

    2015-01-01

    Synthesis of neutral lipids such as triacylglycerols (TAG) and wax esters (WE) is catalyzed in bacteria by wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT). We investigated the diversity of genes encoding this enzyme in contrasting natural environments from Patagonia (Argentina). The content of petroleum hydrocarbons in samples collected from oil-producing areas was measured. PCR-based analysis covered WS/DGAT occurrence in marine sediments and soil. No product was obtained...

  11. Characterization and expression of chalcone synthase in different genotypes of Matthiola incana R.Br. during flower development.

    Science.gov (United States)

    Rall, S; Hemleben, V

    1984-05-01

    The expression of the key enzyme of flavonoid biosynthesis, chalcone synthase (CHS), has been followed in different genotypes of Matthiola incana R.Br. (Brassicaceae) which are genetically defined with respect to anthocyanin production. Enzyme activity was determined by a radioactive assay in crude flower extracts. The amount of enzyme protein in the developing flower was determined by use of SDS-PAGE, protein blotting, reaction with an antiserum against CHS of parsley (Petroselinum hortense), and PAP staining. The molecular weight of about 41 500 of the CHS subunits corresponds with that obtained from other higher plants. Steps of flower development were subdivided into stages-1,0, I-IV. During flower development of a Matthiola line with coloured petals (line 07) a defined pattern of CHS enzyme production can be observed: At the stage of bud opening (stage 0-I) a dramatic increase of the amount of CHS enzyme prodein in the petals occurs. This is quite different from results obtained with petals of the white flowering mutant line 18 bearing a genetic defect in the gene f coding for CHS. Here a reduced and nearly constant level of CHS enzyme protein can be observed during flower development. This line is most attractive for our studies of the regulation of enzyme synthesis because under stress conditions a slight colouring of the flower petals occurs, which is uniformly distributed and line-specific. This suggests that we are dealing with a CHS mutant producing a rather inactive enzyme protein at a low level. This protein may regain enzyme activity under certain environmental conditions. Preliminary investigations suggest a rather high level of CHS mRNA transcription at the bud opening stage of the flowers. Other white flowering mutant lines, line 17 (genotype ee) and line 19 (gg) with a late block in the flavonoid biosynthesis pathway, exhibit a concomitant reduction of CHS enzyme activity and protein content in comparison to anthocyanin-producing lines with the f(+)f(+)e(+)e(+)g(+)g(+)-genotype.

  12. Germacrene C synthase from Lycopersicon esculentum cv. VFNT cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase.

    Science.gov (United States)

    Colby, S M; Crock, J; Dowdle-Rizzo, B; Lemaux, P G; Croteau, R

    1998-03-03

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, beta-caryophyllene, alpha-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton delta-cadinene synthase (50% identity).

  13. Quaternary structure of human fatty acid synthase by electron cryomicroscopy

    Science.gov (United States)

    Brink, Jacob; Ludtke, Steven J.; Yang, Chao-Yuh; Gu, Zei-Wei; Wakil, Salih J.; Chiu, Wah

    2002-01-01

    We present the first three-dimensional reconstruction of human fatty acid synthase obtained by electron cryomicroscopy and single-particle image processing. The structure shows that the synthase is composed of two monomers, arranged in an antiparallel orientation, which is consistent with biochemical data. The monomers are connected to each other at their middle by a bridge of density, a site proposed to be the combination of the interdomain regions of the two monomers. Each monomer subunit appears to be subdivided into three structural domains. With this reconstruction of the synthase, we propose a location for the enzyme's two fatty acid synthesis sites. PMID:11756679

  14. Class II recombinant phosphoribosyl diphosphate synthase from spinach

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows...... an unusual low specificity toward diphosphoryl donors by accepting dATP, GTP, CTP, and UTP in addition to ATP. The kinetic mechanism of the enzyme is an ordered steady state Bi Bi mechanism with K(ATP) and K(Rib-5-P) values of 170 and 110 micrometer, respectively, and a V(max) value of 13.1 micromol (min x...

  15. Inducible nitric oxide synthase expression is increased in the alveolar compartment of asthmatic patients.

    Science.gov (United States)

    Tufvesson, E; Andersson, C; Weidner, J; Erjefält, J S; Bjermer, L

    2017-04-01

    Increased exhaled nitric oxide (NO) levels in asthma are suggested to be through inducible NO synthase (iNOS). The aim of this study was to investigate the expression of iNOS in bronchoalveolar lavage (BAL) cells and tissue from central and peripheral airways and compare it with the exhaled bronchial and alveolar NO levels in patients with asthma vs a control group. Thirty-two patients with asthma (defined as controlled or uncontrolled according to Asthma Control Test score cut-off: 20) and eight healthy controls were included. Exhaled NO was measured, and alveolar concentration and bronchial flux were calculated. iNOS was measured in central and peripheral lung biopsies, as well as BAL cells. Bronchoalveolar lavage macrophages were stimulated in vitro, and iNOS expression and NO production were investigated. Expression of iNOS was increased in central airway tissue and the alveolar compartment in uncontrolled as compared to controlled asthmatics and healthy controls. There were no differences, however, in iNOS mRNA levels in total BAL cells in uncontrolled as compared to controlled asthma. Bronchoalveolar lavage cell mRNA levels of iNOS or iNOS expression in central and alveolar tissue did not relate to alveolar NO, nor to bronchial flux of NO. In vitro stimulation with leukotriene D4 increased iNOS mRNA levels and NO production in cultured BAL macrophages. The levels of both bronchial and alveolar iNOS are increased in uncontrolled as compared to controlled asthma. However, levels of iNOS in BAL macrophages were not reflected by alveolar NO. Both central and distal iNOS levels may reflect responsiveness to steroid treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  17. Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato.

    Science.gov (United States)

    Wang, T W; Lu, L; Wang, D; Thompson, J E

    2001-05-18

    Full-length cDNA clones encoding deoxyhypusine synthase (DHS) and eucaryotic initiation factor 5A (eIF-5A) have been isolated from a cDNA expression library prepared from tomato leaves (Lycopersicon esculentum, cv. Match) exposed to environmental stress. DHS mediates the first of two enzymatic reactions that activate eIF-5A by converting a conserved lysine to the unusual amino acid, deoxyhypusine. Recombinant protein obtained by expressing tomato DHS cDNA in Escherichia coli proved capable of carrying out the deoxyhypusine synthase reaction in vitro in the presence of eIF-5A. Of particular interest is the finding that DHS mRNA and eIF-5A mRNA show a parallel increase in abundance in senescing tomato flowers, senescing tomato fruit, and environmentally stressed tomato leaves exhibiting programmed cell death. Western blot analyses indicated that DHS protein also increases at the onset of senescence. It is apparent from previous studies with yeast and mammalian cells that hypusine-modified eIF-5A facilitates the translation of a subset of mRNAs mediating cell division. The present study provides evidence for senescence-induced DHS and eIF-5A in tomato tissues that may facilitate the translation of mRNA species required for programmed cell death.

  18. Prostacyclin Synthase: Upregulation during Renal Development and in Glomerular Disease as well as Its Constitutive Expression in Cultured Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Prostacyclin (PGI2 plays a critical role in nephrogenesis and renal physiology. However, our understanding of how prostacyclin release in the kidney is regulated remains poorly defined. We studied expression of prostacyclin synthase (PGIS in developing and adult human kidneys, and also in selected pediatric renal diseases. We also examined PGI2 formation in human mesangial cells in vitro. We observed abundant expression of PGIS in the nephrogenic cortex in humans and in situ hybridization revealed an identical pattern in mice. In the normal adult kidney, PGIS-immunoreactive protein and mRNA appear to localize to mesangial fields and endothelial and smooth muscle cells of arteries and peritubular capillaries. In kidney biopsies taken from pediatric patients, enhanced expression of PGIS-immunoreactive protein was noted mainly in endothelial cells of patients with IgA-nephropathy. Cultured human mesangial cells produce primarily PGI2 and prostaglandin E2, followed by prostaglandin F2α Cytokine stimulation increased PGI2 formation 24-fold. Under these conditions expression of PGIS mRNA and protein remained unaltered whereas mRNA for cyclooxygenase-2 was markedly induced. In contrast to its constitutive expression in vitro, renal expression of prostacyclin-synthase appears to be regulated both during development and in glomerular disease. Further research is needed to identify the factors involved in regulation of PGIS-expression.

  19. Integrin beta 4 MRNA expression levels in bronchial asthma patients ...

    African Journals Online (AJOL)

    Serum total IgE was measured by ELISA and mRNA expression of ITGβ4 was assessed by reverse transcriptase PCR (RT-PCR) using real time PCR.. ITGβ4 mRNA expression was significantly down regulated with increased serum total IgE in patients with asthma compared to controls. Moreover, ITGβ4 expression was ...

  20. Functional Integration of mRNA Translational Control Programs

    Directory of Open Access Journals (Sweden)

    Melanie C. MacNicol

    2015-07-01

    Full Text Available Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease.

  1. Phytochrome B mRNA expression enhances biomass yield and ...

    African Journals Online (AJOL)

    The present study shows successful transformation and mRNA expression in Phytochrome B transformed CIM 482 cotton plants. Transgenic cotton plants expressing Phytochrome B mRNA have showed more than two times increase in relative leaf growth rate (RLGR) and photosynthetic rate, more than one time increase in ...

  2. mRNA pseudoknot structures can act as ribosomal roadblocks

    DEFF Research Database (Denmark)

    Hansen, Jesper Tholstrup; Oddershede, Lene Broeng; Sørensen, Michael Askvad

    2012-01-01

    Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknots...

  3. Nitric oxide synthase and changes in oxidative stress levels in embryonic kidney observed in a rabbit model of intrauterine growth restriction.

    Science.gov (United States)

    Figueroa, Horacio; Cifuentes, Jorge; Lozano, Mauricio; Alvarado, Cristobal; Cabezas, Claudia; Eixarch, Elisenda; Fernández, Ellio; Contreras, Luis; Illanes, Sebastian E; Hernández-Andrade, Edgar; Gratacós, Eduard; Irarrazabal, Carlos E

    2016-07-01

    This work aimed to study the effect of uteroplacental circulation restriction on endothelial kidney damage in a fetal rabbit model. New Zealand rabbits were subjected to 40% to 50% of uteroplacental artery ligation at day 25 of pregnancy. After 5 days, surviving fetuses were harvested by cesarean section. The gene and protein expressions of selected enzymes associated with nitric oxide production and oxidative stress were analyzed in fetal kidney homogenates. The placenta weight (6.06 ± 0.27, p nitric oxide synthase phosphorylation inhibition (0.23 ± 0.13, p nitric oxide synthase messenger RNA (mRNA) (2.68 ± 0.24, p oxidative damage in kidneys of fetal rabbits that have been exposed to restriction of the uterine circulation. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  4. Sequential expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, and nitrotyrosine in odontoblasts and pulp cells during dentin repair after tooth preparation in rat molars.

    Science.gov (United States)

    Mei, Yu Feng; Yamaza, Takayoshi; Atsuta, Ikiru; Danjo, Atsushi; Yamashita, Yoshio; Kido, Mizuho A; Goto, Masaaki; Akamine, Akifumi; Tanaka, Teruo

    2007-04-01

    Nitric oxide (NO) stimulates osteoblast differentiation, but whether NO contributes to odontoblast differentiation during dentin repair is unknown. By using reverse transcription/polymerase chain reaction and immunostaining, we investigated the gene expression and/or immunolocalization of endothelial NO synthase (eNOS), inducible NOS (iNOS), and nitrotyrosine (a biomarker for NO-derived peroxinitrite), and alkaline phosphatase (ALP) and osteocalcin (early and terminal differentiation markers of odontoblasts, respectively) in dental pulp tissue after rat tooth preparation. At the early stage (1-3 days) post-preparation, markedly increased expression of iNOS and nitrotyrosine was found in odontoblasts and pulp cells beneath the cavity, whereas eNOS expression was significantly decreased. ALP mRNA expression was significantly increased after 1 day but decreased after 3 days, whereas ALP activity was weak in the dentin-pulp interface under the cavity after 1 day but strong after 3 days. Osteocalcin mRNA expression was significantly increased at this stage. At 7 days post-preparation, tertiary dentin was formed under the cavity. All the molecules studied were expressed at control levels in odontoblasts/pulp cells beneath the cavity. These findings show that abundant NO is released from odontoblasts and pulp cells at an early stage after tooth preparation and indicate that, after tooth preparation, the up-regulation of iNOS and nitrotyrosine in odontoblasts is synchronized with increased cellular expression of ALP and osteocalcin. Therefore, the NO synthesized by iNOS after tooth preparation probably participates in regulating odontoblast differentiation during tertiary dentinogenesis.

  5. Chalcone synthase genes from milk thistle (Silybum marianum ...

    Indian Academy of Sciences (India)

    Leyva et al. 1995), UV treatments and blue light (Hartmann et al. 1998; Wade et al. 2001; Zhou et al. 2007), elicitor treatments such as salicylic acid and. Keywords. chalcone synthase; real-time PCR; silymarin; anthocyanin; Silybum marianum.

  6. Molecular devices for the regulation of chloroplast ATP synthase

    NARCIS (Netherlands)

    Hisabori, T.; Konno, H.; Ichimura, H.; Strotmann, H.; Bald, D.

    2002-01-01

    In chloroplasts, synthesis of ATP is energetically coupled with the utilization of a proton gradient formed by photosynthetic electron transport. The involved enzyme, the chloroplast ATP synthase, can potentially hydrolyze ATP when the magnitude of the transmembrane electrochemical potential

  7. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, K

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...... in the human duodenum, jejunum, ileum and colon by immunohistochemistry. PGH synthase immunoreactivity appeared to be similar in all segments of the intestine. Most smooth muscle cells seemed to contain PGH synthase; however, the reaction in the lamina muscularis mucosae was much stronger than...... in the longitudinal and circular muscle layers. Endothelial cells in capillaries and larger vessels showed a positive reaction. In addition, unidentified cells in subserosa, at the level of Auerbach's plexus and in the submucosa were stained. We concluded that the smooth muscle cells of the human gut has a rather...

  8. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae.

    Science.gov (United States)

    Keszei, Andras; Brubaker, Curt L; Carter, Richard; Köllner, Tobias; Degenhardt, Jörg; Foley, William J

    2010-06-01

    Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content.

    Directory of Open Access Journals (Sweden)

    Craig A Goodman

    Full Text Available One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST and fast-twitch (FT rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg(-1·day(-1 or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS, endothelial NOS (eNOS and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.

  10. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.

    Science.gov (United States)

    Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya

    2017-11-20

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Plant terpenoid synthases: Molecular biology and phylogenetic analysis

    OpenAIRE

    Bohlmann, Jörg; Meyer-Gauen, Gilbert; Croteau, Rodney

    1998-01-01

    This review focuses on the monoterpene, sesquiterpene, and diterpene synthases of plant origin that use the corresponding C10, C15, and C20 prenyl diphosphates as substrates to generate the enormous diversity of carbon skeletons characteristic of the terpenoid family of natural products. A description of the enzymology and mechanism of terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. Sequence relatedness and phylogeneti...

  12. Regulation of CDP-diacylglycerol synthase activity in Saccharomyces cerevisiae.

    OpenAIRE

    Homann, M J; Henry, S A; Carman, G M

    1985-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium resulted in a reduction of CTP:phosphatidate cytidylyltransferase (CDP-diacylglycerol synthase; EC 2.7.7.41) activity in Saccharomyces cerevisiae. The reduction of activity did not occur in the absence of inositol. CDP-diacylglycerol synthase activity was not regulated in a S. cerevisiae mutant strain (opi1; an inositol biosynthesis regulatory mutant) by the addition of phospholipid precursors to the growth medium.

  13. Concerted versus stepwise mechanism in thymidylate synthase.

    Science.gov (United States)

    Islam, Zahidul; Strutzenberg, Timothy S; Gurevic, Ilya; Kohen, Amnon

    2014-07-16

    Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism. Here, we experimentally test these two possibilities using secondary kinetic isotope effect (KIE), mutagenesis study, and primary KIEs. The findings support the concerted mechanism and demonstrate the critical role of an active site arginine in substrate binding, activation of enzymatic nucleophile, and the hydride transfer studied here. The elucidation of this reduction/substitution sheds light on the critical catalytic step in TSase and may aid future drug or biomimetic catalyst design.

  14. Nitric Oxide Synthases in Heart Failure

    Science.gov (United States)

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  15. Tapentadol and nitric oxide synthase systems.

    Science.gov (United States)

    Bujalska-Zadrożny, Magdalena; Wolińska, Renata; Gąsińska, Emilia; Nagraba, Łukasz

    2015-04-01

    Tapentadol, a new analgesic drug with a dual mechanism of action (μ-opioid receptor agonism and norepinephrine reuptake inhibition), is indicated for the treatment of moderate to severe acute and chronic pain. In this paper, the possible additional involvement of the nitric oxide synthase (NOS) system in the antinociceptive activity of tapentadol was investigated using an unspecific inhibitor of NOS, L-NOArg, a relatively specific inhibitor of neuronal NOS, 7-NI, a relatively selective inhibitor of inducible NOS, L-NIL, and a potent inhibitor of endothelial NOS, L-NIO. Tapentadol (1-10 mg/kg, intraperitoneal) increased the threshold for mechanical (Randall-Selitto test) and thermal (tail-flick test) nociceptive stimuli in a dose-dependent manner. All four NOS inhibitors, administered intraperitoneally in the dose range 0.1-10 mg/kg, potentiated the analgesic action of tapentadol at a low dose of 2 mg/kg in both models of pain. We conclude that NOS systems participate in tapentadol analgesia.

  16. Electric field driven torque in ATP synthase.

    Directory of Open Access Journals (Sweden)

    John H Miller

    Full Text Available FO-ATP synthase (FO is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1 overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  17. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    Science.gov (United States)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  18. Structures of human constitutive nitric oxide synthases.

    Science.gov (United States)

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A; Silverman, Richard B; Poulos, Thomas L

    2014-10-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure-activity-relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme-inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution.

  19. Homocystinuria due to cystathionine beta synthase deficiency

    Directory of Open Access Journals (Sweden)

    Rao T

    2008-01-01

    Full Text Available A two year-old male child presented with cutis marmorata congenita universalis, brittle hair, mild mental retardation, and finger spasms. Biochemical findings include increased levels of homocysteine in the blood-106.62 µmol/L (normal levels: 5.90-16µmol/L. Biochemical tests such as the silver nitroprusside and nitroprusside tests were positive suggesting homocystinuria. The patient was treated with oral pyridoxine therapy for three months. The child responded well to this therapy and the muscle spasms as well as skin manifestations such as cutis marmorata subsided. The treatment is being continued; the case is reported here because of its rarity. Homocysteinuria arising due to cystathionine beta-synthase (CBS deficiency is an autosomal recessive disorder of methionine metabolism that produces increased levels of urinary homocysteine and methionine It manifests itself in vascular, central nervous system, cutaneous, and connective tissue disturbances and phenotypically resembles Marfan′s syndrome. Skin manifestations include malar flush, thin hair, and cutis reticulata / marmorata.

  20. Amygdalin suppresses lipopolysaccharide-induced expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells.

    Science.gov (United States)

    Yang, Hye-Young; Chang, Hyun-Kyung; Lee, Jin-Woo; Kim, Young-Sick; Kim, Hong; Lee, Myoung-Hwa; Shin, Mal-Soon; Ham, Dae-Hyun; Park, Hun-Kuk; Lee, Hyejung; Kim, Chang-Ju

    2007-01-01

    Amygdalin (D-mandelonitrile-beta-D-gentiobioside) is a cynogenic compound found in sweet and bitter almonds, Persicae semen and Armeniacae semen. Amygdalin has been used for the treatment of cancers and for the relief of the pain. We made an aqueous extraction of amygdalin from Armeniacae semen. In this study, the effect of amygdalin on the lipopolysaccharide (LPS)-induced inflammation was investigated. The effects of amygdalin extracted from Armeniacae semen on the LPS-stimulated mRNA expressions of cyclooxygenase (COX)-1, COX-2 and inducible nitric oxide synthase (iNOS) in the mouse BV2 microglial cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR). The effects of amygdalin on the prostaglandins E(2) synthesis and the nitric oxide production were also studied by performing prostaglandins E(2) immunoassay and by detecting nitric oxide. The present results showed that amygdalin suppressed the prostaglandin E(2) synthesis and the nitric oxide production by inhibiting the LPS-stimulated mRNA expressions of COX-2 and iNOS in the mouse BV2 cells. These results show that amygdalin exerts anti-inflammatory and analgesic effects and it dose so probably by suppressing the mRNA expressions of COX-2 and iNOS.

  1. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  2. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase in th...... large capacity for PGH synthesis and the present results may provide a basis for a better understanding of both normal physiological functions as well as intestinal disease states involving disorders of prostaglandin synthesis.......Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...... in the human duodenum, jejunum, ileum and colon by immunohistochemistry. PGH synthase immunoreactivity appeared to be similar in all segments of the intestine. Most smooth muscle cells seemed to contain PGH synthase; however, the reaction in the lamina muscularis mucosae was much stronger than...

  3. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    Science.gov (United States)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  4. Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice.

    Science.gov (United States)

    Rasmussen, Martin Krøyer; Bertholdt, Lærke; Gudiksen, Anders; Pilegaard, Henriette; Knudsen, Jakob G

    2018-01-05

    The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera.

    Science.gov (United States)

    Matarese, Fabiola; Cuzzola, Angela; Scalabrelli, Giancarlo; D'Onofrio, Claudio

    2014-09-01

    Plants produce a plethora of volatile organic compounds (VOCs) which are important in determining the quality and nutraceutical properties of horticultural food products, including the taste and aroma of wine. Given that some of the most prevalent grape aroma constituents are terpenoids, we investigated the possible variations in the relative expression of terpene synthase (TPS) genes that depend on the organ. We thus analysed mature leaves, young leaves, stems, young stems, roots, rachis, tendrils, peduncles, bud flowers, flowers and berries of cv Moscato bianco in terms of their VOC content and the expression of 23 TPS genes. In terms of the volatile characterization of the organs by SPME/GC-MS analysis, flower buds and open flowers appeared to be clearly distinct from all the other organs analysed in terms of their high VOC concentration. Qualitatively detected VOCs clearly separated all the vegetative organs from flowers and berries, then the roots and rachis from other vegetative organs and flowers from berries, which confirms the specialization in volatile production among different organs. Our real-time RT-PCR results revealed that the majority of TPS genes analysed exhibited detectable transcripts in all the organs investigated, while only some were found to be expressed specifically in one or just a few organs. In most cases, we found that the known products of the in vitro assay of VvTPS enzymes corresponded well to the terpenes found in the organs in which the encoding gene was expressed, as in the case of (E)-β-caryophyllene synthases, α-terpineol synthase and α-farnesene synthase. In addition, we found groups of homologous TPS genes, such as (E)-β-caryophyllene and β-ocimene synthases, expressed distinctively in the various tissues. This thus confirmed the subfunctionalization events and a specialization on the basis of the organs in which they are mostly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    Science.gov (United States)

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases

    NARCIS (Netherlands)

    Lücker, J.; Tamer, El M.K.; Schwab, W.; Verstappen, F.W.A.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2002-01-01

    Citrus limon possesses a high content and large variety of monoterpenoids, especially in the glands of the fruit flavedo. The genes responsible for the production of these monoterpenes have never been isolated. By applying a random sequencing approach to a cDNA library from mRNA isolated from the

  8. A novel 3-base deletion (IVS3+2_4delTGG of the hydroxymethylbilane synthase gene in a Brazilian patient with acute intermittent porphyria

    Directory of Open Access Journals (Sweden)

    Georgina Severo Ribeiro

    2007-01-01

    Full Text Available Acute intermittent porphyria (AIP, OMIM 176000 is an autosomal dominant metabolic disease caused by mutations in the gene encoding hydroxymethylbilane synthase (HMBS; EC 4.3.1.8; formely named porphobilinogen deaminase, PBGD, mapped to chromosome 11q23.3. We describe a novel mutation of the HMBS gene, a de novo 3-base deletion in the splicing donor site of intron 3 (IVS3+2_4delTGG in a woman affected by AIP. RT-PCR analysis revealed an abnormal HMBS mRNA, compatible with exon 3 skipping.

  9. Role of mRNA Methylation in Prostate Cancer

    Science.gov (United States)

    2015-02-01

    regulation of mRNA. Recent technological advances have made it possible to detect mRNA methylation . The m6A was found near regulatory regions and...TERMS mRNA methylation , FTO, MeRIP-seq, RNA-seq, m6A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...10 9. Appendices……………………………………………………………10 1. INTRODUCTION: Methylation at the N6 position of adenosine ( m6A ) is a post-transcriptional modification of

  10. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells.

    Science.gov (United States)

    Suschek, C; Kolb, H; Kolb-Bachofen, V

    1997-12-01

    1. Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants. 2. In each of the different endothelial cells Mg-Dobesilate incubation (0.25-1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor N(G)-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects. 3. iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT-PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT-PCR.

  11. Chlorine gas exposure causes systemic endothelial dysfunction by inhibiting endothelial nitric oxide synthase-dependent signaling.

    Science.gov (United States)

    Honavar, Jaideep; Samal, Andrey A; Bradley, Kelley M; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M; Matalon, Sadis; Patel, Rakesh P

    2011-08-01

    Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.

  12. Role of hyaluronan synthase 2 to promote CD44-dependent oral cavity squamous cell carcinoma progression.

    Science.gov (United States)

    Wang, Steven J; Earle, Christine; Wong, Gabriel; Bourguignon, Lilly Y W

    2013-04-01

    CD44 is a transmembrane receptor found on many different benign and malignant cells. Hyaluronan (HA), a major component of the extracellular matrix, is the primary ligand for CD44 receptors. In cancer cells, HA interaction with CD44 promotes multiple signaling pathways that influence tumor cell progression behaviors in a variety of solid tumors. Increasing evidence indicates that HA and CD44 signaling play an important role in oral cavity squamous cell carcinoma progression. HA is primarily synthesized by hyaluronan synthases, and the current study investigated the role of hyaluronan synthase 2 (HAS 2) in oral cavity carcinoma progression behaviors. Analysis of HAS 2 mRNA and protein expression, HA production, and HAS 2-mediated tumor cell proliferation and migration behaviors with and without HAS 2 suppression were carried out on 2 established oral cavity cancer cell lines. Immunohistochemical analysis of HAS 2 and CD44 expression in oral cavity carcinoma tumor specimens was performed. HAS 2 was expressed in the 2 oral cancer cell lines, HSC-3 and SCC-4. Suppression of HAS 2 expression resulted in CD44-dependent decreased tumor cell migration, decreased tumor cell growth, and increased cisplatin sensitivity, suggesting the importance of tumor cell HA production to promote in vitro tumor progression behaviors in oral cancer cells. Increased HAS 2 expression in oral cavity carcinoma clinical specimens was associated with poor clinicopathologic characteristics and worse disease-free survival. HAS 2 may be a potential therapeutic target for the treatment of oral cavity cancer. Copyright © 2012 Wiley Periodicals, Inc.

  13. Nitric oxide synthases: regulation and function

    Science.gov (United States)

    Förstermann, Ulrich; Sessa, William C.

    2012-01-01

    Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH4). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins. PMID:21890489

  14. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  15. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Science.gov (United States)

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  16. Effect of atrophy and contractions on myogenin mRNA concentration in chick and rat myoblast omega muscle cells

    Science.gov (United States)

    Krebs, J. M.; Denney, R. M.

    1997-01-01

    The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 +/- 3 micrograms myosin/microgram DNA, not significantly different from 12 +/- 4 micrograms myosin/microgram DNA (n = 3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be important for understanding atrophy.

  17. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis.

    Science.gov (United States)

    Eungwanichayapant, P D; Popluechai, S

    2009-02-01

    Catechins are a group of polyphenols found in tea (Camellia sinensis var. sinensis) at high levels. They are beneficial for health. From the study on accumulation of catechins in shoots and mature leaves of a tea cultivar, Oolong No. 17, using high-performance liquid chromatography (HPLC), it was found that the amounts of most catechins in the shoots were higher than those in the mature leaves, with an exception of catechins gallate (CG) that was found in trace amounts in both the shoots and mature leaves. mRNA accumulation of genes involved in catechin synthesis was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that the mRNA accumulation of the genes were higher in the shoots than in the mature leaves. These genes included genes of phenylalanine ammonia-lyase 1 (PAL1; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), leucoanthocyanidin reductase (LCR; EC 1.17.1.3), and flavanone 3-hydroxylase (F3H; EC 1.14.11.9).

  18. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.

    Science.gov (United States)

    Wang, Nuo; McCammon, J Andrew

    2016-01-01

    In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa. © 2015 The Protein Society.

  19. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    Science.gov (United States)

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    Science.gov (United States)

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species.

  1. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    Science.gov (United States)

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.

  2. Epidermal Growth Factor Receptor, Excision-Repair Cross-Complementation Group 1 Protein, and Thymidylate Synthase Expression in Penile Cancer.

    Science.gov (United States)

    Dorff, Tanya B; Schuckman, Anne K; Schwartz, Rachel; Rashad, Sadaf; Bulbul, Ajaz; Cai, Jie; Pinski, Jacek; Ma, Yanling; Danenberg, Kathleen; Skinner, Eila; Quinn, David I

    2016-10-01

    To describe the expression of tissue epidermal growth factor receptor (EGFR), excision-repair cross-complementation group 1 protein (ERCC1), and thymidylate synthase (TS) in patients with penile cancer and explore their association with stage and outcome. A total of 52 patients with penile squamous cell cancer who were treated at the University of Southern California from 1995 to 2010 were identified. Paraffin-embedded tissue underwent mRNA quantitation and immunohistochemistry for expression of EGFR, ERCC1, and TS. KRAS mutations were evaluated using polymerase chain reaction-based sequencing. EGFR overexpression was common by mRNA (median, 5.09; range, 1.92-104.5) and immunohistochemistry. EGFR expression > 7 was associated with advanced stage and poor differentiation (P = .01 and .034 respectively) but not with survival in multivariate analysis. ERCC1 mRNA expression was a median of 0.65 (range, 0.21-1.87). TS expression was a median of 1.88 (range, 0.54-6.47). ERCC1 and TS expression were not associated with grade, stage, or survival. There were no KRAS mutations identified. A total of 17 men received chemotherapy; 8 (47%) had an objective response, including 1 with a pathologic complete response. There was a trend for lower expression of EGFR corresponding to a higher likelihood of response (response rate [RR]) to chemotherapy: 67% RR in EGFR mRNA  7 (P = .31). High expression of EGFR mRNA in squamous cell carcinoma of the penis is associated with advanced stage and poor differentiation, but not survival. In our small heterogeneous subset, molecular marker expression did not show a correlation with the likelihood of chemotherapy response. A prospective evaluation of the role of the EGFR pathway and its regulatory environment in penile cancer is warranted. Given the rarity of this cancer, collaborative prospective cohort evaluations and trials need to be encouraged. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antihypertensive methyldopa, labetalol, hydralazine, and clonidine reversed tumour necrosis factor-α inhibited endothelial nitric oxide synthase expression in endothelial-trophoblast cellular networks.

    Science.gov (United States)

    Xu, Bei; Bobek, Gabriele; Makris, Angela; Hennessy, Annemarie

    2017-03-01

    Medications used to control hypertension in pregnancy also improve trophoblast and endothelial cellular interaction in vitro. Tumour necrosis factor-α (TNF-α) inhibits trophoblast and endothelial cellular interactions and simultaneously decreases endothelial nitric oxide synthase (eNOS) expression. This study investigated whether antihypertensive medications improved these cellular interactions by modulating eNOS and inducible nitric oxide synthase (iNOS) expression. Human uterine myometrial microvascular endothelial cells (UtMVECs) were pre-incubated with (or without) low dose TNF-α (0.5 ng/mL) or TNF-α plus soluble fms-like tyrosine kinase-1 (sFlt-1) (100 ng/mL). The endothelial cells were cultured on Matrigel. After endothelial cellular networks appeared, trophoblast derived HTR-8/SVneo cells were co-cultured in the presence of clinically relevant doses of methyldopa, labetalol, hydralazine or clonidine for 24 hours. Cells were retrieved from the Matrigel to extract mRNA and eNOS and iNOS expression were examined by quantitative PCR. Methyldopa, labetalol, hydralazine and clonidine reversed the inhibitory effect of TNF-α on eNOS mRNA expression. After pre-incubating endothelial cells with TNF-α and sFlt-1, all the medications except methyldopa lost their effect on eNOS mRNA expression. In the absence of TNF-α, antihypertensive medications did not change eNOS expression. The mRNA expression of iNOS was not affected by TNF-α or any medications. This study shows that selected antihypertensive medications used in the treatment of hypertension in pregnancy increase eNOS expression in vitro when induced by the inflammatory TNF-α. The anti-angiogenic molecule sFlt-1 may antagonise the potential benefit of these medications by interfering with the NOS pathway. © 2016 John Wiley & Sons Australia, Ltd.

  4. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); pglycogen (89.5±7.6 vs 152.6±8.1 mmol•kg(-1); pglycogen (90.0±5.0 vs 102.8±7.8 mmol•kg(-1); p=0...

  5. Significance of differential expression of thymidylate synthase in normal and primary tumor tissues from patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Hua Yawei

    2011-08-01

    Full Text Available Abstract The role of thymidylate synthase (TS is essential as a key rate-limiting enzyme in DNA synthesis. It is the primary target of fluorouracil and its derivates in colorectal cancer. In this study, TS mRNA expression was examined in primary tumor and normal tissues from 76 patients with high- risk stage II/III colorectal cancer by laser capture microdissection and polymerase chain reaction. Thirty (39.47% patients were found to have higher TS expression in primary tumors with earlier stage (P = 0.018, lower histological grades (P = 0.001 and high frequency microsatellite instability (P = 0.000. Multivariate analysis showed that microsatellite instability, histological grade and number of lymph nodes examined are independent prognostic markers.

  6. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  7. Demonstration that a mRNA Binding Protein is Responsible for GADD45 mRNA Destabilization

    National Research Council Canada - National Science Library

    Abcouwer, Steve

    2003-01-01

    ...) Using regions of the GADD45 mRNA 3'-untranslated region (UTR) in KNA gel shift assays, we have observed that glutamine causes distinct changes in RBP activities in cytoplasmic and nuclear protein extracts...

  8. Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Priscila Camillo Teixeira

    2011-06-01

    Full Text Available BACKGROUND: Chronic Chagas disease cardiomyopathy (CCC is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC and ischemic (IC cardiomyopathies. METHODOLOGY/PRINCIPAL FINDINGS: Myocardium homogenates from CCC (N=5, IC (N=5 and IDC (N=5 patients, as well as from heart donors (N=5 were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit and muscular creatine kinase (CKM and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. CONCLUSIONS/SIGNIFICANCE: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.

  9. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  10. Loss of heterozygosity at thymidylate synthase locus in Barrett's metaplasia, dysplasia, and carcinoma sequences

    Directory of Open Access Journals (Sweden)

    Vallbohmer Daniel

    2009-05-01

    Full Text Available Abstract Background Thymidylate synthase (TS is known to have a unique 28 bp tandemly repeated sequence in the promoter region, and the majorities of subjects have a heterozygous double repeat/triple repeat genotype in their non-cancerous tissue. Loss of heterozygosity (LOH at the TS locus is known to occur in cancer patients, but there is no evidence that it is present in precancerous tissue. The aim of this study was to analyze the frequency and timing of LOH at the TS locus in Barrett-associated adenocarcinoma (BA and its precursory lesions, such as intestinal metaplasia (IM and dysplasia. Methods One hundred twenty-three samples (including 37 with gastroesophageal reflux disease (GERD, 29 with IM, 13 with dysplasia, and 44 with BA were obtained from 100 patients. Biopsies were obtained from the lower esophageal mucosa/IM/dysplasia/BA, when available. Normal squamous tissue from the upper esophagus was taken as a control. All tissues were analyzed for the TS genotype and TS mRNA expression using the real-time reverse-transcription polymerase chain reaction (RT-PCR method after laser-capture microdissection. Results Among the patients with informative heterozygous genotype in their control samples, no sample with LOH at the TS locus was observed in the lower esophageal mucosa in GERD patients (0/22 samples. However, 6 out of 21 samples (28.6% had LOH in IM, 2 of 7 (28.6% in dysplasia, and 10 of 25 (40.0% in BA. No significant difference in TS mRNA expression levels was observed between TS genotypes. Conclusion Our results demonstrate that LOH is a relatively frequent and early event in the IM-BA sequence.

  11. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production.

    Science.gov (United States)

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-05-24

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity.

  12. Hypoxia activates the cyclooxygenase-2–prostaglandin E synthase axis

    Science.gov (United States)

    Lee, James J.; Natsuizaka, Mitsuteru; Ohashi, Shinya; Wong, Gabrielle S.; Takaoka, Munenori; Michaylira, Carmen Z.; Budo, Daniela; Tobias, John W.; Kanai, Michiyuki; Shirakawa, Yasuhiro; Naomoto, Yoshio; Klein-Szanto, Andres J.P.; Haase, Volker H.; Nakagawa, Hiroshi

    2010-01-01

    Hypoxia-inducible factors (HIFs), in particular HIF-1α, have been implicated in tumor biology. However, HIF target genes in the esophageal tumor microenvironment remain elusive. Gene expression profiling was performed upon hypoxia-exposed non-transformed immortalized human esophageal epithelial cells, EPC2-hTERT, and comparing with a gene signature of esophageal squamous cell carcinoma (ESCC). In addition to known HIF-1α target genes such as carbonic anhydrase 9, insulin-like growth factor binding protein-3 (IGFBP3) and cyclooxygenase (COX)-2, prostaglandin E synthase (PTGES) was identified as a novel target gene among the commonly upregulated genes in ESCC as well as the cells exposed to hypoxia. The PTGES induction was augmented upon stabilization of HIF-1α by hypoxia or cobalt chloride under normoxic conditions and suppressed by dominant-negative HIF-1α. Whereas PTGES messenger RNA (mRNA) was negatively regulated by normoxia, PTGES protein remained stable upon reoxygenation. Prostaglandin E2 (PGE2) biosynthesis was documented in transformed human esophageal cells by ectopic expression of PTGES as well as RNA interference directed against PTGES. Moreover, hypoxia stimulated PGE2 production in a HIF-1α-dependent manner. In ESCC, PTGES was overexpressed frequently at the mRNA and protein levels. Finally, COX-2 and PTGES were colocalized in primary tumors along with HIF-1α and IGFBP3. Activation of the COX-2–PTGES axis in primary tumors was further corroborated by concomitant upregulation of interleukin-1β and downregulation of hydroxylprostaglandin dehydrogenase. Thus, PTGES is a novel HIF-1α target gene, involved in prostaglandin E biosynthesis in the esophageal tumor hypoxic microenvironment, and this has implications in diverse tumors types, especially of squamous origin. PMID:20042640

  13. Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase.

    Science.gov (United States)

    Stull, Frederick W; Bernard, Steffen M; Sapra, Aparna; Smith, Janet L; Zuiderweg, Erik R P; Palfey, Bruce A

    2016-06-14

    Many microorganisms use flavin-dependent thymidylate synthase (FDTS) to synthesize the essential nucleotide 2'-deoxythymidine 5'-monophosphate (dTMP) from 2'-deoxyuridine 5'-monophosphate (dUMP), 5,10-methylenetetrahydrofolate (CH2THF), and NADPH. FDTSs have a structure that is unrelated to the thymidylate synthase used by humans and a very different mechanism. Here we report nuclear magnetic resonance evidence that FDTS ionizes N3 of dUMP using an active-site arginine. The ionized form of dUMP is largely responsible for the changes in the flavin absorbance spectrum of FDTS upon dUMP binding. dUMP analogues also suggest that the phosphate of dUMP acts as the base that removes the proton from C5 of the dUMP-methylene intermediate in the FDTS-catalyzed reaction. These findings establish additional differences between the mechanisms of FDTS and human thymidylate synthase.

  14. Folate binding site of flavin-dependent thymidylate synthase.

    Science.gov (United States)

    Koehn, Eric M; Perissinotti, Laura L; Moghram, Salah; Prabhakar, Arjun; Lesley, Scott A; Mathews, Irimpan I; Kohen, Amnon

    2012-09-25

    The DNA nucleotide thymidylate is synthesized by the enzyme thymidylate synthase, which catalyzes the reductive methylation of deoxyuridylate using the cofactor methylene-tetrahydrofolate (CH(2)H(4)folate). Most organisms, including humans, rely on the thyA- or TYMS-encoded classic thymidylate synthase, whereas, certain microorganisms, including all Rickettsia and other pathogens, use an alternative thyX-encoded flavin-dependent thymidylate synthase (FDTS). Although several crystal structures of FDTSs have been reported, the absence of a structure with folates limits understanding of the molecular mechanism and the scope of drug design for these enzymes. Here we present X-ray crystal structures of FDTS with several folate derivatives, which together with mutagenesis, kinetic analysis, and computer modeling shed light on the cofactor binding and function. The unique structural data will likely facilitate further elucidation of FDTSs' mechanism and the design of structure-based inhibitors as potential leads to new antimicrobial drugs.

  15. Flavin-Dependent Thymidylate Synthase as a New Antibiotic Target

    Directory of Open Access Journals (Sweden)

    Michael Choi

    2016-05-01

    Full Text Available In humans de novo synthesis of 2′-deoxythymidine-5′-monophosphate (dTMP, an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase and dihydrofolate reductase (DHFR. The enzyme flavin-dependent thymidylate synthase (FDTS represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.

  16. Flavin-Dependent Thymidylate Synthase as a New Antibiotic Target.

    Science.gov (United States)

    Choi, Michael; Karunaratne, Kalani; Kohen, Amnon

    2016-05-20

    In humans de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP), an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase) and dihydrofolate reductase (DHFR). The enzyme flavin-dependent thymidylate synthase (FDTS) represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.

  17. Plant terpenoid synthases: Molecular biology and phylogenetic analysis

    Science.gov (United States)

    Bohlmann, Jörg; Meyer-Gauen, Gilbert; Croteau, Rodney

    1998-01-01

    This review focuses on the monoterpene, sesquiterpene, and diterpene synthases of plant origin that use the corresponding C10, C15, and C20 prenyl diphosphates as substrates to generate the enormous diversity of carbon skeletons characteristic of the terpenoid family of natural products. A description of the enzymology and mechanism of terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. Sequence relatedness and phylogenetic reconstruction, based on 33 members of the Tps gene family, are delineated, and comparison of important structural features of these enzymes is provided. The review concludes with an overview of the organization and regulation of terpenoid metabolism, and of the biotechnological applications of terpenoid synthase genes. PMID:9539701

  18. Acetolactate synthase inhibiting herbicides bind to the regulatory site.

    Science.gov (United States)

    Subramanian, M V; Loney-Gallant, V; Dias, J M; Mireles, L C

    1991-05-01

    Acetolactate synthase from spontaneous mutants of tobacco (Nicotiana tabacum; KS-43 and SK-53) and cotton (Gossypium hirsutum; PS-3, PSH-91, and DO-2) selected in tissue culture for resistance to a triazolopyrimidine sulfonanilide showed varying degrees of insensitivity to feedback inhibitor(s) valine and/or leucine. A similar feature was evident in the enzyme isolated from chlorsulfuron-resistant weed biotypes, Kochia scoparia and Stellaria media. Dual inhibition analyses of triazolopyrimidine sulfonanilide, thifensulfuron, and imazethapyr versus feedback inhibitor leucine revealed that the three herbicides were competitive with the amino acid for binding to acetolactate synthase from wild-type cotton cultures. Acetolactate synthase inhibiting herbicides may bind to the regulatory site on the enzyme.

  19. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  20. Cerulenin blockade of fatty acid synthase reverses hepatic steatosis in ob/ob mice.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Fatty liver or hepatic steatosis is a common health problem associated with abnormal liver function and increased susceptibility to ischemia/reperfusion injury. The objective of this study was to investigate the effect of the fatty acid synthase inhibitor cerulenin on hepatic function in steatotic ob/ob mice. Different dosages of cerulenin were administered intraperitoneally to ob/ob mice for 2 to 7 days. Body weight, serum AST/ALT, hepatic energy state, and gene expression patterns in ob/ob mice were examined. We found that cerulenin treatment markedly improved hepatic function in ob/ob mice. Serum AST/ALT levels were significantly decreased and hepatic ATP levels increased in treated obese mice compared to obese controls, accompanied by fat depletion in the hepatocyte. Expression of peroxisome proliferator-activated receptors α and γ and uncoupling protein 2 were suppressed with cerulenin treatment and paralleled changes in AST/ALT levels. Hepatic glutathione content were increased in some cases and apoptotic activity in the steatotic livers was minimally changed with cerulenin treatment. In conclusion, these results demonstrate that fatty acid synthase blockade constitutes a novel therapeutic strategy for altering hepatic steatosis at non-stressed states in obese livers.

  1. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation.

    Science.gov (United States)

    Wei, Xiaochao; Schneider, Jochen G; Shenouda, Sherene M; Lee, Ada; Towler, Dwight A; Chakravarthy, Manu V; Vita, Joseph A; Semenkovich, Clay F

    2011-01-28

    Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.

  2. Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera.

    Science.gov (United States)

    Grover, Abhinav; Samuel, Gaurav; Bisaria, Virendra S; Sundar, Durai

    2013-06-01

    Withania somnifera commonly known as Ashwagandha, is held in high repute in traditional Indian medicine, largely due to the presence of steroidal lactone phytocompounds collectively known as withanolides, such as withanolide A, withaferin A and withanone. These withanolides have diverse pharmacological properties and are prospective high-value drug candidates. To meet the ever-increasing demands of these compounds, plant cell technology offers a viable alternative. In this study, a key enzyme in the isoprenoid biosynthetic pathway, namely squalene synthase, was over-expressed in W. somnifera using Agrobacterium tumefaciens as a transformation vehicle. The cell suspension cultures were developed to assess its effect on withanolide synthesis. The study demonstrated that a significant 4-fold enhancement in squalene synthase activity and 2.5-fold enhancement in withanolide A content were observed in the suspension cultures, as compared to the non-transformed cell cultures. Further, the transformed cell suspension cultures also produced withaferin A, which was absent in the non-transformed cell cultures. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  4. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa, we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (SaEctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of

  5. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Science.gov (United States)

    Widderich, Nils; Kobus, Stefanie; Höppner, Astrid; Riclea, Ramona; Seubert, Andreas; Dickschat, Jeroen S; Heider, Johann; Smits, Sander H J; Bremer, Erhard

    2016-01-01

    Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC) catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa), we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (Sa)EctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of enzyme activity

  6. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily

    Science.gov (United States)

    Höppner, Astrid; Riclea, Ramona; Seubert, Andreas; Dickschat, Jeroen S.; Heider, Johann; Smits, Sander H. J.; Bremer, Erhard

    2016-01-01

    Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC) catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa), we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (Sa)EctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of enzyme activity

  7. Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration.

    Directory of Open Access Journals (Sweden)

    Sarah M Johler

    Full Text Available During the last years the potential role of in vitro transcribed (IVT mRNA as a vehicle to deliver genetic information has come into focus. IVT mRNA could be used for anti-cancer therapies, vaccination purposes, generation of pluripotent stem cells and also for genome engineering or protein replacement. However, the administration of IVT mRNA into the target organ is still challenging. The lung with its large surface area is not only of interest for delivery of genetic information for treatment of e.g. for cystic fibrosis or alpha-1-antitrypsin deficiency, but also for vaccination purposes. Administration of IVT mRNA to the lung can be performed by direct intratracheal instillation or by aerosol inhalation/nebulisation. The latter approach shows a non-invasive tool, although it is not known, if IVT mRNA is resistant during the process of nebulisation. Therefore, we investigated the transfection efficiency of non-nebulised and nebulised IVT mRNA polyplexes and lipoplexes in human bronchial epithelial cells (16HBE. A slight reduction in transfection efficiency was observed for lipoplexes (Lipofectamine 2000 in the nebulised part compared to the non-nebulised which can be overcome by increasing the amount of Lipofectamine. However, Lipofectamine was more than three times more efficient in transfecting 16HBE than DMRIE and linear PEI performed almost 10 times better than its branched derivative. By contrast, the nebulisation process did not affect the cationic polymer complexes. Furthermore, aerosolisation of IVT mRNA complexes did neither affect the protein duration nor the toxicity of the cationic complexes. Taken together, these data show that aerosolisation of cationic IVT mRNA complexes constitute a potentially powerful means to transfect cells in the lung with the purpose of protein replacement for genetic diseases such as cystic fibrosis or alpha-1-antitrypsin deficiency or for infectious disease vaccines, while bringing along the advantages

  8. Protein targeting to subcellular organelles via MRNA localization.

    Science.gov (United States)

    Weis, Benjamin L; Schleiff, Enrico; Zerges, William

    2013-02-01

    Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

  9. Long-term administration of ketamine induces erectile dysfunction by decreasing neuronal nitric oxide synthase on cavernous nerve and increasing corporal smooth muscle cell apoptosis in rats.

    Science.gov (United States)

    Shang, Hung-Sheng; Wu, Yi-No; Liao, Chun-Hou; Chiueh, Tzong-Shi; Lin, Yuh-Feng; Chiang, Han-Sun

    2017-09-26

    We investigated and evaluated the mechanisms of erectile dysfunction (ED) in a rat model of long-term ketamine administration. Adult male Sprague-Dawley rats (n = 32) were divided into four groups: namely the control group receiving intraperitoneal injection of saline, 1-month, 2-month and 3-month groups receiving daily intraperitoneal injection of ketamine (100 mg/kg/day) for 1, 2, and 3 month respectively. After treatment, animals underwent an erectile response protocol to assess intracavernosal pressure (ICP). Smooth muscle content was evaluated. Neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression were assessed using immunostaining assay. Ketamine-induced apoptosis was analyzed using TUNEL assay. Long-term ketamine administration caused significantly decreased erectile responses as measured by ICP. Smooth muscle content was significantly decreased in the ketamine-treated rats for 3 months. In the erectile tissue, ketamine administration significantly reduced nNOS expression and increased iNOS content compared with controls, whereas eNOS expression was not altered. Ketamine induced apoptosis in corpus cavernosum. The present study demonstrates that long-term ketamine administration led to erectile dysfunction in rat. The molecular mechanisms of ketamine-induced ED involved the increased apoptosis and up-regulated iNOS expression incorporating with loss of corporal smooth muscle content and reduced nNOS expression in cavernous nerve.

  10. Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection

    DEFF Research Database (Denmark)

    Tramm, Trine; Hennig, Guido; Kyndi, Marianne

    2013-01-01

    Gene expression analysis on messenger RNA (mRNA) purified from formalin-fixed, paraffin-embedded tissue is increasingly used for research purposes. Tissue heterogeneity may question specificity and interpretation of results from mRNA isolated from a whole slide section, and thresholds for minimal...... tumor content in the paraffin block or macrodissection are used to avoid contamination from non-neoplastic tissue. The aim was to test if mRNA from tissue surrounding breast cancer affected quantification of estrogen receptor α (ESR1), progesterone receptor (PGR) and human epidermal growth factor...... receptor 2 (ERBB2), by comparing gene expression from whole slide and tumor-enriched sections, and correlating gene expression from whole slide sections with corresponding immunohistochemistry. Gene expression, based on mRNA extracted from a training set (36 paraffin blocks) and two validation sets (133...

  11. Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection

    DEFF Research Database (Denmark)

    Tramm, Trine; Hennig, Guido; Kyndi, Marianne

    2013-01-01

    Gene expression analysis on messenger RNA (mRNA) purified from formalin-fixed, paraffin-embedded tissue is increasingly used for research purposes. Tissue heterogeneity may question specificity and interpretation of results from mRNA isolated from a whole slide section, and thresholds for minimal...... tumor content in the paraffin block or macrodissection are used to avoid contamination from non-neoplastic tissue. The aim was to test if mRNA from tissue surrounding breast cancer affected quantification of estrogen receptor α (ESR1), progesterone receptor (PGR) and human epidermal growth factor...... and ERBB2, and 83 % for PGR. Overall agreements, when comparing mRNA expression to immunohistochemistry, were 100 % (ERBB2), 89 % (ESR1) and 83 % (PGR), which was confirmed in the validation sets. Percentage of tumor in the sections did not influence the results. In conclusion, reliable quantification...

  12. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  13. A deubiquitylating complex required for neosynthesis of a yeast mitochondrial ATP synthase subunit.

    Directory of Open Access Journals (Sweden)

    Sophie Kanga

    Full Text Available The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1, a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis.

  14. Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase.

    Science.gov (United States)

    Rahman, N M A; Fu, H T; Sun, S M; Qiao, H; Jin, S; Bai, H K; Zhang, W Y; Liang, G X; Gong, Y S; Xiong, Y W; Wu, Y

    2016-08-29

    Nitric oxide synthase (NOS) produces nitric oxide (NO) by catalyzing the conversion of l-arginine to l-citrulline, with the concomitant oxidation of nicotinamide adenine dinucleotide phosphate. Recently, various studies have verified the importance of NOS invertebrates and invertebrates. However, the NOS gene family in the oriental river prawn Macrobrachium nipponense is poorly understood. In this study, we cloned the full-length NOS complementary DNA from M. nipponense (MnNOS) and characterized its expression pattern in different tissues and at different developmental stages. Real-time quantitative polymerase chain reaction (RT-qPCR) showed the MnNOS gene to be expressed in all investigated tissues, with the highest levels observed in the androgenic gland (P < 0.05). Our results revealed that the MnNOS gene may play a key role in M. nipponense male sexual differentiation. Moreover, RT-qPCR revealed that MnNOS mRNA expression was significantly increased in post-larvae 10 days after metamorphosis (P < 0.05). The expression of this gene in various tissues indicates that it may perform versatile biological functions in M. nipponense.

  15. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  16. Resveratrol inhibits neointimal formation after arterial injury through an endothelial nitric oxide synthase-dependent mechanism.

    Science.gov (United States)

    Breen, Danna M; Dolinsky, Vernon W; Zhang, Hangjun; Ghanim, Husam; Guo, June; Mroziewicz, Margaret; Tsiani, Evangelia L; Bendeck, Michelle P; Dandona, Paresh; Dyck, Jason R B; Heximer, Scott P; Giacca, Adria

    2012-06-01

    Revascularization procedures used for treatment of atherosclerosis often result in restenosis. Resveratrol (RSV), an antioxidant with cardiovascular benefits, decreases neointimal formation after arterial injury by a mechanism that is still not fully clarified. Our main objective was to address the role of nitric oxide synthases (NOSes) and more specifically the endothelial-NOS (eNOS) isoform as a mediator of this effect. RSV (4 mg/kg/day, s.c.) alone or in combination with the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) (2 mg/kg/day, s.c.) was given to Sprague-Dawley rats beginning at 3 days before arterial (carotid or aortic) injury. RSV reduced neointimal formation by 50% (P<0.01), decreased intimal cell proliferation by 37% (P<0.01) and reduced inflammatory markers such as PECAM and MMP-9 mRNA. These effects of RSV were all abolished by coadministration of l-NAME. Oral RSV (beginning at 5 days before arterial injury) reduced neointimal thickness after femoral wire injury in mice, however this effect was not observed in eNOS knockout mice. This is the first report of RSV decreasing neointimal cell proliferation and neointimal growth through an eNOS-dependent mechanism. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    Science.gov (United States)

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP.

  18. Regulation of ornithine decarboxylase during cell growth. Changes in the stability and translatability of the mRNA, and in the turnover of the protein.

    Science.gov (United States)

    Wallon, U M; Persson, L; Heby, O

    1995-05-10

    When Ehrlich ascites tumor cells were stimulated to grow, their ornithine decarboxylase (ODC) activity increased 20- to 30-fold. The increase in ODC mRNA content was one order of magnitude less during the corresponding period. Likewise, the subsequent changes in ODC activity failed to show proportionality to those of the ODC mRNA content. The changes in ODC activity were not attributable to changes in ODC turnover, even though the half-life of the enzyme decreased from 56 min during the period of increasing, to 36 min during the period of decreasing ODC activity. There was no evidence of an activation-inactivation-cycle for the enzyme. In view of these findings it appears that ODC mRNA alterations are amplified mainly at the translational level. The biphasic change in ODC mRNA content was partly attributable to a change in turnover of the message, as determined after inhibition of transcription with actinomycin D. Thus, the ODC mRNA half-life was estimated to decrease from 8.7 h during the period of increasing ODC activity to 4.0 h during the period of decreasing ODC activity. Despite the inhibition of transcription by actinomycin D, there was a marked superinduction of ODC activity. Our data demonstrate that the regulation of ODC expression is a complex phenomenon, involving controls at many levels.

  19. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    Directory of Open Access Journals (Sweden)

    Yan-Li Yao

    2012-07-01

    Full Text Available Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS and sucrose synthase (SuSy activities. By contrast, neutral invertase (NI activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582 and Ac-ni (accession no. GQ996581 were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.

  20. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B

    2009-01-01

    . In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to beta-actin. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients. RESULTS: The alpha1(IV......). The level of alpha 6(IV) was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p alpha 6(IV) mRNA coincides...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6...

  1. Recognition of nonsense mRNA: towards a unified model.

    Science.gov (United States)

    Mühlemann, Oliver

    2008-06-01

    Among the different cellular surveillance mechanisms that ensure accurate gene expression, nonsense-mediated mRNA decay rapidly degrades mRNAs harbouring PTCs (premature translation-termination codons) and thereby prevents the accumulation of potentially deleterious proteins with C-terminal truncations. In the present article, I review recent data from yeast, fluitflies, nematode worms and human cells and endeavour to merge these results into a unified model for recognition of nonsense mRNA. According to this model, the distinction between translation termination at PTCs and at 'normal' termination codons relies on the physical distance between the terminating ribosome and PABP [poly(A)-binding protein]. Correct translation termination is promoted by a PABP-mediated signal to the terminating ribosome, whereas the absence of this signal leads to the assembly of an mRNA decay-promoting protein complex including the conserved NMD factors UPF (up-frameshift) 1-3.

  2. Post-transcriptional gene regulation by mRNA modifications

    Science.gov (United States)

    Zhao, Boxuan Simen; Roundtree, Ian A.; He, Chuan

    2016-01-01

    The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis. PMID:27808276

  3. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  4. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  5. Stability of alkyl-dihydroxyacetonephosphate synthase in human control and peroxisomal disorder fibroblasts

    NARCIS (Netherlands)

    Biermann, J.; Gootjes, J.; Wanders, R. J.; van den Bosch, H.

    1999-01-01

    Alkyl-dihydroxyacetonephosphate synthase (alkyl-DHAP synthase) is a peroxisomal enzyme that plays a key role in ether phospholipid biosynthesis. To determine the turnover of alkyl-DHAP synthase in several peroxisomal disorders, pulse-chase experiments were performed. In control fibroblasts, mature

  6. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  7. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    DEFF Research Database (Denmark)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with ...

  8. Cloning and expression analysis of an anthocyanidin synthase gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 2. Cloning and expression analysis of an anthocyanidin synthase gene homologue from Brassica carinata. Mingli Yan Suping Ding Lili Liu Xiaoming Yin Jiabin Shu. Research Note Volume 93 Issue 2 August 2014 pp 513-516 ...

  9. Expression of Inducible Nitric Oxide Synthase in the Epithelial ...

    African Journals Online (AJOL)

    Conclusion: iNOS was over expressed in OKCs when compared with DC and RC suggesting that iNOS may contribute to the aggressive behavior of OKC. This is yet another evidence to support that OKC is the neoplasm. Keywords: Dentigerous cyst, Immunohistochemistry, Inducible nitric oxide synthase, Odontogenic ...

  10. Predicting the catalytic sites of isopenicillin N synthase (IPNS ...

    African Journals Online (AJOL)

    Predicting the catalytic sites of isopenicillin N synthase (IPNS) related non-haem iron-dependent oxygenases and oxidases (NHIDOX) through a structural superimposition ... With the advancement of protein structural analysis software, it is possible to predict the catalytic sites of protein that shared a structural resemblance.

  11. Functional isopenicillin N synthase in an animal genome

    NARCIS (Netherlands)

    Roelofs, D.; Timmermans, M.J.T.N.; Hensbergen, P.; van Leeuwen, H.; Koopman, J.; Faddeeva, A.; Suring, W.; de Boer, T.E.; Mariën, J.; Boer, R.; Bovenberg, R.; van Straalen, N.M.

    2013-01-01

    Horizontal transfer of genes is widespread among prokaryotes, but is less common between microorganisms and animals. Here, we present evidence for the presence of a gene encoding functional isopenicillin N synthase, an enzyme in the β-lactam antibiotics biosynthesis pathway, in the genome of the

  12. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  13. Role of Endothelial Nitric Oxide Synthase Gene Polymorphisms ...

    African Journals Online (AJOL)

    Background: Previous studies indicated an association between endothelial nitric oxide synthase (eNOS) activity and maintenance of pregnancy, but it is rather controversial whether polymorphisms of the gene encoding for eNOS are associated with recurrent spontaneous abortions (RSAs). Aim: The aim was to investigate ...

  14. A functional isopenicillin N synthase in an animal genome

    NARCIS (Netherlands)

    Roelofs, D.; Timmermans, M.J.T.N.; Hensbergen, P.J.; van Leeuwen, H.; Koopman, J.; Faddeeva-Vakhrusheva, A.; Suring, W.J.; de Boer, T.E.; Mariën, A.G.H.; Boer, R.; Bovenberg, R.; van Straalen, N.M.

    Horizontal transfer of genes is widespread among prokaryotes, but is less common between microorganisms and animals. Here, we present evidence for the presence of a gene encoding functional isopenicillin N synthase, an enzyme in the β-lactam antibiotics biosynthesis pathway, in the genome of the

  15. Endothelial nitric oxide synthase polymorphism G298T in ...

    Indian Academy of Sciences (India)

    Supplementary data: Endothelial nitric oxide synthase polymorphism G298T in association with oxidative DNA damage in coronary atherosclerosis. Rajesh G. Kumar, Mrudula K. Spurthi, Kishore G. Kumar, Sanjib K. Sahu and Surekha H. Rani. J. Genet. 91, 349–352. Table 1. The demographic and clinical data of the CHD ...

  16. Incidence of UMP synthase deficiency in South African Holstein cattle

    African Journals Online (AJOL)

    Deficiency of uridine monophosphate synthase (DUMPS) is an inherited recessive metabolic defect identified in Holstein cattle. Since heterorygous carriers transmit the defective gene 50% of the time, one fourth of the offspring from matings between two carriers are expected to be homozygous for DUMPS. This is a lethal ...

  17. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes.

  18. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Purpose: To explore the antioxidant properties of the methanol extract of Pericarpium Zanthoxyli and its effect on inducible nitric oxide synthase (iNOS), cycleooxygenase-2 (COX-2) and lipopolysaccharides (LPS)-induced cell damage in macrophage cells. Methods: Anti-oxidant activities were tested by measuring free ...

  19. Endothelial nitric oxide synthase gene Glu298Asp polymorphism ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... eNOS haplotypes associated with gestational hypertension or preeclampsia. Pharmacogenomics, 9(10):. 1467-73. Serrano NC, Casas JP, Diaz LA, Paez C, Mesa CM, Cifuentes R,. Monterrosa A, Bautista A, Hawe E, Hingorani AD, Vallance P, Lopez-. Jaramillo P (2004). Endothelial NO synthase genotype ...

  20. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are

  1. Molecular cloning and expression profiling of a chalcone synthase ...

    Indian Academy of Sciences (India)

    Lamiophlomis rotata is a renowned Chinese medicinal plant. Chalcone synthase (CHS) is important in flavonoid and isoflavonoid biosynthesis, catalysing the formation of naringenin chalcone in plants. A full-length cDNA encoding the CHS gene was cloned from L. rotata based on the highly conserved CHS gene ...

  2. Biosynthesis of polyketides by trans-AT polyketide synthases.

    Science.gov (United States)

    Piel, Jörn

    2010-07-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.

  3. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 and Lipid Peroxidation by Methanol Extract of Pericarpium Zanthoxyli. ... Production of iNOS induced by LPS was significantly (p < 0.05) inhibited by the extract, suggesting that the extract inhibits nitric oxide (NO) production by suppressing iNOS expression.

  4. Nucleotide variation at the methionine synthase locus in an ...

    African Journals Online (AJOL)

    Nucleotide variation at the methionine synthase (MetE) locus within and among populations of an endangered forest tree Fokienia hodginsii in Vietnam was investigated in the present study. A total of 12 populations were sampled across Vietnam. The length of the sequenced locus varied from 1567 to 1559 bp. A total of 42 ...

  5. Control of malate synthase formation in Rhizopus nigricans.

    Science.gov (United States)

    Wegener, W S; Schell, J; Romano, A H

    1967-12-01

    The control of malate synthase formation in a fumaric acid-producing strain of Rhizopus nigricans has been found to be similar in most respects to that of isocitrate lyase, the companion enzyme of the glyoxylate bypass. A basal level is formed in a casein hydrolysate medium, which is repressed by glucose. Utilization of glucose during growth results in relief of glucose repression. Any factor which stimulates growth promotes relief of glucose repression by enhancing the incorporation of repressor metabolites derived from glucose into cell material. Thus, malate synthase formation was enhanced in glucose-containing media by the addition of zinc, or by an increase of the concentration of available nitrogen source in a synthetic medium. Both acetate and glycolate acted as apparent inducers of malate synthase, with glycolate the more effective of the two when added alone. Acetate induction was enhanced by Zn(++), however, whereas induction by glycolate was unaffected. This supports the concept that acetate stimulates formation of glyoxylate bypass enzymes by a derepression mechanism, whereas glycolate or a product derived from it acts directly as an inducer. Moreover, it is indicated that the malate synthases induced by acetate and glycolate are separate and distinct, as has been shown in Escherichia coli.

  6. Aldosterone synthase C-344T, angiotensin II type 1 receptor ...

    Indian Academy of Sciences (India)

    Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin ...

  7. Templating effects in aristolochene synthase catalysis: elimination versus cyclisation.

    Science.gov (United States)

    Faraldos, Juan A; González, Verónica; Senske, Michael; Allemann, Rudolf K

    2011-10-21

    Analysis of the products generated by mutants of aristolochene synthase from P. roqueforti (PR-AS) revealed the prominent structural role played by the aliphatic residue Leu 108 in maintaining the productive conformation of farnesyl diphosphate to ensure C1-C10 (σ-bond) ring-closure and hence (+)-aristolochene production.

  8. The role of aristolochene synthase in diphosphate activation.

    Science.gov (United States)

    Faraldos, Juan A; Gonzalez, Veronica; Allemann, Rudolf K

    2012-03-28

    Analysis of the role of amino acids involved in diphosphate binding in the Michaelis complex of aristolochene synthase from P. roqueforti (PR-AS) reveals mechanistic details about leaving group (PPi) activation and the nature of the active site acid. This journal is © The Royal Society of Chemistry 2012

  9. Functional Characterization of Sesquiterpene Synthase from Polygonum minus

    Directory of Open Access Journals (Sweden)

    Su-Fang Ee

    2014-01-01

    Full Text Available Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS has a complete open reading frame (ORF of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.

  10. Sequence analysis of cereal sucrose synthase genes and isolation ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... comparative analysis of grass genomes and as a source of beneficial genes for agriculture. Recent studies have shown that ... sequencing of sucrose synthase gene fragment from sor- ghum using primers designed at their ... Sequencing was carried out by Sanger dideoxy DNA sequencing method. Results.

  11. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the

  12. Contribution of granule bound starch synthase in kernel modification

    African Journals Online (AJOL)

    ACSS

    The role of gbssI and gbssII genes, encoding granule bound starch synthase enzyme I and II, respectively, in quality protein maize (QPM) were studied at different days after pollination. (DAP). Total RNA was used for first strand cDNA synthesis using the ImpromIISriptTM reverse transcriptase. No detectable levels of gbssI ...

  13. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differential expression analysis of the three EtCesA genes using qRT-PCR revealed 49 to 87 fold relative ...

  14. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    ondary cell wall deposition. The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differen- tial expression analysis of the three EtCesA genes using qRT-PCR revealed ...

  15. Endothelial nitric oxide synthase polymorphism G298T in ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jgen/091/03/0349-0352. Keywords. coronary artery disease; endothelial nitric oxide synthase; myocardial infarction; reactive oxygen species. Author Affiliations. Rajesh G. Kumar1 Mrudula K. Spurthi1 Kishore G. Kumar1 Sanjib K. Sahu2 Surekha H. Rani1. Department of Genetics, Osmania ...

  16. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  17. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  18. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  19. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family.

    Science.gov (United States)

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three "Arabidopsis-like" subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of oilseeds

  20. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi.

    Science.gov (United States)

    Zhang, De-Huai; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-02-01

    Ganoderic acids (GAs) in Ganoderma lingzhi exhibit anticancer and antimetastatic activities. GA yields can be potentially improved by manipulating G. lingzhi through genetic engineering. In this study, a putative lanosterol synthase (LS) gene was cloned and overexpressed in G. lingzhi. Results showed that its overexpression (OE) increased the ganoderic acid (GA) content and the accumulation of lanosterol and ergosterol in a submerged G. lingzhi culture. The maximum contents of GA-O, GA-Mk, GA-T, GA-S, GA-Mf, and GA-Me in transgenic strains were 46.6 ± 4.8, 24.3 ± 3.5, 69.8 ± 8.2, 28.9 ± 1.4, 15.4 ± 1.2, and 26.7 ± 3.1 μg/100 mg dry weight, respectively, these values being 6.1-, 2.2-, 3.2-, 4.8-, 2.0-, and 1.9-times higher than those in wild-type strains. In addition, accumulated amounts of lanosterol and ergosterol in transgenic strains were 2.3 and 1.4-fold higher than those in the control strains, respectively. The transcription level of LS was also increased by more than five times in the presence of the G. lingzhi glyceraldehyde-3-phosphate dehydrogenase gene promoter, whereas transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A enzyme and squalene synthase did not change significantly in transgenic strains. This study demonstrated that OE of the homologous LS gene can enhance lanosterol accumulation. A large precursor supply promotes GA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction.

    OpenAIRE

    Grogan, D W; Cronan, J E

    1984-01-01

    Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and C...

  2. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  3. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice

    Directory of Open Access Journals (Sweden)

    Masato Tsutsui

    2015-01-01

    Full Text Available Nitric oxide (NO is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs, all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling, lung abnormalities (accelerated pulmonary fibrosis, and bone abnormalities (increased bone mineral density and bone turnover. These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.

  4. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe B; von Wettstein-Knowles, Penny

    2007-01-01

    activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high...

  6. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  7. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease

    Directory of Open Access Journals (Sweden)

    Nicholas P Clayton

    2014-01-01

    Full Text Available Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20 and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1 was identified and conjugated to a cell penetrating peptide (GS-PPMO to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development.

  8. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease

    Science.gov (United States)

    Clayton, Nicholas P; Nelson, Carol A; Weeden, Timothy; Taylor, Kristin M; Moreland, Rodney J; Scheule, Ronald K; Phillips, Lucy; Leger, Andrew J; Cheng, Seng H; Wentworth, Bruce M

    2014-01-01

    Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20) and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA) has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis) as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO) designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1) was identified and conjugated to a cell penetrating peptide (GS-PPMO) to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development. PMID:25350581

  9. Xplore mRNA assays for the quantification of IL-1 beta and TNF-alpha mRNA in lipopolysaccharide-induced mouse macrophages

    National Research Council Canada - National Science Library

    Van Arsdell, S W; Murphy, K P; Pazmany, C; Erickson, D; Burns, C; Moody, M D

    2000-01-01

    Because the accurate measurement of a number of cytokine mRNA transcripts provides valuable knowledge about cytokine gene regulation, we have developed the Xplore assay for the quantification of cytokine mRNA...

  10. Effect of biliary drainage on inducible nitric oxide synthase, CD14 and TGR5 expression in obstructive jaundice rats

    Science.gov (United States)

    Wang, Zi-Kai; Xiao, Jian-Guo; Huang, Xue-Fei; Gong, Yi-Chun; Li, Wen

    2013-01-01

    AIM: To investigate the effect of biliary drainage on inducible nitric oxide synthase (iNOS), CD14 and TGR5 expression in rats with obstructive jaundice (OJ). METHODS: Male adult Sprague-Dawley rats were randomly assigned to four groups: OJ, sham operation (SH), internal biliary drainage (ID) and external biliary drainage (ED). Rat models were successfully established by two operations and succumbed for extraction of Kupffer cells (KCs) and liver tissue collection on the 8th and 15th day. KCs were isolated by in situ hepatic perfusion and digested with collagen IV, density gradient centrifuged by percoll reagent and purified by cell culture attachment. The isolated KCs were cultured with the endotoxin lipopolysaccharide (LPS) with and without the addition of ursodeoxycholic acid (UDCA). The expression of iNOS, CD14 and bile acid receptor-TGR5 protein in rat liver tissues was determined by immunohistochemistry. The expression of iNOS and CD14 messenger RNA (mRNA) on the isolated KCs was detected by reverse transcription polymerase chain reaction (PCR) and the TGR5 mRNA level in KCs was measured by real-time quantitative PCR. RESULTS: The iNOS protein was markedly expressed in the liver of OJ rats, but rare expressed in SH rats. After relief of OJ, the iNOS expression was decidedly suppressed in the ID group (ID vs OJ, P < 0.01), but obviously increased in rats of ED (ED vs OJ, P = 0.004). When interfered only with LPS, the expression of iNOS mRNA by KCs was increased in the OJ group compared with the SH group (P = 0.004). After relief of biliary obstruction, the iNOS mRNA expression showed slight changes in the ED group (ED vs OJ, P = 0.71), but dropped in the ID group (ID vs OJ, P = 0.001). Compared with the simple intervention with LPS, the expressions of iNOS mRNA were significantly inhibited in all four groups after interfered with both LPS and UDCA (P < 0.01, respectively). After bile duct ligation, the CD14 protein expression in rat liver was significantly

  11. Positive regulation of corneal type V collagen mRNA: analysis by chicken-human heterokaryon formation.

    Science.gov (United States)

    Linsenmayer, T F; Igoe, F; Gibney, E; Gordon, M K; Birk, D E

    1996-10-10

    Our previous studies have suggested that type V collagen is at least one factor responsible for the characteristically small, uniform diameter of striated collagen fibrils of the corneal stroma. These fibrils, which are heterotypic combinations of collagen types I and V, contain four- to fivefold more type V collagen than those of tendon and sclera. The latter are much larger and more heterodisperse. This high content of type V collagen in cornea is reflected by an equally elevated content of alpha1(V) chain mRNA in corneal fibroblasts. Thus, the increased production of the molecule in cornea appears to be regulated at the level of transcription and/or mRNA stability. One possible explanation for this is that corneal fibroblasts contain positive regulatory factors that specifically upregulate transcription of the type V collagen genes and/or increase their mRNA stability. To test this possibility, we have produced transient heterokaryons by fusing chicken corneal fibroblasts with two human noncorneal cell lines selected as containing little if any alpha1(V) mRNA. If the chicken corneal cells contain positive regulators that can act across species, these regulators should result in increased levels of the human alpha1(V) transcript. The results were evaluated by reverse transcript-polymerase chain reaction employing a primer pair selected for its ability specifically to amplify part of the human alpha1(V) mRNA. In fusions between chicken corneal fibroblasts and the human cell lines, after a lag of 10-14 h the heterokaryon-containing cultures showed de novo appearance or upregulation of human alpha1(V) chain mRNA, compared with that of the parental cell lines. Cultures of the mixed cell types that had not been fused showed no such upregulation, so the effect was not mediated by diffusible substances acting between the cells. Chicken tendon fibroblasts, a low producer of type V collagen, when tested in the same assay, evoked no detectible increase in the human

  12. Association between VDAC1 mRNA expression and intracellular ...

    African Journals Online (AJOL)

    One way in which xenobiotics induce apoptotic cell death is to alter the selective permeability of the intracellular voltage-dependent anion channel (VDAC1) in the mitochondrial membrane. In this study, we explored the association between VDAC1 mRNA expression and mitochondrial function during hexavalent chromium ...

  13. Cytokine mRNA expression during experimental corneal allograft rejection

    NARCIS (Netherlands)

    Torres, P. F.; de Vos, A. F.; van der Gaag, R.; Martins, B.; Kijlstra, A.

    1996-01-01

    Allograft rejection is the main cause of corneal graft failure. T lymphocytes and macrophages have been implied to be involved in corneal rejection, but little is known about the molecular mechanism in this process. In this study, cytokine mRNA expression in the cornea was analysed during

  14. Human mRNA response to exercise and temperature.

    Science.gov (United States)

    Slivka, D R; Dumke, C L; Tucker, T J; Cuddy, J S; Ruby, B

    2012-02-01

    The purpose of this research was to determine the mRNA response to exercise in different environmental temperatures. 9 recreationally active males (27±1 years, 77.4±2.7  kg, 13.5±1.5% fat, 4.49±0.15  L · min (-1) VO2 max) completed 3 trials consisting of 1 h cycling exercise at 60% Wmax followed by a 3 h recovery in the cold (7°C), room temperature (20°C), and hot (33°C) environments. Muscle biopsies were obtained pre, post, and 3 h post exercise for the analysis of glycogen and mRNA. Expired gases were collected to calculate substrate use. PGC-1α increased to a greater degree in the cold trial than in the room temperature trial (p=0.036) and the hot trial (p=0.006). PGC1-α mRNA was also higher after the room temperature trial than the hot trial (p=0.050). UCP3 and MFN2 mRNA increased with exercise (pcold than exercise in the heat. However, VO2 was higher during recovery in the cold trial than in the room temperature and hot trials (p<0.05). This study presents evidence of PGC-1α temperature sensitivity in human skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  16. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    Jane

    2011-07-13

    Jul 13, 2011 ... This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye. (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results.

  17. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    Directory of Open Access Journals (Sweden)

    Amandine Bonnet

    2014-09-01

    Full Text Available Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs. mRNPs are then exported through nuclear pore complexes (NPCs, which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed.

  18. MRNA-based skin identification for forensic applications

    NARCIS (Netherlands)

    M. Visser (Mijke); D. Zubakov (Dmitry); K. Ballantyne (Kaye); M.H. Kayser (Manfred)

    2011-01-01

    textabstractAlthough the identification of human skin cells is of important relevance in many forensic cases, there is currently no reliable method available. Here, we present a highly specific and sensitive messenger RNA (mRNA) approach for skin identification, meeting the key requirements in

  19. Restoration of tryptophan hydroxylase functions and serotonin content in the Atlantic croaker hypothalamus by antioxidant treatment during hypoxic stress.

    Science.gov (United States)

    Rahman, Md Saydur; Thomas, Peter

    2014-01-01

    Antioxidants are prototypical scavengers of oxygen-free radicals and have been shown to prevent neuroendocrine dysfunction in vertebrates during oxidative stress. In the present study, we investigated whether antioxidant treatment can reverse hypoxia-induced down-regulation of hypothalamic tryptophan hydroxylase (TPH) and serotonergic functions in Atlantic croaker. Hypothalamic neuronal contents of TPH-1 and TPH-2 proteins, serotonin (5-hydroxytryptamine, 5-HT) and its precursor, 5-hydroxytryptophan (5-HTP) as well as hypothalamic TPH-1 and TPH-2 mRNA expression and TPH activity were measured in croaker after exposure to hypoxia and treatment with pharmacological agents. Multiple injections of N-ethylmaleimide, a sulfhydryl alkylating agent, caused comparable decreases in hypothalamic TPHs functions and 5-HT contents to that induced by hypoxia exposure (dissolved oxygen: 1.7 mg/L for 4 weeks) which were partially restored by repeated injections with a nitric oxide synthase (NOS)-inhibitor and/or vitamin E. Double-labeled immunohistochemical results showed that TPHs and 5-HT neurons were co-expressed with neuronal NOS (nNOS, a neuroenzyme) that catalyzes the production of nitric oxide, a free radical, in hypothalamic neurons. These results suggest that hypoxia-induced impairment of TPH and serotonergic functions are mediated by nNOS and involve the generation of free radicals and a decrease in the antioxidant status. This study provides, to our knowledge, the first evidence of a protective role for an antioxidant in maintaining neural TPHs functions and 5-HT regulation in an aquatic vertebrate during hypoxic stress.

  20. Restoration of tryptophan hydroxylase functions and serotonin content in the Atlantic croaker hypothalamus by antioxidant treatment during hypoxic stress

    Directory of Open Access Journals (Sweden)

    Md. Saydur Rahman

    2014-05-01

    Full Text Available Antioxidants are prototypical scavengers of oxygen-free radicals and have been shown to prevent neuroendocrine dysfunction in vertebrates during oxidative stress. In the present study, we investigated whether antioxidant treatment can reverse hypoxia-induced down-regulation of hypothalamic tryptophan hydroxylase (TPH and serotonergic functions in Atlantic croaker. Hypothalamic neuronal contents of TPH-1 and TPH-2 proteins, serotonin (5-hydroxytryptamine, 5-HT and its precursor, 5-hydroxytryptophan (5-HTP as well as hypothalamic TPH-1 and TPH-2 mRNA expression and TPH activity were measured in croaker after exposure to hypoxia and treatment with pharmacological agents. Multiple injections of N-ethylmaleimide, a sulfhydryl alkylating agent, caused comparable decreases in hypothalamic TPHs functions and 5-HT contents to that induced by hypoxia exposure (dissolved oxygen: 1.7 mg/L for 4 weeks which were partially restored by repeated injections with a nitric oxide synthase (NOS-inhibitor and/or vitamin E. Double-labeled immunohistochemical results showed that TPHs and 5-HT neurons were co-expressed with neuronal NOS (nNOS, a neuroenzyme that catalyzes the production of nitric oxide, a free radical, in hypothalamic neurons. These results suggest that hypoxia-induced impairment of TPH and serotonergic functions are mediated by nNOS and involve the generation of free radicals and a decrease in the antioxidant status. This study provides, to our knowledge, the first evidence of a protective role for an antioxidant in maintaining neural TPHs functions and 5-HT regulation in an aquatic vertebrate during hypoxic stress.

  1. Sequence and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency

    Science.gov (United States)

    Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.

    2013-01-01

    Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144

  2. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    Science.gov (United States)

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  3. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    Science.gov (United States)

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases.

  4. Thromboxane synthase regulates the migratory phenotype of human glioma cells.

    OpenAIRE

    Giese, A.; Hagel, C; Kim, E L; Zapf, S.; Djawaheri, J.; Berens, M. E.; M. Westphal

    1999-01-01

    The capacity of glial tumor cells to migrate and diffusely infiltrate normal brain compromises surgical eradication of the disease. Identification of genes associated with invasion may offer novel strategies for anti-invasive therapies. The gene for TXsyn, an enzyme of the arachidonic acid pathway, has been identified by differential mRNA display as being overexpressed in a glioma cell line selected for migration. In this study TXsyn mRNA expression was found in a large panel of glioma cell l...

  5. Altered Wnt signalling in the teenage suicide brain: focus on glycogen synthase kinase-3β and β-catenin.

    Science.gov (United States)

    Ren, Xinguo; Rizavi, Hooriyah S; Khan, Mansoor A; Dwivedi, Yogesh; Pandey, Ghanshyam N

    2013-06-01

    Glycogen synthase kinase (GSK)-3β and β-catenin are important components of the Wnt signalling pathway, which is involved in numerous physiological functions such as cognition, brain development and cell survival. Their abnormalities have been implicated in mood disorders and schizophrenia. Teenage suicide is a major public health concern; however, very little is known about its neurobiology. In order to examine if abnormalities of GSK-3β and β-catenin are associated with teenage suicide, we determined the gene and protein expression of GSK-3β and β-catenin in the prefrontal cortex (PFC) and hippocampus obtained from 24 teenage suicide victims and 24 normal control subjects. Protein expression was determined using Western blot with specific antibodies and gene expression (mRNA levels) was determined using the real-time polymerase chain reaction method. No significant change was observed in the GSK-3β protein levels either in the PFC or hippocampus of suicide victims compared to controls. However, protein levels of pGSK-3β-ser(9) were significantly decreased in the PFC and hippocampus of suicide victims compared to normal controls. We also found that GSK-3β mRNA levels were significantly decreased in the PFC but not in the hippocampus of teenage suicide victims compared to controls. Mean protein and mRNA levels of β-catenin were significantly decreased in both the PFC and hippocampus of teenage suicide group compared to controls. The observation that there is a decrease in β-catenin and pGSK-3β-ser(9) in the PFC and hippocampus of teenage suicide victims does indicate a disturbance in the Wnt signalling pathway in teenage suicide.

  6. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq.

    Science.gov (United States)

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-11-18

    Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25DeltacrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  7. Invariant mRNA and mitotic protein breakdown solves the Russian Doll problem of the cell cycle.

    Science.gov (United States)

    Cooper, Stephen; Shedden, Kerby; Vu-Phan, Dang

    2009-01-01

    It has been proposed that cyclical gene expression occurs at a large number of different times during the cell cycle. The existence of a large number of cycle-specific variations in mRNA and protein during the eukaryotic cell cycle raises the problem of how cell-cycle variations are regulated. This is the "infinite regression" or Russian Doll problem where postulating a cell-cycle specific control element pushes the explanation of cell-cycle variation back one step to the problem of how that control element varies during the cell cycle. PCR studies on unperturbed cells indicate Cyclin mRNA content is invariant during the cell cycle. Furthermore, calculations reveal that variations in mRNA content do not account for observed protein variations. Continuous and constant gene expression during the cell cycle, continuous protein accumulation, and protein breakdown only within the mitotic window solves the Russian Doll problem or infinite regression problem. These results, and theoretical ideas support an alternative view of the cell cycle where many of the proposed control systems do not exist.

  8. Exercise Training and Work Task Induced Metabolic and Stress-Related mRNA and Protein Responses in Myalgic Muscles

    Directory of Open Access Journals (Sweden)

    Gisela Sjøgaard

    2013-01-01

    Full Text Available The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training.

  9. Hfq affects mRNA levels independently of degradation

    Directory of Open Access Journals (Sweden)

    Hajnsdorf Eliane

    2010-02-01

    Full Text Available Abstract Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript

  10. Effect of sodium hydrosulfide on mRNA expression of prostaglandin E2 receptors in response to mucosal acidification and distention-induced gastric acid secretion in rats

    Directory of Open Access Journals (Sweden)

    Seyyed Ali Mard

    2017-02-01

    Full Text Available Objective(s: Prostaglandins have been shown to mediate the gastro-protective effect of sodium hydrosulfide (NaHS but effect of NaHS on mRNA expression of prostaglandin E2 receptors (EP1, 3-4; EPs has not been investigated. Therefore, this study designed to evaluate the effect of NaHS on mRNA expression of EPs receptors in response to mucosal acidification and distention-induced gastric acid secretion in rats. Materials and Methods: Fasted rats were randomly assigned into 4 groups (n=6/group. They were control, and NaHS-treated groups. To evaluate the effect of NaHS on mucosal mRNA expression of EPs receptors, the gastric mucosa exposed to stimulated gastric acid output and mucosal acidification. The pylorus sphincter catheterized for instillation of isotonic neutral saline or acidic solution. Ninety min after beginning the experiments, animals sacrificed and the gastric mucosa collected to determine the pH, mucus secretion and to quantify the mRNA expression of EPs receptors by quantitative real-time PCR. Results: present results showed that a NaHS increased the mucus secretion, mRNA expression of EP3 and EP4 receptors in response to distention-induced expression; b The mRNA expression of EP1 receptors increased while EP4 mRNA receptors decreased in response to mucosal acidification in NaHS-pretreated rats; and c NaHS increased pH of gastric contents both in response to distention-induced gastric acid secretion and mucosal acidification. Conclusion: NaHS behaves in a different manner. It effectively only increased the pH of gastric contents to reinforce the gastric mucosa against a highly acidic solution but modulated both acid and mucus secretion when the rate of acid increase in the stomach was slower.

  11. Alternative mRNA Splicing from the Glial Fibrillary Acidic Protein (GFAP) Gene Generates Isoforms with Distinct Subcellular mRNA Localization Patterns in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Daugaard, Tina Fuglsang; Holm, Ida E

    2013-01-01

    The intermediate filament network of astrocytes includes Glial fibrillary acidic protein (Gfap) as a major component. Gfap mRNA is alternatively spliced resulting in generation of different protein isoforms where Gfapa is the most predominant isoform. The Gfapd isoform is expressed in proliferating......RNA localization patterns were dependent on the different 39-exon sequences included in Gfapd and Gfapa mRNA. The presented results show that alternative Gfap mRNA splicing results in isoform-specific mRNA localization patterns with resulting different local mRNA concentration ratios which have potential...

  12. Lymphoid organ mRNA translatability in rats: effect of protein energy undernutrition in early life.

    Science.gov (United States)

    Srivastava, U S; Thakur, M L; Majumdar, P K; Bhatnagar, G M; Supakar, P C

    1987-02-01

    Synthesis of mRNA was studied in the spleen and thymus of rats that had been exposed to undernutrition early in life. To achieve this objective, lactating females were separated into two groups 1 wk after they gave birth to offspring. These control and experimental dams suckled 8-11 and 13-16 pups, respectively, for a period of 2 wk. The young of both groups were then killed, and their thymus and spleen were isolated. Polyadenylated RNA (poly A+ RNA) was fractionated by affinity chromatography on an oligo-dT-cellulose column. Poly A+ RNA content as well as the percentage of poly A+ RNA in relation to total RNA were both lower in the undernourished pups than in the controls. Analysis of the in vitro translation product primed by poly A+ RNA of the thymus and spleen revealed a rise in [35S]methionine incorporation in the undernourished offspring, the increase being greater in the thymus than in the spleen. Sodium dodecyl sulfate polyacrylamide-gel electrophoresis, autoradiography and densitometric autoradiographic tracings confirmed these findings and demonstrated that proteins were synthesized at a higher level in the spleen and thymus of the undernourished rats than in the controls. These results show that undernutrition early in life could modulate the metabolism of mRNA and, consequently, protein synthesis in the lymphoid organs of rats. Furthermore, the data suggest that cell-mediated immunity as well as humoral immunity are both deranged in protein energy undernutrition.

  13. Targeting Bacterial Nitric Oxide Synthase with Aminoquinoline-Based Inhibitors.

    Science.gov (United States)

    Holden, Jeffrey K; Lewis, Matthew C; Cinelli, Maris A; Abdullatif, Ziad; Pensa, Anthony V; Silverman, Richard B; Poulos, Thomas L

    2016-10-04

    Nitric oxide is produced in Gram-positive pathogens Bacillus anthracis and Staphylococcus aureus by the bacterial isoform of nitric oxide synthase (NOS). Inhibition of bacterial nitric oxide synthase (bNOS) has been identified as a promising antibacterial strategy for targeting methicillin-resistant S. aureus [Holden, J. K., et al. (2015) Chem. Biol. 22, 785-779]. One class of NOS inhibitors that demonstrates antimicrobial efficacy utilizes an aminoquinoline scaffold. Here we report on a variety of aminoquinolines that target the bacterial NOS active site, in part, by binding to a hydrophobic patch that is unique to bNOS. Through mutagenesis and crystallographic studies, our findings demonstrate that aminoquinolines are an excellent scaffold for further aiding in the development of bNOS specific inhibitors.

  14. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    Science.gov (United States)

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  15. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Baoshan Liu

    2017-09-01

    Full Text Available Objective: As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1 and the risk level in MDS. Materials and Methods: There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/ TPP1/POT1/RAP1 in patients with MDS. Results: Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS and the World Health Organization Prognostic Scoring System (WPSS criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Conclusion: Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins’ mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  16. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine

  17. Use of linalool synthase in genetic engineering of scent production

    Science.gov (United States)

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  18. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and sex showed no such changes. Our data support the hypothesis that NO is a pathogenic factor in MS, and that NOS IR is strongly expressed in brain regions appearing normal by MRI...

  19. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Piriformospora indica requires kaurene synthase activity for successful plant colonization.

    Science.gov (United States)

    Li, Liang; Chen, Xi; Ma, Chaoyang; Wu, Hongqing; Qi, Shuting

    2016-05-01

    Ent-kaurene (KS) synthases and ent-kaurene-like (KSL) synthases are involved in the biosynthesis of phytoalexins and/or gibberellins which play a role in plant immunity and development. The relationship between expression of five synthase genes (HvKSL1, HvKS2, HvKS4, HvKS5, HvKSL4) and plant colonization by the endophytic fungus Piriformospora indica was assessed in barley (Hordeum vulgare). The KS gene family is differently up-regulated at 1, 3 and 7 day after P. indica inoculation. By comparison, the HvKSL4 gene expression pattern is more significantly affected by UV irradiation and P. indica colonization. The characterizations of two silencing lines (HvKSL1-RNAi, HvKSL4-RNAi) also were analyzed. HvKSL1-RNAi and HvKSL4-RNAi lines in the first generation lead to less dark green leaves and slower plant development. Further, reduced spikelet fertility in progenies of RNAi plants heterozygous for HvKSL1 were observed, but not for HvKSL4. T2 generation of HvKSL1-RNAi line showed semi-dwarf phenotype while the wild type phenotype could be restored by applying GA3. Silencing of HvKSL4 and HvKSL1 resulted in reduced colonization by P. indica especially in the HvKSL1-RNAi line. These results probably suggest the presence of two ent-KS synthase in barley, one (HvKSL1) that participates in the biosynthesis of GAs and another (HvKSL4) that is involved in the biosynthesis of phytoalexins. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Detrimental ELAVL-1/HuR-dependent GSK3β mRNA stabilization impairs resolution in acute respiratory distress syndrome.

    Directory of Open Access Journals (Sweden)

    Olivia Hoffman

    Full Text Available A hallmark of acute respiratory distress syndrome (ARDS is accumulation of protein-rich edema in the distal airspaces and its removal is critical for patient survival. Previous studies have shown a detrimental role of Glycogen Synthase Kinase (GSK 3β during ARDS via inhibition of alveolar epithelial protein transport. We hypothesized that post-transcriptional regulation of GSK3β could play a functional role in ARDS resolution. To address this hypothesis, we performed an in silico analysis to identify regulatory genes whose expression correlation to GSK3β messenger RNA utilizing two lung cancer cell line array datasets. Among potential regulatory partners of GSK3β, these studies identified the RNA-binding protein ELAVL-1/HuR (Embryonic Lethal, Abnormal Vision, Drosophila-Like as a central component in a likely GSK3β signaling network. ELAVL-1/HuR is a RNA-binding protein that selectively binds to AU-rich elements of mRNA and enhances its stability thereby increasing target gene expression. Subsequent studies with siRNA suppression of ELAVL-1/HuR demonstrated deceased GSK3β mRNA and protein expression and improved clearance of FITC-albumin in A549 cells. Conversely, stabilization of ELAVL-1/HuR with the proteasome inhibitor MG-132 resulted in induction of GSK3β at mRNA and protein level and attenuated FITC-albumin clearance. Utilizing ventilator-induced lung injury or intra-tracheal installation of hydrochloric acid to induce ARDS in mice, we observed increased mRNA and protein expression of ELAVL-1/HuR and GSK3β. Together, our findings indicate a previously unknown interaction between GSK3β and ELAV-1 during ARDS, and suggest the inhibition of the ELAV-1- GSK3β pathways as a novel ARDS treatment approach.

  2. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis.

    Science.gov (United States)

    Xu, Beibei; Qian, Kun; Zhang, Nan; Miao, Lijun; Cai, Jingxuan; Lu, Mingxing; Du, Yuzhou; Wang, Jianjun

    2017-10-01

    Juvenile hormone (JH) regulates the development and reproduction of insects. The sublethal effects of chlorantraniliprole on JH levels and mRNA expression of JH acid methyltransferase gene (CsJHAMT) and farnesyl diphosphate synthase genes (CsFPPS1 and CsFPPS2) in Chilo suppressalis (Walker) were investigated. Exposure of sublethal concentrations of chlorantraniliprole (LC10 and LC30 ) to the third instar larvae of C. suppressalis significantly increased the JH levels in all developmental stages investigated including larvae 72 h after treatment, the first, third and fifth day of female pupae, as well as newly emerged, 12-h-old and 24-h-old female adults. A general trend of increased mRNA expression levels of CsJHAMT, CsFPPS1and CsFPPS2 was also observed in LC10 and LC30 treatment groups. Notably, the mRNA expression level of CsJHAMT significantly increased by 7.46-fold in the larvae 72 h after LC30 treatment. A significant increase of the mRNA expression levels of CsFPPS2 was also observed in the fifth day female pupae of LC10 and LC30 treatment groups (2.60-fold and 2.62-fold, respectively) as well as in 12-h-old female adults of the LC30 treatment group (3.45-fold). Sublethal concentrations of chlorantraniliprole might upregulate the expression of JH biosynthesis genes and in turn result in an increase of JH level in C. suppressalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...... response. Thus, our data suggest a role for IL-21 in the early stages of adaptive immune response against virus infections....

  4. Translation with frameshifting of ribosome along mRNA transcript

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Translation is an important process for prokaryotic and eukaryotic cells to produce necessary proteins for cell growth. Numerious experiments have been performed to explore the translational properties. Diverse models have also been developed to determine the biochemical mechanism of translation. However, to simplify the majority of the existing models, the frameshifting of ribosome along the mRNA transcript is neglected, which actually occurs in real cells and has been extensively experimentally studied. The frameshifting of ribosome evidently influences the efficiency and speed of translation, considering that the peptide chains synthesized by shifted ribosomes will not fold into functional proteins and will degrade rapidly. In this study, a theoretical model is presented to describe the translational process based on the model for totally asymmetric simple exclusion process. In this model, the frameshifting of the ribosome along the mRNA transcript and the attachment/detachment of the ribosome to/from the ...

  5. Translatability of rat kidney mRNA after mercury administration.

    Science.gov (United States)

    Samji, S; Kuliszewski, M J; Girgis, G R; Nicholls, D M

    1985-09-01

    Young male rats received an intraperitoneal injection of 0.5 mg HgCl2/kg body weight and 16 h later the kidneys were removed and homogenized to prepare the polysomal fraction from which the poly(A)+ RNA was obtained. The activity of this fraction was assessed by translating the poly(A)+ RNA in a mRNA-dependent rabbit reticulocyte lysate and the activity was markedly elevated relative to preparations from control rat kidneys. The incorporation of labelled leucine and cysteine, but not phenylalanine, into a low molecular weight protein (approximately 10 000 as judged by denaturing polyacrylamide gel electrophoresis) accounted for the increased mRNA activity. The mobility during electrophoresis of the denatured labelled product and carboxymethylated product, as well as their acidic isoelectric points, provided evidence that it is metallothionein mRNA which exhibits increased translatability in preparations derived from mercury-treated rats.

  6. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  7. Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Radwanski, E R; Barczak, A J; Last, R L

    1996-12-13

    Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant.

  8. Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T.

    Science.gov (United States)

    Beller, H R; Spormann, A M

    1999-09-01

    Benzylsuccinate synthase, which catalyzes the anaerobic addition of the methyl carbon of toluene to fumarate, has recently been reported in several denitrifying and sulfate-reducing, toluene-degrading bacteria. In substrate range studies with partially purified benzylsuccinate synthase from denitrifying Azoarcus sp. strain T, benzylsuccinate analogs were observed as a result of fumarate addition to the following toluene surrogates: xylenes, monofluorotoluenes, benzaldehyde, and 1-methyl-1-cyclohexene (but not 4-methyl-l-cyclohexene or methylcyclohexane). Benzylsuccinate was also observed as a result of toluene addition to maleate, but no products were observed from assays with toluene and either crotonate or trans-glutaconate. Toluene-maleate addition, like toluene-fumarate addition, resulted in highly stereospecific formation of the (+)-benzylsuccinic acid enantiomer [(R)-2-benzyl-3-carboxypropionic acid]. The previously reported finding that the methyl H atom abstracted from toluene is retained in the succinyl moiety of benzylsuccinate was found to apply to several toluene surrogates. The implications of these observations for the mechanism of benzylsuccinate synthase will be discussed.

  9. Multi-substrate terpene synthases: their occurrence and physiological significance

    Directory of Open Access Journals (Sweden)

    Leila Pazouki

    2016-07-01

    Full Text Available Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15, and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5, mono- (C10 and diterpenes (C20. Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  10. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  11. The effect of inoculation with mycorrhizal arbuscular fungi on expression of limonene synthase in Mentha spicata L. genotypes

    Directory of Open Access Journals (Sweden)

    Leila Shabani

    2015-03-01

    Full Text Available Spearmint (Mentha spicata L. is an important economical and medicinal plant from Lamiaceae family, which has gained research attraction as a model for biosynthesis of essential oils due to its high capability for synthesis of monoterpenes. Limonene is a simple monoterpene and its biosynthesis is catalyzed by limonene synthase a key regulatory enzyme in the biosynthesis pathway of monoterpenes in spearmint plant. This study was concerned with the effect of colonization of roots with Funneliformis mosseae and F. etunicatum fungi on spearmint plant growth indices, leaf essential oils and changes in the expression of limonene synthase (LS gene. This study also explained the application of GADPH gene as the internal standard for real-time quantitative PCR (RTqPCR analysis of LS in spearmints. Our results showed that essential oil content of leaf in spearmint genotype Meybod inoculated with F. etunicatum was higher than that of genotypes from populations Kashan and Bojnourd and was 130% higher than the control. According to the results of this study, increase in transcript accumulation of the LS gene in leaves of spearmint plants inoculated with F. etunicatum was concordant with the increased essential oil contents and was dependent on the plant genotype.

  12. ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice.

    Science.gov (United States)

    Bi, Zhenzhen; Zhang, Yingxin; Wu, Weixun; Zhan, Xiaodeng; Yu, Ning; Xu, Tingting; Liu, Qunen; Li, Zhi; Shen, Xihong; Chen, Daibo; Cheng, Shihua; Cao, Liyong

    2017-06-01

    Glutamate synthase (GOGAT) is a key enzyme for nitrogen metabolism and ammonium assimilation in plants. In this study, an early senescence 7 (es7) mutant was identified and characterized. The leaves of the es7 mutant begin to senesce at the tillering stage about 60day after sowing, and become increasingly senescent as the plants develop at the heading stage. When es7 plants are grown under photorespiration-suppressed conditions (high CO2), the senescence phenotype and chlorophyll content are rescued. qRT-PCR analysis showed that senescence- associated genes were up-regulated significantly in es7. A map-based cloning strategy was used to identify ES7, which encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). ES7 was expressed constitutively, and the ES7 protein was localized in chloroplast. qRT-PCR analysis indicated that several genes related to nitrogen metabolism were differentially expressed in es7. Further, we also demonstrated that chlorophyll synthesis-associated genes were significantly down-regulated in es7. In addition, when seedlings are grown under increasing nitrogen concentrations (NH4NO3) for 15days, the contents of chlorophyll a, chlorophyll b and total chlorophyll were significantly lower in es7. Our results demonstrated that ES7 is involved in nitrogen metabolism, effects chlorophyll synthesis, and may also associated with photorespiration, impacting leaf senescence in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Directory of Open Access Journals (Sweden)

    Yong Mi Choi

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP to thymidine-5'-monophosphate (dTMP using 5,10-methylenetetrahydrofolate (mTHF as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo, complexes with dUMP (binary, and complexes with both dUMP and raltitrexed (ternary were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  14. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Science.gov (United States)

    Choi, Yong Mi; Yeo, Hyun Ku; Park, Young Woo; Lee, Jae Young

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP) to thymidine-5'-monophosphate (dTMP) using 5,10-methylenetetrahydrofolate (mTHF) as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo), complexes with dUMP (binary), and complexes with both dUMP and raltitrexed (ternary) were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  15. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  16. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  17. Polysome Fractionation to Analyze mRNA Distribution Profiles.

    Science.gov (United States)

    Panda, Amaresh C; Martindale, Jennifer L; Gorospe, Myriam

    2017-02-05

    Eukaryotic cells adapt to changes in external or internal signals by precisely modulating the expression of specific gene products. The expression of protein-coding genes is controlled at the transcriptional and post-transcriptional levels. Among the latter steps, the regulation of translation is particularly important in cellular processes that require rapid changes in protein expression patterns. The translational efficiency of mRNAs is altered by RNA-binding proteins (RBPs) and noncoding (nc)RNAs such as microRNAs (Panda et al., 2014a and 2014b; Abdelmohsen et al., 2014). The impact of factors that regulate selective mRNA translation is a critical question in RNA biology. Polyribosome (polysome) fractionation analysis is a powerful method to assess the association of ribosomes with a given mRNA. It provides valuable information about the translational status of that mRNA, depending on the number of ribosomes with which they are associated, and identifies mRNAs that are not translated (Panda et al., 2016). mRNAs associated with many ribosomes form large polysomes that are predicted to be actively translated, while mRNAs associated with few or no ribosomes are expected to be translated poorly if at all. In sum, polysome fractionation analysis allows the direct determination of translation efficiencies at the level of the whole transcriptome as well as individual mRNAs.

  18. Cup regulates oskar mRNA stability during oogenesis.

    Science.gov (United States)

    Broyer, Risa M; Monfort, Elena; Wilhelm, James E

    2017-01-01

    The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form. Published by Elsevier Inc.

  19. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    D'Hulst Christophe

    2008-09-01

    Full Text Available Abstract Background The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS, whereas glycogen biosynthesis typically requires only one class of glycogen synthase. Results Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. Conclusion SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between

  20. The 5' untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants.

    Science.gov (United States)

    Wever, Willem; McCallum, Emily J; Chakravorty, David; Cazzonelli, Christopher I; Botella, José R

    2010-08-01

    The structure and function of untranslated mRNA leader sequences and their role in controlling gene expression remains poorly understood. Previous research has suggested that the 5' untranslated region (5'UTR) of the Vigna radiata aminocyclopropane-1-carboxylate synthase synthase (VR-ACS1) gene may function as a translational enhancer in plants. To test such hypothesis we compared the translation enhancing properties of three different 5'UTRs; those from the VR-ACS1, the chlorophyll a/b binding gene from petunia (Cab22L; a known translational enhancer) and the Vigna radiata pectinacetylesterase gene (PAE; used as control). Identical constructs in which the coding region of the beta-glucuronidase (GUS) gene was fused to each of the three 5'UTRs and placed under the control of the cauliflower mosaic virus 35S promoter were prepared. Transient expression assays in tobacco cell cultures and mung bean leaves showed that the VR-ACS1 and Cab22L 5'UTRs directed higher levels of GUS activity than the PAE 5'UTR. Analysis of transgenic Arabidopsis thaliana seedlings, as well as different tissues from mature plants, confirmed that while transcript levels were equivalent for all constructs, the 5'UTRs from the VR-ACS1 and Cab22L genes can increase GUS activity twofold to fivefold compared to the PAE 5'UTR, therefore confirming the translational enhancing properties of the VR-ACS1 5'UTR.

  1. β-Cyanoalanine Synthase Is a Mitochondrial Cysteine Synthase-Like Protein in Spinach and Arabidopsis1

    Science.gov (United States)

    Hatzfeld, Yves; Maruyama, Akiko; Schmidt, Ahlert; Noji, Masaaki; Ishizawa, Kimiharu; Saito, Kazuki

    2000-01-01

    β-Cyano-alanine synthase (CAS; EC 4.4.1.9) plays an important role in cyanide metabolism in plants. Although the enzymatic activity of β-cyano-Ala synthase has been detected in a variety of plants, no cDNA or gene has been identified so far. We hypothesized that the mitochondrial cysteine synthase (CS; EC 4.2.99.8) isoform, Bsas3, could actually be identical to CAS in spinach (Spinacia oleracea) and Arabidopsis. An Arabidopsis expressed sequence tag database was searched for putative Bsas3 homologs and four new CS-like isoforms, ARAth;Bsas1;1, ARAth;Bsas3;1, ARAth;Bsas4;1, and ARAth;Bsas4;2, were identified in the process. ARAth;Bsas3;1 protein was homologous to the mitochondrial SPIol;Bsas3;1 isoform from spinach, whereas ARAth;Bsas4;1 and ARAth;Bsas4;2 proteins defined a new class within the CS-like proteins family. In contrast to spinach SPIol;Bsas1;1 and SPIol;Bsas2;1 recombinant proteins, spinach SPIol;Bsas3;1 and Arabidopsis ARAth;Bsas3;1 recombinant proteins exhibited preferred substrate specificities for the CAS reaction rather than for the CS reaction, which identified these Bsas3 isoforms as CAS. Immunoblot studies supported this conclusion. This is the first report of the identification of CAS synthase-encoding cDNAs in a living organism. A new nomenclature for CS-like proteins in plants is also proposed. PMID:10889265

  2. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    Science.gov (United States)

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  3. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Lei; Singh, Abhishek; Bashline, Logan; Li, Shundai; Yingling, Yaroslava G.; Gu, Ying

    2015-10-06

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.

  4. The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera).

    Science.gov (United States)

    Shi, Jiangli; He, Mingyang; Cao, Jiangling; Wang, Huan; Ding, Jiahua; Jiao, Yuntong; Li, Ruimin; He, Jing; Wang, Dan; Wang, Yuejin

    2014-01-01

    Resveratrol is positively correlated with grapevine disease resistance and its consumption is also highly beneficial to human health. HPLC analyses showed that resveratrol content was significantly higher in most wild Chinese grapevines than in most European Vitis vinifera grapevine cvs. Fruit of the wild Chinese genotype Vitis quinquangularis Danfeng-2 contains much higher levels of resveratrol than some others. Because stilbene synthase is responsible for resveratrol biosynthesis, 41 full-length stilbene synthase genes were isolated from Danfeng-2 using the RACE method. A neighbor-joining tree of the STS family displayed high similarity between Danfeng-2 and V. vinifera cv. Pinot Noir. The content of the endogenous stilbene synthase family in tissues and the expression levels induced by powdery mildew were both higher in Danfeng-2 than in Pinot Noir. Moreover, expression in the berry was significantly higher than in the leaves. Our results demonstrated that resveratrol accumulation was consistent with endogenous STS gene expressions, and that both were higher in Danfeng-2 than in Pinot Noir. Therefore, STS genes and producing resveratrol from V. quinquangularis played more important role in Vitis resistance. Otherwise, the gene VqSTS6 was markedly higher than the other VqSTS genes in the six tissues/organs assayed by Real-time PCR, which will offer a useful basis for commercial application of resveratrol from Chinese wild grapes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Packed red blood cells are an abundant and proximate potential source of nitric oxide synthase inhibition.

    Directory of Open Access Journals (Sweden)

    Charles F Zwemer

    Full Text Available We determined, for packed red blood cells (PRBC and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS inhibitors asymmetric dimethylarginine (ADMA and monomethylarginine (LNMMA.ADMA and LNMMA are near equipotent NOS inhibitors forming blood's total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined.We measured total (free and protein incorporated ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis.In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM and LNMMA (58.9 ± 28.9 μM that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma.The compelling physiological ramifications are that regardless of storage age, 1 PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2 PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate risk for iatrogenic NOS inhibition upon

  6. Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes.

    Science.gov (United States)

    Mlalazi, Bulukani; Welsch, Ralf; Namanya, Priver; Khanna, Harjeet; Geijskes, R Jason; Harrison, Mark D; Harding, Rob; Dale, James L; Bateson, Marion

    2012-11-01

    Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Banana is a major commercial crop and serves as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrates that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.

  7. Prostaglandin H synthase kinetics in the two-phase aqueous-micellar system.

    Science.gov (United States)

    Ponomareva, Olga A; Trushkin, Nikita A; Filimonov, Ivan S; Krivoshey, Alexandr V; Barkhatov, Vladimir I; Mitrofanov, Sergey I; Vrzheshch, Petr V

    2016-09-01

    Reaction mixture for PGHS (prostaglandin-H-synthase) is a two-phase system including micellar hydrophobic phase and hydrophilic aqueous phase. Reagents added to the mixture are distributed between phases, thus concentrations of reagents dissolved in phases can differ significantly from their overall contents. Using dynamic light scattering we found that the hydrophobic phase produced by tween-20 consists of micelles, which radius (4-5nm) does not depend on either tween-20 overall content (0.1%-1% v/v) or arachidonic acid (AA) addition (10-1000μM) or PGHS addition (1μM). Tween-20 overall content changing from 0.1% to 2% v/v dramatically affected COX kinetic, but accounting AA distribution between phases allowed us to estimate "true" parameters, independent of the tween-20 overall content and the concentration of another substrate: KM(Ox) equals 9.8μM O2 in the aqueous phase or 0.0074bar in the gaseous phase, KM(AA) equals 5400μM AA in the phase of tween-20 micelles and 5400/PμM AA in the aqueous phase (P is the distribution ratio for the AA between the aqueous phase and the hydrophobic phase (P≫1000)). This approach allowed to evaluate PS, the distribution ratio for the AA between the hydrophobic phase and the PGHS active center (PS ~310). This coefficient indicates the AA selectivity toward the cyclooxygenase active center. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Predictive Significance of Thymidylate Synthase Expression in Non-small Cell Lung Cancer.

    Science.gov (United States)

    Kulda, Vlastimil; Hrda, Kristyna; Houdek, Zbynek; Dobra, Jana Kolaja; Vrzakova, Radana; Svaton, Martin; Safranek, Jarmil; Dolezal, Jan; Babuska, Vaclav; Pesek, Milos; Topolcan, Ondrej; Pesta, Martin

    2017-12-01

    To date, many studies have suggested that thymidylate synthase (TS) could be used as a prognostic and predictive marker in non-small cell lung cancer (NSCLC) patients. However, results have been contradictory. The aim of this study was to evaluate TS mRNA levels in tumor tissue of NSCLC patients who underwent complete surgical resection and to analyze its prognostic and predictive potential. The study group consisted of 64 patients who underwent curative lung resection. Paired lung tissue samples were taken directly from the tumor tissue and from adjacent, histologically cancer-free lung tissue. The quantitative estimation of TS expression was performed by reverse transcription real-time polymerase chain reaction (RT-qPCR). The relationship between TS expression level and disease-free interval (DFI) and overall survival (OS) was analyzed. There was significantly higher TS expression in NSCLC tumor tissue comparing to normal lung tissue. In the group of patients who received adjuvant chemotherapy based on platinum derivatives in combination with paclitaxel or gemcitabine, we found shorter DFI (p=0.0473) and OS (p=0.0053) in those with high expression of TS. Our results demonstrated the relationship of high tumor tissue TS levels to adverse prognosis in patients undergoing adjuvant chemotherapy. TS is a non-specific tumor marker with respect to NSCLC, therefore we think that its best use would be as a member of the panel of predictors of adjuvant treatment efficacy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Increased expression of pattern recognition receptors and nitric oxide synthase in patients with endometriosis.

    Science.gov (United States)

    Yeo, Seung Geun; Won, Yong Sung; Lee, Ho Yun; Kim, Young Il; Lee, Jin-Woo; Park, Dong Choon

    2013-01-01

    Endometriosis is characterized by repeated inflammatory changes and serious adhesions, inducing innate and adaptive immune responses within the abdominal cavity. To assess these immune responses, we evaluated the levels of expression of Toll-like receptors (TLR)-1, -2, -4, -5, and -9; nucleotide-binding oligomerization domains (NOD)-1 and -2; interleukins-1β, -6, -8, -10, and -12; interferon-γ; tumor necrosis factor-α; inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS); and immunoglobulins (Igs) in patients with endometriosis. The levels of TLRs, NODs, cytokines, and NOS mRNAs in peritoneal effusions were assessed by real time reverse transcription-polymerase chain reaction; and IgG, IgA and IgM concentrations were measured by enzyme-linked immunosorbent assays (ELISA) in 40 patients with and 40 without endometriosis. Findings from the two groups were compared. We observed expression of all pattern recognition receptors (PRRs), cytokines, and NOS mRNAs and Igs in the effusion fluid of patients with and without endometriosis. The levels of TLR-2 and -9; NOD-1 and -2; iNOS and eNOS mRNAs and CA 125 were significantly higher in the endometriosis than in the non-endometriosis group (p<0.05 each). Moreover, PRR, cytokine, and NOS expression showed significant correlations (p<0.05). PRRs, cytokines, and NOS, which act cooperatively in the innate immune response, are closely associated with endometriosis. Increased expression of TLR-2, TLR -9, NOD-1, NOD-2, and NOS mRNA in peritoneal fluid may be associated with endometriosis.

  10. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  11. Glycogen synthase kinase-3 (GSK-3) regulates TGF-β₁-induced differentiation of pulmonary fibroblasts.

    Science.gov (United States)

    Baarsma, Hoeke A; Engelbertink, Lilian H J M; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib A M; Gosens, Reinoud

    2013-06-01

    Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β₁-induced myofibroblast differentiation is currently largely unknown. To determine the contribution of GSK-3 signalling in TGF-β₁-induced myofibroblast differentiation. We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Stimulation of MRC5 and primary human lung fibroblasts with TGF-β₁ resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β₁-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β₁-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. We demonstrate that GSK-3 signalling regulates TGF-β₁-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. © 2013 The Authors. British Journal of Pharmacology © 2013 The British

  12. Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced differentiation of pulmonary fibroblasts

    Science.gov (United States)

    Baarsma, Hoeke A; Engelbertink, Lilian HJM; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib AM; Gosens, Reinoud

    2013-01-01

    Background Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β1-induced myofibroblast differentiation is currently largely unknown. Purpose To determine the contribution of GSK-3 signalling in TGF-β1-induced myofibroblast differentiation. Experimental Approach We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Results Stimulation of MRC5 and primary human lung fibroblasts with TGF-β1 resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β1-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β1-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. Conclusion and Implication We demonstrate that GSK-3 signalling regulates TGF-β1-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. PMID:23297769

  13. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Piccinni, Ester [Department of Biology, University of Padova, Padova (Italy); Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Basso, Giuseppe [Department of Woman and Child Health, University of Padova, Padova (Italy); Spolaore, Barbara [CRIBI Biotechnology Centre, University of Padova, Padova (Italy); Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2014-07-01

    Highlights: • Ciona intestinalis have a functional phytochelatin synthase (PCS) gene (cipcs). • CiPCS amino acid sequence is phylogentically related to other metazoan PCSs. • CiPCS catalyze the synthesis of PC2. • cipcs are mostly transcribed in circulating hemocytes, in both tunic and blood lacunae. • Cadmium exposure results in a significant increase of cipcs and cipcna transcription. - Abstract: The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96 h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.

  14. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Glycogen Synthase Kinase-3β (GSK-3β) and Nuclear Factor Kappa-B (NFKB) in Childhood Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Tovar, Cristian Fabian Layton; Zerón, Hugo Mendieta; Romero, Maria Del Socorro Camarillo; Sánchez, Yanko V Fabila; Romero, Isidoro Tejocote

    2016-01-01

    Acute lymphocytic leukemia (ALL) is the most common hematologic malignancy in early childhood. In children with acute lymphoblastic leukemia (ALL), the activity of glycogen synthase kinase (GSK-3β) has been associated with changes in the transcriptional activity and expression of nuclear factor kappa beta (NFKB) in the mononuclear cells of bone marrow. The aim of the study was to determine the possible role of glycogen synthase kinase 3beta (GSK-3β) and nuclear factor kappa beta (NFKB) as prognostic variables in pediatric patients with ALL. This was a descriptive, transversal, and observational study. Bone marrow and blood samples were obtained from 30 children with newly-diagnosed ALL, who were seen at the Hematology-Oncology Service, Hospital para el Niño (HPN), Toluca, Mexico, from 2014‒2015. Anthropometric variables, clinical lab results, immunophenotype and cytogenetic abnormalities were registered. GSK-3β was evaluated through immunohistochemistry, and NFKB messenger RNA (mRNA) with real-time polymerase chain reaction (qPCR). The cases of ALL were classified into two groups of risk: high and habitual. Thirty patients were included in this study, with a mean age of 7.1 years (range 2‒13 years). Twenty-one were male and 9 female. Employing the morphological classification, 26 patients had type L1 ALL and the remaining 4 patients had type L2 ALL. Abnormal genes were found in 7 (23.33%) patients, ETV-RUNX1 in 3, followed by TCF3-PBX1 (two), STL1-TAL1 (one), and BCR-ABL1 (one). NFKB relative expression levels, in comparison to the GSK-3β immunohistochemistry results of the bone marrow samples, showed significant differences between positive and negative cases (p = 0.001) and between weak-positive and negative cases (p = 0.002). These results suggest that GSK-3β may be a prognostic biomarker in childhood ALL.

  16. Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco.

    Science.gov (United States)

    Wu, Tingquan; Guo, An; Zhao, Yanying; Wang, Xiaomeng; Wang, Ying; Zhao, Dan; Li, Xiaojie; Ren, Haiying; Dong, Hansong

    2010-06-01

    Lumazine synthase (LS) catalyzes the penultimate reaction in the multistep riboflavin biosynthesis pathway, which is involved in plant defenses. Plant defenses are often subject to synergistic effects of jasmonic acid and ethylene whereas LS is a regulator of jasmonic acid signal transduction. However, little is known about whether the enzyme contributes to defense responses. To study the role of LS in plant pathogen defenses, we generated transgenic tobacco expressing the rice (Oryza sativa) LS gene, OsLS. OsLS was cloned and found to have strong identity with its homologues in higher plants and less homology to microbial orthologues. The OsLS protein localized to chloroplasts in three OsLS-expressing transgenic tobacco (LSETT) lines characterized as enhanced in growth and defense. Compared with control plants, LSETT had higher content of both riboflavin and the cofactors flavin mononucleotide and flavin adenine dinucleotide. In LSETT, jasmonic acid and ethylene were elevated, the expression of defense-related genes was induced, levels of resistance to pathogens were enhanced, and resistance was effective to viral, bacterial, and oomycete pathogens. Extents of OsLS expression correlated with increases in flavin, jasmonic acid, and ethylene content, and correlated with increases in resistance levels, suggesting a role for OsLS in defense responses.

  17. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    Science.gov (United States)

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  18. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation.

    Science.gov (United States)

    Anand, Atul; Jayaramaiah, Ramesha H; Beedkar, Supriya D; Singh, Priyanka A; Joshi, Rakesh S; Mulani, Fayaj A; Dholakia, Bhushan B; Punekar, Sachin A; Gade, Wasudeo N; Thulasiram, Hirekodathakallu V; Giri, Ashok P

    2016-11-01

    Isoprenoids and phenylpropanoids are the major secondary metabolite constituents in Ocimum genus. Though enzymes from phenylpropanoid pathway have been characterized from few plants, limited information exists on how they modulate levels of secondary metabolites. Here, we performed phenylpropanoid profiling in different tissues from five Ocimum species, which revealed significant variations in secondary metabolites including eugenol, eugenol methyl ether, estragole and methyl cinnamate levels. Expression analysis of eugenol synthase (EGS) gene showed higher transcript levels especially in young leaves and inflorescence; and were positively correlated with eugenol contents. Additionally, transcript levels of coniferyl alcohol acyl transferase, a key enzyme diverting pool of substrate to phenylpropanoids, were in accordance with their abundance in respective species. In particular, eugenol methyl transferase expression positively correlated with higher levels of eugenol methyl ether in Ocimum tenuiflorum. Further, EGSs were functionally characterized from four Ocimum species varying in their eugenol contents. Kinetic and expression analyses indicated, higher enzyme turnover and transcripts levels, in species accumulating more eugenol. Moreover, biochemical and bioinformatics studies demonstrated that coniferyl acetate was the preferred substrate over coumaryl acetate when used, individually or together, in the enzyme assay. Overall, this study revealed the preliminary evidence for varied accumulation of eugenol and its abundance over chavicol in these Ocimum species. Current findings could potentially provide novel insights for metabolic modulations in medicinal and aromatic plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Comparative Analysis of Two Flavonol Synthases from Different-Colored Onions Provides Insight into Flavonoid Biosynthesis.

    Science.gov (United States)

    Park, Sangkyu; Kim, Da-Hye; Lee, Jong-Yeol; Ha, Sun-Hwa; Lim, Sun-Hyung

    2017-07-05

    We isolated cDNAs encoding flavonol synthase (FLS) from the red onion "H6" (AcFLS-H6) and the yellow onion "Hwangryongball" (AcFLS-HRB). We found three amino acid variations between the two sequences. Kinetic analysis with recombinant proteins revealed that AcFLS-HRB exhibited approximately 2-fold higher catalytic efficiencies than AcFLS-H6 for dihydroflavonol substrates and that both proteins preferred dihydroquercetin to dihydrokaempferol. The expression patterns of flavonoid biosynthesis genes corresponded to the accumulation patterns of flavonoid aglycones in both onions. Whereas the other flavonoid biosynthesis genes were weakly expressed in the HRB sheath compared to that of H6, the expression of FLS was similar in both onions. This relatively enhanced FLS expression, along with the higher activity of AcFLS-HRB, could increase the quercetin production in the HRB sheath. The quercetin content was approximately 12-fold higher than the cyanidin content in the H6 sheath, suggesting that FLS has priority in the competition between FLS and dihydroflavonol 4-reductase (DFR) for their substrate dihydroquercetin.

  20. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  1. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-10-01

    Full Text Available This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP gene and their association with intramuscular fat (IMF content in the breast and leg muscles of Baicheng oil chicken (BOC. A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC, 240 silky Baicheng oil chicken (SBOC, and 240 white Baicheng oil chicken (WBOC were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176 and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145. The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035 was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time.

  2. [Effect of TUBB3, TS and ERCC1 mRNA expression on chemoresponse and clinical outcome of advanced gastric cancer by multiplex branched-DNA liquid chip technology].

    Science.gov (United States)

    Huang, Jin; Hu, Huabin; Xie, Yangchun; Tang, Youhong; Liu, Wei; Zhong, Meizuo

    2013-06-01

    To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy. The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology. The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, PTS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all PTS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.

  3. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Directory of Open Access Journals (Sweden)

    Smrati Mishra

    Full Text Available Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  4. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Science.gov (United States)

    Mishra, Smrati; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  5. Purification, Structure and Properties of Escherichia coli tRNA Pseudouridine Synthase 1.

    Science.gov (United States)

    1987-01-01

    enzymes which are reactive at C5 of uracil ( thymidylate synthase and aminoacyl synthetases). The deduced amino acid sequence of PSUI was also compared with...localize the sites of tRNA interaction with PSUI. The mechanism elucidated by Santi and others for thymidylate synthase (34-38) provides a conceptual...aminoacyl tRNA synthetases with residue U8 of their cognate tRNA substrates (39,40). In the case of thymidylate synthase , I the catalytic nucleophile is

  6. Identification and Heterologous Expression of the Topopyrone Nonaketide Synthase Gene from Phoma sp.

    Science.gov (United States)

    Kashiwa, Nobuyuki; Ebizuka, Yutaka; Fujii, Isao

    2016-01-01

    Non-reducing iterative type I polyketide synthase genes, pnk1 and pnk2, were cloned from the fungus Phoma sp. BAUA2861, which produces the topoisomerase I inhibitors, topopyrones A to D. Heterologous expression of these polyketide synthase genes under the α-amylase promoter in Aspergillus oryzae was carried out to identify their functions. The pnk2 transformant produced topopyrones C, D, and haematommone. Therefore, the pnk2 gene was found to encode for the topopyrone nonaketide synthase.

  7. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    2011-05-01

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  8. Nitric oxide synthase inhibitor improves de novo and long-term L-DOPA-induced dyskinesia in hemiparkinsonian rats

    Directory of Open Access Journals (Sweden)

    Fernando Eduardo Padovan-Neto

    2011-06-01

    Full Text Available Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (L-DOPA-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of L-DOPA-induced abnormal involuntary movements in 6-hydroxydopamine (6-OHDA-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-L-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated abnormal involuntary movements induced by chronic and acute L-DOPA. In contrast, rotational behavior was attenuated only after chronic L-DOPA. L-DOPA improved stepping test performance, and its chronic administration did not alter open field behavior. Our results indicated a correlation between apomorphine-induced rotation and the decrease in the number of adjusting steps performed with the contralateral forepaw in the 6-OHDA-lesioned rats.The 6-OHDA lesion and the L-DOPA treatment induced a bilateral increase (1.5 times in the nNOS protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic L-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under L-DOPA acute and chronic treatment. The L-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that L-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the L-DOPA structural modifications in the parkinsonian brain. Taken together, these data provided a rationale

  9. Citrate synthase purified from Tetrahymena mitochondria is identical with Tetrahymena 14-nm filament protein.

    Science.gov (United States)

    Kojima, H; Chiba, J; Watanabe, Y; Numata, O

    1995-07-01

    A 14-nm filament protein (designated as 49K protein) was purified from a ciliated protozoan, Tetrahymena, using the polymerization and depolymerization procedure. Previous studies in our laboratory showed that its primary structure shared a high sequence identity with citrate synthases known so far and that the 49K protein possessed citrate synthase activity. To ascertain whether or not Tetrahymena's mitochondrial citrate synthase is identical to the 49K protein, citrate synthase was purified from Tetrahymena mitochondria using ammonium sulfate fractionation, Butyl-Toyopearl and SP-Toyopearl column chromatographies, based on monitoring of the enzymatic activity. The molecular weight of the purified citrate synthase was estimated to be 49 kDa, as was that of the 49K protein and the enzyme cross-reacted with an anti-49K protein antiserum. The purified citrate synthase showed much the same optimum pH, optimum KCl concentration, effects of substrate concentrations (acetyl-CoA and oxaloacetate), and inhibitory effect by ATP as those of purified 49K protein. Furthermore, an anti-49K protein monoclonal antibody strongly suppressed the enzymatic activity of the purified citrate synthase. Thus, we suggest that mitochondrial citrate synthase and the 49K protein are identical and that the 49K protein has dual functions in the cytoskeleton in cytoplasm and as a TCA cycle enzyme, citrate synthase, in mitochondria.

  10. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    Science.gov (United States)

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  11. Live Imaging of mRNA Synthesis in Drosophila.

    Science.gov (United States)

    Garcia, Hernan G; Gregor, Thomas

    2018-01-01

    mRNA synthesis is one of the earliest readouts of the activity of a transcribed gene, which is of particular interest in the context of metazoan cell fate specification. These processes are intrinsically dynamic and stochastic, which makes in vivo single-cell measurements inevitable. Here, we present the application of a technology that has been widely used in single celled organisms to measure transcriptional activity in developing embryos of the fruit fly Drosophila melanogaster. The method allows for quantification of instantaneous polymerase occupancy of active gene loci and thereby enables the development and testing of models of gene regulation in development.

  12. Role of nitric oxide synthase inhibition in the acute hypertensive response to intracerebroventricular cadmium

    Science.gov (United States)

    Demontis, Maria Piera; Varoni, Maria Vittoria; Volpe, Anna Rita; Emanueli, Costanza; Madeddu, Paolo

    1998-01-01

    In the rat, intracerebroventricular (i.c.v.) injection of cadmium, a pollutant with long biological half-life, causes a sustained increase in blood pressure at doses that are ineffective by peripheral route. Since cadmium inhibits calcium-calmodulin constitutive nitric oxide (NO) synthase in cytosolic preparations of rat brain, this mechanism may be responsible for the acute pressor action of this heavy metal.To test this possibility, we evaluated the effect of i.c.v. injection of 88 nmol cadmium in normotensive unanaesthetized Wistar rats, which were i.c.v. pre-treated with: (1) saline (control), (2) L-arginine (L-Arg), to increase the availability of substrate for NO biosynthesis, (3) D-arginine (D-Arg), (4) 3-[4-morpholinyl]-sydnonimine-hydrochloride (SIN-1), an NO donor, or (5) CaCl2, a cofactor of brain calcium-calmodulin-dependent cNOSI. In additional experiments, the levels of L-citrulline (the stable equimolar product derived from enzymatic cleavage of L-Arg by NO synthase) were determined in the brain of vehicle- or cadmium-treated rats.The pressor response to cadmium reached its nadir at 5 min (43±4 mmHg) and lasted over 20 min in controls. L-Citrulline/protein content was reduced from 35 up to 50% in the cerebral cortex, pons, hippocampus, striatus, hypothalamus (P<0.01) of cadmium-treated rats compared with controls. Central injection of NG nitro-L-arginine-methylester (L-NAME) also reduced the levels of L-citrulline in the brain.Both the magnitude and duration of the response were attenuated by 1.21 and 2.42 μmol SIN-1 (32±3 and 15±4 mmHg, P<0.05), or 1 μmol CaCl2 (6±4 mmHg, P<0.05). Selectivity of action exerted by SIN-1 was confirmed by the use of another NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). Both L-Arg and D-Arg caused a mild but significant attenuation in the main phase of the pressor response evoked by cadmium. However, only L-Arg reduced the magnitude of the delayed, pressor response. Despite their similarity in

  13. Eugenol Production in Achenes and Receptacles of Strawberry Fruits Is Catalyzed by Synthases Exhibiting Distinct Kinetics1[W][OPEN

    Science.gov (United States)

    Aragüez, Irene; Osorio, Sonia; Hoffmann, Thomas; Rambla, José Luis; Medina-Escobar, Nieves; Granell, Antonio; Botella, Miguel Ángel; Schwab, Wilfried; Valpuesta, Victoriano

    2013-01-01

    Eugenol is a volatile that serves as an attractant for pollinators of flowers, acts as a defense compound in various plant tissues, and contributes to the aroma of fruits. Its production in a cultivated species such as strawberry (Fragaria × ananassa), therefore, is important for the viability and quality of the fruit. We have identified and functionally characterized three strawberry complementary DNAs (cDNAs) that encode proteins with high identity to eugenol synthases from several plant species. Based on a sequence comparison with the wild relative Fragaria vesca, two of these cDNAs, FaEGS1a and FaEGS1b, most likely correspond to transcripts derived from allelic gene variants, whereas the third cDNA, FaEGS2, corresponds to a different gene. Using coniferyl acetate as a substrate, FaEGS1a and FaEGS1b catalyze the in vitro formation of eugenol, while FaEGS2 catalyzes the formation of eugenol and also of isoeugenol with a lower catalytic efficiency. The expression of these genes is markedly higher in the fruit than in other tissues of the plant, with FaEGS1a and FaEGS1b mostly expressed in the green achenes, whereas FaEGS2 expression is almost restricted to the red receptacles. These expression patterns correlate with the eugenol content, which is highest in the achene at the green stage and in the receptacle at the red stage. The transient expression of the corresponding cDNAs in strawberry fruit and the subsequent volatile analyses confirm FaEGSs as genuine eugenol synthases in planta. These results provide new insights into the diversity of phenylpropene synthases in plants. PMID:23983228

  14. A transcribed polyketide synthase gene from Xanthoria elegans.

    Science.gov (United States)

    Brunauer, Georg; Muggia, Lucia; Stocker-Wörgötter, Elfie; Grube, Martin

    2009-01-01

    We characterize the transcript of a polyketide synthase gene (PKS) from the cultured mycobiont of Xanthoria elegans (XePKS1) using SMART-rapid amplification of cDNA ends (RACE) cDNA synthesis. Sequence analysis of the cloned cDNA reveals an open reading frame of 2144 amino acid residues. It contains features of a non-reducing fungal type I PKS with an N-terminal starter unit: acyl carrier protein (ACP) transacetylase domain, ketosynthase, acyltransferase, two acyl carrier protein domains, and a thioesterase domain. XePKS1 was the only paralogue detected in the cDNA and the genomic DNA of the cultured X. elegans mycobiont by using a degenerate PCR approach targeted at the conserved regions of non-reducing type I PKS genes. The hypothetical protein is phylogenetically related to genes that are basal to a clade of dihydroxynaphthalene synthases (non-reducing clade II) and anthraquinone type synthases of non-lichenized fungi (non-reducing clade I). According to hplc and tlc analyses, the cultured mycobiont exclusively produced anthraquinones and its precursors. Therefore, we discuss whether the characterized paralogue is involved in anthraquinone production, which raises the possibility of a paraphyletic origin of lichen anthraquinone biosynthesis. The cDNA of XePKS1 was the first full-length coding sequence of a lichen PKS to be published. This proves SMART RACE to be a suitable tool for obtaining full-length coding sequences of genes from environmental samples and organisms, which are hardly amenable to standard molecular approaches or genomic sequencing.

  15. Localization of nitric oxide synthase in the adult rat brain.

    Science.gov (United States)

    Rodrigo, J; Springall, D R; Uttenthal, O; Bentura, M L; Abadia-Molina, F; Riveros-Moreno, V; Martínez-Murillo, R; Polak, J M; Moncada, S

    1994-07-29

    The distribution of the immunoreactivity to nitric oxide synthase has been examined from rostral to caudal areas of the rat central nervous system using light microscopy. Endogenous nitric oxide synthase was located using a specific polyclonal antiserum, produced against affinity purified nitric oxide synthase from whole rat brain, following the avidin-biotin peroxidase procedure. Immunoreactive cell bodies and processes showed a widespread distribution in the brain. In the telencephalon, immunoreactive structures were distributed in all areas of the cerebral cortex, the ventral endopiriform nucleus and claustrum, the main and accessory olfactory bulb, the anterior and posterior olfactory nuclei, the precommisural hippocampus, the taenia tecta, the nucleus accumbens, the stria terminalis, the caudate putamen, the olfactory tubercle and islands of Calleja, septum, globus pallidus and substantia innominata, hippocampus and amygdala. In the diencephalon, the immunoreactivity was largely found in both the hypothalamus and thalamus. In the hypothalamus, immunoreactive cell bodies were characteristically located in the perivascular-neurosecretory systems and mamillary bodies. In addition, immunoreactive nerve fibres were detected in the median eminence of the infundibular stem. The mesencephalon showed nitric oxide synthase immunoreactivity in the ventral tegmental area, the interpeduncular nucleus, the rostral linear nucleus of the raphe and the dorsal raphe nucleus. Immunoreactive structures were also found in the nuclei of the central grey, the peripeduncular nucleus and substantia nigra pars lateralis, the geniculate nucleus and in the superior and inferior colliculi. The pons displayed immunoreactive structures principally in the pedunculopontine and laterodorsal tegmental nuclei, the ventral tegmental nucleus, the reticulotegmental pontine nucleus, the parabrachial nucleus and locus coeruleus. In the medulla oblongata, immunoreactive neurons and processes were

  16. [Localization of nitric oxide synthase in the chicken vestibular system].

    Science.gov (United States)

    Nie, Guohui; Wang, Jibao

    2002-08-01

    To locate nitric oxide synthase (NOS) in the chicken vestibular system. The frozen section were processed for NADPH-d histochemistry in a solution containing NADPH and nitroblue tetnazolium (NBT) to demonstrate NOS positive reactivity. NOS positive staining, black-blue in color, was seen at the nerve ending, nerve fibers of the utricul and saculla and ampiculium. Ganglion cells had different activity. The shape of the cells seems to be round or oral. Collectively, data indicate the presence of active NOS in these tissue and suggest modulation of vestibular neurotransmission by nitric oxide.

  17. Inhibition of (+)-aristolochene synthase with iminium salts resembling eudesmane cation.

    Science.gov (United States)

    Faraldos, Juan A; Allemann, Rudolf K

    2011-03-04

    Trigonal iminium halides of (4aS,7S)-1,4a-dimethyl- and (4aS,7S)-4a-methyl-7-(prop-1-en-2-yl)-2,3,4,4a,5,6,7,8-octahydroquinolinium ions, aimed to mimic transition states associated with the aristolochene synthase-catalyzed cyclization of (-)-germacrene A to eudesmane cation, were evaluated under standard kinetic steady-state conditions. In the presence of inorganic diphosphate, these analogues were shown to competitively inhibit the enzyme, suggesting a stabilizing role for the diphosphate leaving group in this apparently endothermic transformation.

  18. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2010-05-31

    ring of structure 3a; and coupling of various aldehydes and ,- unsaturated ethers to the 5 position of the quinine under acidic conditions to yield...share with orlistat a beta- lactone moiety as the distinguishing chemotype [70]. Beta-lactam derivatives of orlistat have also been described [71...Smith, J. W. Synthesis of novel beta‐ lactone  inhibitors of fatty acid synthase. J Med Chem, 2008,   51(17), 5285‐5296.  71.  Zhang, W., Richardson, R. D

  19. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H

    1999-01-01

    of the review is to discuss our present knowledge of the activities and gene expression of hexokinase II (HKII), phosphofructokinase (PFK) and glycogen synthase (GS) in human skeletal muscle in states of altered insulin-stimulated glucose metabolism. My own experimental studies have comprised patients...... proximal to the GS protein. In insulin resistant diabetic patients the impact of these yet unknown abnormalities may be accentuated by the prevailing hyperglycaemia and hyperlipidaemia. Endurance training in young healthy subjects results in improved insulin-stimulated glucose disposal rates, predominantly......-stimulated glucose oxidation rate at the whole body level and PFK activity in muscle are normal. In parallel, no changes have been found in skeletal muscle levels of PFK mRNA and immunoreactive protein in NIDDM or IDDM patients. In endurance trained subjects insulin-stimulated whole body glucose oxidation rate...

  20. Increasing anthraquinone production by overexpression of 1-deoxy-D: -xylulose-5-phosphate synthase in transgenic cell suspension cultures of Morinda citrifolia.

    Science.gov (United States)

    Quevedo, Carla; Perassolo, María; Alechine, Eugenia; Corach, Daniel; Giulietti, Ana María; Talou, Julián Rodriguez

    2010-07-01

    A Morinda citrifolia cell line was obtained by overexpresion of 1-deoxy-D: -xylulose 5-phosphate synthase (DXS) from Catharanthus roseus, a key enzyme of the metabolic pathway of anthraquinones (AQs). This cell line increased AQs production by about 24% compared to the control cell line. This transgenic cell line which carries dxs cDNA isolated from Catharanthus roseus, was achieved by direct transformation of cell suspension cultures of M. citrifolia using a hypervirulent Agrobacterium tumefaciens strain. The effects of the overexpression of the dxs gene also resulted in increased levels of dxs mRNA transcripts and DXS activity compared to the control cell line. In addition, total phenolics and phenylalanine ammonia-lyase activity were evaluated and were significantly higher in the transgenic line than in controls.

  1. TS and ERCC-1 mRNA expressions and clinical outcome in patients with metastatic colon cancer in CONFIRM-1 and -2 clinical trials.

    Science.gov (United States)

    Grimminger, P P; Shi, M; Barrett, C; Lebwohl, D; Danenberg, K D; Brabender, J; Vigen, C L P; Danenberg, P V; Winder, T; Lenz, H-J

    2012-10-01

    To validate established cutoff levels of thymidylate synthase (TS) and excision repair cross-complementing (ERCC-1) intratumoral mRNA expressions in tumor samples from metastatic colorectal cancer (mCRC) patients treated with PTK787/ZK222584 (PTK/ZK). From 122 samples of patients with mCRC enrolled in CONFIRM-1 (Colorectal Oral Novel Therapy for the Inhibition of Angiogenesis and Retarding of Metastases) or CONFIRM-2, mRNA was isolated of microdissected formalin-fixed paraffin-embedded samples and quantitated using TaqMan-based technology. Existing TS and ERCC-1 cutoff levels were tested for their prognostic value in first-line and second-line therapy. TS expression was associated with overall survival (OS) in first-line, but not second-line therapy. ERCC-1 was associated with OS in patients treated with first-line and second-line FOLFOX4. In first-line FOLFOX4, combination of high TS and/or high ERCC-1 was associated with shorter OS. A correlation was observed between ERCC-1 expression and benefit from PTK/ZK+FOLFOX4 treatment. TS and ERCC-1 expression is associated with clinical outcome in mCRC. Baseline TS and ERCC-1 levels may allow the selection of patients who benefit from FOLFOX4 chemotherapy.

  2. Matrin 3 binds and stabilizes mRNA.

    Directory of Open Access Journals (Sweden)

    Maayan Salton

    Full Text Available Matrin 3 (MATR3 is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM, whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  3. Expression of type XXIII collagen mRNA and protein.

    Science.gov (United States)

    Koch, Manuel; Veit, Guido; Stricker, Sigmar; Bhatt, Pinaki; Kutsch, Stefanie; Zhou, Peihong; Reinders, Elina; Hahn, Rita A; Song, Rich; Burgeson, Robert E; Gerecke, Donald R; Mundlos, Stefan; Gordon, Marion K

    2006-07-28

    Collagen XXIII is a member of the transmembranous subfamily of collagens containing a cytoplasmic domain, a membrane-spanning hydrophobic domain, and three extracellular triple helical collagenous domains interspersed with non-collagenous domains. We cloned mouse, chicken, and humanalpha1(XXIII) collagen cDNAs and showed that this non-abundant collagen has a limited tissue distribution in non-tumor tissues. Lung, cornea, brain, skin, tendon, and kidney are the major sites of expression. In contrast, five transformed cell lines were tested for collagen XXIII expression, and all expressed the mRNA. In vivo the alpha1(XXIII) mRNA is found in mature and developing organs, the latter demonstrated using stages of embryonic chick cornea and mouse embryos. Polyclonal antibodies were generated in guinea pig and rabbit and showed that collagen XXIII has a transmembranous form and a shed form. Comparison of collagen XXIII with its closest relatives in the transmembranous subfamily of collagens, types XIII and XXV, which have the same number of triple helical and non-collagenous regions, showed that there is a discontinuity in the alignment of domains but that striking similarities remain despite this.

  4. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  5. AVE3085, an enhancer of endothelial nitric oxide synthase, restores endothelial function and reduces blood pressure in spontaneously hypertensive rats

    Science.gov (United States)

    Yang, Qin; Xue, Hong-Mei; Wong, Wing-Tak; Tian, Xiao-Yu; Huang, Yu; Tsui, Stephen KW; Ng, Patrick KS; Wohlfart, Paulus; Li, Huige; Xia, Ning; Tobias, Silke; Underwood, Malcolm John; He, Guo-Wei

    2011-01-01

    BACKGROUND AND PURPOSE Nitric oxide (NO) plays an important role in endothelial function, and impaired NO production is involved in hypertension. Therefore, compounds that regulate endothelial NO synthase (eNOS) may be of therapeutic benefit. A novel, low molecular weight compound AVE3085 is a recently developed compound with the ability to enhance eNOS transcription. The present study investigated the effects of AVE3085 in endothelial dysfunction associated with hypertension. EXPERIMENTAL APPROACH Spontaneously hypertensive rats (SHRs) were treated with AVE 3085 (10 mg·kg·day−1, orally) for 4 weeks. Isometric force measurement was performed on rings of isolated aortae in organ baths. Protein expression of eNOS, phosphorylated-eNOS and nitrotyrosine in the aortae were examined by Western blotting. mRNA for eNOS in rat aortae were examined by reverse-transcriptase polymerase chain reaction (RT-PCR). KEY RESULTS AVE3085 greatly improved endothelium-dependent relaxations in the aortae of SHRs. This functional change was accompanied by up-regulated expression of eNOS protein and mRNA, enhanced eNOS phosphorylation and decreased formation of nitrotyrosine. Furthermore, AVE3085 treatment reduced the blood pressure in SHR without affecting that of hypertensive eNOS−/− mice. CONCLUSIONS AND IMPLICATIONS The eNOS-transcription enhancer AVE3085 restored impaired endothelial function in a hypertensive model. The present study provides a solid basis for the potential development of eNOS-targeting drugs to restore down-regulated eNOS, as a new strategy in hypertension. PMID:21385179

  6. Role of nitric oxide synthase in the development of bone cancer pain and effect of L-NMMA.

    Science.gov (United States)

    Yang, Yan; Zhang, Juan; Liu, Yue; Zheng, Yaguo; Bo, Jinhua; Zhou, Xiaofang; Wang, Junhua; Ma, Zhengliang

    2016-02-01

    Spinal nitric oxide is involved in the mechanisms of pain generation and transmission during inflammatory and neuropathic pain. The aim of the present study was to explore the role of spinal nitric oxide in the development of bone cancer pain. 2 x 10(5) osteosarcoma cells were implanted into the intramedullary space of right femurs of C3H/HeJ mice to induce a model of ongoing bone cancer. Polymerase chain reaction and immunohistochemical analyses were performed to assess the expression of neuronal nitric oxide synthase (nNOS) and inducible (i)NOS in the spinal cord following inoculation. The results showed that inoculation of osteosarcoma cells induced progressive bone cancer, accompanied with pain-associated behavior. The levels of nNOS mRNA in the spinal cord of tumor mice began to increase at day 10 and then decreased to the level in sham mice at day 14, while iNOS mRNA markedly increased in the tumor group at days 10 and 14. Immunohistochemical analysis showed that nNOS- and iNOS-positive neurons were mainly located in the superficial dorsal horn and around the central canal of the L3-L5 spinal cord. Intrathecal injection of 50 µg NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) attenuated cancer-evoked pain behaviors at day 14. These findings indicated that an upregulation of nNOS and iNOS in the spinal cord is associated with bone cancer pain and suggests that exogenously administered L-NMMA may have beneficial effects to alleviate bone cancer pain.

  7. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.

    Science.gov (United States)

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Adamson, S Lee; Henkelman, R Mark; Ho, J J David; Wilson, David F; Heximer, Scott P; Connelly, Kim A; Bolz, Steffen-Sebastian; Lidington, Darcy; El-Beheiry, Mostafa H; Dattani, Neil D; Chen, Kevin M; Hare, Gregory M T

    2011-10-18

    Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.

  8. Expression of Nitric Oxide Synthase Isoenzyme in Lung Tissue of Smokers with and without Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Wen-Ting Jiang

    2015-01-01

    Full Text Available Background: It has been demonstrated that only 10%-20% cigarette smokers finally suffer chronic obstructive pulmonary disease (COPD. The underlying mechanism of development remains uncertain so far. Nitric oxide (NO has been found to be closely associated with the pathogenesis of COPD, the alteration of NO synthase (NOS expression need to be revealed. The study aimed to investigate the alterations of NOS isoforms expressions between smokers with and without COPD, which might be helpful for identifying the susceptibility of smokers developing into COPD. Methods: Peripheral lung tissues were obtained from 10 nonsmoker control subjects, 15 non-COPD smokers, and 15 smokers with COPD. Neuronal NOS (nNOS, inducible NOS (iNOS, and endothelial NOS (eNOS mRNA and protein levels were measured in each sample by using real-time polymerase chain reaction and Western blotting. Results: INOS mRNA was significantly increased in patients with COPD compared with nonsmokers and smokers with normal lung function (P < 0.001, P = 0.001, respectively. iNOS protein was also higher in COPD patients than nonsmokers and smokers with normal lung function (P < 0.01 and P = 0.01, respectively. However, expressions of nNOS and eNOS did not differ among nonsmokers, smokers with and without COPD. Furthermore, there was a negative correlation between iNOS protein level and lung function parameters forced expiratory volume in 1 s (FEV 1 (% predicted (r = −0.549, P = 0.001 and FEV 1 /forced vital capacity (%, r = −0.535, P = 0.001. Conclusions: The expression of iNOS significantly increased in smokers with COPD compared with that in nonsmokers or smokers without COPD. The results suggest that iNOS might be involved in the pathogenesis of COPD, and may be a potential marker to identify the smokers who have more liability to suffer COPD.

  9. beta-very low density lipoprotein enhances inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Takahashi, Masafumi; Takahashi, Sadao; Shimpo, Masahisa; Naito, Akitaka; Ogata, Yukiyo; Kobayashi, Eiji; Ikeda, Uichi; Shimada, Kazuyuki

    2002-06-01

    beta-very low-density lipoprotein (beta-VLDL), a collective term for VLDL and chylomicron remnants, has recently shown to potently promote the development of atherosclerosis. However, the effects of beta-VLDL on the accumulation of nitric oxide (NO) and the expression of inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMC) have not been determined. In this study, we measured the accumulation of nitrite, stable metabolite of NO and examined the expression of iNOS protein and mRNA using Western blotting and RT-PCR, respectively, in VSMC. NF-kappaB activation in VSMC was examined by gel retardation assay. Incubation of cell cultures with interleukin-1beta (IL-1beta) for 24 h caused a significant increase in nitrite accumulation. Although beta-VLDL alone did not increase nitrite accumulation in unstimulated VSMC, beta-VLDL significantly enhanced nitrite accumulation in IL-1beta-stimulated VSMC in a time- and dose-dependent manner. beta-VLDL-induced nitrite accumulation in IL-1beta-stimulated VSMC was accompanied by an increase in iNOS protein and mRNA expression. In addition, IL-1beta induced NF-kappaB activation in VSMC, an effect that was increased by the addition of beta-VLDL. Use of specific tyrosine kinase inhibitor herbimycin A, genistein, or PP2 (Src family kinase inhibitor) indicated that tyrosine kinases are required for IL-1beta-stimulated and beta-VLDL-enhanced nitrite accumulation, while specific inhibition of ERK1/2 or p38-MAP kinase had no effects. Our results suggest that beta-VLDL enhances iNOS expression and nitrite accumulation in IL-1beta-stimulated VSMC through tyrosine kinase(s)-dependent mechanisms.

  10. Neuronal Nitric Oxide Synthase Negatively Regulates Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration.

    Science.gov (United States)

    Singh, Brajesh Kumar; Kumar, Vinod; Chauhan, Amit Kumar; Dwivedi, Ashish; Singh, Shweta; Kumar, Ashutosh; Singh, Deepali; Patel, Devendra Kumar; Ray, Ratan Singh; Jain, Swatantra Kumar; Singh, Chetna

    2017-05-01

    The study aimed to investigate the role of NO and neuronal NO synthase (nNOS) in Zn-induced neurodegeneration. Animals were treated with zinc sulfate (20 mg/kg), twice a week, for 2-12 weeks along with control. In a few sets, animals were also treated with/without a NO donor, sodium nitroprusside (SNP), or S-nitroso-N-acetyl penicillamine (SNAP) for 12 weeks. Moreover, human neuroblastoma (SH-SY-5Y) cells were also employed to investigate the role of nNOS in Zn-induced toxicity in in vitro in the presence/absence of nNOS inhibitor, 7-nitroindazole (7-NI). Zn caused time-dependent reduction in nitrite content and total/nNOS activity/expression. SNP/SNAP discernibly alleviated Zn-induced neurobehavioral impairments, dopaminergic neurodegeneration, tyrosine hydroxylase (TH) expression, and striatal dopamine depletion. NO donors also salvage from Zn-induced increase in lipid peroxidation (LPO), mitochondrial cytochrome c release, and caspase-3 activation. While Zn elevated LPO content, it attenuated nitrite content, nNOS activity, and glutathione level along with the expression of TH and nNOS in SH-SY-5Y cells. 7-NI further augmented Zn-induced changes in the cell viability, oxidative stress, and expression of TH and nNOS. The results obtained thus demonstrate that Zn inhibits nNOS that partially contributes to an increase in oxidative stress, which subsequently leads to the nigrostriatal dopaminergic neurodegeneration.

  11. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  12. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  13. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    Science.gov (United States)

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  16. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  17. Subcellular targeting domains of sphingomyelin synthase 1 and 2.

    Science.gov (United States)

    Yeang, Calvin; Ding, Tingbo; Chirico, William J; Jiang, Xian-Cheng

    2011-12-14

    Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. Furthermore, its product SM has been implicated in atherogenic processes such as retention of lipoproteins in the blood vessel intima. There are two mammalian sphingomyelin synthases: SMS1 and SMS2. SMS1 is found exclusively in the Golgi at steady state, whereas SMS2 exists in the Golgi and plasma membrane. Conventional motifs responsible for protein targeting to the plasma membrane or Golgi are either not present in, or unique to, SMS1 and SMS2. In this study, we examined how SMS1 and SMS2 achieve their respective subcellular localization patterns. Brefeldin A treatment prevented SMS1 and SMS2 from exiting the ER, demonstrating that they transit through the classical secretory pathway. We created truncations and chimeras of SMS1 and SMS2 to define their targeting signals. We found that SMS1 contains a C-terminal Golgi targeting signal and that SMS2 contains a C-terminal plasma membrane targeting signal.

  18. Mutants of human colon adenocarcinoma, selected for thymidylate synthase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, P.J.; Germain, G.S.; Hazelton, B.J.; Pennington, J.W.; Houghton, J.A. (Saint Jude Children' s Research Hospital, Memphis, TN (USA))

    1989-02-01

    GC{sub 3}/c1 human colon adenocarcinoma cells were treated with the mutagen ethyl methane sulfonate, and three clones deficient in thymidylate synthase activity were selected and characterized. Growth in medium deficient in thymidine caused cell death in two clones (TS{sup {minus}}c{sub 1} and TS{sup {minus}}c{sub 3}), whereas one clone (TS{sup {minus}}c{sub 2}) showed limited growth. Growth correlated with thymidine synthase activity and 5-fluoro-2{prime}-deoxyuridine 5{prime}-monophosphate-binding capacity and with incorporation of 2{prime}-deoxy(6-{sup 3}H)uridine into DNA. In the presence of optimal thymidine, growth rates were only 5-18% that of the parental clone (GC{sub 3}/c1), which grew equally well in thymidine-deficient or -replete medium. Analysis of poly(A){sup +} RNA showed normal levels of a 1.6-kilobase transcript in TS{sup {minus}}c{sub 1} and TS{sup minus}c{sub 2} but decreased levels in TS{sup {minus}}c{sub 3}. Clone TS{sup minus}c{sub 3} was 32-, 750-, and >100,000-fold more resistant than the parental clone to 5-fluorouracil, 5-fluoro-2{prime}-deoxyuridine, and methotrexate, respectively. When inoculated into athymic nude mice, each TS{sup {minus}} clone produced tumors, demonstrating continued ability to proliferate in vivo.

  19. Thymidylate synthase enhancer region: Novel allele in Indians.

    Science.gov (United States)

    Dhawan, Dipali; Padh, Harish

    2017-02-01

    Thymidylate synthase (TS) is the major target for fluoropyrimidine drugs like 5-Fluorouracil (5-FU). There are polymorphic tandem repeats in the TYMS gene enhancer region (TSER). The number of tandem repeats varies in different populations. The aim of this study was to determine the frequencies of the TSER tandem repeats (rs34743033) and compare the observed frequencies with those of other populations. This study genotyped 350 healthy individuals by Polymerase Chain Reaction (PCR). A novel allele *1 (only a single repeat) was observed in four individuals, the individuals were heterozygous (TSER*1/*2) for TYMS. Another variant rs2853542 affecting the expression of Thymidylate synthase was also analysed. The observed genotype frequencies were compared with frequencies observed in other populations for understanding differences between various population groups. There was a statistically significant difference between Indians and Chinese, Kenyans, Ghanians, African-Americans, Americans of European Ancestry, British, Hungarians, Turkish, Australians and Brazilians. This study identified a novel single repeat in the TYMS gene which might have an impact on the expression of this gene, which needs to be confirmed by functional studies.

  20. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold...... syntheses are inhibited. Expression of pyrG responds only to the cellular level of CTP, since expression of pyrG has no correlation to alterations in UTP, GTP, and ATP pool sizes. In the untranslated pyrG leader sequence a potential terminator structure can be identified, and this structure is required...... on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing...

  1. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    Science.gov (United States)

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis. © 2014 The Authors.

  2. Molecular and functional evolution of the fungal diterpene synthase genes.

    Science.gov (United States)

    Fischer, Marc J C; Rustenhloz, Camille; Leh-Louis, Véronique; Perrière, Guy

    2015-10-19

    Terpenes represent one of the largest and most diversified families of natural compounds and are used in numerous industrial applications. Terpene synthase (TPS) genes originated in bacteria as diterpene synthase (di-TPS) genes. They are also found in plant and fungal genomes. The recent availability of a large number of fungal genomes represents an opportunity to investigate how genes involved in diterpene synthesis were acquired by fungi, and to assess the consequences of this process on the fungal metabolism. In order to investigate the origin of fungal di-TPS, we implemented a search for potential fungal di-TPS genes and identified their presence in several unrelated Ascomycota and Basidiomycota species. The fungal di-TPS phylogenetic tree is function-related but is not associated with the phylogeny based on housekeeping genes. The lack of agreement between fungal and di-TPS-based phylogenies suggests the presence of Horizontal Gene Transfer (HGTs) events. Further evidence for HGT was provided by conservation of synteny of di-TPS and neighbouring genes in distantly related fungi. The results obtained here suggest that fungal di-TPSs originated from an ancient HGT event of a single di-TPS gene from a plant to a fungus in Ascomycota. In fungi, these di-TPSs allowed for the formation of clusters consisting in di-TPS, GGPPS and P450 genes to create functional clusters that were transferred between fungal species, producing diterpenes acting as hormones or toxins, thus affecting fungal development and pathogenicity.

  3. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    Science.gov (United States)

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  4. An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase.

    Science.gov (United States)

    Meng, Jun; Wang, Fengping; Wang, Feng; Zheng, Yanping; Peng, Xiaotong; Zhou, Huaiyang; Xiao, Xiang

    2009-01-01

    A fosmid clone 37F10 containing an archaeal 16S rRNA gene was screened out from a metagenomic library of Pearl River sediment, southern China. Sequence analysis of the 35 kb inserted fragment of 37F10 found that it contains a single 16S rRNA gene belonging to Miscellaneous Crenarchaeotal Group (MCG) and 36 open reading frames (ORFs). One ORF (orf11) encodes putative bacteriochlorophyll a synthase (bchG) gene. Bacteriochlorophyll a synthase gene has never been reported in a member of the domain Archaea, in accordance with the fact that no (bacterio)-chlorophyll has ever been detected in any cultivated archaea. The putative archaeal bchG (named as ar-bchG) was cloned and heterologously expressed in Escherichia coli. The protein was found to be capable of synthesizing bacteriochlorophyll a by esterification of bacteriochlorophyllide a with phytyl diphosphate or geranylgeranyl diphosphate. Furthermore, phylogenetic analysis clearly indicates that the ar-bchG diverges before the bacterial bchGs. Our results for the first time demonstrate that a key and functional enzyme for bacteriochlorophyll a biosynthesis does exist in Archaea.

  5. Tomato linalool synthase is induced in trichomes by jasmonic acid

    Science.gov (United States)

    van Schie, Chris C. N.; Haring, Michel A.

    2007-01-01

    Tomato (Lycopersicon esculentum) plants emit a blend of volatile organic compounds, which mainly consists of terpenes. Upon herbivory or wounding, the emission of several terpenes increases. We have identified and characterized the first two tomato monoterpene synthases, LeMTS1 and LeMTS2. Although these proteins were highly homologous, recombinant LeMTS1 protein produced (R)-linalool from geranyl diphosphate (GPP) and (E)-nerolidol from farnesyl diphosphate (FPP), while recombinant LeMTS2 produced β-phellandrene, β-myrcene, and sabinene from GPP. In addition, these genes were expressed in different tissues: LeMTS1 was expressed in flowers, young leaves, stems, and petioles, while LeMTS2 was strongest expressed in stems and roots. LeMTS1 expression in leaves was induced by spider mite-infestation, wounding and jasmonic acid (JA)-treatment, while LeMTS2 did not respond to these stimuli. The expression of LeMTS1 in stems and petioles was predominantly detected in trichomes and could be induced by JA. Because JA treatment strongly induced emission of linalool and overexpression of LeMTS1 in tomato resulted in increased production of linalool, we propose that LeMTS1 is a genuine linalool synthase. Our results underline the importance of trichomes in JA-induced terpene emission in tomato. PMID:17440821

  6. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules.

    Science.gov (United States)

    Efrose, R C; Flemetakis, E; Sfichi, L; Stedel, C; Kouri, E D; Udvardi, M K; Kotzabasis, K; Katinakis, P

    2008-06-01

    The biosynthesis of the polyamines spermidine (Spd) and spermine (Spm) from putrescine (Put) is catalysed by the consequent action of two aminopropyltransferases, spermidine synthase (SPDS EC: 2.5.1.16) and spermine synthase (SPMS EC: 2.5.1.22). Two cDNA clones coding for SPDS and SPMS homologues in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the encoded polypeptides was confirmed by their ability to complement spermidine and spermine deficiencies in yeast. The temporal and spatial expression pattern of the respective genes was correlated with the accumulation of total polyamines in symbiotic and non-symbiotic organs. Expression of both genes was maximal at early stages of nodule development, while at later stages the levels of both transcripts declined. Both genes were expressed in nodule inner cortical cells, vascular bundles, and central tissue. In contrast to gene expression, increasing amounts of Put, Spd, and Spm were found to accumulate during nodule development and after maturity. Interestingly, nodulated plants exhibited systemic changes in both LjSPDS and LjSPMS transcript levels and polyamine content in roots, stem and leaves, in comparison to uninoculated plants. These results give new insights into the neglected role of polyamines during nodule development and symbiotic nitrogen fixation (SNF).

  7. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity

    Directory of Open Access Journals (Sweden)

    Arsa Thammahong

    2017-04-01

    Full Text Available Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions.

  8. [Effect of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in the pathogenesis of hypoxia-induced pulmonary hypertension of the neonatal rats].

    Science.gov (United States)

    Sang, Kui; Zhou, Ying; Li, Ming-xia

    2012-12-01

    To study the effect of hypoxia-inducible factor-1α (HIF-1α) in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH) of the neonatal rats through the study on the expression level of HIF-1α and its regulation factors: endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in blood serum and lung tissue. To make an HPH model of neonatal rats, 120 newborn Wistar rats were divided at random into two groups: HPH group and the regular oxygen controlled group with the same birthday. The rats of the two groups were put in the condition of hypoxia for 3, 5, 7, 10, 14, 21 days and then 10 rats of HPH group and control group were picked up, their mean pulmonary arterial pressure (mPAP), serum HIF-1α, and iNOS, and ET-1 content were tested, and finally their lung tissue was taken after they were sacrificed and the expression level of the gene mRNA of HIF-1α, iNOS and ET-1. (1) The rats experienced hypoxia for 3, 5, 7, 10, 14 or 21 days had an increasing mPAP: [8.47 ± 1.45, 10.04 ± 1.69, 10.89 ± 2.97, 16.96 ± 1.97, 13.01 ± 1.93, 21.04 ± 2.13 (mm Hg)], which had a significant differences compared with control groups [5.11 ± 1.06, 8.12 ± 1.11, 8.77 ± 0.92, 12.23 ± 1.78, 8.89 ± 0.89, 11.09 ± 1.64 (mm Hg)] (P rats in hypoxia group had a higher serum HIF-1α [0.83 ± 0.07, 0.84 ± 0.17, 0.97 ± 0.13, 1.10 ± 0.30, 0.92 ± 0.19 (pg/nmol)] than the control group [0.26 ± 0.20, 0.37 ± 0.16, 0.44 ± 0.18, 0.41 ± 0.23, 0.66 ± 0.18 (pg/nmol)] as they experienced hypoxia for 3, 5, 7, 10, and 14 days (P 0.05), and the content of serum iNOS after hypoxia for 14 or 21 days (4.56 ± 0.96, 5.86 ± 1.76) µmol/L was lower than that of the control group (10.35 ± 1.99, 8.44 ± 2.76) µmol/L (P rats and causedn a imbalance of ET-1 and NO. HIF-1α, ET-1 and iNOS altogether contributed to the occurrence and development of HPH in neonatal rats.

  9. Upregulation of ANP and NPR-C mRNA in the kidney and heart of eNOS knockout mice.

    Science.gov (United States)

    Yuan, Kuichang; Kim, Sun Young; Oh, Young-Bin; Yu, Jiahua; Shah, Amin; Park, Byung Hyun; Kim, Suhn Hee

    2010-07-01

    The aim of the present studywas to examine the question of whether the atrial natriuretic peptide (ANP) system is altered by endothelial nitric-oxide synthase (eNOS). Male eNOS-deficient mice (eNOS-/-) and wild type control mice (eNOS+/+, C57B1/6J) were used. Blood pressure was measured in anesthetized mice by tail cuff plethysmography and renal function was measured. Expression of ANP, natriuretic peptide receptor (NPR)-A, NPR-C, and tonicity-responsive enhancer binding protein (TonEBP) mRNA was determined by real-time PCR. Localization of (125)I-ANP binding sites was measured using in vitro autoradiography. In eNOS-/- mice, systolic blood pressure increased and left ventricular hypertrophy was observed. Urine volume and osmolarity did not change. Expression of ANP markedly increased in the heart and kidney of eNOS-/- mice. Expression of NPR-A and NPR-C increased in the heart and tended to increase in the kidney of eNOS-/- mice. In the renal medulla in particular, increased expression of NPR-C was more prominent. Expression of TonEBP mRNA was markedly decreased in the renal medulla, but not in the renal cortex. Maximum binding capacity (B(max)) of ANP and C-ANP increased in the renal medulla in eNOS-/- mice. These results suggest that the eNOS-NO system may be partly involved in regulation of ANP, NPR-A, -C, and TonEBP mRNA expression in the kidney. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Review Article: The Role of Nitric Oxide Synthase in Post-Operative ...

    African Journals Online (AJOL)

    Nitric Oxide (NO) is produced by nitric oxide synthase (NOS) isoenzymes. Inducible nitric oxide synthase (iNOS) is not a normal cellular constitute. It is expressed by cytokines and non-cytokines e.g. fasting, trauma, intravenous glucose, and lipid infusion, which are encountered in surgical operations. Review of current ...

  11. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    -transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  12. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    Science.gov (United States)

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. © 2010 The Authors Journal compilation © 2010 FEBS.

  13. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named

  14. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  15. The polyketide components of waxes and the Cer-cqu gene cluster encoding a novel polyketide synthase, the β-diketone synthase, DKS

    DEFF Research Database (Denmark)

    von Wettstein, Penny

    2017-01-01

    Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms...... long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols....

  16. Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations

    National Research Council Canada - National Science Library

    Clavero, Sonia; Bishop, David F; Haskins, Mark E; Giger, Urs; Kauppinen, Raili; Desnick, Robert J

    2010-01-01

    Human acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is an autosomal dominant inborn error of heme biosynthesis due to the half-normal activity of hydroxymethylbilane synthase (HMB-synthase...

  17. Structure of dimeric mitochondrial ATP synthase: Novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis

    National Research Council Canada - National Science Library

    Fernando Minauro-Sanmiguel; Stephan Wilkens; José J. García

    2005-01-01

    .... How two ATP synthase complexes dimerize to promote cristae formation is unknown. Here we resolved the structure of the dimeric F 1 F 0 ATP synthase complex isolated from bovine heart mitochondria by transmission electron microscopy...

  18. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation.

    Science.gov (United States)

    Schmidt, Axel; Gershenzon, Jonathan

    2007-11-01

    The conifer Picea abies (Norway spruce) employs terpenoid-based oleoresins as part of its constitutive and induced defense responses to herbivores and pathogens. The isoprenyl diphosphate synthases are branch-point enzymes of terpenoid biosynthesis leading to the various terpene classes. We isolated three genes encoding isoprenyl diphosphate synthases from P. abies cDNA libraries prepared from the bark and wood of methyl jasmonate-treated saplings and screened via a homology-based PCR approach using degenerate primers. Enzyme assays of the purified recombinant proteins expressed in Escherichia coli demonstrated that one gene (PaIDS 4) encodes a farnesyl diphosphate synthase and the other two (PaIDS 5 and PaIDS 6) encode geranylgeranyl diphosphate synthases. The sequences have moderate similarity to those of farnesyl diphosphate and geranylgeranyl diphosphate synthases already known from plants, and the kinetic properties of the enzymes are not unlike those of other isoprenyl diphosphate synthases. Of the three genes, only PaIDS 5 displayed a significant increase in transcript level in response to methyl jasmonate spraying, suggesting its involvement in induced oleoresin biosynthesis.

  19. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vu