WorldWideScience

Sample records for syndrome virus binds

  1. Studies of the viral binding proteins of shrimp BP53, a receptor of white spot syndrome virus.

    Science.gov (United States)

    Li, Chen; Gao, Xiao-Xiao; Huang, Jie; Liang, Yan

    2016-02-01

    The specific binding between viral attachment proteins (VAPs) of a virus and its cellular receptors on host cells mediates virus entry into host cells, which triggers subsequent viral infections. Previous studies indicate that F1 ATP synthase β subunit (named BP53), is found on the surface of shrimp cells and involved in white spot syndrome virus (WSSV) infection by functioning as a potential viral receptor. Herein, in a far-western blotting assay, three WSSV proteins with molecular weights of 28 kDa, 37 kDa, and >50 kDa were found to interact with BP53. The 28 kDa and 37 kDa proteins were identified as the envelope protein VP28 and VP37 of WSSV respectively, which could be recognized by the polyclonal antibodies. Enzyme-linked immunosorbent binding assays revealed that VP37 contributed to almost 80% of the binding capability for BP53 compared with the same amount of total WSSV protein. The relationship between BP53 and its complementary interacting protein, VP37, was visualized using a co-localization assay. Bound VP37 on the cell surface co-localized with BP53 and shared a similar subcellular location on the outer surface of shrimp cells. Pearson's correlation coefficients reached to 0.67 ± 0.05 and the Mander's overlap coefficients reached 0.70 ± 0.05, which indicated a strong relationship between the localization of BP53 and bound rVP37. This provides evidence for an interaction between BP53 and VP37 obtained at the molecular and cellular levels, supporting the hypothesis that BP53 serves as a receptor for WSSV by binding to VP37. The identification of the viral binding proteins of shrimp BP53 is helpful for better understanding the pathogenic mechanisms of WSSV to infect shrimp at the cellular level. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nucleocapsid protein VP15 is the basic DNA binding protein of white spot syndrome virus of shrimp

    NARCIS (Netherlands)

    Witteveldt, J.; Vermeesch, A.M.G.; Langenhof, M.; Lang, de A.; Vlak, J.M.; Hulten, van M.C.W.

    2005-01-01

    White spot syndrome virus (WSSV) is type species of the genus Whispovirus of the new family Nimaviridae. Despite the elucidation of its genomic sequence, very little is known about the virus as only 6% of its ORFs show homology to known genes. One of the structural virion proteins, VP15, is part of

  3. Hepatitis C Virus Resistance to Carbohydrate-Binding Agents.

    Directory of Open Access Journals (Sweden)

    Laure Izquierdo

    Full Text Available Carbohydrate binding agents (CBAs, including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV, Hepatitis C Virus (HCV, Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA, Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms.

  4. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  5. Astakine LvAST binds to the β subunit of F1-ATP synthase and likely plays a role in white shrimp Litopeneaus vannamei defense against white spot syndrome virus.

    Science.gov (United States)

    Liang, Gao-Feng; Liang, Yan; Xue, Qinggang; Lu, Jin-Feng; Cheng, Jun-Jun; Huang, Jie

    2015-03-01

    Cytokines play a critical role in innate and adaptive immunity. Astakines represent a group of invertebrate cytokines that are related to vertebrate prokineticin and function in promoting hematopoiesis in crustaceans. We have identified an astakine from the white shrimp Litopeneaus vannamei and named it LvAST in a previous research. In the present research, we investigated the interactions among LvAST, the envelope protein VP37 of white spot syndrome virus (i.e., WSSV), and the β subunit of F1-ATP synthase (ATPsyn-β) of the white shrimp (i.e., BP53) using binding assays and co-precipitations. We also examined the effects of LvAST on shrimp susceptibility to WSSV. We found that LvAST and VP37 competitively bound to BP53, but did not bind to each other. Shrimps that had been injected with recombinant LvAST exhibited significantly lower mortality and longer survival time in experimental infections by WSSV. In contrast, shrimps whose LvAST gene expression had been inhibited by RNA interference showed significantly higher WSSV infection intensity and shorter survival time following viral challenges. These results suggested that LvAST and WSSV both likely use ATPsyn-β as a receptor and LvAST plays a role in shrimp defense against WSSV infection. This represented the first research showing the involvement of astakines in host antiviral immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)

    DEFF Research Database (Denmark)

    Kvisgaard, Lise Kirstine

    This PhD thesis presents the diversity of Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) circulating in the Danish pig population. PRRS is a disease in pigs caused by the PRRS virus resulting in reproductive failures in sows and gilts and respiratory diseases in pigs . Due to genetic...

  7. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  8. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine

    NARCIS (Netherlands)

    Witteveldt, J.; Vlak, J.M.; Hulten, van M.C.W.

    2004-01-01

    Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein

  9. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  10. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  11. Investigation of ability of serum albumin to bind the tritium labeled drotaverine hydrochloride at virus hepatitis

    International Nuclear Information System (INIS)

    Kim, A.A.; Mavlyanov, I.R.; Shukurov, B.V.; Djuraeva, G.T.

    2005-01-01

    The most of pathological conditions, and especially liver pathologies, proceeds on the background of intoxication syndromes. One of universal mechanisms of reaction of an organism on increase of concentration of toxic metabolites is removing of metabolites with the help of one of the basic protein of blood plasma - serum albumin. The purpose of the present research was studying of serum albumin ability to bind drotaverine hydrochloride at virus hepatitis in dynamics of traditional therapy. This parameter is rather important for therapy as it is known, that serum albumin is a carrier of pharmaceutical preparations. At intoxication of organism the toxic metabolites can reduce the binding capacity of serum albumin due to competitive binding and by that to reduce efficiency of carry of pharmaceutical preparations. Application of a radiochemical method with use of tritium labeled drotaverine hydrochloride in the given research it is represented to the most effective. The method of tritium labeling of pharmacological preparation of drotaverine hydrochloride was developed. Drotaverine hydrochloride was labeled by thermally activated tritium. The system of purification of tritium labeled drotaverine hydrochloride by thin layer chromatography (TLC) has been developed. Tritium labeled preparation of drotaverine hydrochloride was purified by TLC on silica gel in system isopropanol : ammonia : water (8:1:1). The output of purified tritium labeled preparation of drotaverine hydrochloride was about 25 %. The received preparation had specific radioactivity - 3,2 MBq/mg (37,4 mCi/mmol), radiochemical purity of a preparation was 95 %. We had been developed a micromethod of definition of binding ability of albumin, allowing analyze 20 microliters of blood serum. The method consists in incubation of tritium labeled drotaverine hydrochloride with blood serum in vitro, the following fractionation of serum proteins by gel - filtration on a microcolumn with Sephadex G-25, and direct

  12. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    Science.gov (United States)

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  13. RNA binding specificity of Ebola virus transcription factor VP30.

    Science.gov (United States)

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  14. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...

  15. Immune defence White Spot Syndrome Virus infected shrimp, Penaeus monodon

    NARCIS (Netherlands)

    Arts, J.A.J.

    2006-01-01

    White spot syndrome virus (WSSV) is the most important viral pathogen of cultured penaeid shrimp worldwide. Since the initial discovery of the virus inTaiwanin 1992, it has spread to shrimp farming regions in Southeast Asia, the

  16. Multiple proteins of White spot syndrome virus involved in ...

    Indian Academy of Sciences (India)

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that -integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of -integrin with structure proteins of WSSV and motifs involved in WSSV infection was ...

  17. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection.

    Science.gov (United States)

    Du, Taofeng; Shi, Yunpeng; Xiao, Shuqi; Li, Na; Zhao, Qin; Zhang, Angke; Nan, Yuchen; Mu, Yang; Sun, Yani; Wu, Chunyan; Zhang, Hongtao; Zhou, En-Min

    2017-10-10

    Porcine reproductive and respiratory syndrome virus (PRRSV) could lead to pandemic diseases and huge financial losses to the swine industry worldwide. Curcumin, a natural compound, has been reported to serve as an entry inhibitor of hepatitis C virus, chikungunya virus and vesicular stomatitis virus. In this study, we investigated the potential effect of curcumin on early stages of PRRSV infection. Curcumin inhibited infection of Marc-145 cells and porcine alveolar macrophages (PAMs) by four different genotype 2 PRRSV strains, but had no effect on the levels of major PRRSV receptor proteins on Marc-145 cells and PAMs or on PRRSV binding to Marc-145 cells. However, curcumin did block two steps of the PRRSV infection process: virus internalization and virus-mediated cell fusion. Our results suggested that an inhibition of genotype 2 PRRSV infection by curcumin is virus strain-independent, and mainly inhibited by virus internalization and cell fusion mediated by virus. Collectively, these results demonstrate that curcumin holds promise as a new anti-PRRSV drug.

  18. Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells

    International Nuclear Information System (INIS)

    Kim, Oekyung; Sun Yan; Lai, Frances W.; Song Cheng; Yoo, Dongwan

    2010-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is an emerged disease of swine characterized by negligible response of type I IFNs and viral persistence. We show that the PRRSV non-structural protein 1 (Nsp1) is the viral component responsible for modulation of IFN response. Nsp1 blocked dsRNA-induced IRF3 and IFN promoter activities. Nsp1 did not block phosphorylation and nuclear translocation of IRF3 but inhibited IRF3 association with CREB-binding protein (CBP) in the nucleus. While IRF3 was stable, CBP was degraded, and CBP degradation was proteasome-dependent, suggesting that CBP degradation is not due to the protease activity of Nsp1 but an intermediary is involved. Our data suggest that the Nsp1-mediated CBP degradation inhibits the recruitment of CBP for enhanceosome assembly, leading to the block of IFN response. CBP degradation is a novel strategy for viral evasion from the host response, and Nsp1 may form a new class of viral antagonists for IFN modulation.

  19. Secondary Hemophagocytic Syndrome Associated with Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    S. R. Rodionovskaya

    2015-01-01

    Full Text Available Hemophagocytic syndrome is one of the complications of herpes virus infections. Here, we describe the case of a 8—year-old male with secondary hemophagocytic syndrome. The disease was diagnosed in the early stages. The patient received treatment with dexamethasone, intravenous immunoglobulin, which has led to a weakening of the ignition and the suppression of the disease with rapid treatment.

  20. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    Science.gov (United States)

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  1. Trastuzumab-binding peptide display by Tobacco mosaic virus

    International Nuclear Information System (INIS)

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.; Kosorukov, Vyacheslav S.; Sheval, Eugene V.; Gleba, Yuri Y.; Dorokhov, Yuri L.

    2010-01-01

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.

  2. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  3. White Spot Syndrome Virus infection in Penaeus monodon is ...

    Indian Academy of Sciences (India)

    White Spot Syndrome Virus (WSSV) is a major pathogen in shrimp aquaculture, and its rampant spread has resulted in great economic loss. Identification of host cellular proteins interacting with WSSV will help in unravelling the repertoire of host proteins involved in WSSV infection. In this study, we have employed ...

  4. Analyzing machupo virus-receptor binding by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Austin G. Meyer

    2014-02-01

    Full Text Available In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD to computationally pull the machupo virus (MACV spike glycoprotein (GP1 away from the human transferrin receptor (hTfR1. We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions.

  5. Analyzing machupo virus-receptor binding by molecular dynamics simulations

    Science.gov (United States)

    Sawyer, Sara L.; Ellington, Andrew D.; Wilke, Claus O.

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions. PMID:24624315

  6. Quantification of virus syndrome in chili peppers

    African Journals Online (AJOL)

    Jane

    2011-06-15

    Jun 15, 2011 ... alternative for the quantification of the disease' syndromes in regards to this crop. The result of these ..... parison of treatments such as cultivars or control measures and ..... Vascular discoloration and stem necrosis. 2.

  7. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    Science.gov (United States)

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-06-01

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    Science.gov (United States)

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  9. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  10. New Respiratory Viruses in Infants with Bronchoobstructive Syndrome

    OpenAIRE

    S.M. Rudenko; O.V. Obertynska; Yu.O. Boyko; O.M. Okhotnikova; I.V. Dzyublik

    2014-01-01

    The objective of our study was to identify new respiratory viruses in infants with bronchoobstructive syndrome (obstructive bronchitis and exacerbation of bronchial asthma). We examined 28 children aged from 5 months to 6 years. The average age of the patients was 33.7 months (95% CI 24.5–43.0). Viruses have been identified in 75 % of patients. In 39.3 % we found bocavirus. Metapneumovirus was detected in 10.7 % of patients. Exacerbation of bronchial asthma 2.3 times more likely was associate...

  11. Burning mouth syndrome due to herpes simplex virus type 1.

    Science.gov (United States)

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Gilden, Don

    2015-04-01

    Burning mouth syndrome is characterised by chronic orofacial burning pain. No dental or medical cause has been found. We present a case of burning mouth syndrome of 6 months duration in a healthy 65-year-old woman, which was associated with high copy numbers of herpes simplex virus type 1 (HSV-1) DNA in the saliva. Her pain resolved completely after antiviral treatment with a corresponding absence of salivary HSV-1 DNA 4 weeks and 6 months later. 2015 BMJ Publishing Group Ltd.

  12. Epstein-Barr Virus (EBV-associated Haemophagocytic Syndrome

    Directory of Open Access Journals (Sweden)

    Lorenza Torti

    2012-01-01

    Full Text Available We describe the case of a 17- year old female who developed fatal haemophagocytic syndrome (HPS one month following acute infection caused by Epstein-Barr virus (EBV. Despite initiation of treatment and reduction of EBV load, laboratory signs of HPS as severe cytopenia, hypofibrinogenemia, hyperferritinemia and hypertriglyceridemia persisted, and the patient died of multiorgan failure. HPS is a rare, but life-threatening complication of EBV infection.

  13. New Respiratory Viruses in Infants with Bronchoobstructive Syndrome

    Directory of Open Access Journals (Sweden)

    S.M. Rudenko

    2014-05-01

    Full Text Available The objective of our study was to identify new respiratory viruses in infants with bronchoobstructive syndrome (obstructive bronchitis and exacerbation of bronchial asthma. We examined 28 children aged from 5 months to 6 years. The average age of the patients was 33.7 months (95% CI 24.5–43.0. Viruses have been identified in 75 % of patients. In 39.3 % we found bocavirus. Metapneumovirus was detected in 10.7 % of patients. Exacerbation of bronchial asthma 2.3 times more likely was associated with bocavirus infection compared to patients with obstructive bronchitis (RR = 2.3 (95% CI 0.9–6.2. Duration of bronchoobstructive syndrome in children with bronchial asthma was significantly higher (p < 0.0001 than in children with obstructive bronchitis — 5.3 days (95% CI 4.1–6.4 versus 2.7 days (95% CI 2.3–3.1. The findings confirm a significant role of viral infection and new respiratory viruses in causing bronchoobstructive syndrome in children.

  14. White spot syndrome virus inactivation study by using gamma irradiation

    Science.gov (United States)

    Heidareh, Marzieh; Sedeh, Farahnaz Motamedi; Soltani, Mehdi; Rajabifar, Saeed; Afsharnasab, Mohammad; Dashtiannasab, Aghil

    2014-09-01

    The present study was conducted to investigate the effect of gamma irradiation on white spot syndrome virus (WSSV). White spot syndrome virus is a pathogen of major economic importance in cultured penaeid shrimp industries. White spot disease can cause mortalities reaching 100% within 3-10 days of gross signs appearing. During the period of culture, immunostimulant agents and vaccines may provide potential methods to protect shrimps from opportunistic and pathogenic microrganisms. In this study, firstly, WSSV was isolated from infected shrimp and then multiplied in crayfish. WSSV was purified from the infected crayfish haemolymph by sucrose gradient and confirmed by transmission electron microscopy. In vivo virus titration was performed in shrimp, Penaeus semisulcatus. The LD50 of live virus stock was calculated 10 5.4/mL. Shrimp post-larvae (1-2 g) were treated with gamma-irradiated (different doses) WSSV (100 to 10-4 dilutions) for a period of 10 days. The dose/survival curve for irradiated and un-irradiated WSSV was drawn; the optimum dose range for inactivation of WSSV and unaltered antigenicity was obtained 14-15 kGy. This preliminary information suggests that shrimp appear to benefit from treatment with gammairradiated WSSV especially at 14-15 KGy.

  15. Heparin binding sites on Ross River virus revealed by electron cryo-microscopy

    International Nuclear Information System (INIS)

    Zhang Wei; Heil, Marintha; Kuhn, Richard J.; Baker, Timothy S.

    2005-01-01

    Cell surface glycosaminoglycans play important roles in cell adhesion and viral entry. Laboratory strains of two alphaviruses, Sindbis and Semliki Forest virus, have been shown to utilize heparan sulfate as an attachment receptor, whereas Ross River virus (RRV) does not significantly interact with it. However, a single amino acid substitution at residue 218 in the RRV E2 glycoprotein adapts the virus to heparan sulfate binding and expands the host range of the virus into chicken embryo fibroblasts. Structures of the RRV mutant, E2 N218R, and its complex with heparin were determined through the use of electron cryo-microscopy and image reconstruction methods. Heparin was found to bind at the distal end of the RRV spikes, in a region of the E2 glycoprotein that has been previously implicated in cell-receptor recognition and antibody binding

  16. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis.

    Science.gov (United States)

    Nauwynck, H J; Duan, X; Favoreel, H W; Van Oostveldt, P; Pensaert, M B

    1999-02-01

    Porcine alveolar macrophages (AMphi) are the dominant cell type that supports the replication of porcine reproductive and respiratory syndrome virus (PRRSV) in vivo and in vitro. In order to determine the characteristics of the virus-receptor interaction, the attachment of PRRSV to cells was examined by using biotinylated virus in a series of flow cytometric assays. PRRSV bound specifically to AMphi in a dose-dependent manner. Binding of PRRSV to AMphi increased gradually and reached a maximum within 60 min at 4 degrees C. By confocal microscopy, it was shown that different degrees of PRRSV binding exist and that entry is by endocytosis. Virus uptake in vesicles is a clathrin-dependent process, as it was blocked by the addition of cytochalasin D and co-localization of PRRSV and clathrin was found. Furthermore, by the use of two weak bases, NH4Cl and chloroquine, it was demonstrated that PRRSV uses a low pH-dependent entry pathway. In the presence of these reagents, input virions accumulated in large vacuoles, indicating that uncoating was prevented. These results indicate that PRRSV entry into AMphi involves attachment to a specific virus receptor(s) followed by a process of endocytosis, by which virions are taken into the cell within vesicles by a clathrin-dependent pathway. A subsequent drop in pH is required for proper virus replication.

  17. Evidence for the Inhibition of Dengue Virus Binding in the Presence of Silver Nanoparticles

    Science.gov (United States)

    2015-03-26

    with DENV are known to increase in severity from Dengue Fever to Dengue Hemorrhagic Fever or Dengue Shock Syndrome. Currently, no vaccines or...DENV is a member of the Flavivirus family, as is the yellow fever virus (the family’s prototype), West Nile, Japanese encephalitis virus, and many...perspective/2013/10/ researchers - identify-fifth-dengue-subtype. [20] C. Moore, “UTMB Galveston Researchers Discover First New Dengue Fever Serotype In 50

  18. Detection of Herpes Simplex Virus DNA in Pseudoexfoliation Syndrome

    Directory of Open Access Journals (Sweden)

    Masoomeh Eghtedari

    2009-06-01

    Full Text Available Background: Pseudoexfoliation syndrome is one of the mostcommon identifiable causes of open angle glaucoma. It hasunknown etiology and pathogenesis. Infection, possibly viral,is one of the proposed pathogenic mechanisms in this condition.In the present study the presence of herpes simplex virus(HSV in specimens of anterior lens capsule of patients withpseudoexfoliation syndrome has been assessed.Methods: The presence of HSV- DNA was searched by usingpolymerase chain reaction method in specimens of anteriorlens capsule (5 mm diameter of 50 patients with pseudoexfoliationsyndrome (study group and 50 age-matchedpatients without the disease (control group who underwentcataract or combined cataract and glaucoma surgery duringa one-year (2006-2007 period in Khalili Hospital, Shiraz,Iran. The results were compared statistically with Chisquaretest and independent samples t test using SPSS software(version 11.5.Results: HSV type I DNA was detected in 18% of the patientsin the study group compared with 2% in the control group (Chisquare test, P = 0.008. The difference between the ranges ofintraocular pressure in the two groups was not statistically significant.Conclusion: The presence of HSV type I DNA suggests thepossible relationship between the virus and pseudoexfoliationsyndrome. It may be a treatable etiology in this multi-factorialdisorder and may help to future management of patients; especiallyto prevent some of the complications in this syndrome.

  19. Burning mouth syndrome associated with varicella zoster virus.

    Science.gov (United States)

    Nagel, Maria A; Gilden, Don

    2016-07-05

    We present two cases of burning mouth syndrome (BMS)-of 8-month duration in a 61-year-old woman and of 2-year duration in a 63-year-old woman-both associated with increased levels of antivaricella zoster virus (VZV) IgM antibodies in serum and with pain that improved with antiviral treatment. Combined with our previous finding of BMS due to herpes simplex virus type 1 (HSV-1) infection, we recommend evaluation of patients with BMS not only for VZV or HSV-1 DNA in the saliva, but also for serum anti-VZV and anti-HSV-1 IgM antibodies. Both infections are treatable with oral antiviral agents. 2016 BMJ Publishing Group Ltd.

  20. Deep insight into white spot syndrome virus vaccines: A review

    Directory of Open Access Journals (Sweden)

    MA Badhul Haq

    2012-02-01

    Full Text Available White spot syndrome virus (WSSV, the causative virus of the disease, is found in most shrimp farming areas of the world, where it causes large economic losses to the shrimp farming industry. The potentially fatal virus has been found to be a threat not only to all shrimp species, but also to other marine and freshwater crustaceans, such as crab and crayfish. To date, no effective prophylactic treatment measures are available for viral infections in shrimp and other crustaceans. Due to current aquaculture practices and the broad host range of WSSV, intervention strategies including vaccination against this virus would be pivotal to save and protect shrimp farming. Several achievements have been attained in the search of novel vaccines for WSSV. DNA vaccination, recombinant vaccines, oral vaccination techniques and gene therapy are some of the thrust areas of focus for scientists and researchers. This review article highlights the recent trends in the development of WSSV vaccines either as DNA vaccines or recombinant vaccines and their functioning strategies as suggested by the researchers worldwide.

  1. Cerebral 5-HT2A receptor binding is increased in patients with Tourette's syndrome

    DEFF Research Database (Denmark)

    Haugbøl, Steven; Pinborg, Lars H.; Regeur, Lisbeth

    2007-01-01

    Experimental and clinical data have suggested that abnormalities in the serotonergic neurotransmissions in frontal-subcortical circuits are involved in Tourette's syndrome. To test the hypothesis that the brain's 5-HT2A receptor binding is increased in patients with Tourette's syndrome, PET imagi...

  2. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Science.gov (United States)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  3. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies

    OpenAIRE

    Davidson, Edgar; Bryan, Christopher; Fong, Rachel H.; Barnes, Trevor; Pfaff, Jennifer M.; Mabila, Manu; Rucker, Joseph B.; Doranz, Benjamin J.

    2015-01-01

    Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epito...

  4. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Witteveldt, J.; Snippe, M.; Vlak, J.M.

    2001-01-01

    White spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of

  5. Fitness and virulence of an ancestral White Spot Syndrome Virus isolate from shrimp

    NARCIS (Netherlands)

    Marks, H.; Duijse, J.J.A.; Zuidema, D.; Hulten, van M.C.W.; Vlak, J.M.

    2005-01-01

    White Spot Syndrome Virus, the type species of the virus family Nimaviridae, is a large dsDNA virus infecting shrimp and other crustaceans. Genomic analysis of three completely sequenced WSSV isolates identified two major polymorphic loci, ¿variable region ORF14/15¿ and ¿variable region ORF23/24¿.

  6. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication

    NARCIS (Netherlands)

    Peters, S A; Verver, J; Nollen, E A; van Lent, J W; Wellink, J; van Kammen, A

    1994-01-01

    We have assessed the functional importance of the NTP-binding motif (NTBM) in the cowpea mosaic virus (CPMV) B-RNA-encoded 58K domain by changing two conserved amino acids within the consensus A and B sites (GKSRTGK500S and MDD545, respectively). Both Lys-500 to Thr and Asp-545 to Pro substitutions

  8. Immune reconstitution syndrome in a human immunodeficiency virus infected child due to giardiasis leading to shock

    Directory of Open Access Journals (Sweden)

    Sneha Nandy

    2015-01-01

    Full Text Available Human immunodeficiency virus (HIV-associated immune reconstitution inflammatory syndrome has been reported in association with tuberculosis, herpes zoster (shingles, Cryptococcus neoformans, Kaposi′s sarcoma, Pneumocystis pneumonia, hepatitis B virus, hepatitis C virus, herpes simplex virus, Histoplasma capsulatum, human papillomavirus, and Cytomegalovirus. However, it has never been documented with giardiasis. We present a 7-year-old HIV infected girl who developed diarrhea and shock following the initiation of antiretroviral therapy, and her stool showed the presence of giardiasis.

  9. Pediatric Miller Fisher Syndrome Complicating an Epstein-Barr Virus Infection.

    Science.gov (United States)

    Communal, Céline; Filleron, Anne; Baron-Joly, Sandrine; Salet, Randa; Tran, Tu-Anh

    2016-10-01

    Miller Fisher syndrome, a variant of Guillain-Barré syndrome, is an acute inflammatory demyelinating polyradiculoneuropathy that may occur weeks after a bacterial or viral infection. Campylobacter jejuni and Haemophilus influenzae are frequently reported etiological agents. We describe a boy with Miller Fisher syndrome following Epstein-002DBarr virus primary infectious mononucleosis. He presented with bilateral dysfunction of several cranial nerves and hyporeflexia of the limbs but without ataxia. Miller Fisher syndrome was confirmed by the presence of anti-GQ1b antibodies in a blood sample. Epstein-Barr virus was identified by polymerase chain reaction and serology. Epstein-Barr virus should be considered as a Miller Fisher syndrome's causative agent. The physiopathology of this condition may involve cross-reactive T-cells against Epstein-Barr virus antigens and gangliosides. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Feline leukemia virus infection requires a post-receptor binding envelope-dependent cellular component.

    Science.gov (United States)

    Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S

    2011-12-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.

  11. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Lam, Tommy Tsan-Yuk; Liu, Wei; Bowden, Thomas A; Cui, Ning; Zhuang, Lu; Liu, Kun; Zhang, Yao-Yun; Cao, Wu-Chun; Pybus, Oliver G

    2013-03-01

    In 2009, a novel Bunyavirus, called severe fever with thrombocytopenia syndrome virus (SFTSV) was identified in the vicinity of Huaiyangshan, China. Clinical symptoms of this zoonotic virus included severe fever, thrombocytopenia, and leukocytopenia, with a mortality rate of ~10%. By the end of 2011 the disease associated with this pathogen had been reported from eleven Chinese provinces and human-to-human transmission suspected. However, current understanding of the evolution and molecular epidemiology of SFTSV before and after its identification is limited. To address this we undertake phylogenetic, evolutionary and structural analyses of all available SFTSV genetic sequences, including a new SFTSV complete genome isolated from a patient from Henan in 2011. Our discovery of a mosaic L segment sequence, which is descended from two major circulating lineages of SFTSV in China, represents the first evidence that homologous recombination plays a role in SFTSV evolution. Selection analyses indicate that negative selection is predominant in SFTSV genes, yet differences in selective forces among genes are consistent between Phlebovirus species. Further analysis reveals structural conservation between SFTSV and Rift Valley fever virus in the residues of their nucleocapsids that are responsible for oligomerisation and RNA-binding, suggesting the viruses share similar modes of higher-order assembly. We reconstruct the epidemic history of SFTSV using molecular clock and coalescent-based methods, revealing that the extant SFTSV lineages originated 50-150 years ago, and that the viral population experienced a recent growth phase that concurs with and extends the earliest serological reports of SFTSV infection. Taken together, our combined structural and phylogenetic analyses shed light into the evolutionary behaviour of SFTSV in the context of other, better-known, pathogenic Phleboviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  13. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  14. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  15. Guillain-Barre syndrome complicating chikungunya virus infection.

    Science.gov (United States)

    Agarwal, Ayush; Vibha, Deepti; Srivastava, Achal Kumar; Shukla, Garima; Prasad, Kameshwar

    2017-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus which presents with symptoms of fever, rash, arthralgia, and occasional neurologic disease. While outbreaks have been earlier reported from India and other parts of the world, the recent outbreak in India witnessed more than 1000 cases. Various systemic and rarely neurological complications have been reported with CHIKV. We report two cases of Guillain-Barré syndrome (GBS) with CHIKV. GBS is a rare neurological complication which may occur after subsidence of fever and constitutional symptoms by several neurotropic viruses. We describe two cases of severe GBS which presented with rapidly progressive flaccid quadriparesis progressing to difficulty in swallowing and breathing. Both required mechanical ventilation and improved partly with plasmapharesis. The cases emphasize on (1) description of the rare complication in a setting of outbreak with CHIKV, (2) acute axonal as well as demyelinating neuropathy may occur with CHIKV, (3) accurate identification of this entity during outbreaks with dengue, both of which are vector borne and may present with similar complications.

  16. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

    Science.gov (United States)

    Fang, Jianyu; Wang, Haiyan; Bai, Juan; Zhang, Qiaoya; Li, Yufeng; Liu, Fei; Jiang, Ping

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.

  17. Antiviral property of marine actinomycetes against white spot syndrome virus in penaeid shrimps

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.S.; Philip, R.; Achuthankutty, C.T.

    Aquaculture farms, particularly in Southeast Asia are facing severe crisis due to increasing incidences of White Spot Syndrome Virus (WSSV). Actinomycetes have provided many important bioactive compounds of high prophylactic and therapeutic value...

  18. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune System

    Science.gov (United States)

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis and control. Worldwide PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic...

  19. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  20. Binding of human collectins (SP-A and MBP) to influenza virus.

    OpenAIRE

    Malhotra, R; Haurum, J S; Thiel, S; Sim, R B

    1994-01-01

    Collectins are a group of soluble proteins each of which has collagenous domains and non-collagenous globular domains, the latter containing the consensus residues found in C-type lectins. Members of the collectin family are the serum proteins mannan-binding protein (MBP), conglutinin, CL-43, and the lung-associated proteins surfactant protein A (SP-A) and surfactant protein D (SP-D). MBP and conglutinin have been shown previously to bind to influenza viruses and to inhibit the infectivity an...

  1. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication.

    Directory of Open Access Journals (Sweden)

    Deepika Bhullar

    Full Text Available Japanese encephalitis virus (JEV has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5'- and 3'-non-coding regions (NCRs. The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB interacts in vitro with both the 5'-NCR of the positive-sense genomic RNA--5NCR(+, and its complementary sequence in the negative-sense replication intermediate RNA--3NCR(-. The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(- RNA with viral RNA-dependent RNA polymerase (NS5 protein, an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.

  2. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp.

    Science.gov (United States)

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen; Zhang, Xiaobo

    2017-04-15

    In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp ( Marsupenaeus japonicus ). Dorsal , the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. Copyright © 2017 American Society for Microbiology.

  3. Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs.

    NARCIS (Netherlands)

    Verheije, M.H.; Kroese, M.V.; Linden, van der I.F.A.; Boer-Luijtze, de E.A.; Rijn, van P.A.; Pol, J.M.A.; Meulenberg, J.J.M.; Steverink, P.J.G.M.

    2003-01-01

    Three porcine reproductive and respiratory syndrome virus (PRRSV) recombinants, generated by mutagenesis of an infectious cDNA clone of the Lelystad virus (LV) isolate, were tested for their safety and protective efficacy as potential PRRSV vaccines in pigs. Recombinant vABV688 contains two amino

  4. Protection of Penaeus monodon against White Spot Syndrome Virus by oral vaccination

    NARCIS (Netherlands)

    Witteveldt, J.; Cifuentes, C.; Vlak, J.M.; Hulten, van M.C.W.

    2004-01-01

    White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. No adequate treatments against this virus are available. It is generally accepted that invertebrates such as shrimp do not have an adaptive immune response

  5. Virion composition and genomics of white spot syndrome virus of shrimp

    NARCIS (Netherlands)

    Hulten, van M.C.W.

    2001-01-01


    Since its first discovery in Taiwan in 1992, White spot syndrome virus (WSSV) has caused major economic damage to shrimp culture. The virus has spread rapidly through Asia and reached the Western Hemisphere in 1995 (Texas), where it continued its devastating effect

  6. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  7. Analysis of the PDZ binding specificities of Influenza A Virus NS1 proteins

    Directory of Open Access Journals (Sweden)

    Nagasaka Kazunori

    2011-01-01

    Full Text Available Abstract The Influenza A virus non-structural protein 1 (NS1 is a multifunctional virulence factor with several protein-protein interaction domains, involved in preventing apoptosis of the infected cell and in evading the interferon response. In addition, the majority of influenza A virus NS1 proteins have a class I PDZ-binding motif at the C-terminus, and this itself has been shown to be a virulence determinant. In the majority of human influenza NS1 proteins the consensus motif is RSxV: in avian NS1 it is ESxV. Of the few human strains that have the avian motif, all were from very high mortality outbreaks of the disease. Previous work has shown that minor differences in PDZ-binding motifs can have major effects on the spectrum of cellular proteins targeted. In this study we analyse the effect of these differences upon the binding of Influenza A virus NS1 protein to a range of cellular proteins involved in polarity and signal transduction.

  8. Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands

    Directory of Open Access Journals (Sweden)

    Cao-Lormeau Van-Mai

    2009-03-01

    Full Text Available Abstract Dengue virus (DENV, the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L. and Aedes polynesiensis (Marks. The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies.

  9. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome

    NARCIS (Netherlands)

    Krzystek-Korpacka, Malgorzata; Patryn, Eliza; Bednarz-Misa, Iwona; Mierzchala, Magdalena; Hotowy, Katarzyna; Czapinska, Elzbieta; Kustrzeba-Wojcicka, Irena; Gamian, Andrzej; Noczynska, Anna

    2011-01-01

    Adipocyte fatty acid-binding protein (A-FABP) links obesity and metabolic syndrome (MetS) and might be targeted in future therapies. Its utility as a MetS biomarker has been suggested in adults but has not been examined in children/adolescents. Our objectives were to identify metabolic parameters

  10. Tropism and infectivity of duck-derived egg drop syndrome virus in chickens.

    Directory of Open Access Journals (Sweden)

    Min Kang

    Full Text Available Egg drop syndrome virus (EDSV can markedly decrease egg production in laying hens. Duck is the natural host of EDSV. EDSV derived from ducks abrogate egg drop in laying hens. We have previously confirmed that duck-derived EDSVs have a variety of replication activities in chick embryo liver (CEL cells. However, it is currently unclear whether duck-derived EDSV could display tropism and adaptation in laying hens. This study assessed whether duck-derived EDSV can adapt to laying hens, and estimated the inducing factors. Complete genome sequences of duck-derived EDSVs (D11-JW-012, D11-JW-017, and D11-JW-032 isolates with various replication efficiency in CEL cells and C10-GY-001 isolate causing disease in laying hens were analyzed to find their differences. Phylogenetic analysis of complete genome sequence revealed that C10-GY-001, D11-JW-032, and strain 127 virus as vaccine were clustered into the same group, with D11-JW-012 and D11-JW-017 clustered in another group. Comparison between D11-JW-012 isolate that poorly replicated and D11-JW-017 isolate that replicated well in CEL cells in same cluster revealed six amino acid differences on IVa2, DNA polymerase, endopeptidase, and DNA-binding protein. These amino acids might be key candidates enhancing cellular tropism in chicken. When the pathogenicities of these isolates in laying hens were compared, D11-JW-032 showed severe signs similar to 127 virus, D11-JW-017 showed intermediate signs, while D11-JW-012 showed almost no sign. Eleven amino acids differed between D11-JW-032 and D11-JW-017, and 17 amino acids were different between D11-JW-032 and D11-JW-012. These results suggest that EDSVs derived from ducks have various pathogenicities in laying hens. Key amino acid candidates might have altered their affinity to tropism of laying hens, causing difference pathogenicities.

  11. Identification of a High Affinity Nucleocapsid Protein Binding Element from The Bovine Leukemia Virus Genome

    Science.gov (United States)

    Yildiz, F. Zehra; Babalola, Kathleen; Summers, Michael F.

    2012-01-01

    Retroviral genome recognition is mediated by interactions between the nucleocapsid (NC) domain of the virally encoded Gag polyprotein and cognate RNA packaging elements that, for most retroviruses, appear to reside primarily within the 5′-untranslated region (5′-UTR) of the genome. Recent studies suggest that a major packaging determinant of Bovine Leukemia Virus (BLV), a member of the human T-cell leukemia virus (HTLV)/BLV family and a non-primate animal model for HTLV-induced leukemogenesis, resides within the gag open reading frame. We have prepared and purified the recombinant BLV NC protein and conducted electrophoretic mobility shift and isothermal titration calorimetry studies with RNA fragments corresponding to these proposed packaging elements. The gag-derived RNAs did not exhibit significant affinity for NC, suggesting an alternate role in packaging. However, an 83-nucleotide fragment of the 5′-UTR that resides just upstream of the gag start codon binds NC stoichiometrically and with high affinity (Kd = 136 ± 21 nM). These nucleotides were predicted to form tandem hairpin structures, and studies with smaller fragments indicate that the NC binding site resides exclusively within the distal hairpin (residues G369- U399, Kd = 67 ± 8 nM at physiological ionic strength). Unlike all other structurally characterized retroviral NC binding RNAs, this fragment is not expected to contain exposed guanosines, suggesting that RNA binding may be mediated by a previously uncharacterized mechanism. PMID:22846919

  12. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  13. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  14. Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

    Czech Academy of Sciences Publication Activity Database

    Füzik, T.; Píchalová, R.; Schur, F. K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, J. A. G.; Ulbrich, P.; Ruml, T.

    2016-01-01

    Roč. 90, č. 9 (2016), s. 4593-4603 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : M-PMV * virus assembly * capsid protein Subject RIV: EE - Microbiology, Virology Impact factor: 4.663, year: 2016

  15. Mapping of the Lassa virus LAMP1 binding site reveals unique determinants not shared by other old world arenaviruses.

    Directory of Open Access Journals (Sweden)

    Hadar Israeli

    2017-04-01

    Full Text Available Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.

  16. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    Science.gov (United States)

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  17. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  18. Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales

    NARCIS (Netherlands)

    Bui Thi Minh Dieu,; Marks, H.; Zwart, M.P.; Vlak, J.M.

    2010-01-01

    Variable genomic loci have been employed in a number of molecular epidemiology studies of white spot syndrome virus (WSSV), but it is unknown which loci are suitable molecular markers for determining WSSV spread on different spatiotemporal scales. Although previous work suggests that multiple

  19. Syndromic surveillance for West Nile virus using raptors in rehabilitation.

    Science.gov (United States)

    Ana, Alba; Perez Andrés, M; Julia, Ponder; Pedro, Puig; Arno, Wünschmann; Kimberly, Vander Waal; Julio, Alvarez; Michelle, Willette

    2017-11-29

    Wildlife rehabilitation centers routinely gather health-related data from diverse species. Their capability to signal the occurrence of emerging pathogens and improve traditional surveillance remains largely unexplored. This paper assessed the utility for syndromic surveillance of raptors admitted to The Raptor Center (TRC) to signal circulation of West Nile Virus (WNV) in Minnesota between 1990 and 2014. An exhaustive descriptive analysis using grouping time series structures and models of interrupted times series was conducted for indicator subsets. A total of 13,080 raptors were monitored. The most representative species were red-tailed hawks, great horned owls, Cooper's hawks, American kestrels and bald eagles. Results indicated that temporal patterns of accessions at the TRC changed distinctively after the incursion of WNV in 2002. The frequency of hawks showing WNV-like signs increased almost 3 times during July and August, suggesting that monitoring of hawks admitted to TRC with WNV-like signs could serve as an indicator of WNV circulation. These findings were also supported by the results of laboratory diagnosis. This study demonstrates that monitoring of data routinely collected by wildlife rehabilitation centers has the potential to signal the spread of pathogens that may affect wild, domestic animals and humans, thus supporting the early detection of disease incursions in a region and monitoring of disease trends. Ultimately, data collected in rehabilitation centers may provide insights to efficiently allocate financial and human resources on disease prevention and surveillance.

  20. Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    2010-05-01

    Full Text Available The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions.

  1. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, M.B.; Forsberg, R.

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  2. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate......-binding activity and was dependent on glycosylation of gp120. Native dodecameric SP-D bound to HIV gp120 more strongly than native trimeric SP-D. Since one common polymorphic form of SP-D is predominantly expressed as trimers and associated with lower blood levels, these individuals may have less effective innate...

  3. Small molecule inhibition of hepatitis C virus E2 binding to CD81

    International Nuclear Information System (INIS)

    Van Compernolle, Scott E.; Wiznycia, Alexander V.; Rush, Jeremy R.; Dhanasekaran, Muthu; Baures, Paul W.; Todd, Scott C.

    2003-01-01

    The hepatitis C virus (HCV) is a causal agent of chronic liver infection, cirrhosis, and hepatocellular carcinoma infecting more than 170 million people. CD81 is a receptor for HCV envelope glycoprotein E2. Although the binding of HCV-E2 with CD81 is well documented the role of this interaction in the viral life cycle remains unclear. Host specificity and mutagenesis studies suggest that the helix D region of CD81 mediates binding to HCV-E2. Structural analysis of CD81 has enabled the synthesis of small molecules designed to mimic the space and hydrophobic features of the solvent-exposed face on helix D. Utilizing a novel bis-imidazole scaffold a series of over 100 compounds has been synthesized. Seven related, imidazole-based compounds were identified that inhibit binding of HCV-E2 to CD81. The inhibitory compounds have no short-term effect on cellular expression of CD81 or other tetraspanins, do not disrupt CD81 associations with other cell surface proteins, and bind reversibly to HCV-E2. These results provide an important proof of concept that CD81-based mimics can disrupt binding of HCV-E2 to CD81

  4. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Muñoz

    2013-01-01

    Full Text Available The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV through receptors of midgut epithelial cells. The envelope protein (E of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK, translation elongation factor EF-1 alpha/Tu, and cadherin.

  5. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    Science.gov (United States)

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  6. Mortality Due to Porcine Reproductive and Respiratory Syndrome Virus in Immunocompromised G?ttingen Minipigs (Sus scrofa domestica)

    OpenAIRE

    Pils, Marina C; Dreckmann, Karla; Jansson, Katharina; Glage, Silke; Held, Nadine; Sommer, Wiebke; L?nger, Florian; Avsar, Murat; Warnecke, Gregor; Bleich, Andr?

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection was diagnosed in 6 G?ttingen minipigs (Sus scrofa domestica) with severe interstitial pneumonia. The virus was defined as a North American (NA) subtype virus, which is common in the commercial pig population and might be derived from a widely used attenuated live-virus vaccine in Europe. The ORF5 sequence of the isolated PRRSV was 98% identical to the vaccine virus. The affected pigs were part of a lung transplantation mode...

  7. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus.

    Directory of Open Access Journals (Sweden)

    Jingliang Su

    Full Text Available Since April 2010, a severe outbreak of duck viral infection, with egg drop, feed uptake decline and ovary-oviduct disease, has spread around the major duck-producing regions in China. A new virus, named BYD virus, was isolated in different areas, and a similar disease was reproduced in healthy egg-producing ducks, infecting with the isolated virus. The virus was re-isolated from the affected ducks and replicated well in primary duck embryo fibroblasts and Vero cells, causing the cytopathic effect. The virus was identified as an enveloped positive-stranded RNA virus with a size of approximately 55 nm in diameter. Genomic sequencing of the isolated virus revealed that it is closely related to Tembusu virus (a mosquito-borne Ntaya group flavivirus, with 87-91% nucleotide identity of the partial E (envelope proteins to that of Tembusu virus and 72% of the entire genome coding sequence with Bagaza virus, the most closely related flavivirus with an entirely sequenced genome. Collectively our systematic studies fulfill Koch's postulates, and therefore, the causative agent of the duck egg drop syndrome occurring in China is a new flavivirus. Flavivirus is an emerging and re-emerging zoonotic pathogen and BYD virus that causes severe egg-drop, could be disastrous for the duck industry. More importantly its public health concerns should also be evaluated, and its epidemiology should be closely watched due to the zoonotic nature of flaviviruses.

  8. Differences in serotonin transporter binding affinity in patients with major depressive disorder and night eating syndrome.

    Science.gov (United States)

    Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J

    2009-03-01

    We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.

  9. Metabolic syndrome in human immunodeficiency virus positive patients

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2013-01-01

    Full Text Available Aims and Objectives : To assess the prevalence of metabolic syndrome (MetS in human immunodeficiency virus (HIV positive patients. Prevalence of MetS was compared in patients who were not on highly active antiretroviral therapy (HAART to patients who were on HAART. Materials and Methods: Seventy HIV positive cases were studied. Pregnant and lactating women, patients on drugs other than HAART known to cause metabolic abnormalities and those having diabetes or hypertension were excluded. Cases were evaluated for MetS by using National Cholesterol Education Program Adult Treatment Panel-III. Results: 47 cases were on HAART and 23 cases were not on HAART. Fasting Blood Glucose ≥100 mg/dl was present in 28.6% cases, out of whom 27.7% were on HAART and 30.4% were not on HAART (P = 0.8089. 12.9% cases had BP ≥130/≥85 mm Hg, out of whom 14.9% were on HAART and 8.7% were not on HAART (P = 0.4666. 42.9% cases had TG ≥150 mg/dl, out of whom 44.7% were on HAART and 39.1% were not on HAART (P = 0.6894. HDL cholesterol was low (males <40 mg/dl, females <50 mg/dl in 50% cases, out of whom 55.3% were on HAART and 39.1% were not on HAART (P = 0.2035. Conclusions: Prevalence of MetS was 20%. Majority of patients had only one component of MetS (32.9%. Low HDL was present in 50%, followed by raised triglycerides in 42.9%. Waist circumference was not increased in any of the patients. There was no statistically significant difference between those on HAART and those not on HAART in distribution of risk factors and individual components of MetS.

  10. Suppression of Shrimp Melanization during White Spot Syndrome Virus Infection*

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-01-01

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. PMID:25572398

  11. Suppression of shrimp melanization during white spot syndrome virus infection.

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-03-06

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  13. Structure and function of A41, a vaccinia virus chemokine binding protein.

    Directory of Open Access Journals (Sweden)

    Mohammad W Bahar

    2008-01-01

    Full Text Available The vaccinia virus (VACV A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI, and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM chemokine-chemokine receptor interactions.

  14. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, Jutta [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria); Kontaxis, Georg [Max F. Perutz Laboratories, University of Vienna, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, A-1030 Vienna (Austria); Rancan, Chiara [Helmholtz Zentrum München, Department of Gene Vectors, Haematologikum, Marchioninistrasse 25, D-81377 Munich (Germany); Skern, Tim, E-mail: timothy.skern@meduniwien.ac.at [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria)

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.

  15. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    International Nuclear Information System (INIS)

    Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara; Skern, Tim

    2013-01-01

    The foot-and-mouth disease virus leader proteinase (Lb pro ) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb pro L200F provide structural evidence for intramolecular self-processing. 15 N-HSQC measurements of Lb pro L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb pro , lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb pro , stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb pro and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb pro . - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes

  16. Retinol-Binding Protein 4 and Insulin Resistance in Polycystic Ovary Syndrome

    OpenAIRE

    Hutchison, Samantha K.; Harrison, Cheryce; Stepto, Nigel; Meyer, Caroline; Teede, Helena J.

    2008-01-01

    OBJECTIVE?Polycystic ovary syndrome (PCOS) is an insulin-resistant state with insulin resistance being an established therapeutic target; however, measurement of insulin resistance remains challenging. We aimed to 1) determine serum retinol-binding protein 4 (RBP4) levels (purported to reflect insulin resistance) in women with PCOS and control subjects, 2) examine the relationship of RBP4 to conventional markers of insulin resistance, and 3) examine RBP4 changes with interventions modulating ...

  17. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Marchetti, Magda; Trybala, Edward; Superti, Fabiana; Johansson, Maria; Bergstroem, Tomas

    2004-01-01

    Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS

  18. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    Directory of Open Access Journals (Sweden)

    Henry Memczak

    Full Text Available Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.

  19. NEMO binds ubiquitinated TANK-binding kinase 1 (TBK1 to regulate innate immune responses to RNA viruses.

    Directory of Open Access Journals (Sweden)

    Lingyan Wang

    Full Text Available RIG-I-like receptors (RLR are intracellular sensors utilized by nearly all cell types for recognition of viral RNA, initiation of antiviral defense, and induction of type I interferons (IFN. TBK1 is a critical kinase implicated in RLR-dependent IFN transcription. Posttranslational modification of TBK1 by K63-linked ubiquitin is required for RLR driven signaling. However, the TBK1 ubiquitin acceptor sites and the function of ubiquitinated TBK1 in the signaling cascade are unknown. We now show that TBK1 is ubiquitinated on residues K69, K154, and K372 in response to infection with RNA virus. The K69 and K154 residues are critical for innate antiviral responses and IFN production. Ubiquitinated TBK1 recruits the downstream adaptor NEMO through ubiquitin binding domains. The assembly of the NEMO/TBK1 complex on the mitochondrial protein MAVS leads to activation of TBK1 kinase activity and phosphorylation of the transcription factor, interferon response factor 3. The combined results refine current views of RLR signaling, define the role of TBK1 polyubiquitination, and detail the mechanisms involved in signalosome assembly.

  20. Binding of visual and spatial short-term memory in Williams syndrome and moderate learning disability.

    Science.gov (United States)

    Jarrold, Christopher; Phillips, Caroline; Baddeley, Alan D

    2007-04-01

    A main aim of this study was to test the claim that individuals with Williams syndrome have selectively impaired memory for spatial as opposed to visual information. The performance of 16 individuals with Williams syndrome (six males, 10 females; mean age 18y 7mo [SD 7y 6mo], range 9y 1mo-30y 7mo) on tests of short-term memory for item and location information was compared with that shown by individuals with moderate learning difficulties (12 males, four females; mean age 10y 3mo [SD 1y], range 8y 6mo-11y 7mo) and typically developing children (six males, 10 females; mean age 6y 8mo [SD 7mo], range 5y 10mo-7y 9mo) of an equivalent level of visuospatial ability. A second aim was to determine whether individuals had impaired ability to 'bind' visual spatial information when required to recall 'item in location' information. In contrast to previous findings, there was no evidence that individuals with Williams syndrome were more impaired in the spatial than the visual memory condition. However, individuals with both Williams syndrome and moderate learning difficulties showed impaired memory for item in location information, suggesting that problems of binding may be generally associated with learning disability.

  1. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses.

    Directory of Open Access Journals (Sweden)

    Xuyong Li

    2014-11-01

    Full Text Available H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific "internal-gene-combination" predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as "vehicles" to deliver different subtypes of influenza viruses from avian species to humans.

  2. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus

    OpenAIRE

    Lam, Tommy Tsan-Yuk; Liu, Wei; Bowden, Thomas A.; Cui, Ning; Zhuang, Lu; Liu, Kun; Zhang, Yao-Yun; Cao, Wu-Chun; Pybus, Oliver G.

    2013-01-01

    In 2009, a novel Bunyavirus, called severe fever with thrombocytopenia syndrome virus (SFTSV) was identified in the vicinity of Huaiyangshan, China. Clinical symptoms of this zoonotic virus included severe fever, thrombocytopenia, and leukocytopenia, with a mortality rate of ?10%. By the end of 2011 the disease associated with this pathogen had been reported from eleven Chinese provinces and human-to-human transmission suspected. However, current understanding of the evolution and molecular e...

  3. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  4. Application of a Label-Free Immunosensor for White Spot Syndrome Virus (WSSV) in Shrimp Cultivation Water.

    Science.gov (United States)

    Waiyapoka, Thanyaporn; Deachamag, Panchalika; Chotigeat, Wilaiwan; Bunsanong, Nittaya; Kanatharana, Proespichaya; Thavarungkul, Panote; Loyprasert-Thananimit, Suchera

    2015-10-01

    White spot syndrome virus (WSSV) is a major pathogen affecting the shrimp industry worldwide. In a preliminary study, WSSV binding protein (WBP) was specifically bound to the VP26 protein of WSSV. Therefore, we have developed the label-free affinity immunosensor using the WBP together with anti-GST-VP26 for quantitative detection of WSSV in shrimp pond water. When the biological molecules were immobilized on a gold electrode to form a self-assembled monolayer, it was then used to detect WSSV using a flow injection system with optimized conditions. Binding between the different copies of WSSV and the immobilized biological molecules was detected by an impedance change (ΔZ″) in real time. The sensitivity of the developed immunosensor was in the linear range of 1.6 × 10(1)-1.6 × 10(6) copies/μl. The system was highly sensitive for the analysis of WSSV as shown by the lack of impedance change when using yellow head virus (YHV). The developed immunosensor could be reused up to 37 times (relative standard deviation (RSD), 3.24 %) with a good reproducibility of residual activity (80-110 %). The immunosensor was simple to operate, reliable, reproducible, and could be applied for the detection and quantification of WSSV in water during shrimp cultivation.

  5. Drug-induced hypersensitivity syndrome associated with Epstein-Barr virus infection.

    Science.gov (United States)

    Descamps, V; Mahe, E; Houhou, N; Abramowitz, L; Rozenberg, F; Ranger-Rogez, S; Crickx, B

    2003-05-01

    Association of drug-induced hypersensitivity syndrome with viral infection is debated. Human herpesvirus 6 (HHV-6) reactivation has been the most frequently reported infection associated with this syndrome. However, a case of cytomegalovirus (CMV) infection was recently described associated with anticonvulsant-induced hypersensitivity syndrome. We report a case of severe allopurinol-induced hypersensitivity syndrome with pancreatitis associated with Epstein-Barr virus (EBV) infection. Active EBV infection was demonstrated in two consecutive serum samples by the presence of anti-EBV early antigen (EA) IgM antibodies and an increase in anti-EBV EA IgG antibodies, whereas no anti-EBV nuclear antigen IgG antibodies were detected. EBV DNA was detected by polymerase chain reaction (PCR) in peripheral blood mononuclear cells. Reactivation of HHV-6 was suggested only by the presence of anti-HHV-6 IgM antibodies, but HHV-6 DNA was not detected by PCR in the serum. Other viral investigations showed previous infection (CMV, rubella, measles, parvovirus B19), immunization after vaccination (hepatitis B virus), or absence of previous infection (hepatitis C virus, human immunodeficiency virus). We suggest that EBV infection may participate in some cases, as do the other herpesviruses HHV-6 or CMV, in the development of drug-induced hypersensitivity syndrome.

  6. Investigation of Monnose-Binding Lectin gene Polymorphism in Patients with Erythema Multiforme, Stevens-Johnson Syndrome and Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis Overlap Syndrome

    Directory of Open Access Journals (Sweden)

    Sevil Toka

    2012-09-01

    Full Text Available Objective: Monnose-Binding lectin (MBL appears to play an important role in the immune system. The genetic polymorphisms in the MBL2 gene can result in a reduction of serum levels, leading to a predisposition to recurrent infection. The aim of this study is to investigate the influence of a polymorphism in codon 54 of the MBL2 gene on the susceptibility to Erythema Multiforme, Stevens-Johnson Syndrome and Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis Overlap Syndrome (EM, SJS and SJS/TEN overlap syndrome. Material and Methods: Our study included 64 patients who were clinically and/or histopathologically diagnosed with EM, SJS, and SJS/TEN overlap syndrome and 66 healthy control subjects who were genotyped for the MBL2 gene codon 54 polymorphism using the PCR-RFLP method. For all statistical analyses, the level of significance was set at p<0.05. Results: The prevalence of the B allele was 18% in the EM, SJS and SJS/TEN patient groups and 13% in the control group. No significant differences in allele frequencies of any polymorphism were observed between the patient and control groups, although the B allele was more frequent in the patient groups (p=0.328.Conclusion: Our results provide no evidence of a relationship between MBL2 gene codon 54 polymorphism and the susceptibility to EM, SJS and SJS/TEN overlap syndrome. However, these findings should be confirmed in studies with a larger sample size.

  7. Horizontal transmission dynamics of White spot syndrome virus by cohabitation trials in juvenile Penaeus monodon and P. vannamei

    NARCIS (Netherlands)

    Ngo Xuan, T.; Verreth, J.A.J.; Vlak, J.M.; Jong, de M.C.M.

    2014-01-01

    White spot syndrome virus (WSSV), a rod-shaped double-stranded DNA virus, is an infectious agent causing fatal disease in shrimp farming around the globe. Within shrimp populations WSSV is transmitted very fast, however, the modes and dynamics of transmission of this virus are not well understood.

  8. Drug-binding ability of human serum albumin at children with chronic virus hepatitis radiochemical definition method

    International Nuclear Information System (INIS)

    Kim, A.A.; Dadakhanov, J.A.; Djuraeva, G.T.; Shukurov, B.V.; Mavlyanov, I.R.

    2006-01-01

    Full text: The chronic virus hepatitis produces numerous abnormalities of liver function. The viruses of B, C, D, F and G hepatitis possess the ability to cause chronically proceeding diseases. Earlier we have found that binding ability of serum albumin at patients with acute forms of virus hepatitis is authentically reduced in comparison with the given parameters of control group. At an acute virus hepatitis B with middle severity the reducing of binding ability of serum albumin was observed at 70 % of patients. At an acute virus hepatitis A the reduce of binding ability of serum albumin is less expressed than at acute virus hepatitis B. At of chronic virus intoxication in human organism there is a formation and accumulation of toxic compounds in the excessive concentrations, which are not inherent to a normal metabolism. One of universal mechanisms of reaction of an organism on the increasing concentration of metabolism products is formation of complexes of various compounds with blood plasma proteins. The formation in an organism of endo- and exotoxins excessive concentrations results in blocking the binding centers of albumin molecule that causes the change of its complexing ability. The purpose of the present research: investigation of binding ability of serum albumin with use of radiochemical method at children with a chronic virus hepatitis B and C. Materials and methods. Under clinical observation there were 52 children in the age from 3 till 14 years. From them at 32 the chronic virus hepatitis B was confirmed, at 20 chronic virus - hepatitis C. Etiological diagnostics was carried out by definition of specific markers of a hepatitis B and C method IFA and PCR. Binding ability of serum albumin was defined by radiochemical method with use of the tritium labeled no-spa (drotaverine hydrochloride). The control group consists from 10 conditionally health children of similar age. Results and their discussion. The results of investigation have shown, that at a

  9. Emergence of Epidemic Zika Virus Transmission and Congenital Zika Syndrome: Are Recently Evolved Traits to Blame?

    OpenAIRE

    Scott C. Weaver

    2017-01-01

    ABSTRACT The mechanisms responsible for the dramatic emergence of Zika virus (ZIKV), accompanied by congenital Zika syndrome and Guillain-Barr? syndrome (GBS), remain unclear. However, two hypotheses are prominent: (i) evolution for enhanced urban transmission via adaptation to mosquito vectors, or for enhanced human infection to increase amplification, or (ii) the stochastic introduction of ZIKV into large, naive human populations in regions with abundant Aedes aegypti populations, leading t...

  10. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein.

    Science.gov (United States)

    Anderson, Caitlin E; Holstein, Carly A; Strauch, Eva-Maria; Bennett, Steven; Chevalier, Aaron; Nelson, Jorgen; Fu, Elain; Baker, David; Yager, Paul

    2017-06-20

    Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 10 7 and 1.34 × 10 7 CEID 50 /mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.

  11. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  12. Recombinant norovirus-specific scFv inhibit virus-like particle binding to cellular ligands

    Directory of Open Access Journals (Sweden)

    Hardy Michele E

    2008-01-01

    Full Text Available Abstract Background Noroviruses cause epidemic outbreaks of gastrointestinal illness in all age-groups. The rapid onset and ease of person-to-person transmission suggest that inhibitors of the initial steps of virus binding to susceptible cells have value in limiting spread and outbreak persistence. We previously generated a monoclonal antibody (mAb 54.6 that blocks binding of recombinant norovirus-like particles (VLP to Caco-2 intestinal cells and inhibits VLP-mediated hemagglutination. In this study, we engineered the antigen binding domains of mAb 54.6 into a single chain variable fragment (scFv and tested whether these scFv could function as cell binding inhibitors, similar to the parent mAb. Results The scFv54.6 construct was engineered to encode the light (VL and heavy (VH variable domains of mAb 54.6 separated by a flexible peptide linker, and this recombinant protein was expressed in Pichia pastoris. Purified scFv54.6 recognized native VLPs by immunoblot, inhibited VLP-mediated hemagglutination, and blocked VLP binding to H carbohydrate antigen expressed on the surface of a CHO cell line stably transfected to express α 1,2-fucosyltransferase. Conclusion scFv54.6 retained the functional properties of the parent mAb with respect to inhibiting norovirus particle interactions with cells. With further engineering into a form deliverable to the gut mucosa, norovirus neutralizing antibodies represent a prophylactic strategy that would be valuable in outbreak settings.

  13. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  14. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    International Nuclear Information System (INIS)

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-01-01

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  15. Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength

    DEFF Research Database (Denmark)

    Lund, Ole; Nascimento, Eduardo J. M.; Maciel, Milton, Jr

    2011-01-01

    Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV...... inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding...

  16. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  17. Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes

    Directory of Open Access Journals (Sweden)

    Yu-Fu Hung

    2015-07-01

    Full Text Available Dengue virus (DENV is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A is a vital component of the viral replication complex (RC and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1–48 is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1–48 to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1–48 to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.

  18. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  19. Hepatopulmonary syndrome in a patient with AIDS and virus C cirrhosis (viral cirrhosis type C)

    International Nuclear Information System (INIS)

    Ferreira, Maria Angelica; Gazzana, Marcelo Basso; Barreto, Sergio Saldanha Menna; Knorst, Marli Maria

    2001-01-01

    Hepatopulmonary syndrome is characterized by a triad consisting of liver disorder, pulmonary vascular dilatation, and hypoxaemia. No case of hepatopulmonary syndrome associated with AIDS has been reported so far. In this study, the authors report the case of a 43-year woman with AIDS and virus C cirrhosis taking prophylactic cotrimoxazole for pneumocystosis and retroviral therapy. Upon admission, the patient presented dyspnoea, cyanosis, digital clubbing, vascular spiders, and normal chest examination. Chest X-ray revealed bilateral interstitial infiltration and evidenced increased alveolar-arterial gradient and liver function impairment. Intrapulmonary shunt was evidenced by contrast-enhanced echocardiography and radionuclide perfusion scanning, thus confirming hepatopulmonary syndrome. (author)

  20. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.

    Science.gov (United States)

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-09-26

    Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a "cytokine storm." Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1 -/- mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1 -/- mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine-Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4 Hi CD3 Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4 + T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4 + T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. IMPORTANCE Ebola virus infection is characterized by a massive release of inflammatory mediators, which has come to be known as a cytokine storm. The severity of the cytokine storm is

  1. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    OpenAIRE

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interactio...

  2. RNA-binding properties and mapping of the RNA-binding domain from the movement protein of Prunus necrotic ringspot virus.

    Science.gov (United States)

    Herranz, M Carmen; Pallás, Vicente

    2004-03-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is involved in intercellular virus transport. In this study, putative RNA-binding properties of the PNRSV MP were studied. The PNRSV MP was produced in Escherichia coli using an expression vector. Electrophoretic mobility shift assays (EMSAs) using DIG-labelled riboprobes demonstrated that PNRSV MP bound ssRNA cooperatively without sequence specificity. Two different ribonucleoprotein complexes were found to be formed depending on the molar MP : PNRSV RNA ratio. The different responses of the complexes to urea treatment strongly suggested that they have different structural properties. Deletion mutagenesis followed by Northwestern analysis allowed location of a nucleic acid binding domain to aa 56-88. This 33 aa RNA-binding motif is the smallest region delineated among members of the family Bromoviridae for which RNA-binding properties have been demonstrated. This domain is highly conserved within all phylogenetic subgroups previously described for PNRSV isolates. Interestingly, the RNA-binding domain described here and the one described for Alfamovirus are located at the N terminus of their corresponding MPs, whereas similar domains previously characterized in members of the genera Bromovirus and Cucumovirus are present at the C terminus, strongly reflecting their corresponding phylogenetic relationships. The evolutionary implications of this observation are discussed.

  3. Antibodies against Severe Fever with Thrombocytopenia Syndrome Virus in Healthy Persons, China, 2013

    Science.gov (United States)

    Zhang, Lei; Sun, Jimin; Yan, Jie; Lv, Huakun; Chai, Chengliang; Sun, Yi; Shao, Bin; Jiang, Jianmin; Chen, Zhiping

    2014-01-01

    In June 2013, a subclinical infection with severe fever with thrombocytopenia syndrome virus (SFTSV) was detected in Zhejiang Province, China, prompting seroprevalence studies in 6 districts within the province. Of 986 healthy persons tested, 71 had IgG antibodies against SFTSV. This finding suggests that most natural infections with SFTSV are mild or subclinical. PMID:25061813

  4. Zika virus infection and Guillain-Barré syndrome in three patients from Suriname

    NARCIS (Netherlands)

    T. Langerak (Thomas); Yang, H. (Harvey); Baptista, M. (Mark); Doornekamp, L. (Laura); Kerkman, T. (Tessa); Codrington, J. (John); Roosblad, J. (Jimmy); Vreden, S.G.S. (Stephen G.S.); E.I. de Bruin (Esther); R. Mögling (Ramona); B.C. Jacobs (Bart); S.D. Pas (Suzan); C.H. Geurts van Kessel (Corine); C.B.E.M. Reusken (Chantal); M.P.G. Koopmans D.V.M. (Marion); E.C.M. van Gorp (Eric); Alberga, H. (Henk)

    2016-01-01

    textabstractWe present three patients from Suriname who were diagnosed with Guillain-Barré syndrome (GBS) during the Zika virus (ZIKV) outbreak in this country. One patient had a positive ZIKV urine real-time RT-PCR (qRT-PCR) result. The other two patients had a negative ZIKV urine qRT-PCR but a

  5. Antibodies against severe fever with Thrombocytopenia syndrome Virus in healthy persons, China, 2013

    NARCIS (Netherlands)

    Zhang Lei, Lei; Sun, J.; Yan, J.; Huakun, L.; Chai, C.Y.; Sun, Y.; Shao, B.; Jiang, J.D.; Chen, Z.; Kortekaas, J.A.; Zhang, Y.

    2014-01-01

    In June 2013, a subclinical infection with severe fever with thrombocytopenia syndrome virus (SFTSV) was detected in Zhejiang Province, China, prompting seroprevalence studies in 6 districts within the province. Of 986 healthy persons tested, 71 had IgG antibodies against SFTSV. This finding

  6. Transcriptional analysis of the ribonucleotide reductase genes in shrimp white spot syndrome virus

    NARCIS (Netherlands)

    Tsai, M.F.; Lo, C.F.; Hulten, van M.C.W.; Tzeng, H.F.; Chou, C.M.; Huang, C.J.; Wang, C.S.

    2000-01-01

    The causative agent of white spot syndrome (WSS) is a large double-stranded DNA virus, WSSV, which is probably a representative of a new genus, provisionally called Whispovirus. From previously constructed WSSV genomic libraries of a Taiwan WSSV isolate, clones with open reading frames (ORFs) that

  7. White spot syndrome virus molecular epidemiology: relation with shrimp farming and disease outbreaks

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.

    2012-01-01

    White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD), has been responsible for most shrimp production losses around the world since the early 1990s. Previous research has focused mainly on the characterization of WSSV genomic variation to gain a better insight in the

  8. Transmission of white spot syndrome virus (WSSV) from Dendronereis spp. (Peters) (Nereididae) to penaeid shrimp

    NARCIS (Netherlands)

    Haryadi, D.; Verreth, J.A.J.; Verdegem, M.C.J.; Vlak, J.M.

    2015-01-01

    Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina

  9. Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Pak, J.; Sharon, C; Satkunarajah, M; Thierry, C; Cameron, C; Kelvin, D; Seetharaman, J; Cochrane, A; Plummer, F; et. al.

    2009-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.

  10. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    Science.gov (United States)

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  11. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  12. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus

    DEFF Research Database (Denmark)

    Mortensen, Sten; Stryhn, Henrik; Søgaard, Rikke

    2002-01-01

    In 1992, the porcine reproductive and respiratory syndrome virus (PRRSV) of European type (PRRSV-EU) was introduced in Denmark. By 1996, the virus had spread to approximately 25% of the Danish herds. In January 1996, a modified-live vaccine based on the American type of the virus (PRRSV-US) was u......In 1992, the porcine reproductive and respiratory syndrome virus (PRRSV) of European type (PRRSV-EU) was introduced in Denmark. By 1996, the virus had spread to approximately 25% of the Danish herds. In January 1996, a modified-live vaccine based on the American type of the virus (PRRSV......-US) was used in replacement boars for Danish artificial insemination (AI) centres and from July 1996, the vaccine was used in PRRSV-EU infected herds for prevention of disease. Soon after vaccine introduction, PRRSV non-infected herds experienced outbreaks of disease due to infection with PRRSV...... in the case herds). The data were analysed using a Cox-regression model. The hazard of infection increased significantly with exposure from PRRSV-US-infected neighbouring herds, purchase of animals from herds incubating PRRSV-US infection, increasing herd size and purchase of semen from boars at PRRSV...

  13. Determination of 5 '-leader sequences from radically disparate strains of porcine reproductive and respiratory syndrome virus reveals the presence of highly conserved sequence motifs

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Nielsen, Jens

    1999-01-01

    We determined the untranslated 5'-leader sequence for three different isolates of porcine reproductive and respiratory syndrome virus (PRRSV): pathogenic European- and American-types, as well as an American-type vaccine strain. 5'-leader from European- and American-type PRRSV differed in length...... (220 and 190 nt, respectively), and exhibited only approximately 50% nucleotide homology. Nevertheless, highly conserved areas were identified in the leader of all 3 PRRSV isolates, which constitute candidate motifs for binding of protein(s) involved in viral replication. These comparative data provide...

  14. Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro

    International Nuclear Information System (INIS)

    Yamamoto, K.R.; Payvar, F.; Firestone, G.L.; Maler, B.A.; Wrange, O.; Carlstedt-Duke, J.; Gustafsson, J.A.; Chandler, V.L.; Karolinska Institutet, Stockholm, Sweden)

    1983-01-01

    To test whether high-affinity receptor:DNA interactions can be correlated with receptor effects on promoter function in vivo, we have mapped in greater detail the receptor-binding regions on murine mammary tumor virus DNA, using both nitrocellulose-filter binding and electron microscopy. Recombinant plasmids bearing these receptor-binding domains have been transfected into cultured cells, and the expression of the plasmid sequences has been monitored for hormonal regulation. The results are considered in terms of a speculative proposal that the glucocorticoid receptor may effect changes in promoter activity via specific alteration of chromatin and/or DNA structure. 37 references, 6 figures, 2 tables

  15. Immunization with influenza virus hemagglutinin globular region containing the receptor-binding pocket.

    Science.gov (United States)

    Jeon, Sung Ho; Arnon, Ruth

    2002-01-01

    The globular region of hemagglutinin (residues 91-261) membrane glycoprotein of influenza virus that encompasses the binding zone to the oligosaccharide receptor of target cells has been cloned by reverse transcriptase-polymerase chain reaction (RT-PCR). This protein segment (denoted HA91-261 peptide) induced significant immune response in mice. The serum antibodies and lung homogenates from the immunized mice cross-reacted with native virus particles. The cellular immunity was manifested by proliferative splenocyte responses and cytokine release indicating T helper type 1 activity. The plasmid DNA containing this segment (denoted pHA91-261) provoked, in addition, a significant cytotoxic T lymphocyte (CTL) response, whereas the HA91-261 protein fragment led to no such response. Both the DNA and the protein fragment of HA91-261 induced significant protection against viral challenge, although the immune response they induce might be along different pathways. Interestingly, the combined DNA priming-protein boosting immunization regimen did not induce protection against viral challenges even though it led to significant humoral immune responses similar to that induced by the peptide vaccine.

  16. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced recep...

  17. Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication

    International Nuclear Information System (INIS)

    Fujisaki, Koki; Ishikawa, Masayuki

    2008-01-01

    The genomic RNAs of positive-strand RNA viruses carry RNA elements that play positive, or in some cases, negative roles in virus multiplication by interacting with viral and cellular proteins. In this study, we purified Arabidopsis thaliana proteins that specifically bind to 5' or 3' terminal regions of tomato mosaic virus (ToMV) genomic RNA, which contain important regulatory elements for translation and RNA replication, and identified these proteins by mass spectrometry analyses. One of these host proteins, named BTR1, harbored three heterogeneous nuclear ribonucleoprotein K-homology RNA-binding domains and preferentially bound to RNA fragments that contained a sequence around the initiation codon of the 130K and 180K replication protein genes. The knockout and overexpression of BTR1 specifically enhanced and inhibited, respectively, ToMV multiplication in inoculated A. thaliana leaves, while such effect was hardly detectable in protoplasts. These results suggest that BTR1 negatively regulates the local spread of ToMV

  18. Varicella-Zoster Virus and Ramsay Hunt Syndrome

    OpenAIRE

    J Gordon Millichap

    2000-01-01

    Fifty two children, aged 2 to 15 years, diagnosed with Ramsay Hunt syndrome (RHS) in a 20 year period between 1976 and 1996 are reported from the Facial Nerve Clinic, Ehime University Hospital, Japan.

  19. Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Recent successes of adeno-associated virus (AAV–based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors’ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

  20. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  1. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    Science.gov (United States)

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  2. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1994-01-01

    Baringer, J.R. 1974. Recovery of herpes simplex virus from human sacral ganglions. N. Eng!. J. Med. 291:828-830. Baringer, J.R. 1976. The biology of herpes ...UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA~Binding Protein of Herpes Simplex Virus" beyond brief...Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA-Binding Protein of Herpes Simplex Virus Allen G. Albright Doctor of

  3. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection

    International Nuclear Information System (INIS)

    Chu, J.J.H.; Ng, M.L.

    2003-01-01

    This study attempts to isolate and characterize West Nile virus-binding molecules on the plasma membrane of Vero and murine neuroblastoma cells that is responsible for virus entry. Pretreatment of Vero cells with proteases, glycosidases (endoglycosidase H, α-mannosidase), and sodium periodate strongly inhibited West Nile virus infection, whereas treatments with phospholipases and heparinases had no effect. The virus overlay protein blot detected a 105-kDa molecule on the plasma membrane extract of Vero and murine neuroblastoma cells that bind to WN virus. Treatment of the 105-kDa molecules with β-mercaptoethanol resulted in the virus binding to a series of lower molecular weight bands ranging from 30 to 40 kDa. The disruption of disulfide-linked subunits did not affect virus binding. N-linked sugars with mannose residues on the 105-kDa membrane proteins were found to be important in virus binding. Specific antibodies against the 105-kDa glycoprotein were highly effective in blocking virus entry. These results strongly supported the possibility that the 105-kDa protease-sensitive glycoprotein with complex N-linked sugars could be the putative receptor for WN virus

  4. Binding of Human GII.4 Norovirus Virus-Like Particles to Carbohydrates of Romaine Lettuce Leaf Cell Wall Materials

    Science.gov (United States)

    Esseili, Malak A.

    2012-01-01

    Norovirus (NoV) genogroup II genotype 4 (GII.4) strains are the dominant cause of the majority of food-borne outbreaks, including those that involve leafy greens, such as lettuce. Since human NoVs use carbohydrates of histo-blood group antigens as receptors/coreceptors, we examined the role of carbohydrates in the attachment of NoV to lettuce leaves by using virus-like particles (VLPs) of a human NoV/GII.4 strain. Immunofluorescence analysis showed that the VLPs attached to the leaf surface, especially to cut edges, stomata, and along minor veins. Binding was quantified using enzyme-linked immunosorbent assay (ELISA) performed on cell wall materials (CWM) from innermost younger leaves and outermost lamina of older leaves. The binding to CWM of older leaves was significantly (P lettuce CWM by utilizing multiple carbohydrate moieties. This binding may enhance virus persistence on the leaf surface and prevent effective decontamination. PMID:22138991

  5. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    Science.gov (United States)

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  6. Association between sex hormone-binding globulin (SHBG and metabolic syndrome among men

    Directory of Open Access Journals (Sweden)

    Emmanuela Quental Callou de Sá

    Full Text Available CONTEXT AND OBJECTIVE: Metabolic syndrome consists of a set of factors that imply increased risk of cardiovascular diseases. The objective here was to evaluate the association between sex hormone-binding globulin (SHBG, sex hormones and metabolic syndrome among men. DESIGN AND SETTING: Retrospective analysis on data from the study "Endogenous oestradiol but not testosterone is related to coronary artery disease in men", conducted in a hospital in São Paulo. METHODS: Men (aged 40-70 who underwent coronary angiography were selected. The age, weight, height, waist circumference, body mass index and prevalence of dyslipidemia, hypertension and diabetes of each patient were registered. Metabolic syndrome was defined in accordance with the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (NCEP-ATPIII. Serum samples were collected to assess the levels of glucose, total cholesterol, HDL-cholesterol (high density lipoprotein, triglycerides, albumin, SHBG, estradiol and total testosterone (TT. The levels of LDL-cholesterol (low density lipoprotein were calculated using Friedewald's formula and free testosterone (FT and bioavailable testosterone (BT using Vermeulen's formula. RESULTS: 141 patients were enrolled in the study. The prevalence of metabolic syndrome was significantly higher in the first SHBG tercile than in the second and third terciles. A statistically significant positive association between the SHBG and TT values was observed, but no such association was seen between SHBG, BT and FT. CONCLUSION: Low serum levels of SHBG are associated with higher prevalence of metabolic syndrome among male patients, but further studies are required to confirm this association.

  7. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    International Nuclear Information System (INIS)

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan

    2006-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  8. Polarisation of major histocompatibility complex II host genotype with pathogenesis of European Brown Hare syndrome virus.

    Directory of Open Access Journals (Sweden)

    Christos Iacovakis

    Full Text Available A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead, collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1% hares; 35 (20.6% had liver lesions not typical of the syndrome, 50 (29.4% had lesions in other tissues and 61 (35.9% had no lesions. Sixty five (38.2% of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene. In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180 was lower than expected (H e = 0.5835. The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively. Within the peptide binding region codons the number of nonsynonymous substitutions (dN was much higher than synonymous substitutions (dS, which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006 frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027. These data reveal a polarisation between EBHSV

  9. Plant-derived chimeric virus particles for the diagnosis of primary Sjögren syndrome

    Directory of Open Access Journals (Sweden)

    Elisa eTinazzi

    2015-12-01

    Full Text Available Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX chimeric virus particles (CVPs and Cowpea mosaic virus (CPMV empty virus-like particles (eVLPs to display a linear peptide (lipo derived from human lipocalin , which is immunodominant in Sjögren’s syndrome (SjS and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles (VNPs were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay (ELISA format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

  10. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-01-01

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  11. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  12. Epstein-Barr virus-induced infectious mononucleosis after two separate episodes of virus-associated hemophagocytic syndrome.

    Science.gov (United States)

    Ohno, Tatsuharu; Ueda, Yo; Kishimoto, Wataru; Arimoto-Miyamoto, Kazue; Takeoka, Tomoharu; Tsuji, Masaaki

    2009-01-01

    A 24-year-old man, who had suffered previous two episodes of non- Epstein-Barr virus (EBV)-associated hemophagocytic syndrome (HPS) at the ages of 16 and 18, developed EBV-induced infectious mononucleosis. His antibody pattern to EBV highlighted the initial infection. The disease took a self-limited course without developing into HPS. No reactivation of EBV infection was noted over the following 6 years. The patient may have attained immune competency in adulthood, which was somehow impaired during his adolescence.

  13. Identification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and Demonstration that it Interacts with ICP8, the Major DNA Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1992-10-20

    R . 1974 . Recovery of herpes simplex virus from human sacral gangl ions. N. Engl. J. Med. 291 :828-830. Baringer, J.R . 1975. Herpes simplex virus...AII’I fORCE MEDICAL C(NTEIt Title of Dissertation : "Ideatification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and...Demonstration that It Interacts with reps. the Major DNA Binding Protein of Herpes Simplex Virus" Name of Candidate: Lisa Shelton Doctor of

  14. Role of LAMP1 Binding and pH Sensing by the Spike Complex of Lassa Virus.

    Science.gov (United States)

    Cohen-Dvashi, Hadas; Israeli, Hadar; Shani, Orly; Katz, Aliza; Diskin, Ron

    2016-11-15

    To effectively infect cells, Lassa virus needs to switch in an endosomal compartment from its primary receptor, α-dystroglycan, to a protein termed LAMP1. A unique histidine triad on the surface of the receptor-binding domain from the glycoprotein spike complex of Lassa virus is important for LAMP1 binding. Here we investigate mutated spikes that have an impaired ability to interact with LAMP1 and show that although LAMP1 is important for efficient infectivity, it is not required for spike-mediated membrane fusion per se Our studies reveal important regulatory roles for histidines from the triad in sensing acidic pH and preventing premature spike triggering. We further show that LAMP1 requires a positively charged His230 residue to engage with the spike complex and that LAMP1 binding promotes membrane fusion. These results elucidate the molecular role of LAMP1 binding during Lassa virus cell entry and provide new insights into how pH is sensed by the spike. Lassa virus is a devastating disease-causing agent in West Africa, with a significant yearly death toll and severe long-term complications associated with its infection in survivors. In recent years, we learned that Lassa virus needs to switch receptors in a pH-dependent manner to efficiently infect cells, but neither the molecular mechanisms that allow switching nor the actual effects of switching were known. Here we investigate the activity of the viral spike complex after abrogation of its ability to switch receptors. These studies inform us about the role of switching receptors and provide new insights into how the spike senses acidic pH. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Bullous Variant of Sweet’s Syndrome after Herpes Zoster Virus Infection

    OpenAIRE

    Yuichiro Endo; Miki Tanioka; Hideaki Tanizaki; Minako Mori; Hiroshi Kawabata; Yoshiki Miyachi

    2011-01-01

    Aim: Cutaneous manifestations of Sweet’s syndrome (SS) are typically painful plaque-forming erythematous papules, while bullae are quite uncommon. We present a case of bullous variant of SS in acute myeloid leukaemia. In this case, herpes infection of the left mandible had preceded the development of SS. Case Report: A 75-year-old male with myelodysplastic syndrome first presented with herpes zoster virus infection-like bullae and erosive plaques on the left side of the face and neck. Treatme...

  16. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  17. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  18. Acute Respiratory Distress Syndrome Caused by Influenza B Virus Infection in a Patient with Diffuse Large B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Silvio A. Ñamendys-Silva

    2011-01-01

    Full Text Available Influenza B virus infections are less common than infections caused by influenza A virus in critically ill patients, but similar mortality rates have been observed for both influenza types. Pneumonia caused by influenza B virus is uncommon and has been reported in pediatric patients and previously healthy adults. Critically ill patients with pneumonia caused by influenza virus may develop acute respiratory distress syndrome. We describe the clinical course of a critically ill patient with diffuse large B-cell lymphoma nongerminal center B-cell phenotype who developed acute respiratory distress syndrome caused by influenza B virus infection. This paper emphasizes the need to suspect influenza B virus infection in critically ill immunocompromised patients with progressive deterioration of cardiopulmonary function despite treatment with antibiotics. Early initiation of neuraminidase inhibitor and the implementation of guidelines for management of severe sepsis and septic shock should be considered.

  19. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    Science.gov (United States)

    2014-01-31

    of important human (measles (MeV), mumps, human parainfluenza and respiratory syncytial virus (RSV)) and animal ( canine distemper virus (CDV...occurrence of a natural canine infection (6; 7). Since the emergence of HeV there have been a total of 86 horse fatalities, 2 canine infections and 7...Infectious Diseases 6. Anonymous. 2011. HENDRA VIRUS, EQUINE - AUSTRALIA (21): (QUEENSLAND) CANINE . Pro-Med-mail, Archive No. 20110802.2324

  20. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    Science.gov (United States)

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Mixed-genotype white spot syndrome virus infections of shrimp are inversely correlated with disease outbreaks in ponds

    NARCIS (Netherlands)

    Tuyet Hoa, T.T.; Zwart, M.P.; Phuong, N.T.; Oanh, D.T.H.; Jong, de M.C.M.; Vlak, J.M.

    2011-01-01

    Outbreaks of white spot syndrome virus (WSSV) in shrimp culture and its relation to virus virulence are not well understood. Here we provide evidence that the presence of WSSV mixed-genotype infections correlate with lower outbreak incidence and that disease outbreaks correlate with single-genotype

  2. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus

    NARCIS (Netherlands)

    Westenberg, M.; Heinhuis, B.; Zuidema, D.; Vlak, J.M.

    2005-01-01

    White spot syndrome virus (WSSV) is a major disease in crustaceans, particularly shrimp, due to the current intensity of aquaculture practices. Novel strategies including vaccination to control this virus would be highly desirable. However, invertebrates lack a true adaptive immune response system

  3. On the role of the polychaete Dendronereis spp. i the transmission of white spot syndrome virus in shrimp ponds

    NARCIS (Netherlands)

    Desrina, Haryadi

    2014-01-01

    White spot syndrome virus (WSSV) is by far the most devastating shrimp virus. Control measures have lowered the WSSV incidence to various degrees, but the pathogen remains plaguing shrimp culture worldwide. Continuous exposure may cause WSSV to adapt and infect non-crustacean benthic fauna in

  4. Sensitive detection and typing of porcine reproductive and respiratory syndrome virus by RT-PCR amplification of whole viral genes

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Madsen, K.G.

    1998-01-01

    Following the recent use of a live vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) in Denmark, both American (vaccine) and European-type PRRSV now coexist in Danish herds. This situation highlighted a requirement for supplementary tests for precise virus-typing. As a r...

  5. Interaction of the Small GTPase Cdc42 with Arginine Kinase Restricts White Spot Syndrome Virus in Shrimp.

    Science.gov (United States)

    Xu, Ji-Dong; Jiang, Hai-Shan; Wei, Tian-Di; Zhang, Ke-Yi; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2017-03-01

    Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp ( Marsupenaeus japonicus ) and named it Mj Cdc42. Mj Cdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of Mj Cdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that Mj Cdc42 interacted with an arginine kinase ( Mj AK). By analyzing the binding activity and enzyme activity of Mj AK and its mutant, Δ Mj AK, we found that Mj AK could enhance the replication of WSSV in shrimp. Mj AK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of Mj AK in WSSV replication. Further study demonstrated that the binding of Mj Cdc42 and Mj AK depends on Cys 271 of Mj AK and suppresses the WSSV replication-promoting effect of Mj AK. By interacting with the active site of Mj AK and suppressing its enzyme activity, Mj Cdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates. Copyright © 2017 American Society for Microbiology.

  6. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  7. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm

    Directory of Open Access Journals (Sweden)

    Patrick Younan

    2017-09-01

    Full Text Available Ebola virus (EBOV disease (EVD results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a “cytokine storm.” Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1 has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1−/− mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1−/− mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine–Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4Hi CD3Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4+ T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4+ T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD.

  8. Recombinant egg drop syndrome subunit vaccine offers an alternative to virus propagation in duck eggs.

    Science.gov (United States)

    Gutter, B; Fingerut, E; Gallili, G; Eliahu, D; Perelman, B; Finger, A; Pitcovski, J

    2008-02-01

    Egg drop syndrome (EDS) virus vaccines are routinely produced in embryonated duck eggs (Solyom et al., 1982). This procedure poses the risk of dissemination of pathogens, such as avian influenza virus, as the eggs used are not from specific pathogen free birds. To address this problem, the knob and part of the shaft domain of the fibre protein of the EDS virus (termed knob-s) were expressed in Escherichia coli and assessed as a subunit vaccine. A single vaccination with the recombinant protein induced the production of anti-EDS virus antibodies, as detected by haemagglutination inhibition, enzyme-linked immunosorbent assay and virus neutralization tests, for at least 20 weeks. A positive correlation was demonstrated between these three assays. A dose-response assessment showed that the vaccine was effective over the range of 2 to 64 microg protein per dose. Two vaccinations with the recombinant protein, administered before the onset of lay, induced high haemagglutination inhibition antibody titres, comparable with those induced by an inactivated whole-virus vaccine. The vaccine did not have any adverse effects on egg production, quality or weight. The present study has shown that two vaccinations with the recombinant knob-s protein elicited high neutralizing antibody titres that persisted for more than 50 weeks of lay.

  9. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) on alveolar lung macrophage survival and function

    DEFF Research Database (Denmark)

    Oleksiewicz, Martin B.; Nielsen, Jens

    1999-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) recently emerged as an important cause of reproductive disorders and pneumonia in domestic pigs throughout the world. Acute cytocidal replication of PRRSV in alveolar lung macrophages causes the acute pneumonia; however, it remains largely...... infection in this system. In short, in our minimal system containing only a single cell type, phagocytosis-suppressive effects of PRRSV infection were detected, that acted at the culture level by reducing the total number of alveolar lung macrophages....

  10. European brown hare syndrome virus in free-ranging European brown hares from Argentina

    DEFF Research Database (Denmark)

    Frolich, K.; Kujawski, G.E.J.G.; Rudolph, M.

    2003-01-01

    From 1998 to 2000, serum samples of 80 shot European brown hares (Lepus europaeus) from Argentina were examined for antibodies against European brown hare syndrome virus (EBHSV) and 80 spleen samples were tested for EBHSV-antigen by enzyme linked immunosorbent assay (ELISA). Nine hares were posit...... in these hares. This is the first report of antibodies to EBHSV, EBHSV-antigen, and electron microscopy findings in free-ranging European brown hares from South America....

  11. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

    Science.gov (United States)

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A; Mansky, Louis M; Geraghty, Robert J; Li, Fang

    2011-06-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

  12. Infectious mononucleosis-like syndrome probably attributable to Coxsackie A virus infection.

    Science.gov (United States)

    Cunha, Burke A; Mickail, Nardeen; Petelin, Andrew P

    2012-01-01

    Infectious mononucleosis (IM) is a clinical syndrome most often attributable to Epstein-Barr virus (EBV). Characteristic clinical features of EBV IM include bilateral upper lid edema, exudative or nonexudative pharyngitis, bilateral posterior cervical adenopathy, and splenomegaly ± maculopapular rash. Laboratory features of EBV IM include atypical lymphocytes and elevated levels of serum transaminases. Leukopenia and thrombocytopenia are not uncommon. The syndrome of IM may also be attributable to other infectious diseases, eg, cytomegalovirus (CMV), human herpes virus-6 (HHV-6), or Toxoplasma gondii. Less commonly, viral hepatitis, leptospirosis, brucellosis, or parvovirus B(19) may present as an IM-like infection. To the best of our knowledge, only 2 cases of IM-like infections attributable to Coxsackie B viruses (B(3) and B(4)) have been reported. We present the first reported case of an IM-like syndrome with sore throat, fatigue, atypical lymphocytes, and elevated levels of serum transaminases likely due to Coxsackie A in an immunocompetent adult. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  14. Design, development and experimental trialof a tailored cytotoxic T-cell vaccine againstPorcine Reproductive and RespiratorySyndrome Virus-2

    DEFF Research Database (Denmark)

    Welner, Simon

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important threats against the global swine production industry. The virus infects alveolar macrophages that leads to respiratory distress, fever, pneumonia and gives way to secondary respiratory pathogens. Infection...

  15. Cardiovirus Leader proteins bind exportins: Implications for virus replication and nucleocytoplasmic trafficking inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Ciomperlik, Jessica J. [Institute for Molecular Virology and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 (United States); Basta, Holly A. [Department of Biology, Rocky Mountain College, Billings, MT (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-01-15

    Cardiovirus Leader proteins (L{sub X}) inhibit cellular nucleocytoplasmic trafficking by directing host kinases to phosphorylate Phe/Gly-containing nuclear pore proteins (Nups). Resolution of the Mengovirus L{sub M} structure bound to Ran GTPase, suggested this complex would further recruit specific exportins (karyopherins), which in turn mediate kinase selection. Pull-down experiments and recombinant complex reconstitution now confirm that Crm1 and CAS exportins form stable dimeric complexes with encephalomyocarditis virus L{sub E}, and also larger complexes with L{sub E}:Ran. shRNA knockdown studies support this idea. Similar activities could be demonstrated for recombinant L{sub S} and L{sub T} from Theiloviruses. When mutations were introduced to alter the L{sub E} zinc finger domain, acidic domain, or dual phosphorylation sites, there was reduced exportin selection. These regions are not involved in Ran interactions, so the Ran and Crm1 binding sites on L{sub E} must be non-overlapping. The involvement of exportins in this mechanism is important to viral replication and the observation of trafficking inhibition by L{sub E}.

  16. Emergence of Epidemic Zika Virus Transmission and Congenital Zika Syndrome: Are Recently Evolved Traits to Blame?

    Directory of Open Access Journals (Sweden)

    Scott C. Weaver

    2017-01-01

    Full Text Available The mechanisms responsible for the dramatic emergence of Zika virus (ZIKV, accompanied by congenital Zika syndrome and Guillain-Barré syndrome (GBS, remain unclear. However, two hypotheses are prominent: (i evolution for enhanced urban transmission via adaptation to mosquito vectors, or for enhanced human infection to increase amplification, or (ii the stochastic introduction of ZIKV into large, naive human populations in regions with abundant Aedes aegypti populations, leading to enough rare, severe infection outcomes for their first recognition. Advances in animal models for human infection combined with improvements in serodiagnostics, better surveillance, and reverse genetic approaches should provide more conclusive evidence of whether mosquito transmission or human pathogenesis changed coincidentally with emergence in the South Pacific and the Americas. Ultimately, understanding the mechanisms of epidemic ZIKV emergence, and its associated syndromes, is critical to predict future risks as well as to target surveillance and control measures in key locations.

  17. Identification of Key Residues in Virulent Canine Distemper Virus Hemagglutinin That Control CD150/SLAM-Binding Activity▿

    Science.gov (United States)

    Zipperle, Ljerka; Langedijk, Johannes P. M.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2010-01-01

    Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by β-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering. PMID:20631152

  18. Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum

    Directory of Open Access Journals (Sweden)

    Albritton Lorraine M

    2011-05-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  19. Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): portals for porcine reproductive and respiratory syndrome virus entry into target cells.

    Science.gov (United States)

    Van Breedam, Wander; Verbeeck, Mieke; Christiaens, Isaura; Van Gorp, Hanne; Nauwynck, Hans J

    2013-09-01

    Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acid-binding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest - in combination with other published data - that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.

  20. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    Science.gov (United States)

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  1. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  2. Frontotemporal dementia with trans-activation response DNA-binding protein 43 presenting with catatonic syndrome.

    Science.gov (United States)

    Watanabe, Ryohei; Kawakami, Ito; Onaya, Mitsumoto; Higashi, Shinji; Arai, Nobutaka; Akiyama, Haruhiko; Hasegawa, Masato; Arai, Tetsuaki

    2017-11-07

    Catatonia is a clinical syndrome characterized by symptoms such as immobility, mutism, stupor, stereotypy, echophenomena, catalepsy, automatic obedience, posturing, negativism, gegenhalten and ambitendency. This syndrome occurs mostly in mood disorder and schizophrenic patients, and is related to neuronal dysfunction involving the frontal lobe. Some cases of frontotemporal dementia (FTD) with catatonia have been reported, but these cases were not examined by autopsy. Here, we report on a FTD case which showed catatonia after the first episode of brief psychotic disorder. At the age of 58, the patient had a sudden onset of disorganized behavior and meaningless speech. Psychotropic drugs were effective for catatonic symptoms. However, after remission apathy, hyperorality, socially inappropriate behavior, hoarding, and an instinctive grasp reaction appeared and persisted. Brain MRI showed significant atrophy of the bilateral fronto-temporal lobes. A neuropathological examination revealed extensive trans-activation response DNA-binding protein 43 (TDP-43) positive neurocytoplasmic inclusions and dystrophic neurites in the brain, including the cerebral cortex, basal ganglia, and brainstem. Pathological diagnosis was frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) type C, which was also confirmed by the band pattern of C-terminal fragments of TDP-43 on western blotting of sarkosyl-insoluble fractions extracted from the frozen brain. Dysfunction of the thalamus, globus pallidus, supplementary motor area, amygdala and cingulate cortex have been said to be related to the catatonic syndrome. In this case, these areas were affected, showing abnormal TDP-43-positive structures. Further studies are expected to confirm further clinical - pathological correlations to FTLD. © 2017 Japanese Society of Neuropathology.

  3. Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry

    International Nuclear Information System (INIS)

    Chee, H.-Y.; AbuBakar, Sazaly

    2004-01-01

    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to β-tubulin and α-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells

  4. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    Directory of Open Access Journals (Sweden)

    Samantha K Dunmire

    Full Text Available Epstein-Barr Virus (EBV causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza, respiratory syncytial virus (RSV, human rhinovirus (HRV, attenuated yellow fever virus (YFV, and Dengue fever virus (DENV, revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  5. Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes

    Science.gov (United States)

    Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555

  6. Neutralization of White Spot Syndrome Virus by Monoclonal Antibodies against Viral Envelope Proteins

    Directory of Open Access Journals (Sweden)

    Hsiu-Hui Shih

    2004-09-01

    Full Text Available Two monoclonal antibodies (MAbs recognizing envelope proteins of the white spot syndrome virus (WSSV, 6E1 against VP28 and 3E8 against VP19, were applied to demonstrate their neutralizing ability to this virus by using both in vitro and in vivo assays. Mixtures of MAb 6E1 with virus filtrate were inoculated into the primary explant monolayer culture derived from the lymphoid Oka organs of Penaeus monodon. Mab was likely to neutralize the infectivity of virus to monolayer since cytopathic effects were apparently blocked in experiment group. WSSV was titrated using Blue-Cell ELISA and the neutralizing index was calculated to be 6.90 for 6EI and 5.83 for 3E8. Neutralized virus fluids injected intramuscularly into post larvae of P. monodon. The shrimp in the positive control, which were injected with WSSV only showed an increasing mortality and a 100% mortality was reached at day 34, whereas no shrimp died in the negative control. The mortality for 6E1 was 6.7% and for 3E8 was 13.3%. These results suggest that Mabs recognizing the WSSV envelope proteins could neutralize viral infectivity to both cultured cells and shrimp.

  7. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    Directory of Open Access Journals (Sweden)

    Shchelkunov Sergei N

    2010-10-01

    Full Text Available Abstract Background Variola virus (VARV the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  8. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    Science.gov (United States)

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  9. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    International Nuclear Information System (INIS)

    Jaru-ampornpan, Peera; Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan

    2014-01-01

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference

  10. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Jaru-ampornpan, Peera, E-mail: peera.jar@biotec.or.th; Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2014-01-03

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.

  11. Hepatitis C, human immunodeficiency virus and metabolic syndrome: interactions.

    Science.gov (United States)

    Kotler, Donald P

    2009-03-01

    Significant concerns have been raised about the metabolic effects of antiretroviral medication, including the classic triad of dyslipidaemia, insulin resistance (IR) and characteristic alterations in fat distribution (lipoatrophy and lipohypertrophy). Co-infection with hepatitis C appears to exacerbate IR, reduce serum lipids and induce prothrombotic changes in the treated human immunodeficiency virus patient. The effects of co-infection are complex. While combination antiretroviral therapy has been shown to be associated with an increased risk of cardiovascular events through promotion of dyslipidaemia, IR and fat redistribution, co-infection exacerbates IR while reducing serum lipids. Co-infection also promotes a prothrombotic state characterized by endothelial dysfunction and platelet activation, which may enhance risk for cardiovascular disease. Consideration must be given to selection of appropriate treatment regimens and timing of therapy in co-infected patients to minimize metabolic derangements and, ultimately, reduce cardiovascular risk.

  12. HuR binding to AU-rich elements present in the 3' untranslated region of Classical swine fever virus

    Directory of Open Access Journals (Sweden)

    Huang Chin-Cheng

    2011-07-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV is the member of the genus Pestivirus under the family Flaviviridae. The 5' untranslated region (UTR of CSFV contains the IRES, which is a highly structured element that recruits the translation machinery. The 3' UTR is usually the recognition site of the viral replicase to initiate minus-strand RNA synthesis. Adenosine-uridine rich elements (ARE are instability determinants present in the 3' UTR of short-lived mRNAs. However, the presence of AREs in the 3' UTR of CSFV conserved in all known strains has never been reported. This study inspects a possible role of the ARE in the 3' UTR of CSFV. Results Using RNA pull-down and LC/MS/MS assays, this study identified at least 32 possible host factors derived from the cytoplasmic extracts of PK-15 cells that bind to the CSFV 3' UTR, one of which is HuR. HuR is known to bind the AREs and protect the mRNA from degradation. Using recombinant GST-HuR, this study demonstrates that HuR binds to the ARE present in the 3' UTR of CSFV in vitro and that the binding ability is conserved in strains irrespective of virulence. Conclusions This study identified one of the CSFV 3' UTR binding proteins HuR is specifically binding to in the ARE region.

  13. Transmission of White Spot Syndrome Virus and Possible Use of Physical Barrier as Preventive Measure (Transmisi White Spot Syndrome Virus dan Penggunaan Barier Fisik Sebagai Upaya Pencegahan

    Directory of Open Access Journals (Sweden)

    Arief Taslihan

    2013-06-01

    Full Text Available Penyakit bercak putih viral hingga saat ini masih menjadi masalah dalam budidaya udang. Munculnya penyakit tersebut diikuti kematian massal, sehingga menimbulkan kerugian besar. Penyakit yang disebabkan white spots syndrome virus (WSSV menular cepat dari satu petakan tambak ke petakan lain. Penelitian bertujuan melakukan uji kuantitas WSSV pada transmisi virus baik melalui air dan kohabitasi. Metode penelitian adalah bioassay dilakukan skala laboratorium. Penularan melalui air disimulasi pada akuarium disekat dengan 3 jenis kasa berukuran pori berbeda, yaitu 300μ, 700μ dan 2 mm. Kohabitasi dilakukan dengan memelihara udang terinfeksi WSSV secara buatan dengan udang dan moluska sehat. Hasil penelitian didapatkan bahwa WSSV menimbulkan infeksi pada udang sehat yang ditempatkan terpisah dari udang sakit menggunakan sekat kasa. Virus bercak putih juga menular secara kohabitasi udang sakit dengan udang sehat baik dari udang windu ke udang windu (sejenis maupun udang windu ke udang vannamei (berlainan jenis. Hasi penelitian menunjukkan bahwa trisipan bukan karier WSSV, karena tidak menularkan. Analisis LT-50 (lethal time 50% didapatkan bahwa udang yang diuji tantang WSSV melalui inkubasi dengan air mengandung ekstrak WSSV didapatkan konsentrasi 2,75x102 WSSV copy.mL-1 menyebabkan kematian 50% dalam waktu 108 jam atau hampir lima hari. Penggunaan kasa putih meskipun tidak sepenuhnya menahan, dapat menghambat sebagian transmisi WSSV. Hasil kajian memberikan gambaran tentang kecepatan penyebaran WSSV di lingkungan budidaya udang serta memberikan panduan bagaimana mengendalikan WSSV. Kata kunci: penyakit, transmisi WSSV, udang, kohabitasi, trisipan White spot viral disease has devastated shrimp industry in Indonesia. The emergence of this disease is always followed by massive death causing huge losses. Disease is caused by a virus namely White spots syndrome virus (WSSV is rapidly transmitted from one pond to other ponds. This study aims to quantify

  14. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study.

    Science.gov (United States)

    Cao-Lormeau, V M; Blake, A; Mons, S; Lastere, S; Roche, C; Vanhomwegen, J; Dub, T; Baudouin, L; Teissier, A; Larre, P; Vial, A L; Decam, C; Choumet, V; Halstead, S K; Willison, H J; Musset, L; Manuguerra, J C; Despres, P; Fournier, E; Mallet, H P; Musso, D; Fontanet, A; Neil, J; Ghawché, F

    2016-04-09

    Between October, 2013, and April, 2014, French Polynesia experienced the largest Zika virus outbreak ever described at that time. During the same period, an increase in Guillain-Barré syndrome was reported, suggesting a possible association between Zika virus and Guillain-Barré syndrome. We aimed to assess the role of Zika virus and dengue virus infection in developing Guillain-Barré syndrome. In this case-control study, cases were patients with Guillain-Barré syndrome diagnosed at the Centre Hospitalier de Polynésie Française (Papeete, Tahiti, French Polynesia) during the outbreak period. Controls were age-matched, sex-matched, and residence-matched patients who presented at the hospital with a non-febrile illness (control group 1; n=98) and age-matched patients with acute Zika virus disease and no neurological symptoms (control group 2; n=70). Virological investigations included RT-PCR for Zika virus, and both microsphere immunofluorescent and seroneutralisation assays for Zika virus and dengue virus. Anti-glycolipid reactivity was studied in patients with Guillain-Barré syndrome using both ELISA and combinatorial microarrays. 42 patients were diagnosed with Guillain-Barré syndrome during the study period. 41 (98%) patients with Guillain-Barré syndrome had anti-Zika virus IgM or IgG, and all (100%) had neutralising antibodies against Zika virus compared with 54 (56%) of 98 in control group 1 (pZika virus IgM and 37 (88%) had experienced a transient illness in a median of 6 days (IQR 4-10) before the onset of neurological symptoms, suggesting recent Zika virus infection. Patients with Guillain-Barré syndrome had electrophysiological findings compatible with acute motor axonal neuropathy (AMAN) type, and had rapid evolution of disease (median duration of the installation and plateau phases was 6 [IQR 4-9] and 4 days [3-10], respectively). 12 (29%) patients required respiratory assistance. No patients died. Anti-glycolipid antibody activity was found in 13

  15. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp.

    Science.gov (United States)

    Ananphongmanee, Vorawit; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Boonchird, Chuenchit

    2015-01-01

    Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral

  16. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV in Shrimp.

    Directory of Open Access Journals (Sweden)

    Vorawit Ananphongmanee

    Full Text Available Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7 and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1 promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7 and partial VP28 (pVP28 were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against

  17. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein.

    Science.gov (United States)

    Sun, Junfeng; Han, Zongxi; Qi, Tianming; Zhao, Ran; Liu, Shengwang

    2017-12-08

    Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N -glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N -glycans on HN glycoprotein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus

    Science.gov (United States)

    Asfor, Amin S.; Upadhyaya, Sasmita; Knowles, Nick J.; King, Donald P.; Paton, David J.

    2014-01-01

    Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design. PMID:24584474

  19. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida.

    Science.gov (United States)

    Killiny, N; Harper, S J; Alfaress, S; El Mohtar, C; Dawson, W O

    2016-11-01

    Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere

  20. Hepatopulmonary syndrome in a patient with AIDS and virus C cirrhosis (viral cirrhosis type C); Sindrome hepatopulmonar em paciente com cirrose por virus C e SIDA

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maria Angelica; Gazzana, Marcelo Basso [Hospital de Clinicas de Porto Alegre, RS (Brazil). Servico de Pneumologia; Barreto, Sergio Saldanha Menna; Knorst, Marli Maria [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Faculdade de Medicina. Dept. de Medicina Interna

    2001-02-01

    Hepatopulmonary syndrome is characterized by a triad consisting of liver disorder, pulmonary vascular dilatation, and hypoxaemia. No case of hepatopulmonary syndrome associated with AIDS has been reported so far. In this study, the authors report the case of a 43-year woman with AIDS and virus C cirrhosis taking prophylactic cotrimoxazole for pneumocystosis and retroviral therapy. Upon admission, the patient presented dyspnoea, cyanosis, digital clubbing, vascular spiders, and normal chest examination. Chest X-ray revealed bilateral interstitial infiltration and evidenced increased alveolar-arterial gradient and liver function impairment. Intrapulmonary shunt was evidenced by contrast-enhanced echocardiography and radionuclide perfusion scanning, thus confirming hepatopulmonary syndrome. (author)

  1. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Adrian Valli

    Full Text Available RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  2. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Science.gov (United States)

    Valli, Adrian; Busnadiego, Idoia; Maliogka, Varvara; Ferrero, Diego; Castón, José R; Rodríguez, José Francisco; García, Juan Antonio

    2012-01-01

    RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  3. The Mechanism of Synchronous Precise Regulation of Two Shrimp White Spot Syndrome Virus Targets by a Viral MicroRNA

    Science.gov (United States)

    He, Yaodong; Ma, Tiantian; Zhang, Xiaobo

    2017-01-01

    MicroRNAs (miRNAs), important factors in animal innate immunity, suppress the expressions of their target genes by binding to target mRNA’s 3′ untranslated regions (3′UTRs). However, the mechanism of synchronous regulation of multiple targets by a single miRNA remains unclear. In this study, the interaction between a white spot syndrome virus (WSSV) miRNA (WSSV-miR-N32) and its two viral targets (wsv459 and wsv322) was characterized in WSSV-infected shrimp. The outcomes indicated that WSSV-encoded miRNA (WSSV-miR-N32) significantly inhibited virus infection by simultaneously targeting wsv459 and wsv322. The silencing of wsv459 or wsv322 by siRNA led to significant decrease of WSSV copies in shrimp, showing that the two viral genes were required for WSSV infection. WSSV-miR-N32 could mediate 5′–3′ exonucleolytic digestion of its target mRNAs, which stopped at the sites of target mRNA 3′UTRs close to the sequence complementary to the miRNA seed sequence. The complementary bases (to the target mRNA sequence) of a miRNA 9th–18th non-seed sequence were essential for the miRNA targeting. Therefore, our findings presented novel insights into the mechanism of miRNA-mediated suppression of target gene expressions, which would be helpful for understanding the roles of miRNAs in innate immunity of invertebrate. PMID:29230209

  4. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    Science.gov (United States)

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  5. Identification of binding domains in the herpes simplex virus type 1 small capsid protein pUL35 (VP26).

    Science.gov (United States)

    Apcarian, Arin; Cunningham, Anthony L; Diefenbach, Russell J

    2010-11-01

    In this study, fragments of the small capsid protein pUL35 (VP26) from herpes simplex virus type 1 (HSV-1) were generated to identify binding domains for a number of known ligands. Analysis of the binding of dynein light chain subunits, DYNLT1 and DYNLT3, as well the HSV-1 structural proteins pUL19 (VP5) and pUL37 was then undertaken using the LexA yeast two-hybrid assay. The N-terminal half of pUL35, in particular residues 30-43, was identified as a common region for the binding of DYNLT1 and DYNLT3. Additional distinct regions in the C terminus of pUL35 also contribute to the binding of DYNLT1 and DYNLT3. In contrast, only the C-terminal half of pUL35 was found to mediate the binding of pUL19 and pUL37 through distinct regions. The relevance of this information to the role of pUL35 in viral transport and assembly is discussed.

  6. Mild Clinical Course of Severe Fever with Thrombocytopenia Syndrome Virus Infection in an Elderly Japanese Patient

    Directory of Open Access Journals (Sweden)

    Yuko Ohagi

    2014-01-01

    Full Text Available Severe fever with thrombocytopenia syndrome (SFTS is an emerging infectious and hemorrhagic disease recently described in China and western Japan. A 71-year-old healthy Japanese woman noticed a tick biting her after harvesting in an orchard and removed it herself. She developed diarrhea, anorexia, and chills eight days later. Because these symptoms continued, she visited a primary care physician 6 days after the onset. Laboratory data revealed thrombocytopenia, leukocytopenia, and elevated liver enzymes. She was then referred to our hospital. Although not completely fulfilling the diagnostic criteria used in a retrospective study in Japan, SFTS was suspected, and we detected SFTS virus in the patient’s blood using RT-PCR. However, she recovered without intensive treatment and severe complications 13 days after the onset. In this report, we present a mild clinical course of SFTS virus infection in Japan in detail.

  7. Spinal cord toxoplasmosis in human immunodeficiency virus infection/acquired immunodeficiency syndrome.

    Science.gov (United States)

    García-García, Concepción; Castillo-Álvarez, Federico; Azcona-Gutiérrez, José M; Herraiz, María J; Ibarra, Valvanera; Oteo, José A

    2015-05-01

    Neurological complications in patients with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) are still common, even in the era of highly active antiretroviral therapy. Opportunistic infections, immune reconstitution, the virus itself, antiretroviral drugs and neurocognitive disorders have to be considered when establishing the differential diagnosis. Toxoplasmic encephalitis remains the major cause of space-occupying lesions in the brain of patients with HIV/AIDS; however, spinal cord involvement has been reported infrequently. Here, we review spinal cord toxoplasmosis in HIV infection and illustrate the condition with a recent case from our hospital. We suggest that most patients with HIV/AIDS and myelitis with enhanced spine lesions, multiple brain lesions and positive serology for Toxoplasma gondii should receive immediate empirical treatment for toxoplasmosis, and a biopsy should be performed in those cases without clinical improvement or with deterioration.

  8. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity.

    Science.gov (United States)

    Ramos-Carreño, Santiago; Valencia-Yáñez, Ricardo; Correa-Sandoval, Francisco; Ruíz-García, Noé; Díaz-Herrera, Fernando; Giffard-Mena, Ivone

    2014-09-01

    White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.

  9. Envelope Proteins of White Spot Syndrome Virus (WSSV Interact with Litopenaeus vannamei Peritrophin-Like Protein (LvPT.

    Directory of Open Access Journals (Sweden)

    Shijun Xie

    Full Text Available White spot syndrome virus (WSSV is a major pathogen in shrimp cultures. The interactions between viral proteins and their receptors on the surface of cells in a frontier target tissue are crucial for triggering an infection. In this study, a yeast two-hybrid (Y2H library was constructed using cDNA obtained from the stomach and gut of Litopenaeus vannamei, to ascertain the role of envelope proteins in WSSV infection. For this purpose, VP37 was used as the bait in the Y2H library screening. Forty positive clones were detected after screening. The positive clones were analyzed and discriminated, and two clones belonging to the peritrophin family were subsequently confirmed as genuine positive clones. Sequence analysis revealed that both clones could be considered as the same gene, LV-peritrophin (LvPT. Co-immunoprecipitation confirmed the interaction between LvPT and VP37. Further studies in the Y2H system revealed that LvPT could also interact with other WSSV envelope proteins such as VP32, VP38A, VP39B, and VP41A. The distribution of LvPT in tissues revealed that LvPT was mainly expressed in the stomach than in other tissues. In addition, LvPT was found to be a secretory protein, and its chitin-binding ability was also confirmed.

  10. Crystallization and preliminary X-ray analysis of the chemokine-binding protein from orf virus (Poxviridae)

    International Nuclear Information System (INIS)

    Couñago, Rafael Miguez; Fleming, Stephen B.; Mercer, Andrew A.; Krause, Kurt L.

    2010-01-01

    The chemokine-binding protein from orf virus was purified and crystallized. The morphology and diffraction behaviour of these crystals was significantly improved through the use of additives known as Silver Bullets. The parapoxvirus orf virus (ORFV) encodes a chemokine-binding protein (CBP) that functions to downregulate the host’s immune response at the site of infection by blocking the chemokine-induced recruitment of immune cells. In order to shed light on the structural determinants of CBP–chemokine binding, ORFV CBP was crystallized as part of an ongoing structure–function study on this protein. ORFV CBP crystals were obtained by the sitting-drop vapour-diffusion technique using ammonium citrate as a precipitant. The crystal quality was greatly improved through the addition of small-molecule additives to the crystallization mother liquor. ORFV CBP crystals diffracted X-rays to 2.50 Å resolution and belonged to the hexagonal space group P6 1 22 or its enantiomorph P6 5 22, with unit-cell parameters a = b = 75.62, c = 282.49 Å, α = 90, β = 90, γ = 120°

  11. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome do not change the cellular tropism of equine arteritis virus

    Science.gov (United States)

    Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they share many biological properties but differ significantly in cellular tropism. Using an infectious cDNA clone of EAV, we engineered a panel of six chimeric viruses b...

  12. The Link between Hypersensitivity Syndrome Reaction Development and Human Herpes Virus-6 Reactivation

    Directory of Open Access Journals (Sweden)

    Joshua C. Pritchett

    2012-01-01

    Data Sources and Extraction. Drugs identified as causes of (i idiosyncratic reactions, (ii drug-induced hypersensitivity, drug-induced hepatotoxicity, acute liver failure, and Stevens-Johnson syndrome, and (iii human herpes virus reactivation in PubMed since 1997 have been collected and discussed. Results. Data presented in this paper show that HHV-6 reactivation is associated with more severe organ involvement and a prolonged course of disease. Conclusion. This analysis of HHV-6 reactivation associated with drug-induced severe cutaneous reactions and hepatotoxicity will aid in causality assessment and clinical diagnosis of possible life-threatening events and will provide a basis for further patient characterization and therapy.

  13. In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses.

    Science.gov (United States)

    Pallás, V; Sánchez-Navarro, J A; Díez, J

    1999-01-01

    The RNA binding properties of the prunus necrotic ringspot virus (PNRSV) coat protein (CP) were demonstrated by northwestern and dot-blot analyses. The capability to bind PNRSV RNA 4 was compared with viruses representing three different interactions prevailing in the assembly and architecture of virions. The results showed that cucumber mosaic virus (CMV) and PNRSV CPs, which stabilise their virions mainly through RNA-protein interactions bound PNRSV RNA 4 even at very high salt concentrations. The CP of cherry leaf roll nepovirus, whose virions are predominantly stabilised by protein-protein interactions did not bind even at the lowest salt concentration tested. Finally the CP of carnation mottle carmovirus, that has an intermediate position in which both RNA-protein and protein-protein interactions are equally important showed a salt-dependent RNA binding.

  14. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: a tight complex implying one binding site.

    Science.gov (United States)

    Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia

    2012-10-01

    The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. Copyright © 2012 The Protein Society.

  15. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients

    OpenAIRE

    Cakir Evrim; Ozbek Mustafa; Sahin Mustafa; Cakal Erman; Gungunes Askin; Ginis Zeynep; Demirci Taner; Delibasi Tuncay

    2012-01-01

    Abstract Background Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. Methods This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductiv...

  16. Identification of Rift Valley fever virus nucleocapsid protein-RNA binding inhibitors using a high-throughput screening assay.

    Science.gov (United States)

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J Stephen

    2012-09-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection, and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential antiviral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug-screening assay and tested 26 424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of Food and Drug Administration-approved drugs, druglike molecules, and natural product extracts, we identified several lead compounds that are promising candidates for medicinal chemistry.

  17. HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4(+) T Cell Responses

    DEFF Research Database (Denmark)

    Wang, M. J.; Larsen, Mette Voldby; Nielsen, Morten

    2010-01-01

    of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4(+) or CD8(+) T cells prior to the ELISPOT culture revealed...... that effectors are either CD4(+) (the majority of reactivities) or CD8(+) T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4(+) T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. Conclusions....../Significance: HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4(+) T cell responses restricted by HLA-II molecules....

  18. Isolation, Characterization, and Molecular Modeling of a Rheumatoid Factor from a Hepatitis C Virus Infected Patient with Sjögren’s Syndrome

    Directory of Open Access Journals (Sweden)

    Yu-Ching Lee

    2013-01-01

    Full Text Available We have previously isolated several IgG rheumatoid factors (RFs from patients with both rheumatoid arthritis and idiopathic thrombocytopenia purpura using phage display system. To study IgG RFs in patients with other autoimmune diseases, phage display antibody libraries from a hepatitis C virus infected patient with Sjögren’s syndrome were constructed. After panning, a specific clone RFL11 was isolated for characterization in advance. The binding activity and specificity of RFL11 to IgG Fc fragment were comparable to those of RFs previously isolated. The analysis with existed RF-Fc complex structures indicated the homology model of RFL11 is similar to IgM RF61 complex with high binding affinity of about 6×10-8 M. This effect resulted from longer complementarity-determining region (CDR combining key somatic mutations. In the RFL11-Fc interfaces, the CDR-H3 loop forms a finger-like structure extending into the bottom of Fc pocket and resulting in strong ion and cation-pi interactions. Moreover, a process of antigen-driven maturation was proven by somatically mutated VH residues on H2 and H3 CDR loops in the interfaces. Taken together, these results suggested that high affinity IgG RFs can be generated in patients with Sjögren’s syndrome and may play an important role in the pathogenesis of this autoimmune disease.

  19. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction.

    Science.gov (United States)

    Renukaradhya, Gourapura J; Meng, Xiang-Jin; Calvert, Jay G; Roof, Michael; Lager, Kelly M

    2015-08-07

    Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork

  20. Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water.

    Science.gov (United States)

    Alavandi, S V; Ananda Bharathi, R; Satheesh Kumar, S; Dineshkumar, N; Saravanakumar, C; Joseph Sahaya Rajan, J

    2015-06-15

    Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

    Science.gov (United States)

    Peacock, Thomas P; Benton, Donald J; James, Joe; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; Barclay, Wendy S; Iqbal, Munir

    2017-07-15

    H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence. IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to

  2. Human leukocyte antigen (HLA class I restricted epitope discovery in yellow fewer and dengue viruses: importance of HLA binding strength.

    Directory of Open Access Journals (Sweden)

    Ole Lund

    Full Text Available Epitopes from all available full-length sequences of yellow fever virus (YFV and dengue fever virus (DENV restricted by Human Leukocyte Antigen class I (HLA-I alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, K(D, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had K(D below 100 nM and the peptides with K(D below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had K(D below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.

  3. Prevalence and distribution of White Spot Syndrome Virus in cultured shrimp.

    Science.gov (United States)

    Hossain, A; Nandi, S P; Siddique, M A; Sanyal, S K; Sultana, M; Hossain, M A

    2015-02-01

    White Spot Syndrome Virus (WSSV) is a dsDNA virus causing White Spot Syndrome Disease (WSSD) in shrimp with almost 100% morality rate within 3-10 days. In Bangladesh, WSSD is one of the major impediments of shrimp farming. This study first investigated the prevalence and distribution of WSSV in cultured shrimps of the coastal regions in Bangladesh. A total of 60 shrimp samples, collected from the 25 shrimp farms of different coastal regions (Satkhira, Khulna, Bagerhat and Cox's Bazar), were analysed during 2013-2014 by conventional PCR using VP28 and VP664 gene-specific primers; 39 of 60 samples were found WSSV positive. SYBR green real-time PCR using 71-bp amplicon for VP664 gene correlated well with conventional PCR data. The prevalence rates of WSSV among the collected 60 samples were Satkhira 79%, Khulna 50%, Bagerhat 38% and Cox's Bazar 25%. Sequencing of WSSV-positive PCR amplicons of VP28 showed 99% similarity with WSSV NCBI Ref/Seq Sequences. Molecular analysis of the VP28 gene sequences of WSSV revealed that Bangladeshi strains phylogenetically affiliated to the strains belong to India. This work concluded that WSSV infections are widely distributed in the coastal regions cultured shrimp in Bangladesh. © 2014 The Society for Applied Microbiology.

  4. Mannose-binding lectin genotypes and susceptibility to epstein-barr virus infection in infancy

    DEFF Research Database (Denmark)

    Friborg, Jeppe T; Jarrett, Ruth F; Koch, Anders

    2010-01-01

    In a cohort study of children Epstein-Barr virus (EBV) antibody levels were determined. EBV seropositivity was significantly lower and time to seroconversion increased in MBL-insufficient compared with MBL-sufficient children...

  5. Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein

    International Nuclear Information System (INIS)

    Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina; Stahl, Joachim; Klein, George; Szekely, Laszlo

    2005-01-01

    Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of the small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a

  6. Zika Virus and Guillain–Barre Syndrome: Is There Sufficient Evidence for Causality?

    Science.gov (United States)

    Leis, A. Arturo; Stokic, Dobrivoje S.

    2016-01-01

    Worldwide concern over Zika virus causing Guillain–Barre syndrome (GBS) soared after recent reports that Zika-related weakness was due to GBS. A global strategic response plan was initiated with recommendations for at-risk countries to prepare for GBS. This plan has major economic implications, as nations with limited resources struggle to implement costly immunotherapy. Since confirmation of causality is prerequisite to providing specific management recommendations, it is prudent to review data endorsing a GBS diagnosis. We searched PubMed for manuscripts reporting original clinical, laboratory, and electrodiagnostic data on Zika virus and GBS. Five papers met criteria; four case reports and one large case–control study (French Polynesia) that attributed 42 paralysis cases to a motor variant of GBS. Brighton criteria were reportedly used to diagnose GBS, but no differential diagnosis was presented, which violates criteria. GBS was characterized by early onset (median 6 days post-viral syndrome), rapid progression (median 6 days from onset to nadir), and atypical clinical features (52% lacked areflexia, 48% of facial palsies were unilateral). Electrodiagnostic evaluations fell short of guidelines endorsed by American Academy of Neurology. Typical anti-ganglioside antibodies in GBS motor variants were rarely present. We conclude that there is no causal relationship between Zika virus and GBS because data failed to confirm GBS and exclude other causes of paralysis. Focus should be redirected at differential diagnosis, proper use of diagnostic criteria, and electrodiagnosis that follows recommended guidelines. We also call for a moratorium on recommendations for at-risk countries to prepare costly immunotherapies directed at GBS. PMID:27746763

  7. Zika Virus and Guillain-Barre Syndrome: Is There Sufficient Evidence for Causality?

    Directory of Open Access Journals (Sweden)

    A Arturo Leis

    2016-09-01

    Full Text Available Worldwide concern over Zika virus causing Guillain-Barre syndrome (GBS soared after recent reports that Zika-related weakness was due to GBS. A global strategic response plan was initiated with recommendations for at risk countries to prepare for GBS. This plan has major economic implications, as nations with limited resources struggle to implement costly immunotherapy. Since confirmation of causality is prerequisite to providing specific management recommendations, it is prudent to review data endorsing a GBS diagnosis. We searched PubMed for manuscripts reporting original clinical, laboratory, and electrodiagnostic data on Zika virus and GBS. Five papers met criteria; four case reports and one large case-control study (French Polynesia that attributed 42 paralysis cases to a motor variant of GBS. Brighton criteria were reportedly used to diagnose GBS, but no differential diagnosis was presented, which violates criteria. GBS was characterized by early onset (median 6 days post-viral syndrome, rapid progression (median 6 days from onset to nadir, and atypical clinical features (52% lacked areflexia, 48% of facial palsies were unilateral. Electrodiagnostic evaluations fell short of guidelines endorsed by American Academy of Neurology. Typical anti-ganglioside antibodies in GBS motor variants were rarely present. We conclude that there is no causal relationship between Zika virus and GBS because data failed to confirm GBS and exclude other causes of paralysis. Focus should be redirected at differential diagnosis, proper use of diagnostic criteria, and electrodiagnosis that follows recommended guidelines. We also call for a moratorium on recommendations for at risk countries to prepare costly immunotherapies directed at GBS.

  8. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments

    Directory of Open Access Journals (Sweden)

    Bas Verbruggen

    2016-01-01

    Full Text Available Since its emergence in the 1990s, White Spot Disease (WSD has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV, a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.

  9. Borderline tuberculoid leprosy: A manifestation of immune reconstitution inflammatory syndrome in a human immunodeficiency virus infected person

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Partha

    2006-01-01

    Full Text Available Immune reconstitution inflammatory syndrome describes a collection of inflammatory disorders associated with paradoxical deterioration of various pre-existing processes following start of highly active antiretroviral therapy (HAART in human immunodeficiency virus (HIV-infected patients. Leprosy as an opportunistic infection in immune reconstitution syndrome has been rarely reported in literature. A case of a 30-year-old HIV positive man with extrapulmonary tuberculosis of left foot on HAART having developed borderline tuberculoid leprosy as opportunistic infection in immune reconstitution syndrome has been reported.

  10. Frequent dual initiation of reverse transcription in murine leukemia virus-based vectors containing two primer-binding sites

    International Nuclear Information System (INIS)

    Voronin, Yegor A.; Pathak, Vinay K.

    2003-01-01

    Retroviruses package two copies of viral RNA into each virion. Although each RNA contains a primer-binding site for initiation of DNA synthesis, it is unknown whether reverse transcription is initiated on both RNAs. To determine whether a single virion is capable of initiating reverse transcription more than once, we constructed a murine leukemia virus-based vector containing a second primer-binding site (PBS) derived from spleen necrosis virus and inserted the green fluorescent protein gene (GFP) between the two PBSs. Initiation of reverse transcription at either PBS results in a provirus that expresses GFP. However, initiation at both PBSs can result in the deletion of GFP, which can be detected by flow cytometry and Southern blotting analysis. Approximately 22-29% of the proviruses formed deleted the GFP in a single replication cycle, indicating the minimum proportion of virions that initiated reverse transcription on both PBSs. These results show that a significant proportion of MLV-based vectors containing two PBSs have the capacity to initiate reverse transcription more than once

  11. The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold.

    Science.gov (United States)

    Zhang, Adrianna P P; Bornholdt, Zachary A; Liu, Tong; Abelson, Dafna M; Lee, David E; Li, Sheng; Woods, Virgil L; Saphire, Erica Ollmann

    2012-02-01

    Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan) and nonpathogenic to humans (Reston). These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle.

  12. The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold.

    Directory of Open Access Journals (Sweden)

    Adrianna P P Zhang

    2012-02-01

    Full Text Available Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan and nonpathogenic to humans (Reston. These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle.

  13. Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus

    NARCIS (Netherlands)

    You, Z.O.; Nadala, E.C.B.; Yang, J.S.; Hulten, van M.C.W.; Loh, P.C.

    2002-01-01

    A truncated version of the white spot syndrome virus (WSSV) 27.5 kDa envelope protein was expressed as a histidine tag fusion protein in Escherichia coli. The bacterial expression system allowed the production of up to 10 mg of purified recombinant protein per liter of bacterial culture. Antiserum

  14. Identification of Stressors that Affect White Spot Syndrome Virus (WSSV) Infection and Outbreak in Pond Cultured Penaeus monodon

    NARCIS (Netherlands)

    Tendencia Alapide, E.; Verreth, J.A.J.

    2011-01-01

    White spot syndrome virus (WSSV) has been a big problem to the worldwide shrimp industry. Exposure to stressors related to physicochemical water parameters affect WSSV infection but not all WSSV infections result in outbreaks. This paper describes a detailed monitoring of important physicochemical

  15. Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance

    NARCIS (Netherlands)

    Morgan, S.B.; Graham, S.P.; Salguero, F.J.; Sánchez Cordón, P.J.; Mokhtar, H.; Rebel, J.M.J.; Weesendorp, E.; Bodman-Smith, K.B.; Steinbach, F.; Frossard, J.P.

    2013-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine worldwide. Since its first emergence in 1987 the PRRS virus (PRRSV) has become particularly divergent with highly pathogenic strains appearing in both Europe and Asia. However, the

  16. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1

    Directory of Open Access Journals (Sweden)

    Wang Pu

    2010-10-01

    Full Text Available Abstract The Epstein-Barr Virus (EBV Nuclear Antigen 1 (EBNA1 protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP, regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP combined with massively parallel deep-sequencing (ChIP-Seq was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA

  17. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells

    International Nuclear Information System (INIS)

    Bergman, Ira; Whitaker-Dowling, Patricia; Gao Yanhua; Griffin, Judith A.; Watkins, Simon C.

    2003-01-01

    Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. It is an oncolytic virus that is safe in humans. Recombinant virus can be made directly from plasmid components. We attempted to create a virus that targeted specifically to breast cancer cells. Nonreplicating and replicating pseudotype VSV were created whose only surface glycoprotein (gp) was a Sindbis gp, called Sindbis-ZZ, modified to severely reduce its native binding function and to contain the Fc-binding domain of Staphylococcus aureus protein A. When titered on Her2/neu overexpressing SKBR3 human breast cancer cells, pseudotype VSV coated with Sindbis-ZZ had 5 /ml. This work demonstrates the ability to easily create, directly from plasmid components, an oncolytic replicating VSV with a restricted host cell range

  18. Protein-x of hepatitis B virus in interaction with CCAAT/enhancer-binding protein α (C/EBPα - an in silico analysis approach

    Directory of Open Access Journals (Sweden)

    Mohamadkhani Ashraf

    2011-10-01

    Full Text Available Abstract Background Even though many functions of protein-x from the Hepatitis B virus (HBV have been revealed, the nature of protein-x is yet unknown. This protein is well-known for its transactivation activity through interaction with several cellular transcription factors, it is also known as an oncogene. In this work, we have presented computational approaches to design a model to show the structure of protein-x and its respective binding sites associated with the CCAAT/enhancer-binding protein α (C/EBPα. C/EBPα belongs to the bZip family of transcription factors, which activates transcription of several genes through its binding sites in liver and fat cells. The C/EBPα has been shown to bind and modulate enhancer I and the enhancer II/core promoter of HBV. In this study using the bioinformatics tools we tried to present a reliable model for the protein-x interaction with C/EBPα. Results The amino acid sequence of protein-x was extracted from UniProt [UniProt:Q80IU5] and the x-ray crystal structure of the partial CCAAT-enhancer α [PDB:1NWQ] was retrieved from the Protein Data Bank (PDB. Similarity search for protein-x was carried out by psi-blast and bl2seq using NCBI [GenBank: BAC65106.1] and Local Meta-Threading-Server (LOMETS was used as a threading server for determining the maximum tertiary structure similarities. Advanced MODELLER was implemented to design a comparative model, however, due to the lack of a suitable template, Quark was used for ab initio tertiary structure prediction. The PDB-blast search indicated a maximum of 23% sequence identity and 33% similarity with crystal structure of the porcine reproductive and respiratory syndrome virus leader protease Nsp1α [PDB:3IFU]. This meant that protein-x does not have a suitable template to predict its tertiary structure using comparative modeling tools, therefore we used QUARK as an ab initio 3D prediction approach. Docking results from the ab initio tertiary structure of

  19. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  20. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    Science.gov (United States)

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.

  1. Epstein-Barr virus myelitis and Castleman's disease in a patient with acquired immune deficiency syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Balderacchi Jasminka

    2011-05-01

    Full Text Available Abstract Introduction Few cases of Epstein-Barr virus myelitis have been described in the literature. Multi-centric Castleman's disease is a lymphoproliferative disorder that is well known for its associations with the human immunodeficiency virus, human herpes virus 8, and Kaposi's sarcoma. The concurrent presentation of these two diseases in a patient at the same time is extremely unusual. Case Presentation We describe the case of a 43-year-old Caucasian man with acquired immune deficiency syndrome who presented with fever, weight loss and diffuse lymphadenopathy, and was diagnosed with multi-centric Castleman's disease. He presented three weeks later with lower extremity weakness and urinary retention, at which time cerebrospinal fluid contained lymphocytic pleocytosis and elevated protein. Magnetic resonance imaging demonstrated abnormal spinal cord signal intensity over several cervical and thoracic segments, suggesting the diagnosis of myelitis. Our patient was ultimately diagnosed with Epstein-Barr virus myelitis, as Epstein-Barr virus DNA was detected by polymerase chain reaction in the cerebrospinal fluid. Conclusion To the best of our knowledge, this is the first case of multi-centric Castleman's disease followed by acute Epstein-Barr virus myelitis in a human immunodeficiency virus-infected patient. Clinicians caring for human immunodeficiency virus-infected patients should be vigilant about monitoring patients with increasing lymphadenopathy, prompting thorough diagnostic investigations when necessary.

  2. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    Science.gov (United States)

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. A Sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chang

    Full Text Available Hepatitis C virus (HCV is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs.

  4. Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus

    DEFF Research Database (Denmark)

    Iacovakis, Christos; Mamuris, Zissis; Moutou, Katerina A

    2013-01-01

    A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick...... were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other...... populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180) was lower than expected (H e = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16...

  5. Quasispecies variation of porcine reproductive and respiratory syndrome virus during natural infection

    International Nuclear Information System (INIS)

    Goldberg, Tony L.; Lowe, James F.; Milburn, Suzanne M.; Firkins, Lawrence D.

    2003-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) displays notorious genetic, antigenic, and clinical variability. Little is known, however, about the nature and extent of viral variation present within naturally infected animals. By amplifying and cloning the open reading frame 5 gene from tonsils of naturally infected swine, and by sequencing individual clones, we characterized viral diversity in nine animals from two farms. All animals harbored multiple PRRSV variants at both the nucleic and the amino acid levels. Structural variation and rates of synonymous and nonsynonymous nucleotide substitution were no different within known epitopes than elsewhere. Analysis of molecular variance indicated that differences between farms, among animals within farms, and within individual animals accounted for 92.94, 3.84, and 3.22% of the total viral genetic variability observed, respectively. PRRSV exists during natural infection as a quasispecies distribution of related genotypes. Positive natural selection for immune evasiveness does not appear to maintain this diversity

  6. Characterization of ORF89 - A latency-related gene of white spot syndrome virus

    International Nuclear Information System (INIS)

    Hossain, M.S.; Khadijah, Siti; Kwang, Jimmy

    2004-01-01

    Open reading frame 89 (ORF89) is one of the three genes that are believed to be involved in the latent infection of white spot syndrome virus (WSSV). Here, we report the structure and functional characterization of ORF89. cDNA sequencing, 5' RLM-RACE, and 3' RLM-RACE showed that ORF89 gene is transcribed into an unspliced mRNA of 4436 nucleotides, which is predicted to encode a protein of 1437 amino acids. ORF89 expressed an approximately 165-kDa protein in Sf9 cells that localized in the nucleus. Amino acids 678-683 were found to be essential for nuclear localization. Cotransfection assays demonstrated that ORF89 protein repressed its own promoter as well as those of a protein kinase and the thymidine-thymidylate kinase genes of WSSV. SYBR Green real-time PCR indicated that the repression occurred at the transcriptional level

  7. Low-dose growth hormone and human immunodeficiency virus-associated lipodystrophy syndrome: a pilot study

    DEFF Research Database (Denmark)

    Andersen, Ove; Haugaard, Steen B; Flyvbjerg, A

    2004-01-01

    BACKGROUND: Treatment with high doses (2-6 mg day(-1)) of human growth hormone (hGH) in patients with human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) has been shown to increase concentrations of total insulin-like growth-factor-I (IGF-I) more than twofold greater than......-I and fat distribution. Glucose metabolism was examined by oral glucose tolerance tests and hyperinsulinaemic euglycaemic clamps. RESULTS: Total IGF-I increased twofold (P ....01). Patients reported improvements of lipodystrophy, which was supported by a decreased waist-to-thigh ratio (P = 0.01), and waist-to-hip ratio (P = 0.06). Ratio of peripheral to trunk soft tissue mass increased (P = 0.01, measured by dual-energy X-ray absorptiometry scans) and a trend towards reduction...

  8. Genotyping of white spot syndrome virus on wild and farm crustaceans from Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    González-Galaviz José Reyes

    2013-01-01

    Full Text Available White spot syndrome is a viral disease affecting wild and farm crustaceans that serve as reservoirs. Previous reports have demonstrated high genomic variation in WSS viruses (WSSV isolated from distinct geographical regions. In this study, we collected wild shrimps (Litopenaeus stylirostris, crabs (Callinectes arcuatus and farmed shrimp (L. vannamei in Sonora, Mexico, between 2008 and 2010. DNA was extracted, and the variable regions and transposase genes were subjected to PCR and sequencing. Compared to strains of WSSV from other sites, Mexican samples exhibited a distinct number of repeat units (RUs in ORF94, ORF75 and ORF125, which ranged between 1-11, 3-15, and 8-11 RUs respectively, and a unique single nucleotide polymorphism (SNP at position 48 of ORF94. A total of six Mexican genotypes were found in organism from shrimp farm and natural environment.

  9. [A double antibody sandwich ELISA based assay for titration of severe fever with thrombocytopenia syndrome virus].

    Science.gov (United States)

    Liu, Lin; Zhang, Quan-Fu; Li, Chuan; Li, Jian-Dong; Jiang, Xiao-Lin; Zhang, Fu-Shun; Wu, Wei; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    To develop an assay for titration of severe fever with thrombocytopenia syndrome virus (SFTSV) based on double antibody sandwich ELISA. A double antibody sandwich ELISA was developed for detection of SFTSV based on SFTSV nucleocapsid (N) protein specific poly- and monoclonal antibodies, procedures were optimized and evaluated. This ELISA based titration assay was compared with fluorescence assasy and plaque assay based titration method. The results suggested that the titers obtained by ELISA based method are consistent with those obtained by IFA based method (R = 0.999) and the plaque assay titration method (R = 0.949). The novel ELISA based titration method with high sensitivity and specificity is easy to manage and perform, and can overcome the subjectivity associated with result determination of the fluorescence assay and plaque assay based methods. The novel ELISA based titration method can also be applied to high throughput detection.

  10. Molecular detection of severe fever with thrombocytopenia syndrome virus (SFTSV) in feral cats from Seoul, Korea.

    Science.gov (United States)

    Hwang, Jusun; Kang, Jun-Gu; Oh, Sung-Suck; Chae, Jeong-Byoung; Cho, Yun-Kyung; Cho, Young-Sun; Lee, Hang; Chae, Joon-Seok

    2017-01-01

    This study tested serum samples of feral cats from a highly urbanized habitat, Seoul, Korea to determine the infection to severe fever with thrombocytopenia syndrome virus (SFTSV). From 126 samples tested, SFTSV was detected by RT-PCR in 22 (17.5%) cats from various sites of Seoul. Sequences identified from this study were grouped with clusters from China and Japan. Our result provides data that SFTSV may have been circulating in settings that were suspected to have relatively low risk, such as highly urbanized habitats. Thus it warrants further study to investigate the ecology of SFTSV in urban-dwelling animals including ticks, human and other potential host species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Isolation and identification of porcine reproductive and respiratory syndrome virus in cell cultures.

    Science.gov (United States)

    Valícek, L; Psikal, I; Smíd, B; Rodák, L; Kubalíková, R; Kosinová, E

    1997-10-01

    Three strains of porcine reproductive and respiratory syndrome virus (PRRSV) were isolated in porcine lung macrophage (PLM) cultures from three swine herds. This has been the first successful isolation of PRRSV in the Czech Republic and the strains received the designations CAPM V-501, CAPM V-502 and CAPM V-503, respectively. All the three isolates in PLM were identified by immunofluorescence and immunoperoxidase tests and the strain CAPM V-502 also by electron microscopy using the ultrathin section technique. The strain CAPM V-502 has been adapted to the cell line MARC-145. Viral RNA in PLM cultures infected with any of the isolated PRRSV strains was demonstrated by RT-PCR targeted to the more conserved ORF 7 genomic region encoding the nucleocapsid protein. The assessment of PCR products in agarose gel revealed a uniform size of 394 bp in all the three isolates and the European prototype strain Lelystad used as positive control.

  12. Functional identification of the non-specific nuclease from white spot syndrome virus

    International Nuclear Information System (INIS)

    Li Li; Lin Shumei; Yanga Feng

    2005-01-01

    The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predicted ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa

  13. The effects of a thermophile metabolite, tryptophol, upon protecting shrimp against white spot syndrome virus.

    Science.gov (United States)

    Zhu, Fei; Jin, Min

    2015-12-01

    White spot syndrome virus (WSSV) is a shrimp pathogen responsible for significant economic loss in commercial shrimp farms and until now, there has been no effective approach to control this disease. In this study, tryptophol (indole-3-ethanol) was identified as a metabolite involved in bacteriophage-thermophile interactions. The dietary addition of tryptophol reduced the mortality in shrimp Marsupenaeus japonicus when orally challenged with WSSV. Our results revealed that 50 mg/kg tryptophol has a better protective effect in shrimp than 10 or 100 mg/kg tryptophol. WSSV copies in shrimp were reduced significantly (P shrimp, and thus holds significant promise as a novel and efficient therapeutic approach to control WSSV in shrimp aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development

    Science.gov (United States)

    Liu, Chia-Lin; Hung, Hui-Chen; Lo, Shou-Chen; Chiang, Ching-Hui; Chen, I.-Jung; Hsu, John T.-A.; Hou, Ming-Hon

    2016-02-01

    Nucleoprotein (NP) is the most abundant type of RNA-binding viral protein in influenza A virus-infected cells and is necessary for viral RNA transcription and replication. Recent studies demonstrated that influenza NP is a valid target for antiviral drug development. The surface of the groove, covered with numerous conserved residues between the head and body domains of influenza A NP, plays a crucial role in RNA binding. To explore the mechanism by which NP binds RNA, we performed a series of site-directed mutagenesis in the RNA-binding groove, followed by surface plasmon resonance (SPR), to characterize the interactions between RNA and NP. Furthermore, a role of Y148 in NP stability and NP-RNA binding was evaluated. The aromatic residue of Y148 was found to stack with a nucleotide base. By interrupting the stacking interaction between Y148 and an RNA base, we identified an influenza virus NP inhibitor, (E, E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -1,6-heptadiene-3,5-dione; this inhibitor reduced the NP’s RNA-binding affinity and hindered viral replication. Our findings will be useful for the development of new drugs that disrupt the interaction between RNA and viral NP in the influenza virus.

  15. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus

    International Nuclear Information System (INIS)

    Rowland, Raymond R.R.; Schneider, Paula; Fang Ying; Wootton, Sarah; Yoo, Dongwan; Benfield, David A.

    2003-01-01

    The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is the principal component of the viral nucleocapsid and localizes to the nucleolus. Peptide sequence analysis of the N protein of several North American isolates identified two potential nuclear localization signal (NLS) sequences located at amino acids 10-13 and 41-42, which were labeled NLS-1 and NLS-2, respectively. Peptides containing NLS-1 or NLS-2 were sufficient to accumulate enhanced green fluorescent protein (EGFP) in the nucleus. The inactivation of NLS-1 by site-directed mutagenesis or the deletion of the first 14 amino acids did not affect N protein localization to the nucleolus. The substitution of key lysine residues with uncharged amino acids in NLS-2 blocked nuclear/nucleolar localization. Site-directed mutagenesis within NLS-2 identified the sequence, KKNKK, as forming the core localization domain within NLS-2. Using an in vitro pull-down assay, the N protein was able to bind importin-α, importin-β nuclear transport proteins. The localization pattern of N-EGFP fusion peptides represented by a series of deletions from the C- and N-terminal ends of the N protein identified a region covering amino acids 41-72, which contained a nucleolar localization signal (NoLS) sequence. The 41-72 N peptide when fused to EGFP mimicked the nucleolar-cytoplasmic distribution of native N. These results identify a single NLS involved in the transport of N from the cytoplasm and into nucleus. An additional peptide sequence, overlapping NLS-2, is involved in the further targeting of N to the nucleolus

  16. Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection.

    Science.gov (United States)

    Solís-Lucero, G; Manoutcharian, K; Hernández-López, J; Ascencio, F

    2016-08-01

    White spot syndrome virus (WSSV) is the most important viral pathogen for the global shrimp industry causing mass mortalities with huge economic losses. Recombinant phages are capable of expressing foreign peptides on viral coat surface and act as antigenic peptide carriers bearing a phage-displayed vaccine. In this study, the full-length VP28 protein of WSSV, widely known as potential vaccine against infection in shrimp, was successfully cloned and expressed on M13 filamentous phage. The functionality and efficacy of this vaccine immunogen was demonstrated through immunoassay and in vivo challenge studies. In ELISA assay phage-displayed VP28 was bind to Litopenaeus vannamei immobilized hemocyte in contrast to wild-type M13 phage. Shrimps were injected with 2 × 10(10) cfu animal(-1) single dose of VP28-M13 and M13 once and 48 h later intramuscularly challenged with WSSV to test the efficacy of the vaccine against the infection. All dead challenged shrimps were PCR WSSV-positive. The accumulative mortality of the vaccinated and challenged shrimp groups was significantly lower (36.67%) than the unvaccinated group (66.67%). Individual phenoloxidase and superoxide dismutase activity was assayed on 8 and 48 h post-vaccination. No significant difference was found in those immunological parameters among groups at any sampled time evaluated. For the first time, phage display technology was used to express a recombinant vaccine for shrimp. The highest percentage of relative survival in vaccinated shrimp (RPS = 44.99%) suggest that the recombinant phage can be used successfully to display and deliver VP28 for farmed marine crustaceans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    Science.gov (United States)

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  18. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    International Nuclear Information System (INIS)

    Tang, Xuhua; Hew, Choy Leong

    2007-01-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution

  19. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg [Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)

    2007-07-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.

  20. Binding constants of Southern rice black-streaked dwarf virus Coat Protein with ferulic acid derivatives

    Directory of Open Access Journals (Sweden)

    Longlu Ran

    2018-04-01

    Full Text Available The data present binding constants between ferulic acid derivatives and the Coat Protein (P10 by fluorescence titration in this article, which is hosted in the research article entitled “Interaction Research on an Antiviral Molecule that Targets the Coat Protein of Southern rice black-streaked dwarf virus’’ (Ran et al., 2017 [1]. The data include fluorescence quenching spectrum, Stern–Volmer quenching constants, and binding parameters. In this article, a more comprehensive data interpretation and analysis is explained.

  1. Characterization of polyclonal antibodies against nonstructural protein 9 from the porcine reproductive and respiratory syndrome virus

    Directory of Open Access Journals (Sweden)

    Mengmeng ZHAO,Juanjuan QIAN,Jiexiong XIE,Tiantian CUI,Songling FENG,Guoqiang WANG,Ruining WANG,Guihong ZHANG

    2016-06-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is considered to be one of the most important infectious diseases impacting the swine industry and is characterized by reproductive failure in late term gestation in sows and respiratory disease in pigs of all ages. The nonstructural protein 9 gene, Nsp9, encoding the RNA-dependent RNA polymerase, is generally regarded as fairly conserved when compared to other viral proteins. Antibodies against Nsp9 will be of great importance for the diagnosis and treatment of the causal agent, PRRS virus. A study was undertaken to generate polyclonal antibodies against the immunodominant Nsp9. For this purpose, the Nsp9 was expressed in Escherichia coli and subsequently used as an antigen to immunize New Zealand rabbits. Antiserum was identified via an indirect ELISA, and then verified based on the ability to react with both naturally and artificially expressed Nsp9. Results of virus neutralization test showed that this antiserum could not neutralize the PRRSV. Nevertheless, this antiserum as a diagnostic core reagent should prove invaluable for further investigations into the mechanism of PRRS pathogenesis.

  2. Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis longicornis ticks in South Korea.

    Science.gov (United States)

    Park, Sun-Whan; Song, Bong Gu; Shin, E-Hyun; Yun, Seok-Min; Han, Myung-Guk; Park, Mi Yeoun; Park, Chan; Ryou, Jungsang

    2014-10-01

    Haemaphysalis longicornis a vector that harbors severe fever with thrombocytopenia syndrome virus (SFTSV) is a major species of tick in South Korea. To investigate the existence and prevalence of SFTSV in Korea, we collected ticks from nine provinces in South Korea for detecting SFTSV. In all, we collected 13,053 ticks, and H. longicornis (90.8%, 11,856/13,053) was the most abundant among them. The minimum infection rate (MIR) of SFTSV in H. longicornis was 0.46% (55 pools). SFTSV was detected in ticks during all the developmental stages, showing MIR in larvae (2/350, 0.57%), nymphs (38/10,436, 0.36%), males (2/221, 0.90%), and females (13/849, 1.53%), respectively. Viruses were detected in ticks collected between April and September. A higher MIR was detected in ticks from the southern part of the country. We amplified the M and S segment partial genes from a sample and analyzed the nucleotide sequence. The results showed a 93-98% homology to Chinese and Japanese strains registered in Genbank. In this study, we confirmed the existence of SFTSV for the first time in South Korea. The SFTSV prevalence data from the studies are essential for raising the awareness of SFTS in South Korea. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Down syndrome as risk factor for respiratory syncytial virus hospitalization: A prospective multicenter epidemiological study.

    Science.gov (United States)

    Sánchez-Luna, Manuel; Medrano, Constancio; Lirio, Julián

    2017-03-01

    Respiratory syncytial virus (RSV) infection in childhood, particularly in premature infants, is associated with significant morbidity and mortality. To compare the hospitalization rates due to RSV infection and severity of disease between infants with and without Down syndrome (DS) born at term and without other associated risk factors for severe RSV infection. In a prospective multicentre epidemiological study, 93 infants were included in the DS cohort and 68 matched by sex and data of birth (±1 week) and were followed up to 1 year of age and during a complete RSV season. The hospitalization rate for all acute respiratory infection was significantly higher in the DS cohort than in the non-DS cohort (44.1% vs 7.7%, P<.0001). Hospitalizations due to RSV were significantly more frequent in the DH cohort than in the non-DS cohort (9.7% vs 1.5%, P=.03). RSV prophylaxis was recorded in 33 (35.5%) infants with DS. The rate of hospitalization according to presence or absence of RSV immunoprophylaxis was 3.0% vs 15%, respectively. Infants with DS showed a higher rate of hospitalization due to acute lower respiratory tract infection and RSV infection compared to non-DS infants. Including DS infants in recommendations for immunoprophylaxis of RSV disease should be considered. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  4. Characterization and interactome study of white spot syndrome virus envelope protein VP11.

    Directory of Open Access Journals (Sweden)

    Wang-Jing Liu

    Full Text Available White spot syndrome virus (WSSV is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570, and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.

  5. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    Science.gov (United States)

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  6. Transmission of white spot syndrome virus (WSSV) from Dendronereis spp. (Peters) (Nereididae) to penaeid shrimp.

    Science.gov (United States)

    Haryadi, D; Verreth, J A J; Verdegem, M C J; Vlak, J M

    2015-05-01

    Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina et al. 2013); therefore, it is a potential propagative vector for virus transmission. The major aim of this study was to determine whether WSSV can be transmitted from naturally infected Dendronereis spp. to specific pathogen-free (SPF) Pacific white shrimp Litopenaeus vannamei (Boone) through feeding. WSSV was detected in naturally infected Dendronereis spp. and Penaeus monodon Fabricius from a traditional shrimp pond, and the positive animals were used in the current experiment. WSSV-infected Dendronereis spp. and P. monodon in a pond had a point prevalence of 90% and 80%, respectively, as measured by PCR. WSSV was detected in the head, gills, blood and mid-body of Dendronereis spp. WSSV from naturally infected Dendronereis spp was transmitted to SPF L. vannamei and subsequently from this shrimp to new naïve-SPF L. vannamei to cause transient infection. Our findings support the contention that Dendronereis spp, upon feeding, can be a source of WSSV infection of shrimp in ponds. © 2014 John Wiley & Sons Ltd.

  7. Specific binding of 125I-rErythropoietin to Friend polycythemia virus-transformed erythroleukemia cells purified by centrifugal elutriation

    International Nuclear Information System (INIS)

    Correa, P.N.; Bard, V.; Axelrad, A.A.

    1990-01-01

    We have used countercurrent centrifugal elutriation (CCE) to determine the distribution of cells with respect to cell volume and buoyant density for an erythroleukemia cell line (JG6) transformed by the polycythemia strain of Friend virus (FV-P), and to determine the effect of inducing the cells to differentiate with dimethylsulfoxide (DMSO) on this distribution. CCE made it possible to obtain suspensions of modal JG6 populations virtually free of dead cells and uniform with respect to volume and buoyant density. These modal populations were assayed for specific binding of erythropoietin (Epo). Between 500 and 550 Epo receptors per cell were detected. These belonged to a single class having a dissociation constant of 0.36 nM. DMSO induction of differentiation of the JG6 cells had no effect on the number of Epo receptors expressed

  8. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    OpenAIRE

    Mukherjee, Sourav; Weiner, Warren S.; Schroeder, Chad E.; Simpson, Denise S.; Hanson, Alicia M.; Sweeney, Noreena L.; Marvin, Rachel K.; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J.; Frick, David N.

    2014-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previousl...

  9. Associated Factors for Metabolic Syndrome in the Older Adults with Chronic Virus Hepatitis in the Community.

    Directory of Open Access Journals (Sweden)

    Yuan-Hung Kuo

    Full Text Available This study was to evaluate the association between metabolic syndrome (MetS and chronic virus hepatitis elders in the community. Those subjects with positive hepatitis B surface antigen (HBsAg and/or anti-hepatitis C virus (anti-HCV screened in the community before were invited to this study and 451 responded. All participants underwent anthropometric measurements, blood tests, ultrasound and fibroscan examinations. The cut-off of liver stiffness measurement-liver cirrhosis (LSM-LC was 10 kPa for chronic hepatitis B (CHB patients and 12 kPa for chronic hepatitis C (CHC patients, respectively. Among 451 responders, 56 were excluded due to negative HBsAg or anti-HCV. Three hundreds and ninety-five subjects included 228 CHB patients, 156 CHC patients and 11 dual hepatitis patients, had a mean age of 62±12.6 years. Fifty-four (23.7% CHB patients coexisted with MetS whereas 40 (25.6% CHC patients also had MetS. Those patients with MetS had more LSM-LC cases than those without (20.4% vs 9.8%, p = 0.04 in CHB patients; 28.2% vs 13.5%, p = 0.037 in CHC patients, respectively. In multivariate logistic analysis, detectable viremia was reversely associated with MetS in CHB patients after adjustment for age, gender and body mass index (odds ratio (OR: 0.42; 95% confidence interval (CI: 0.18-0.99; p = 0.047. Regarding CHC patients, higher LSM level was the only factor contributed to MetS (OR: 1.1; 95% CI: 1.02-1.19; p = 0.012. In conclusion, elder CHB patients coexisted with MetS might experience an inactive virus replication but have an advanced liver fibrosis. In elder CHC patients, only higher LSM level was associated with MetS.

  10. Guillain–Barré Syndrome (42 Cases) Occurring During a Zika Virus Outbreak in French Polynesia

    Science.gov (United States)

    Watrin, Louise; Ghawché, Frédéric; Larre, Philippe; Neau, Jean-Philippe; Mathis, Stéphane; Fournier, Emmanuel

    2016-01-01

    Abstract Zika virus (transmitted by mosquitoes) reached French Polynesia for the first time in 2013, leading to an epidemic affecting 10% of the total population. So far, it has not been known to induce any neurological complications, but, a few weeks after the outbreak, an unexpectedly high number of 42 patients presented with Guillain–Barré syndrome. We report the clinical and electrophysiological characteristics of this series. Males predominated with a sex ratio of 2.82 (mean age: 46). All patients (except 2) were native Polynesian. At admission, 55% were able to walk unaided against 38% at nadir, 24% had swallowing troubles (nadir: 45%), 74% had motor weakness of the limbs (nadir: 86%) and deep tendon reflexes were diminished or not found in the vast majority of patients. Mean duration of the progressive phase and of the plateau phase was respectively 7 and 9 days. Thirty-eight percent of the patients were admitted in intensive care unit and 10 patients underwent tracheotomy. Nerve electrophysiological studies at admission showed marked distal motor conduction alterations, which had almost completely disappeared at the 4th month; this pattern was more suggestive of acute motor axonal neuropathy (AMAN) than of acute inflammatory demyelinating polyneuropathy (AIDP). Lumbar puncture showed elevated proteins in 90% of the cases, with cell count always inferior to 50/μL. This epidemic raises several questions, such as the potential existence of interactions between Zika virus and Polynesian HLA system and/or the consequences of several recombination events of this virus. This situation should call for increased vigilance, especially in countries where Aedes mosquitoes are present. PMID:27057874

  11. Guillain-Barré Syndrome (42 Cases) Occurring During a Zika Virus Outbreak in French Polynesia.

    Science.gov (United States)

    Watrin, Louise; Ghawché, Frédéric; Larre, Philippe; Neau, Jean-Philippe; Mathis, Stéphane; Fournier, Emmanuel

    2016-04-01

    Zika virus (transmitted by mosquitoes) reached French Polynesia for the first time in 2013, leading to an epidemic affecting 10% of the total population. So far, it has not been known to induce any neurological complications, but, a few weeks after the outbreak, an unexpectedly high number of 42 patients presented with Guillain-Barré syndrome.We report the clinical and electrophysiological characteristics of this series. Males predominated with a sex ratio of 2.82 (mean age: 46). All patients (except 2) were native Polynesian. At admission, 55% were able to walk unaided against 38% at nadir, 24% had swallowing troubles (nadir: 45%), 74% had motor weakness of the limbs (nadir: 86%) and deep tendon reflexes were diminished or not found in the vast majority of patients. Mean duration of the progressive phase and of the plateau phase was respectively 7 and 9 days. Thirty-eight percent of the patients were admitted in intensive care unit and 10 patients underwent tracheotomy. Nerve electrophysiological studies at admission showed marked distal motor conduction alterations, which had almost completely disappeared at the 4th month; this pattern was more suggestive of acute motor axonal neuropathy (AMAN) than of acute inflammatory demyelinating polyneuropathy (AIDP). Lumbar puncture showed elevated proteins in 90% of the cases, with cell count always inferior to 50/μL.This epidemic raises several questions, such as the potential existence of interactions between Zika virus and Polynesian HLA system and/or the consequences of several recombination events of this virus. This situation should call for increased vigilance, especially in countries where Aedes mosquitoes are present.

  12. Gradual development of the interferon-γ response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination

    International Nuclear Information System (INIS)

    Meier, William A.; Galeota, Judy; Osorio, Fernando A.; Husmann, Robert J.; Schnitzlein, William M.; Zuckermann, Federico A.

    2003-01-01

    Infection of swine with virulent porcine reproductive and respiratory syndrome (PRRS) virus induced a rapid, robust antibody response that comprised predominantly nonneutralizing antibodies and waned after approximately 3 months. In contrast, the initial onset of virus-specific interferon (IFN)-γ-secreting cells (SC) in the pig lymphocyte population remained at a fairly low level during this period and then increased gradually in frequency, plateauing at 6 months postinfection. A similar polarization of the host humoral and cellular immune responses was also observed in pigs immunized with a PRRS-modified live virus (MLV) vaccine. Even coadministration of an adjuvant that enhanced the immune response to a pseudorabies (PR) MLV vaccine failed to alter the induction of PRRS virus-specific IFN-γ SC (comprising predominately CD4/CD8α double positive memory T cells with a minority being typical CD4 - /CD8αβ + T cells) and the generation of neutralizing antibodies. Moreover, unlike inactivated PR virus, nonviable PRRS virus did not elicit virus-neutralizing antibody production. Presumably, an intrinsic property of this pathogen delays the development of the host IFN-γ response and preferentially stimulates the synthesis of antibodies incapable of neutralization

  13. Evaluation of an immunodot test to manage white spot syndrome virus (WSSV) during cultivation of the giant tiger shrimp Penaeus monodon

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, R.; Palaksha, K.J.; Anil, T.M.; Guruchannabasavanna; Patil, P.; Shankar, K.M.; Mohan, C.V.; Sreepada, R.A.

    A monoclonal antibody-based immunodot test was compared to a polymerase chain reaction (PCR) assay for managing white spot syndrome virus (WSSV) on shrimp farms at Kundapur and Kumta situated in Udupi and Uttar Kannada Districts, respectively...

  14. QTL for white spot syndrome virus resistance and the sex-determining locus in the Indian black tiger shrimp (Penaeus monodon).

    Science.gov (United States)

    Robinson, Nicholas A; Gopikrishna, Gopalapillay; Baranski, Matthew; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Gitterle, Thomas; Ponniah, Alphis G

    2014-08-28

    Shrimp culture is a fast growing aquaculture sector, but in recent years there has been a shift away from tiger shrimp Penaeus monodon to other species. This is largely due to the susceptibility of P. monodon to white spot syndrome virus disease (Whispovirus sp.) which has impacted production around the world. As female penaeid shrimp grow more rapidly than males, mono-sex production would be advantageous, however little is known about genes controlling or markers associated with sex determination in shrimp. In this study, a mapped set of 3959 transcribed single nucleotide polymorphisms were used to scan the P. monodon genome for loci associated with resistance to white-spot syndrome virus and sex in seven full-sibling tiger shrimp families challenged with white spot syndrome virus. Linkage groups 2, 3, 5, 6, 17, 18, 19, 22, 27 and 43 were found to contain quantitative trait loci significantly associated with hours of survival after white spot syndrome virus infection (P shrimp.

  15. Comparison of a commercial ELISA and an immunoperoxidase monolayer assay to detect antibodies directed against porcine respiratory and reproductive syndrome virus

    NARCIS (Netherlands)

    Nodelijk, G.; Wensvoort, G.; Kroese, B.; Leengoed, van L.A.M.G.; Colijn, E.; Verheijden, J.H.M.

    1996-01-01

    A commercially available enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against porcine respiratory and reproductive syndrome virus (PRRSV) was compared to an immunoperoxidase monolayer assay (IPMA). Serum samples used were collected from pigs experimentally infected with

  16. Avian Influenza: Potential Impact on Sub-Saharan Military Populations with High Rates of Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

    National Research Council Canada - National Science Library

    Feldman, Robert L; Nickell, Kent

    2007-01-01

    ...)/acquired immunodeficiency syndrome. With the arrival of avian influenza in Africa, the potential exists that some of those soldiers might also become infected with H5N1, the virus responsible for the disease...

  17. Clinical characteristics of abnormal savda syndrome type in human immunodeficiency virus infection and acquired immune deficiency syndrome patients: A cross-sectional investigation in Xinjiang, China.

    Science.gov (United States)

    Peierdun, Mi-ji-ti; Liu, Wen-xian; Renaguli, Ai-ze-zi; Nurmuhammat, Amat; Li, Xiao-chun; Gulibaier, Ka-ha-er; Ainivaer, Wu-la-mu; Halmurat, Upur

    2015-12-01

    To investigate the distribution of abnormal hilit syndromes in traditional Uighur medicine (TUM) among human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) patients, and to find out the clinical characteristics of abnormal savda syndrome type HIV/AIDS patients. Between June and July in 2012, 307 eligible HIV/AIDS patients from in-patient department and out-patient clinics of Xinjiang Uighur Autonomous Region the Sixth People's Hospital in Urumqi were investigated. TUM syndrome differentiation was performed by a senior TUM physician. Each participant completed a Sign and Symptom Check-List for Persons Living with HIV/AIDS (SSC-HIV) questionnaire. Depression was evaluated by using Hamilton Rating Scale for Depression Questionnaire. Blood specimen was collected from each participant to test the levels of blood chemicals. Of 307 HIV/AIDS patients, 189 (61.6%) were abnormal savda syndrome type, 118 (38.4%) were non-abnormal-savda syndrome type. Mean CD4 counts of abnormal savda syndrome type patients was (227.61±192.93) cells/µL, and the prevalence of anemia, thrombocytopenia, and elevated cystatin C were 49.7%, 28.6%, and 44.7%, which were significantly higher than those in the non-abnormal-savda syndrome type patients (26.3%, 16.0% and 25.0%,PHIV/AIDS-related symptoms such as fatigue (42.3%), back aches (40.7%), lack of appetite (33.9%), night sweats (31.7%) were more common among abnormal savda syndrome patients (PHIV/AIDS patients, and they present a more sever clinical manifestation.

  18. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L

    Science.gov (United States)

    Drappier, Melissa; Elliott, Ruth; Zhang, Rong; Weiss, Susan R.; Silverman, Robert H.

    2018-01-01

    The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A. PMID:29652922

  19. Crystallization and X-ray crystallographic analysis of the cap-binding domain of influenza A virus H1N1 polymerase subunit PB2

    International Nuclear Information System (INIS)

    Liu, Yong; Meng, Geng; Luo, Ming; Zheng, Xiaofeng

    2013-01-01

    Substrate-free cap-binding domain of influenza A virus H1N1 polymerase subunit PB2 has been crystallized to show the structural details and clarify whether obvious conformational changes exist between the substrate-free and substrate-bound cap-binding domain. PB2 is one of the subunits of the influenza virus heterotrimeric polymerase. By its cap-binding domain (PB2 cap ), PB2 captures the 5′ cap of the host pre-mRNA to generate a capped 5′ oligonucleotide primer for virus transcription. The crystal structure of influenza A virus H3N2 PB2 cap with bound cap analogue m 7 GTP has been reported previously. To show the substrate-free structural details of PB2 cap and clarify whether obvious conformational changes exist between the substrate-free and substrate-bound cap-binding domain, we have successfully obtained the crystal of substrate-free H1N1 PB2 cap . The crystal of H1N1 PB2 cap diffracted to a high resolution of 1.32 Å. The crystal symmetry belongs to space group P1 with unit-cell parameters a = 29.49, b = 37.04, c = 38.33 Å, α = 71.10, β = 69.84, γ = 75.85°. There is one molecule in the asymmetric unit

  20. Influence of a yeast fermented product on the serum levels of the mannan-binding lectin and the antibodies against the Newcastle disease virus in Ross broilers

    DEFF Research Database (Denmark)

    Cortés-Coronado, R F; Gómez-Rosales, S; de L Angeles, M

    2017-01-01

    The objective of this research was to evaluate the serum concentrations of mannan-binding lectin (MBL) at different ages in Ross broilers fed increasing amounts of a yeast-fermented product (YFP) and inoculated with a vaccine against Newcastle disease virus (NDV). Eighty mixed Ross B308 broilers...

  1. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection.

    Science.gov (United States)

    Liu, Xiao-Yu; Li, Huan; Zhang, Wei

    2014-05-04

    It has been demonstrated that the lectin from Musa paradisiaca (BanLec-1) could inhibit the cellular entry of human immunodeficiency virus (HIV). In order to evaluate its effects on tobacco mosaic virus (TMV), the banlec-1 gene was cloned and transformed into Escherichia coli and tobacco, respectively. Recombinant BanLec-1 showed metal ions dependence, and higher thermal and pH stability. Overexpression of banlec-1 in tobacco resulted in decreased leaf size, and higher resistance to TMV infection, which includes reduced TMV cellular entry, more stable chlorophyll contents, and enhanced antioxidant enzymes. BanLec-1 was found to bind directly to the TMV capsid protein in vitro , and to inhibit TMV infection in a dose-dependent manner. In contrast to limited prevention in vivo , purified rBanLec-1 exhibited more significant effects on TMV infection in vitro . Taken together, our study indicated that BanLec-1 could prevent TMV infection in tobacco, probably through the interaction between BanLec-1 and TMV capsid protein.

  2. Histologic Changes Associated With Placental Separation in Gilts Infected with Porcine Reproductive and Respiratory Syndrome Virus.

    Science.gov (United States)

    Novakovic, Predrag; Detmer, Susan E; Suleman, Muhammad; Malgarin, Carol M; MacPhee, Daniel J; Harding, John C S

    2018-07-01

    The placenta is a vital organ providing the developing fetus with nutrient and gas exchange, thermoregulation, and waste elimination necessary for fetal development, as well as producing hormones to maintain pregnancy. It is hypothesized that fetal pig death in porcine reproductive and respiratory syndrome may be attributed to pathology of the maternal-fetal interface leading to premature placental separation. This study was designed to evaluate the chronologic progression of porcine reproductive and respiratory syndrome virus (PRRSV)-induced lesions at the maternal-fetal interface, with particular focus on placental separation in experimentally challenged third-trimester gilts. Fifteen gilts were inoculated with a virulent strain of PRRSV-2 on gestation day 86 ± 0.4. On multiple days postinoculation, 3 gilts along with 1 sham-inoculated control per time point were euthanized, and uterine and fetal placental tissues corresponding to each fetus were collected for histopathologic evaluation. The presence of any fetal lesion was 23 times more likely in compromised (meconium-stained and decomposed) compared with viable fetuses ( P < .001). In PRRSV-infected gilts, endometritis was more severe than placentitis, and the severity of endometrial inflammation and vasculitis increased progressively from 2 to 14 days postinoculation. Neither placental vasculitis nor a chronologic progression in the severity of placental detachment was observed. Severe placental detachment was more frequently present in PRRSV-infected compared with noninfected samples and was most significantly associated with placental inflammation, compared with other uterine lesions, viral load, or termination day. The results of this study suggest that placental separation by itself is not sufficient to significantly compromise fetal viability in reproductive porcine reproductive and respiratory syndrome.

  3. Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation.

    Science.gov (United States)

    Dvorak, C M; Hall, D J; Hill, M; Riddle, M; Pranter, A; Dillman, J; Deibel, M; Palmenberg, A C

    2001-11-25

    Encephalomyocarditis virus (EMCV) is the prototype member of the cardiovirus genus of picornaviruses. For cardioviruses and the related aphthoviruses, the first protein segment translated from the plus-strand RNA genome is the Leader protein. The aphthovirus Leader (173-201 amino acids) is an autocatalytic papain-like protease that cleaves translation factor eIF-4G to shut off cap-dependent host protein synthesis during infection. The less characterized cardioviral Leader is a shorter protein (67-76 amino acids) and does not contain recognizable proteolytic motifs. Instead, these Leaders have sequences consistent with N-terminal zinc-binding motifs, centrally located tyrosine kinase phosphorylation sites, and C-terminal, acid-rich domains. Deletion mutations, removing the zinc motif, the acid domain, or both domains, were engineered into EMCV cDNAs. In all cases, the mutations gave rise to viable viruses, but the plaque phenotypes in HeLa cells were significantly smaller than for wild-type virus. RNA transcripts containing the Leader deletions had reduced capacity to direct protein synthesis in cell-free extracts and the products with deletions in the acid-rich domains were less effective substrates at the L/P1 site, for viral proteinase 3Cpro. Recombinant EMCV Leader (rL) was expressed in bacteria and purified to homogeneity. This protein bound zinc stoichiometrically, whereas protein with a deletion in the zinc motif was inactive. Polyclonal mouse sera, raised against rL, immunoprecipitated Leader-containing precursors from infected HeLa cell extracts, but did not detect significant pools of the mature Leader. However, additional reactions with antiphosphotyrosine antibodies show that the mature Leader, but not its precursors, is phosphorylated during viral infection. The data suggest the natural Leader may play a role in regulation of viral genome translation, perhaps through a triggering phosphorylation event.

  4. Identification of Litopenaeus vannamei BiP as a novel cellular attachment protein for white spot syndrome virus by using a biotinylation based affinity chromatography method.

    Science.gov (United States)

    Yuan, Zengzhi; Chen, Meng; Wang, Jingting; Li, Zhuoyu; Geng, Xuyun; Sun, Jinsheng

    2018-05-05

    White spot syndrome virus (WSSV) is a dangerous threat to shrimp farming that also attacks a wide range of crustaceans. Knowledge of the surface protein-protein interactions between the pathogen and host is very crucial to unraveling the molecular pathogenesis mechanisms of WSSV. In this study, LvBiP (Litopenaeus vannamei immunoglobulin heavy-chain-binding protein) was identified as a novel WSSV binding protein of L. vannamei by a biotinylation based affinity chromatography method. By using pull-down and ELISA assays, the binding of recombinant LvBiP to WSSV was proved to be specific and ATP- dependent. The interaction was also confirmed by the result of co-immunoprecipitation assay. Immunofluorescence studies revealed the co-localization of LvBiP with WSSV on the cell surface of shrimp haemocytes. Additionally, LvBiP is likely to play an important role in WSSV infection. Treatment of gill cellular membrane proteins (CMPs) with purified rLvBiP and antibody that specifically recognizes LvBiP, led to a significant reduction in the binding of WSSV to gill CMPs. In the in vivo neutralization assay, rLvBiP and anti-LvBiP polyclonal antibody partially blocked the infection of WSSV. Taken together, the results indicate that LvBiP, a molecular chaperon of the HSP70 family, is a novel host factor involved at the step of attachment of the WSSV to the host cells and a potential candidate of therapeutic target. Copyright © 2018. Published by Elsevier Ltd.

  5. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt.

    Directory of Open Access Journals (Sweden)

    Yohei Watanabe

    2011-05-01

    Full Text Available Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA from α2,3- to α2,6-linked sialic acid (SA is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.

  6. A fatal case of middle east respiratory syndrome corona virus infection in South Korea: Cheat radiography and CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Eun; Kim, Hyo Lim; Choi, Su Mi [Dept. of Internal Medicine, Yeouido St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    The outbreak of Middle East Respiratory Syndrome Corona Virus (MERS-CoV) infection in South Korea originated from Saudi Arabia. This virus shows high infectivity, and causes outbreaks of severe febrile respiratory infections in health care-associated settings. Herein, we reported a fatal case of MERS-CoV infection with a focus on the pulmonary radiologic findings. The initial chest computed tomography and radiographs of our patient showed ground-glass opacity in patchy distribution, followed by rapid progression of consolidation and pleural effusion in serial studies.

  7. Gastric and Peritoneal Involvement of Human Herpes Virus 8 Related Kaposi Sarcoma in a Patient with Acquired Immunodeficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Nuno Ribeiro Ferreira

    2015-09-01

    Full Text Available Kaposi's sarcoma (KS is one of the most frequent neoplastic diseases in patients infected with human immunodeficiency virus (HIV. The authors report the case of a 40-year-old male with ascites, peripheral edema and peritoneal carcinomatosis secondary to a gastric KS related to human herpes virus type 8 (HHV-8. The patient had severe immunodeficiency, with a TCD4+ count of 86 cells/µl and newly diagnosed acquired immunodeficiency syndrome. His clinical condition rapidly deteriorated, with multiorgan failure, and he died without the possibility of initiating antiretroviral therapy or chemotherapy. To the authors’ knowledge, carcinomatosis is a rare feature in KS.

  8. A fatal case of middle east respiratory syndrome corona virus infection in South Korea: Cheat radiography and CT findings

    International Nuclear Information System (INIS)

    Lee, Seung Eun; Kim, Hyo Lim; Choi, Su Mi

    2016-01-01

    The outbreak of Middle East Respiratory Syndrome Corona Virus (MERS-CoV) infection in South Korea originated from Saudi Arabia. This virus shows high infectivity, and causes outbreaks of severe febrile respiratory infections in health care-associated settings. Herein, we reported a fatal case of MERS-CoV infection with a focus on the pulmonary radiologic findings. The initial chest computed tomography and radiographs of our patient showed ground-glass opacity in patchy distribution, followed by rapid progression of consolidation and pleural effusion in serial studies

  9. PREPARATION OF CONJUGATE FOR USE IN AN ELISA FOR HUMORAL IMMUNE RESPONSE AGAINST EGG DROP SYNDROME VIRUS IN LAYER CHICKS

    Directory of Open Access Journals (Sweden)

    M. K. Mansoor, S. U. Rahman, I. Hussain, M. H. Rasool and M. A. Zahoor

    2004-10-01

    Full Text Available An indirect enzyme-linked immunosorbent assay (ELISA was performed for the detection of antibodies against Egg Drop Syndrome (EDS virus. Virus identification was done through haemaggluti- nation inhibition (HI test using known antisera. Antichicken immunoglobulins were raised in goats and purified by ammonium sulphate precipitation technique. These goat-antichicken immunoglobulins were conjugated with horseradish peroxidase. Twenty-seven serum samples were collected from a layers flock vaccinated against EDS and specific antibodies were determined by using a horseradish conjugate.

  10. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein.

    Directory of Open Access Journals (Sweden)

    Gao Guo

    Full Text Available Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62.

  11. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    Science.gov (United States)

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  12. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    Science.gov (United States)

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis and Guillain-Barre Syndrome in a 16-Month-Old Child

    Directory of Open Access Journals (Sweden)

    Motohiro Matsui MD

    2016-03-01

    Full Text Available A 16-month-old girl was diagnosed with Epstein-Barr virus hemophagocytic lymphohistiocytosis and transferred to our hospital on the 58th day of the hemophagocytic lymphohistiocytosis after treatment failure according to the Hemophagocytic Lymphohistiocytosis-2004 protocol. On admission to our hospital, she had a flaccid paralysis of her lower limbs. Nerve conduction studies showed a acute motor axonal neuropathy, and a diagnosis of Guillain-Barre syndrome was established. Intravenous immunoglobulin G was started on the 57th day of the Guillain-Barre syndrome. To date, her neurological recovery is incomplete. For hemophagocytic lymphohistiocytosis, after treatment failure of THP-COP regimen (pirarubicin, cyclophosphamide, vincristine, and prednisone and 2 courses of ESCAP regimen (etoposide, prednisone, cytarabine, L-asparaginase, we are now in the process of coordinating unrelated umbilical cord blood transplantation. To the best of our knowledge, we report the youngest case of Guillain-Barre syndrome accompanied by Epstein-Barr virus hemophagocytic lymphohistiocytosis. Rapid progression of Guillain-Barre syndrome, the electrophysiological subtype of Guillain-Barre syndrome, and treatment delay possibly led to poor neurological outcome.

  14. Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis and Guillain-Barre Syndrome in a 16-Month-Old Child.

    Science.gov (United States)

    Matsui, Motohiro; Shimizu, Mariko; Ioi, Aya; Mayumi, Azusa; Higuchi, Kohei; Sawada, Akihisa; Sato, Maho; Yasui, Masahiro; Yanagihara, Keiko; Inoue, Masami

    2016-01-01

    A 16-month-old girl was diagnosed with Epstein-Barr virus hemophagocytic lymphohistiocytosis and transferred to our hospital on the 58th day of the hemophagocytic lymphohistiocytosis after treatment failure according to the Hemophagocytic Lymphohistiocytosis-2004 protocol. On admission to our hospital, she had a flaccid paralysis of her lower limbs. Nerve conduction studies showed a acute motor axonal neuropathy, and a diagnosis of Guillain-Barre syndrome was established. Intravenous immunoglobulin G was started on the 57th day of the Guillain-Barre syndrome. To date, her neurological recovery is incomplete. For hemophagocytic lymphohistiocytosis, after treatment failure of THP-COP regimen (pirarubicin, cyclophosphamide, vincristine, and prednisone) and 2 courses of ESCAP regimen (etoposide, prednisone, cytarabine, L-asparaginase), we are now in the process of coordinating unrelated umbilical cord blood transplantation. To the best of our knowledge, we report the youngest case of Guillain-Barre syndrome accompanied by Epstein-Barr virus hemophagocytic lymphohistiocytosis. Rapid progression of Guillain-Barre syndrome, the electrophysiological subtype of Guillain-Barre syndrome, and treatment delay possibly led to poor neurological outcome.

  15. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    Science.gov (United States)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  16. Angiographic Features and Cardiovascular Risk Factors in Human Immunodeficiency Virus-Infected Patients With First-Time Acute Coronary Syndrome

    DEFF Research Database (Denmark)

    Knudsen, Andreas; Mathiasen, Anders B; Worck, R.H.

    2013-01-01

    A matched cohort study was conducted comparing patients with first-time acute coronary syndromes infected with human immunodeficiency virus (HIV) to non-HIV-infected patients with and without diabetes matched for smoking, gender, and type of acute coronary syndrome who underwent first-time coronary...... angiography. A total of 48 HIV-infected patients were identified from a national database. Coronary angiography showed that the HIV-infected patients had significantly fewer lesions with classification B2/C than the 2 control groups (p...

  17. Epstein-Barr virus-associated adult respiratory distress syndrome in a patient with AIDS: a case report and review

    DEFF Research Database (Denmark)

    Stopyra, G A; Multhaupt, H A; Alexa, L

    1999-01-01

    BACKGROUND: Epstein-Barr virus (EBV) infection has been associated with fatal pneumonitis in immunocompetent patients. We present a case of fatal adult respiratory distress syndrome caused by EBV infection in a patient with acquired immunodeficiency syndrome (AIDS), to our knowledge the first....... RESULTS: Strikingly numerous lymphocytes were positive for EBV early RNA in the case patient's spleen, lymph nodes, and hepatic portal areas. In addition to positive lymphocytes in the lung, EBV-infected pneumocytes were also present. Electron microscopy also demonstrated viral material in lymphocytes...

  18. Binding of Visual and Spatial Short-Term Memory in Williams Syndrome and Moderate Learning Disability

    Science.gov (United States)

    Jarrold, Christopher; Phillips, Caroline; Baddeley, Alan D

    2007-01-01

    A main aim of this study was to test the claim that individuals with Williams syndrome have selectively impaired memory for spatial as opposed to visual information. The performance of 16 individuals with Williams syndrome (six males, 10 females; mean age 18y 7mo [SD 7y 6mo], range 9y 1mo-30y 7mo) on tests of short-term memory for item and…

  19. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Sofiya Fedosyuk

    2016-12-01

    Full Text Available Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83 structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240, we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.

  20. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation.

    Science.gov (United States)

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-07-25

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N-PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.

  1. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction

    International Nuclear Information System (INIS)

    Asano, K.; Asano, A.

    1988-01-01

    Specificity of the binding of sterols and related compounds with purified F-protein (fusion protein) of the HVJ (Sendai virus) was studied by binding competition with [ 3 H] cholesterol. Requirement for cholesterol or the A/B ring trans structure and nonrequirement for the 3-hydroxyl group were found in this binding. Binding of 125 I-labeled Z-Phe-Tyr, an inhibitory peptide of viral membrane-cell membrane fusion, was studied by using purified proteins and virions. F-Protein and virions showed a specific binding with the peptide, whereas the result was negative with hemagglutinin and neuraminidase protein. Thermolysin-truncated F-protein (an F-protein derivative deprived of a 2.5-kDa fragment from the N-terminal of the F 1 subunit and without fusogenic activity) exhibited a considerably diminished binding ability both to cholesterol and to inhibitory peptides. Therefore, the N-terminal hydrophobic sequence that was previously assigned as fusogenic seems to be the binding site of these molecules. In support of this, the binding of cholesterol with F-protein was inhibited by Z-Phe-Tyr and other fusion inhibitory peptides, whereas it was not affected with non-fusion-inhibitory Z-Gly-Phe. These results are discussed in relation to the notion that the binding of the N-terminal portion of the F 1 subunit of F-protein with cholesterol in the target cell membranes facilitiates the fusion reaction

  2. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Rasmussen, N S; Nielsen, C T; Houen, G

    2016-01-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse...... and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients...... concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P...

  3. Eradication of hepatitis C virus and non-liver-related non-acquired immune deficiency syndrome-related events in human immunodeficiency virus/hepatitis C virus coinfection.

    Science.gov (United States)

    Berenguer, Juan; Rodríguez-Castellano, Elena; Carrero, Ana; Von Wichmann, Miguel A; Montero, Marta; Galindo, María J; Mallolas, Josep; Crespo, Manuel; Téllez, María J; Quereda, Carmen; Sanz, José; Barros, Carlos; Tural, Cristina; Santos, Ignacio; Pulido, Federico; Guardiola, Josep M; Rubio, Rafael; Ortega, Enrique; Montes, María L; Jusdado, Juan J; Gaspar, Gabriel; Esteban, Herminia; Bellón, José M; González-García, Juan

    2017-08-01

    We assessed non-liver-related non-acquired immunodeficiency syndrome (AIDS)-related (NLR-NAR) events and mortality in a cohort of human immunodeficiency virus (HIV)/hepatitis C virus (HCV)-coinfected patients treated with interferon (IFN) and ribavirin (RBV), between 2000 and 2008. The censoring date was May 31, 2014. Cox regression analysis was performed to assess the adjusted hazard rate (HR) of overall death in responders and nonresponders. Fine and Gray regression analysis was conducted to determine the adjusted subhazard rate (sHR) of NLR deaths and NLR-NAR events considering death as the competing risk. The NLR-NAR events analyzed included diabetes mellitus, chronic renal failure, cardiovascular events, NLR-NAR cancer, bone events, and non-AIDS-related infections. The variables for adjustment were age, sex, past AIDS, HIV transmission category, nadir CD4 + T-cell count, antiretroviral therapy, HIV RNA, liver fibrosis, HCV genotype, and exposure to specific anti-HIV drugs. Of the 1,625 patients included, 592 (36%) had a sustained viral response (SVR). After a median 5-year follow-up, SVR was found to be associated with a significant decrease in the hazard of diabetes mellitus (sHR, 0.57; 95% confidence interval [CI], 0.35-0.93; P = 0.024) and decline in the hazard of chronic renal failure close to the threshold of significance (sHR, 0.43; 95% CI, 0.17-1.09; P = 0.075). Our data suggest that eradication of HCV in coinfected patients is associated not only with a reduction in the frequency of death, HIV progression, and liver-related events, but also with a reduced hazard of diabetes mellitus and possibly of chronic renal failure. These findings argue for the prescription of HCV therapy in coinfected patients regardless of fibrosis stage. (Hepatology 2017;66:344-356). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  4. Serological survey of severe fever with thrombocytopenia syndrome virus infection in Sika deer and rodents in Japan

    OpenAIRE

    Lundu, Tapiwa; Yoshii, Kentaro; Kobayashi, Shintaro; Morikawa, Shigeru; Tsubota, Toshio; Misawa, Naoaki; Hayasaka, Daisuke; Kariwa, Hiroaki

    2018-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is a newly recognized zoonosis that occurs in China, Japan, and South Korea and is caused by the SFTS virus (SFTSV), which is in the genus Phlebovirus, family Phenuiviridae. Since its discovery in Japan in 2013, SFTS has been reported in the western parts of the country. To elucidate the distribution of SFTSV, we conducted a serological survey of deer and rodents. Serum was screened using enzyme-linked immunosorbent assay (ELISA) and suspecte...

  5. Evaluation of live attenuated H7N3 and H7N7 vaccine viruses for their receptor binding preferences, immunogenicity in ferrets and cross reactivity to the novel H7N9 virus.

    Directory of Open Access Journals (Sweden)

    Qi Xu

    Full Text Available Live attenuated influenza vaccine (LAIV candidates of the H7 subtype, A/Netherlands/219/03 (H7N7, NL03 ca and A/chicken/British Columbia/CN-6/2004 (H7N3, BC04 ca, were evaluated for their receptor binding specificity and immunogenicity in ferrets. The BC04 ca virus exhibited α2,3-SA and α2,6-SA dual receptor binding preference while the NL03 ca virus preferentially bound to α2,3-SA. Substitution of the Q226 and G228 (Q-G by the L226 and S228 (L-S residues in the HA improved binding to α2,6-SA for NL03 ca. The vaccine viruses with L-S retained the attenuation phenotype. NL03 L-S ca replicated more efficiently than the original NL03 ca virus in the upper respiratory tract of ferrets, and induced higher levels of humoral and cellular immune responses. Prior vaccination with seasonal LAIV reduced H7-specific antibody responses, but did not reduce the H7N7 vaccine mediated protection against a heterologous H7N3 BC04 wt virus infection in ferrets. In addition, the H7N3 and H7N7 vaccine immunized ferret sera cross reacted with the newly emerged H7N9 virus. These data, in combination with the safety data from previously conducted Phase 1 studies, suggest that these vaccines may have a role in responding to the threat posed by the H7N9 virus.

  6. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe.

    Science.gov (United States)

    Kulabhusan, Prabir Kumar; Rajwade, Jyutika M; Sahul Hameed, A S; Paknikar, Kishore M

    2017-06-01

    White spot disease caused by the white spot syndrome virus (WSSV) has a major socio-economic impact on shrimp farming in India. It has been realized that a field-usable diagnostic capable of rapid detection of WSSV can prevent huge economic losses in disease outbreaks. In this work, we explored the possibility of using a peptide as bio-recognition probe in a field-usable device for the detection of WSSV from infected shrimps and prawns. A commercially available random phage-display library was screened against rVP28 (a major structural protein of WSSV, expressed as a recombinant protein in Escherichia coli). A bacteriophage clone VP28-4L was obtained, and its binding to purified rVP28 protein as well as WSSV from infected shrimp Litopaeneus vannamei tissue was confirmed by ELISA and western blot. The apparent equilibrium dissociation constant (K d ,app) was calculated to be 810 nM. VP28-4L did not show cross-reactivity with any other shrimp viruses. A 12-mer peptide (pep28, with the sequence 'TFQAFDLSPFPS') displayed on the VP28-4L was synthesized, and its diagnostic potential was evaluated in a lateral flow assay (LFA). Visual detection of WSSV could be achieved using biotinylated-pep28 and streptavidin-conjugated gold nanoparticles. In LFA, 12.5 μg/mL of the virus could be detected from L. vannamei gill tissue homogenate within 20 min. Pep28 thus becomes an attractive candidate in bio-recognition of WSSV in field-usable diagnostic platforms benefitting the aquaculture sector.

  7. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro.

    Science.gov (United States)

    Ogawa, Motohiko; Shirasago, Yoshitaka; Ando, Shuji; Shimojima, Masayuki; Saijo, Masayuki; Fukasawa, Masayoshi

    2018-04-05

    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) causes tick-borne hemorrhagic fever in East Asia. The disease is characterized by high morbidity and mortality. Here, we evaluated the effects of caffeic acid (CA), a coffee-related organic acid with antiviral effects, against SFTSV infection. CA dose-dependently inhibited SFTSV infection in permissive human hepatoma Huh7.5.1-8 cells when SFTSV was added into the culture medium with CA. However, quinic acid (QA), another coffee-related organic acid, did not inhibit SFTSV infection. The 50% inhibitory concentration (IC 50 ) of CA against SFTSV was 0.048 mM, whereas its 50% cytotoxic concentration was 7.6 mM. The selectivity index (SI) was 158. Pre-incubation of SFTSV with CA for 4 h resulted in a greater inhibition of SFTSV infection (IC 50  = 0.019 mM; SI = 400). The pre-incubation substantially decreased viral attachment to the cells. CA treatment of the SFTSV-infected cells also inhibited the infection, albeit less effectively. CA activity after cell infection with SFTSV was more pronounced at a low multiplicity of infection (MOI) of 0.01 per cell (IC 50  = 0.18 mM) than at a high MOI of 1 per cell (IC 50  > 1 mM). Thus, CA inhibited virus spread by acting directly on the virus rather than on the infected cells. In conclusion, CA acted on SFTSV and inhibited viral infection and spread, mainly by inhibiting the binding of SFTSV to the cells. We therefore demonstrated CA to be a potential anti-SFTSV drug for preventing and treating SFTS. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  9. Retroviral sequences related to human T-lymphotropic virus type II in patients with chronic fatigue immune dysfunction syndrome

    Energy Technology Data Exchange (ETDEWEB)

    DeFreitas, E.; Hilliard, B.; Cheney, P.R.; Bell, D.S.; Kiggundu, E.; Sankey, D.; Wroblewska, Z.; Palladino, M.; Woodward, J.P.; Koprowski, H. (Wistar Inst., Philadelphia, PA (United States))

    1991-04-01

    Chronic fatigue immune dysfunction syndrome (CFIDS) is a recently recognized illness characterized by debilitating fatigue as well as immunological and neurological abnormalities. Once thought to be caused by Epstein-Barr virus, it is now thought to have a different but unknown etiology. The authors evaluted 30 adult and pediatric CFIDS patients from six eastern states for the presence of human T-lymphotropic virus (HTLV) types I and II by Western immunoblotting, polymerase chain reaction, and in situ hybridization of blood samples. The majority of patients were positive for HTLV antibodies by Western blotting and for HTLV-II gag sequences by polymerase chain reaction and in situ hybridization. Twenty nonexposure healthy controls were negative in all assays. These data support an association between an HTLV-II-like virus and CFIDS.

  10. Retroviral sequences related to human T-lymphotropic virus type II in patients with chronic fatigue immune dysfunction syndrome

    International Nuclear Information System (INIS)

    DeFreitas, E.; Hilliard, B.; Cheney, P.R.; Bell, D.S.; Kiggundu, E.; Sankey, D.; Wroblewska, Z.; Palladino, M.; Woodward, J.P.; Koprowski, H.

    1991-01-01

    Chronic fatigue immune dysfunction syndrome (CFIDS) is a recently recognized illness characterized by debilitating fatigue as well as immunological and neurological abnormalities. Once thought to be caused by Epstein-Barr virus, it is now thought to have a different but unknown etiology. The authors evaluted 30 adult and pediatric CFIDS patients from six eastern states for the presence of human T-lymphotropic virus (HTLV) types I and II by Western immunoblotting, polymerase chain reaction, and in situ hybridization of blood samples. The majority of patients were positive for HTLV antibodies by Western blotting and for HTLV-II gag sequences by polymerase chain reaction and in situ hybridization. Twenty nonexposure healthy controls were negative in all assays. These data support an association between an HTLV-II-like virus and CFIDS

  11. Identification of a Novel Recombinant Type 2 Porcine Reproductive and Respiratory Syndrome Virus in China

    Directory of Open Access Journals (Sweden)

    Long Zhou

    2018-03-01

    Full Text Available Since the emergence of NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV in China in 2013, PRRSVs have undergone rapid evolution. In this study, a novel variant of PRRSV strain (designated SCcd17 was successfully isolated from piglets with clinical signs in Sichuan Province in China in 2017, and the complete genomic sequence was determined. The genome of this new isolate was 15,015 nucleotides (nt long, and comparative analysis revealed that SCcd17 exhibited 90.2%, 85.2%, 84.9%, and 84.0% nucleotide similarity to PRRSVs NADC30, JXA1, CH-1a, and VR-2332, respectively. Phylogenetic analysis indicated that the SCcd17 strain was classified into the NADC30-like sub-genotype, in which all the strains contained the unique discontinuous 131-amino acid deletion in nonstructural protein 2 (nsp2 when compared to VR-2332-like viruses. Notably, extensive amino acid substitutions were observed in nsp2 and a unique single amino acid deletion at position 33 of the GP5 is being described for the first time. Strikingly, recombination analysis revealed that SCcd17 was the result of recombination between the NADC30-like, JXA1-like, and VR-2332-like strains at five recombination breakpoints: nsp1α (nt 641, nsp3 (nt 5141, nsp10 (nt 9521, open reading frame 3 (ORF3 (nt 12,581, and ORF4 (nt 13,021. The genomic data of SCcd17 will be helpful for understanding the role of genomic recombination in the evolution of PRRSV.

  12. The role of cytomegalovirus, Haemophilus influenzae and Epstein Barr virus in Guillain Barre syndrome.

    Directory of Open Access Journals (Sweden)

    Shahriar Nafissi

    2013-06-01

    Full Text Available Guillain Barre Syndrome (GBS is an inflammatory, usually demyelinating, polyneuropathy; clinically characterized by acute onset of symmetric progressive muscle weakness with loss of myotatic reflexes. Thirty five patients with GBS, defined clinically according to the criteria of Asbury and Cornblath, were recruited from three hospital affiliated to Tehran University of Medical Sciences.As a control group 35 age and sex matched patients with other neurological diseases admitted to the same hospital at the same time, were included in our study. Serum samples were collected before treatment from each patient (within 4 weeks after the disease onset and controls, and stored frozen at -80ºC until serologic assays were done. Serologic testing of pretreatment serum was performed in all patients. Positive titer of virus specific IgM antibody against cytomegalovirus (CMV was found in 6 cases and 2 controls. 34 patients and 31 controls had high titer of anti Haemophilus influenzae IgG and one patient had serologic evidence of a recent Epstein Barr virus (EBV infection. The mean titer of IgG antibody against Haemophilus influenzae in cases and controls was 5.21 and 2.97 respectively. Although serologic evidence of all these infections were more frequent in cases than in controls, only Haemophilus influenzae infection appeared to be significantly related to GBS (P=0.002. Eleven cases and 3 controls had high titers of IgG antibody against Haemophilus influenzae type B (titer >8. There is significant association between high titer of IgG antibody against Haemophilus influenzae and GBS (P=0.017. Our results provide further evidence that Haemophilus influenzae and probably CMV, can be associated with GBS.

  13. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus

    Directory of Open Access Journals (Sweden)

    Margit Mutso

    2018-04-01

    Full Text Available Infection by Chikungunya virus (CHIKV of the Old World alphaviruses (family Togaviridae in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP (nsP1, nsp2, nsP3 and nsP4 that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  14. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    Science.gov (United States)

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  15. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    DEFF Research Database (Denmark)

    Pandya, Mital; Rasmussen, Michael; Hansen, Andreas

    2015-01-01

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation......, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular...... pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network...

  16. Emergence of a virulent porcine reproductive and respiratory syndrome virus (PRRSV 1 strain in Lower Austria

    Directory of Open Access Journals (Sweden)

    Leonie J Sinn

    2016-11-01

    Full Text Available Abstract Background In spring 2015, an outbreak of porcine reproductive and respiratory syndrome (PRRS struck Lower Austria caused by a PRRS virus (PRRSV strain spreading rapidly among both previously PRRSV negative and vaccinated pig herds. This case report describes the first well-documented emergence of the PRRSV strain responsible for this outbreak. Case presentation A PRRSV seronegative piglet-producing farm in Lower Austria encountered losses in foetuses and suckling piglets of up to 90 %; clinical signs in sows and nursery piglets included fever and reduced feed intake. Additionally, high percentages of repeat breeders and losses of up to 40 % in nursery piglets occurred. An infection with PRRSV was suggested by the detection of antibodies by enzyme linked immunosorbent assay and confirmed by quantitative real time PCR. The underlying PRRSV strain, termed AUT15-33, was isolated by passage on porcine alveolar macrophages, partially sequenced (ORF2-7 and grouped as PRRSV-1, subtype 1. In phylogenetic analysis of the genome region coding for the structural proteins, ORF2-7, AUT15-33 clustered with Belgian strains but identities were as low as 88 %. In contrast, analysis of ORF7 sequences revealed a close relationship to Croatian strains from 2012 with an identity of 94 – 95 %. Conclusions In the year following the outbreak, the same PRRSV strain was identified repeatedly in different regions of Austria. It can be speculated that the new strain has novel advantageous properties.

  17. Epstein–Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Jean-Marie Carpier

    2018-01-01

    Full Text Available Activated PI3Kδ Syndrome (APDS is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.

  18. Emerging of two new subgenotypes of porcine reproductive and respiratory syndrome viruses in Southeast China.

    Science.gov (United States)

    Zhang, Qiaoya; Xu, Xiaojie; You, Shumei; Li, Yufeng; Wang, Haiyan; Bai, Juan; Jiang, Ping

    2016-08-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the leading swine pathogens and causes major economic loss to the global swine industry. In this study, a total of 49 PRRSV isolates were collected from different swine herds in seven provinces in Southeast China from 2014 to 2015. All the ORF5 genes and some Nsp2 genes were sequenced. Phylogenetic analysis showed that all the isolates belonged to the North America genotype. Among them, five isolates formed a new subgenotype IV derived from highly pathogenic PRRSV (HP-PRRSV). Six isolates formed subgenotype III, which were closely related to the NADC30 strain in the US. These isolates formed 13 putative N-linked glycosylation site (NGS) patterns based on N30, 33, 34, 35, 44 and 51. There were fewer NGSs of isolates in subgenotype IV than in subgenotype III. This indicates that the two new subgenotypes of PRRSV strains with different NGS patterns were spreading in those regions of China. The genetic diversity should be considered for the control and prevention of this disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Use of etanercept in human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients.

    Science.gov (United States)

    Ting, Patricia T; Koo, John Y

    2006-06-01

    Etanercept (Enbrel, Amgen, Thousand Oaks, CA), a soluble p75 tumor necrosis factor receptor:FC (TNFR:FC) fusion protein for plasma cytokines, specifically tumor necrosis factor-alpha (TNF-alpha), is used in the treatment of immune-mediated rheumatic diseases. To our knowledge, the use of etanercept in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) is relatively uncommon. The main purpose of this short review is to examine the safety of etanercept in patients with HIV/AIDS. A Medline search was conducted using the keywords etanercept and HIV and/or AIDS for any published articles between 1966 to the present (September 2004). A case report, one case series, and one clinical trial pertained to the use of etanercept in HIV patients. No reports were found on the use of etanercept in AIDS. In addition, two case reports were found documenting the use of infliximab in HIV patients. Preliminary reports indicate that the administration of etanercept does not appear to increase the morbidity or mortality rates in HIV. The inhibition of TNF-alpha may actually improve the symptoms of HIV/AIDS-associated aphthous ulcers, cachexia, dementia, fatigue, and fever, as well as help manage concomitant rheumatic diseases and psoriasis. The use of etanercept shows promise for applications in disease management in patients with HIV/AIDS. Continued research efforts are necessary to establish the long-term safety and efficacy of etanercept and other biologic agents in this patient population.

  20. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines.

    Science.gov (United States)

    See, Raymond H; Petric, Martin; Lawrence, David J; Mok, Catherine P Y; Rowe, Thomas; Zitzow, Lois A; Karunakaran, Karuna P; Voss, Thomas G; Brunham, Robert C; Gauldie, Jack; Finlay, B Brett; Roper, Rachel L

    2008-09-01

    Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

  1. White spot syndrome virus epizootic in cultured Pacific white shrimp Litopenaeus vannamei (Boone) in Taiwan.

    Science.gov (United States)

    Cheng, L; Lin, W-H; Wang, P-C; Tsai, M-A; Hsu, J-P; Chen, S-C

    2013-12-01

    White spot syndrome virus (WSSV) has caused significant losses in shrimp farms worldwide. Between 2004 and 2006, Pacific white shrimp Litopenaeus vannamei (Boone) were collected from 220 farms in Taiwan to determine the prevalence and impact of WSSV infection on the shrimp farm industry. Polymerase chain reaction (PCR) analysis detected WSSV in shrimp from 26% of farms. Juvenile shrimp farms had the highest infection levels (38%; 19/50 farms) and brooder shrimp farms had the lowest (5%; one of 20 farms). The average extent of infection at each farm was as follows for WSSV-positive farms: post-larvae farms, 71%; juvenile farms, 61%; subadult farms, 62%; adult farms, 49%; and brooder farms, 40%. Characteristic white spots, hypertrophied nuclei and basophilic viral inclusion bodies were found in the epithelia of gills and tail fans, appendages, cephalothorax and hepatopancreas, and virions of WSSV were observed. Of shrimp that had WSSV lesions, 100% had lesions on the cephalothorax, 96% in gills and tail fans, 91% on appendages and 17% in the hepatopancreas. WSSV was also detected in copepoda and crustaceans from the shrimp farms. Sequence comparison using the pms146 gene fragment of WSSV showed that isolates from the farms had 99.7-100% nucleotide sequence identity with four strains in the GenBank database--China (AF332093), Taiwan (AF440570 and U50923) and Thailand (AF369029). This is the first broad study of WSSV infection in L. vannamei in Taiwan. © 2013 John Wiley & Sons Ltd.

  2. Hematological changes in white spot syndrome virus-infected shrimp, Fenneropenaeus chinensis (Osbeck)

    Science.gov (United States)

    Feng, Shouming; Zhan, Wenbin; Xing, Jing; Li, Jun; Yang, Kai; Wang, Jing

    2008-08-01

    The pathological changes of hemocytes in the haemolymph and hepatopancreas were examined in experimentally and naturally WSSV (white spot syndrome virus) infected Fenneropenaeus chinensis. The results showed that the pathological manifestations of hemocytes were similar among moribund shrimps infected via injection, feeding and by nature. Firstly, the total hemocyte counts (THCs) in WSSV-infected shrimp were significantly lower than those in healthy shrimp. Secondly, necrotic, broken and disintegrated cells were often observed, and a typical hematolysis was present in the haemolymph smear of WSSV-infected shrimp. Thirdly, necrosis and typical apoptosis of hemocytes were detected with TEM in the peripheral haemolymph of WSSV-infected shrimp. Hyalinocytes and semi-granulocytes with masses of WSSVs in their nuclei often appeared, whereas no granular hemocytes with WSSV were found in the hepatopancreas of moribund infected shrimps. All our results supported that hemocytes were the main target cells of WSSV, and hyalinocytes and semigranular hemocytes seemed to be more favorable for WSSV infection in F. chinensis.

  3. Epigallocatechin-3-gallate protects Kuruma shrimp Marsupeneaus japonicus from white spot syndrome virus and Vibrio alginolyticus.

    Science.gov (United States)

    Wang, Zhi; Sun, Baozhen; Zhu, Fei

    2018-07-01

    Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and exhibits potential antibacterial and anticancer activities. In this study, EGCG was used in pathogen-challenge experiments in shrimp to discover its effect on the innate immune system of an invertebrate. Kuruma shrimp Marsupeneaus japonicus was used as an experimental model and challenged with white spot syndrome virus (WSSV) and the Gram-negative bacterium Vibrio alginolyticus. Pathogen-challenge experiments showed that EGCG pretreatment significantly delayed and reduced mortality upon WSSV and V. alginolyticus infection, with VP-28 copies of WSSV also reduced. Quantitative reverse transcription polymerase chain reaction revealed the positive influence of EGCG on several innate immune-related genes, including IMD, proPO, QM, myosin, Rho, Rab7, p53, TNF-alpha, MAPK, and NOS, and we observed positive influences on three immune parameters, including total hemocyte count and phenoloxidase and superoxide dismutase activities, by EGCG treatment. Additionally, results showed that EGCG treatment significantly reduced apoptosis upon V. alginolyticus challenge. These results indicated the positive role of EGCG in the shrimp innate immune system as an enhancer of immune parameters and an inhibitor of apoptosis, thereby delaying and reducing mortality upon pathogen challenge. Our findings provide insight into potential therapeutic or preventive functions associated with EGCG to enhance shrimp immunity and protect shrimp from pathogen infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Hypoxia increases susceptibility of Pacific white shrimp to whitespot syndrome virus (WSSV

    Directory of Open Access Journals (Sweden)

    M. Lehmann

    2016-04-01

    Full Text Available The present study aimed to evaluate the mortality, reactive oxygen species production (ROS and total hemocyte counts (THC of the marine shrimp Litopenaeus vannamei infected with the white spot syndrome virus (WSSV at three levels of oxygen saturation. For this, 360 shrimp (20±2g were distributed in 24 tanks (60L, divided in two groups (infected and non-infected, which were subjected to 30, 60 and 100% of dissolved oxygen saturation (in quadruplicate. During 96 hours after infection, daily hemolymph samples were collected for hemato-immunological parameter evaluation (THC and ROS and dead animals were removed and computed to assess cumulative mortality rates. In the infected group, animals subjected to 100% saturation showed higher ROS production (P<0.05 after 48 hours, while THC was significantly reduced (P<0.05, regardless of oxygen saturation. The hypoxia resulted in high mortality when compared to 100% saturation condition. In the uninfected group, no significant differences were observed in all evaluated parameters. Thus, the hypoxia condition increased the susceptibility of shrimp to the infection of WSSV, which may be partly related to the low ROS production showed by the animals subjected to 30% oxygen saturation.

  5. A novel white spot syndrome virus protein WSSV164 controls prophenoloxidases, PmproPOs in shrimp melanization cascade.

    Science.gov (United States)

    Sangsuriya, Pakkakul; Charoensapsri, Walaiporn; Sutthangkul, Jantiwan; Senapin, Saengchan; Hirono, Ikuo; Tassanakajon, Anchalee; Amparyup, Piti

    2018-09-01

    Melanization, mediated by the prophenoloxidase (proPO)-activating system, is an important innate immune response in invertebrates. The implication of the proPO system in antiviral response and the suppression of host proPO activation by the viral protein have previously been demonstrated in shrimp. However, the molecular mechanism of viral-host interactions in the proPO cascade remains largely unexplored. Here, we characterized the viral protein, namely, WSSV164, which was initially identified from the forward suppression subtractive hybridization (SSH) cDNA library of the PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon that was challenged with white spot syndrome virus (WSSV). Using the yeast two-hybrid system, WSSV164 was found to interact with the PmproPO2 protein. The subsequent validation assay by co-immunoprecipitation revealed that WSSV164 directly bound to both PmproPO1 and PmproPO2. The gene silencing experiment was carried out to explore the role of WSSV164 in the control of the proPO pathway in shrimp, and the results showed that suppression of WSSV164 can restore PO activity in WSSV-infected shrimp hemolymph. The recombinant proteins of PmproPO1 and PmproPO2 were produced in Sf-9 cells and were shown to be successfully activated by exogenous trypsin and endogenous serine proteinases from shrimp hemocyte lysate supernatant (HLS), yielding PO activity in vitro. Moreover, the activated PO activity in shrimp HLS was dose-dependently reduced by the recombinant WSSV164 protein, suggesting that WSSV164 may interfere with the activation of the proPO system in shrimp. Taken together, these results suggest an alternative infection route of WSSV through the encoded viral protein WSSV164 that binds to the PmproPO1 and PmproPO2 proteins, interfering with the activation of the melanization cascade in shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Parris, D.S.; Cross, A.; Orr, A.; Frame, M.C.; Murphy, M.; McGeoch, D.J.; Marsden, H.S.; Haarr, L.

    1988-01-01

    Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65K DBP ) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65K DBP . Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65K DBP , was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65K DBP . The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65K DBP , thus confirming the gene assignment

  7. EFFICIENCY OF RECOMBINANT TNF-BINDING PROTEIN FROM VARIOLA VIRUS IN A MODEL OF COLLAGEN-INDUCED ARTHRITIS

    Directory of Open Access Journals (Sweden)

    D. D. Tsyrendorzhiev

    2013-01-01

    Full Text Available Abstract. This paper presents the results of the research on the effectiveness of recombinant TNF-binding protein of variola virus (VARV-CrmB in a model of collagen-induced arthritis (CIA in mice (CBAxC57Bl6 F1. The introduction of VARV-CrmB and polyclonal antibody to recombinant mouse TNF (poly-AbMuTNF led to an improvement of clinical manifestations of CIA by reducing the swelling and increasing the mobility of mice limbs. The introduction of VARV-CrmB and poly-AbMuTNF reduced the number of neutrophilic granulocytes and granulocytic precursors. The introduction of VARV-CrmB and poly-AbMuTNF into mice decreased collagenolysis in the blood serum and the content of glycosaminoglycans at the early stages of experimentation. Treatment with VARV-CrmB and poly-AbMuTNF of mice with CIA significantly decreased the chemiluminescence response of blood leukocytes. VARV-CrmB exerted more pronounced inhibitory effect on the production of reactive oxygen metabolites by blood leukocytes of mice with CIA than poly-AbMuTNF. Improvement of clinical condition of the mice with CIA has a more prolonged effect following introduction of the VARV-CrmB than after injection of poly-AbMuTNF. The results suggest the recombinant viral protein VARVCrmB to be a new potential TNF-antagonist.

  8. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    Science.gov (United States)

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  9. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    OpenAIRE

    Herranz, M. Carmen; Sánchez Navarro, Jesús A.; Saurí Peris, Ana; Mingarro Muñoz, Ismael; Pallás Benet, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive c...

  10. Serum levels of chicken mannan-binding lectin (MBL) during virus infections; indication that chicken MBL is an acute phase reactant

    DEFF Research Database (Denmark)

    Nielsen, O.L.; Jensenius, J. C.; Jørgensen, Poul Henrik

    1999-01-01

    Mannan-binding lectin (MBL) is a serum collectin which is believed to be an opsonin of the innate immune defence against various microorganisms. MBL is a minor acute phase reactant in man. We investigated the concentration of serum MBL in chickens infected with infectious bronchitis virus (IBV...... levels returned to normal values 6-10 days after infection. The results indicated that MBL is a minor acute phase reactant in chickens....

  11. Hantaan Virus Nucleocapsid Protein Binds to Importin alpha Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B

    Science.gov (United States)

    2008-11-19

    Microbiology . All Rights Reserved. Hantaan Virus Nucleocapsid Protein Binds to Importin Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced...Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702,1 and Department of Microbiology , Mount Sinai...34–36. 32. Prescott , J., C. Ye, G. Sen, and B. Hjelle. 2005. Induction of innate immune response genes by Sin Nombre hantavirus does not require

  12. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients.

    Science.gov (United States)

    Cakir, Evrim; Ozbek, Mustafa; Sahin, Mustafa; Cakal, Erman; Gungunes, Askin; Ginis, Zeynep; Demirci, Taner; Delibasi, Tuncay

    2012-12-18

    Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR), triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT) levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients.

  13. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients

    Directory of Open Access Journals (Sweden)

    Cakir Evrim

    2012-12-01

    Full Text Available Abstract Background Women with polycystic ovary syndrome (PCOS have higher risk for cardiovascular disease (CVD. Heart type fatty acid binding protein (HFABP has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. Methods This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Results Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR, triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Conclusions Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients.

  14. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Cockayne syndrome protein A in complex with DNA damage-binding protein 1

    International Nuclear Information System (INIS)

    Meulenbroek, Elisabeth M.; Pannu, Navraj S.

    2011-01-01

    Human Cockayne syndrome protein A has been cocrystallized with human DNA damage-binding protein 1 and data have been collected to 2.9 Å resolution. Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents. The crystals had unit-cell parameters a = b = 142.03, c = 250.19 Å and diffracted to 2.9 Å resolution on beamline ID14-1 at the European Synchrotron Radiation Facility

  15. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)*

    Science.gov (United States)

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-01-01

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm. Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. PMID:26953343

  16. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    Science.gov (United States)

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Pathogen-Specific Binding Soluble Down Syndrome Cell Adhesion Molecule (Dscam Regulates Phagocytosis via Membrane-Bound Dscam in Crab

    Directory of Open Access Journals (Sweden)

    Xue-Jie Li

    2018-04-01

    Full Text Available The Down syndrome cell adhesion molecule (Dscam gene is an extraordinary example of diversity that can produce thousands of isoforms and has so far been found only in insects and crustaceans. Cumulative evidence indicates that Dscam may contribute to the mechanistic foundations of specific immune responses in insects. However, the mechanism and functions of Dscam in relation to pathogens and immunity remain largely unknown. In this study, we identified the genome organization and alternative Dscam exons from Chinese mitten crab, Eriocheir sinensis. These variants, designated EsDscam, potentially produce 30,600 isoforms due to three alternatively spliced immunoglobulin (Ig domains and a transmembrane domain. EsDscam was significantly upregulated after bacterial challenge at both mRNA and protein levels. Moreover, bacterial specific EsDscam isoforms were found to bind specifically with the original bacteria to facilitate efficient clearance. Furthermore, bacteria-specific binding of soluble EsDscam via the complete Ig1–Ig4 domain significantly enhanced elimination of the original bacteria via phagocytosis by hemocytes; this function was abolished by partial Ig1–Ig4 domain truncation. Further studies showed that knockdown of membrane-bound EsDscam inhibited the ability of EsDscam with the same extracellular region to promote bacterial phagocytosis. Immunocytochemistry indicated colocalization of the soluble and membrane-bound forms of EsDscam at the hemocyte surface. Far-Western and coimmunoprecipitation assays demonstrated homotypic interactions between EsDscam isoforms. This study provides insights into a mechanism by which soluble Dscam regulates hemocyte phagocytosis via bacteria-specific binding and specific interactions with membrane-bound Dscam as a phagocytic receptor.

  18. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of Sindbis virus to neuroblastoma cells

    NARCIS (Netherlands)

    Lee, PY; Knight, R; Smit, JM; Wilschut, J; Griffin, DE

    The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55) = glutamine), yet TE is considerably more

  19. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Bates, John T. [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Keefer, Christopher J. [The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Slaughter, James C. [The Vanderbilt Vaccine Center, Departments of Biostatistics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Kulp, Daniel W. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Schief, William R. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA (United States); Crowe, James E., E-mail: james.crowe@vanderbilt.edu [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on} with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.

  20. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    International Nuclear Information System (INIS)

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.; Kulp, Daniel W.; Schief, William R.; Crowe, James E.

    2014-01-01

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K on ) for binding to RSV F protein, while alteration of dissociation rate (K off ) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K on with reduced potency mirrored the effect of increased K on found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K on ) correlated well with the potency of neutralization

  1. Porcine reproductive and respiratory syndrome virus: antigenic and molecular diversity of British isolates and implications for diagnosis.

    Science.gov (United States)

    Frossard, Jean-Pierre; Fearnley, Catherine; Naidu, Brindha; Errington, Jane; Westcott, David G; Drew, Trevor W

    2012-08-17

    Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease of pigs, caused by PRRS virus, a member of the Arteriviridae family. First seen in Britain in 1991, the disease continues to be a significant economic and welfare problem for pig producers. To date, only PRRSV genotype 1 has been found in Britain. At the genetic level, a considerable increase has been reported in the diversity of PRRS viruses isolated in Britain between 2003 and 2007, versus the early 1990 s. In this study, the diversity has been shown to extend to the antigenic level too, with potential consequences for diagnostic methods. Antigenic diversity was assessed using a panel of twelve monoclonal antibodies, only one of which reacted with all isolates tested. Nine diverse viruses were compared as potential antigens in immunoperoxidase monolayer assays, where each one produced quite different results for a common panel of sera. As a single virus is used in each diagnostic assay, results must therefore be interpreted cautiously. For a real-time RT-PCR assay, published oligonucleotide primer and probe sequences were evaluated against available genetic sequences of British and European viruses, and were re-designed where considerable mismatches were found. The multiplex assay incorporating these modified primers to detect genotype 1 and 2 PRRS viruses was then validated for use with diagnostic sera and tissues. As the increasing degree of diversity exhibited by British strains is mirrored in other countries, PRRSV will continue to provide an ongoing challenge to diagnosis at a global, as well as national level. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  2. Congenital Tracheobronchomegaly (Mounier-Kuhn Syndrome) in a Woman with Human Immunodeficiency Virus: A Case Report.

    Science.gov (United States)

    Fletcher, Amanda; Stowell, Justin; Jamoulis, Socrates

    2017-04-04

    Congenital tracheobronchomegaly (Mounier-Kuhn Syndrome, MKS) is a rare idiopathic disorder characterized by dilation of the central airways, including the trachea and first through fourth order bronchi. MKS disproportionately affects men and results in chronic respiratory tract infections. The diagnosis is made through the synthesis of clinical and radiological data. Here we report a unique case of MKS in a patient with human immunodeficiency virus (HIV) infection. A 45-year-old African American woman with a past medical history of HIV, tobacco and recreational drug abuse, chronic obstructive pulmonary disease, sleep apnea, and a 15-year history of recurrent respiratory infections presented with dyspnea, wheezing, a productive cough, increased yellow-green sputum production, and subjective fevers. Computerized tomography (CT) of the chest revealed striking dilation of the trachea and central bronchi. Fiberoptic bronchoscopy demonstrated a dilated trachea and bronchial tree with complete collapse of the trachea and bilateral mainstem bronchi during expiration. Serial imaging over 14 years allowed the radiologist to confidently diagnose her underlying disorder and recommend appropriate clinical management, which included mucolytics, chest physiotherapy, prophylactic vaccinations, and antibiotics during infectious exacerbations. To the best of our knowledge, there is only one reported case of MKS in the setting of HIV in the English literature. We report the second such case and outline the clinical presentation, diagnostic criteria, and management of MKS with the hope that increased awareness will prevent delayed or misdiagnosis for patients with MKS. This case highlights the common diagnostic delay for MKS and the need to include MKS in the differential diagnosis of recurrent respiratory tract infections.

  3. Extensive severe fever with thrombocytopenia syndrome virus contamination in surrounding environment in patient rooms.

    Science.gov (United States)

    Ryu, B-H; Kim, J Y; Kim, T; Kim, M-C; Kim, M J; Chong, Y-P; Lee, S-O; Choi, S-H; Kim, Y S; Woo, J H; Kim, S-H

    2018-01-31

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease in Korea and China. Although there is previous evidence of person-to-person transmission via direct contact with body fluids, the role of environmental contamination by SFTS virus (SFTSV) in healthcare settings has not been established. We therefore investigated the contamination of the healthcare environment by SFTSV. We investigated the possible contamination of hospital air and surfaces with SFTSV transmission by collecting air and swabbing environmental surface samples in two hospitals treating six SFTS patients between March and September 2017. The samples were tested using real-time RT-PCR for SFTS M and S segments. Of the six SFTS patients, four received mechanical ventilation and three died. Five rooms were occupied by those using mechanical ventilation or total plasma exchange therapy in isolation rooms without negative pressure and one room was occupied by a patient bedridden due to SFTS. SFTSV was detected in 14 (21%) of 67 swab samples. Five of 24 swab samples were obtained from fomites including stethoscopes, and 9 of 43 were obtained from fixed structures including doorknobs and bed guardrails. Some samples from fixed structures such as television monitors and sink tables were obtained in areas remote from the patients. SFTSV RNA was not detected in five air samples from three patients' rooms. Our data suggest that SFTSV contamination was extensive in surrounding environments in SFTS patients' rooms. Therefore, more strict isolation methods and disinfecting procedures should be considered when managing SFTS patients. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Science and ethics of human immunodeficiency virus/acquired immunodeficiency syndrome controversies in Africa.

    Science.gov (United States)

    Brewster, David

    2011-09-01

    The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic in Africa has raised important ethical issues for both researchers and clinicians. The most notorious controversy has been related to the zidovudine (AZT) trials in Africa in the late 1990s, in which the control groups were given a placebo rather than an effective drug to prevent vertical transmission. This raised concerns in the sponsoring country about exploitation of subjects, injustice and an ethical double standard between donor countries and resource-poor settings. However, the real double standard is between clinical practice standards in Western versus African countries, which must be addressed as part of the increasing global inequity of wealth both between countries and also within countries. There are important limitations to ethical declarations, principles and guidelines on their own without contextual ethical reasoning. The focus on research ethics with the HIV epidemic has led to a relative neglect of ethical issues in clinical practice. Although the scientific advances in HIV/AIDS have changed the ethical issues since the 1990s, there has also been progress in the bioethics of HIV/AIDS in terms of ethical review capability by local committees as well as in exposure to ethical issues by clinicians and researchers in Africa. However, serious concerns remain about the overregulation of research by bureaucratic agencies which could discourage African research on specifically African health issues. There is also a need for African academic institutions and researchers to progressively improve their research capacity with the assistance of research funders and donor agencies. © 2011 The Author. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV, which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and

  6. Evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus.

    Science.gov (United States)

    Syed Musthaq, Syed Khader; Kwang, Jimmy

    2014-10-01

    Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Reprint of "evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus".

    Science.gov (United States)

    Syed Musthaq, Syed Khader; Kwang, Jimmy

    2015-02-01

    Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Sun, Yinyan; Qi, Yonghe; Liu, Chenxuan; Gao, Wenqing; Chen, Pan; Fu, Liran; Peng, Bo; Wang, Haimin; Jing, Zhiyi; Zhong, Guocai; Li, Wenhui

    2014-01-01

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus in the Bunyaviridae family. Most patients infected by SFTSV present with fever and thrombocytopenia, and up to 30% die due to multiple-organ dysfunction. The mechanisms by which SFTSV enters multiple cell types are unknown. SFTSV contains two species of envelope glycoproteins, Gn (44.2 kDa) and Gc (56 kDa), both of which are encoded by the M segment and are cleaved from a precursor polypeptide (about 116 kDa) in the endoplasmic reticulum (ER). Gn fused with an immunoglobulin Fc tag at its C terminus (Gn-Fc) bound to multiple cells susceptible to the infection of SFTSV and blocked viral infection of human umbilical vein endothelial cells (HUVECs). Immunoprecipitation assays following mass spectrometry analysis showed that Gn binds to nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cellular protein with surface expression in multiple cell types. Small interfering RNA (siRNA) knockdown of NMMHC-IIA, but not the closely related NMMHC-IIB or NMMHC-IIC, reduced SFTSV infection, and NMMHC-IIA specific antibody blocked infection by SFTSV but not other control viruses. Overexpression of NMMHC-IIA in HeLa cells, which show limited susceptivity to SFTSV, markedly enhanced SFTSV infection of the cells. These results show that NMMHC-IIA is critical for the cellular entry of SFTSV. As NMMHC-IIA is essential for the normal functions of platelets and human vascular endothelial cells, it is conceivable that NMMHC-IIA directly contributes to the pathogenesis of SFTSV and may be a useful target for antiviral interventions against the viral infection.

  9. Human immunodeficiency virus (HIV) is highly associated with giant idiopathic esophageal ulcers in acquired immunodeficiency syndrome (AIDS) patients.

    Science.gov (United States)

    Lv, Bei; Cheng, Xin; Gao, Jackson; Zhao, Hong; Chen, Liping; Wang, Liwei; Huang, Shaoping; Fan, Zhenyu; Zhang, Renfang; Shen, Yinzhong; Li, Lei; Liu, Baochi; Qi, Tangkai; Wang, Jing; Cheng, Jilin

    2016-01-01

    This study aimed to determine whether the human immunodeficiency virus (HIV) exists in giant idiopathic esophageal ulcers in the patients with acquired immune deficiency syndrome (AIDS). 16 AIDS patients with a primary complaint of epigastric discomfort were examined by gastroscopy. Multiple and giant esophageal ulcers were biopsied and analyzed with pathology staining and reverse transcription-polymerase chain reaction (RT-PCR) to determine the potential pathogenic microorganisms, including HIV, cytomegalovirus (CMV) and herpes simplex viruses (HSV). HIV was detected in ulcer samples from 12 out of these 16 patients. Ulcers in 2 patients were infected with CMV and ulcers in another 2 patients were found HSV positive. No obvious cancerous pathological changes were found in these multiple giant esophageal ulcer specimens. HIV may be one of the major causative agents of multiple benign giant esophageal ulcers in AIDS patients.

  10. ISOLATION OF EGG DROP SYNDROME VIRUS AND ITS MOLECULAR CHARACTERIZATION USING SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS

    Directory of Open Access Journals (Sweden)

    M. H. Rasool, S. U. Rahman and M. K. Mansoor

    2005-10-01

    Full Text Available Six isolates of egg drop syndrome (EDS virus were recovered from five different outbreaks of EDS in commercial laying hens in and around Faisalabad. The aberrant eggs were fed to the susceptible laying hens for experimental induction of infection. The samples from infected birds (egg washing, cloacal swabs, oviducts and spleens were collected, processed and inoculated into 11-day old duck embryos. The presence of virus in harvested allanto-amniotic fluid was monitored by spot and microhaemagglutination tests and confirmed by haemagglutination inhibition and agar gel precipitation tests. The EDS virus grew well in duck embryos and agglutinated only avian but not mammalian red blood cells. These isolates were purified through velocity density gradient centrifugation. Protein concentration was determined through Lowry method and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE was conducted by loading 300 µg protein concentration on 12.5% gel using discontinuous buffer system. All the six isolates showed 13 polypeptides, which were identical to those described in the referral EDS-76 virus (strain-127. The molecular weights of the polypeptides ranged from 6.5 KDa to 126 KDa.

  11. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  12. Generation of recombinant monoclonal antibodies to study structure-function of envelope protein VP28 of white spot syndrome virus from shrimp

    International Nuclear Information System (INIS)

    Wang Yuzhen; Zhang Xiaohua; Yuan Li; Xu Tao; Rao Yu; Li Jia; Dai Heping

    2008-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV

  13. Peritrophin-like protein from Litopenaeus vannamei (LvPT) involved in white spot syndrome virus (WSSV) infection in digestive tract challenged with reverse gavage

    Science.gov (United States)

    Xie, Shijun; Li, Fuhua; Zhang, Xiaojun; Zhang, Jiquan; Xiang, Jianhai

    2017-11-01

    The peritrophic membrane plays an important role in the defense system of the arthropod gut. The digestive tract is considered one of the major tissues targeted by white spot syndrome virus (WSSV) in shrimp. In this study, the nucleotide sequence encoding peritrophin-like protein of Litopenaeus vannamei (LvPT) was amplified from a yeast two-hybrid library of L. vannamei. The epitope peptide of LvPT was predicted with the GenScript OptimumAntigen™ design tool. An anti-LvPT polyclonal antibody was produced and shown to specifically bind a band at 27 kDa, identified as LvPT. The LvPT protein was expressed and its concentration determined. LvPT dsRNA (4 μg per shrimp) was used to inhibit LvPT expression in shrimp, and a WSSV challenge experiment was then performed with reverse gavage. The pleopods, stomachs, and guts were collected from the shrimp at 0, 24, 48, and 72 h post-infection (hpi). Viral load quantification showed that the levels of WSSV were significantly lower in the pleopods, stomachs, and guts of shrimp after LvPT dsRNA interference than in those of the controls at 48 and 72 hpi. Our results imply that LvPT plays an important role during WSSV infection of the digestive tract.

  14. Detection of a pneumonia virus of mice (PVM) in an African hedgehog (Atelerix arbiventris) with suspected wobbly hedgehog syndrome (WHS).

    Science.gov (United States)

    Madarame, Hiroo; Ogihara, Kikumi; Kimura, Moe; Nagai, Makoto; Omatsu, Tsutomu; Ochiai, Hideharu; Mizutani, Tetsyuya

    2014-09-17

    A pneumonia virus of mice (PVM) from an African hedgehog (Atelerix arbiventris) with suspected wobbly hedgehog syndrome (WHS) was detected and genetically characterized. The affected hedgehog had a nonsuppurative encephalitis with vacuolization of the white matter, and the brain samples yielded RNA reads highly homogeneous to PVM strain 15 (96.5% of full genomic sequence homology by analysis of next generation sequencing). PVM antigen was also detected in the brain and the lungs immunohistochemically. A PVM was strongly suggested as a causative agent of encephalitis of a hedgehog with suspected WHS. This is a first report of PVM infection in hedgehogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. High frequency RNA recombination in porcine reproductive and respiratory syndrome virus occurs preferentially between parental sequences with high similarity

    DEFF Research Database (Denmark)

    van Vugt, Joke .J.F.A.; Storgaard, Torben; Oleksiewicz, Martin B.

    2001-01-01

    Two types of porcine reproductive and respiratory syndrome virus (PRRSV) exist, a North American type and a European type. The co-existence of both types in some countries, such as Denmark, Slovakia and Canada, creates a risk of inter-type recombination. To evaluate this risk, cell cultures were co......, but no recombination was detected between the European and North American types. Calculation of the maximum theoretical risk of European-American recombination, based on the sensitivity of the RT-PCR system, revealed that RNA recombination between the European and North American types of PRRSV is at least 10000 times...

  16. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  17. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  18. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation

    NARCIS (Netherlands)

    de Witte, Lot; Zoughlami, Younes; Aengeneyndt, Birgit; David, Guido; van Kooyk, Yvette; Gissmann, Lutz; Geijtenbeek, Teunis B. H.

    2007-01-01

    Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to

  19. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    Science.gov (United States)

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  20. Effects of aerobic exercise training on serum sex hormone binding globulin, body fat index, and metabolic syndrome factors in obese postmenopausal women.

    Science.gov (United States)

    Kim, Jong-Won; Kim, Do-Yeon

    2012-12-01

    The percentage of obese postmenopausal women with metabolic syndrome is rising, and physical factors associated with the metabolic syndrome prevalence or incidence are also rising, including high body mass index (BMI), visceral fat area (VFA), low plasma sex hormone-binding globulin (SHBG) levels, and low cardiorespiratory fitness. Therefore, we investigated the influence of aerobic exercise on SHBG, body fat index (BFI), and metabolic syndrome factors in obese postmenopausal Korean women. Thirty healthy postmenopausal, women aged 53.46 ± 2.4 years and with over 32% body fat, were randomly assigned to an aerobic exercise group (EX; n=15) or to a "nonexercise" control (Con; n=15) group. The primary outcome measurements were serum SHBG, lipid profiles, insulin levels, and metabolic syndrome factors. Secondary outcome measurements were body composition, VFA, blood pressure (BP), and homeostasis model assessment of insulin resistance (HOMA-IR). Posttraining body weight and BFI (Pmetabolic syndrome factors (Pexercise group but not in the control group. SHBG levels also showed a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) and significant negative correlations withglucose, diastolic blood pressure, fat mass, BMI, and percent body fat (Pexercise improves body composition, SHBG, insulin levels, and metabolic syndrome factors. These findings suggest that in obesepostmenopausal Korean women, 16 weeks of aerobic exercise is effective for preventing the metabolic syndrome caused by obesity.

  1. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    International Nuclear Information System (INIS)

    Roehrig, John T.; Butrapet, Siritorn; Liss, Nathan M.; Bennett, Susan L.; Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E.; Blair, Carol D.; Huang, Claire Y.-H.

    2013-01-01

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants

  2. Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    Directory of Open Access Journals (Sweden)

    Henklein Peter

    2009-12-01

    Full Text Available Abstract Background The equine infection anemia virus (EIAV p9 Gag protein contains the late (L- domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101. The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.

  3. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roehrig, John T., E-mail: jtr1@cdc.gov [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  4. Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy.

    Science.gov (United States)

    Moreno, Ana; Lelli, Davide; de Sabato, Luca; Zaccaria, Guendalina; Boni, Arianna; Sozzi, Enrica; Prosperi, Alice; Lavazza, Antonio; Cella, Eleonora; Castrucci, Maria Rita; Ciccozzi, Massimo; Vaccari, Gabriele

    2017-12-19

    Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii. Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB). Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs. This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better

  5. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    Science.gov (United States)

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  6. Ramsay Hunt syndrome

    Science.gov (United States)

    Hunt syndrome; Herpes zoster oticus; Geniculate ganglion zoster; Geniculate herpes; Herpetic geniculate ganglionitis ... The varicella-zoster virus that causes Ramsay Hunt syndrome is the same virus that causes chickenpox and ...

  7. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    Science.gov (United States)

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  8. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Zachary A. Bornholdt

    2016-02-01

    Full Text Available The filovirus surface glycoprotein (GP mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics.

  9. Membrane-Dependent Effects of a Cytoplasmic Helix on the Structure and Drug Binding of the Influenza Virus M2 Protein

    Science.gov (United States)

    Cady, Sarah; Wang, Tuo; Hong, Mei

    2011-01-01

    The influenza A M2 protein forms a proton channel for virus infection and also mediates virus assembly and budding. The minimum protein length that encodes both functions contains the transmembrane (TM) domain (roughly residues 22 to 46) for the amantadine-sensitive proton-channel activity and an amphipathic cytoplasmic helix (roughly residues 45 to 62) for curvature induction and virus budding. However, structural studies involving the TM domain with or without the amphipathic helix differed on the drug-binding site. Here we use solid-state NMR spectroscopy to determine the amantadine binding site in the cytoplasmic-helix-containing M2(21–61). 13C-2H distance measurements of 13C-labeled protein and 2H-labeled amantadine showed that in DMPC bilayers, the first equivalent of drug bound S31 inside the M2(21–61) pore, similar to the behavior of M2TM in DMPC bilayers. The non-specific surface site of D44 observed in M2TM is disfavored in the longer peptide. Thus, the pharmacologically relevant drug-binding site in the fully functional M2(21–61) is S31 in the TM pore. Interestingly, when M2(21–61) was reconstituted into a virus-mimetic membrane containing 30% cholesterol, no chemical shift perturbation was observed for pore-lining residues, while M2TM in the same membrane exhibited drug-induced chemical shift changes. Reduction of the cholesterol level and the use of unsaturated phospholipids shifted the conformational equilibrium of M2TM fully to the bound state, but did not rescue drug binding to M2(21–61). These results suggest that the amphipathic helix, together with cholesterol, modulates the ability of the TM helices to bind amantadine. Thus, the M2 protein interacts with the lipid membrane and small-molecule inhibitors in a complex fashion, and a careful examination of the environmental dependence of the protein conformation is required to fully understand the structure-function relation of this protein. PMID:21661724

  10. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Chapuis, Sophie [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Revers, Frédéric [INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon (France); Ziegler-Graff, Véronique [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Brault, Véronique, E-mail: veronique.brault@colmar.inra.fr [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France)

    2015-12-15

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  11. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    International Nuclear Information System (INIS)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-01-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT_C_t_e_r) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT_C_t_e_r. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT_C_t_e_r in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  12. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Anna Lundin

    2014-05-01

    Full Text Available Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs, a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6, a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV, and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  13. Newcastle disease virus-attenuated vaccine co-contaminated with fowl adenovirus and chicken infectious anemia virus results in inclusion body hepatitis-hydropericardium syndrome in poultry.

    Science.gov (United States)

    Su, Qi; Li, Yang; Meng, Fanfeng; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2018-05-01

    Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) induced by fowl adenovirus type 4 (FAdV-4) has caused huge economic losses to the poultry industry of China, but the source of infection for different flocks, especially flocks with high biological safety conditions, has remained unclear. This study tested the pathogenicity of Newcastle disease virus (NDV)-attenuated vaccine from a large-scale poultry farm in China where IBH-HPS had appeared with high mortality. Analysis revealed that the NDV-attenuated vaccine in use from the abovementioned poultry farm was simultaneously contaminated with FAdV-4 and chicken infectious anemia virus (CIAV). The FAdV and CIAV isolated from the vaccine were purified for the artificial preparation of an NDV-attenuated vaccine singly contaminated with FAdV or CIAV, or simultaneously contaminated with both of them. Seven-day-old specific pathogen-free chicks were inoculated with the artificially prepared contaminated vaccines and tested for corresponding indices. The experiments showed that no hydropericardium syndrome (HPS) and corresponding death occurred after administering the NDV-attenuated vaccine singly contaminated with FAdV or CIAV, but a mortality of 75% with IBH-HPS was commonly found in birds after administering the NDV-attenuated vaccine co-contaminated with FAdV and CIAV. In conclusion, this study found the co-contamination of FAdV-4 and CIAV in the same attenuated vaccine and confirmed that such a contaminated attenuated vaccine was a significant source of infection for outbreaks of IBH-HPS in some flocks. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    Science.gov (United States)

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  15. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein.

    Directory of Open Access Journals (Sweden)

    Marie-Lise Blondot

    Full Text Available Respiratory syncytial virus (RSV protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.

  16. The Triticum Mosaic Virus 5' Leader Binds to Both eIF4G and eIFiso4G for Translation.

    Directory of Open Access Journals (Sweden)

    Robyn Roberts

    Full Text Available We recently identified a remarkably strong (739 nt-long IRES-like element in the 5' untranslated region (UTR of Triticum mosaic virus (TriMV, Potyviridae. Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral translation element has a ten-fold greater affinity for the large subunit eIF4G/eIFiso4G than to the cap binding protein eIF4E/eIFiso4E. This data supports a translation mechanism that is largely dependent on eIF4G and its isoform. The binding of both scaffold isoforms requires an eight base-pair-long hairpin structure located 270 nucleotides upstream of the translation initiation site, which we have previously shown to be crucial for IRES activity. Despite a weak binding affinity to the mRNA, eIFiso4G alone or in combination with eIFiso4E supports TriMV translation in a cap-binding factor-depleted wheat germ extract. Notably, TriMV 5' UTR-mediated translation is dependent upon eIF4A helicase activity, as the addition of the eIF4A inhibitor hippuristanol inhibits 5' UTR-mediated translation. This inhibition is reversible with the addition of recombinant wheat eIF4A. These results and previous observations demonstrate a key role of eIF4G and eIF4A in this unique mechanism of cap-independent-translation. This work provides new insights into the lesser studied translation mechanisms of plant virus-mediated internal translation initiation.

  17. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review

    Science.gov (United States)

    Reveiz, Ludovic; Oladapo, Olufemi T.; Martínez-Vega, Ruth; Haefliger, Anina

    2017-01-01

    Background The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain–Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. Methods and Findings The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose–response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose–response relationship and specificity), we found that more than half the

  18. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review.

    Science.gov (United States)

    Krauer, Fabienne; Riesen, Maurane; Reveiz, Ludovic; Oladapo, Olufemi T; Martínez-Vega, Ruth; Porgo, Teegwendé V; Haefliger, Anina; Broutet, Nathalie J; Low, Nicola

    2017-01-01

    The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain-Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose-response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose-response relationship and specificity), we found that more than half the relevant studies supported a causal

  19. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review.

    Directory of Open Access Journals (Sweden)

    Fabienne Krauer

    2017-01-01

    Full Text Available The World Health Organization (WHO stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain-Barré syndrome (GBS and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality.The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose-response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693. We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose-response relationship and specificity, we found that more than half the relevant studies supported

  20. HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Lin

    Full Text Available EV71 (enterovirus 71 RNA contains an internal ribosomal entry site (IRES that directs cap-independent initiation of translation. IRES-dependent translation requires the host's translation initiation factors and IRES-associated trans-acting factors (ITAFs. We reported recently that mRNA decay factor AUF1 is a negative-acting ITAF that binds IRES stem-loop II. We also reported that the small RNA-processing enzyme Dicer produces at least four small RNAs (vsRNAs from the EV71 IRES. One of these, vsRNA1, derived from IRES stem-loop II, reduces IRES activity and virus replication. Since its mechanism of action is unknown, we hypothesized that it might control association of ITAFs with the IRES. Here, we identified the mRNA stability factor HuR and the RISC subunit Argonaute 2 (Ago2 as two ITAFs that bind stem-loop II. In contrast to AUF1, HuR and Ago2 promote EV71 IRES activity and virus replication. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with stem-loop II. This presents a possible mechanism by which vsRNA1 could control viral translation and replication.

  1. Radioimmunoassay and enzyme-linked immunoassay of antibodies to the core protein (P24) of human T-lymphotropic virus (HTLV III). [Acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Neurath, A R; Strick, N; Sproul, P

    1985-05-01

    Human T-cell lymphotropic viruses designated HTLV III or LAV are considered to represent the causative agents of the acquired immunodeficiency syndrome (AIDS). Therefore a simple direct RIA or ELISA method for antibodies to distinct epitopes of HTLV III/LAV structural components would be of great value. The authors describe RIA and ELISA assays which obviate the need for purified virus or virus proteins, do not utilize infected cells and thus do not diminish the source for continuous production of viral antigens and are specific for a major core protein of HTLV III/LAV.

  2. Follow-up after acute respiratory distress syndrome caused by influenza a (H1N1 virus infection

    Directory of Open Access Journals (Sweden)

    Carlos Toufen Jr.

    2011-01-01

    Full Text Available BACKGROUND: There are no reports on the long-term follow-up of patients with swine-origin influenza A virus infection that progressed to acute respiratory distress syndrome. METHODS: Four patients were prospectively followed up with pulmonary function tests and high-resolution computed tomography for six months after admission to an intensive care unit. RESULTS: Pulmonary function test results assessed two months after admission to the intensive care unit showed reduced forced vital capacity in all patients and low diffusion capacity for carbon monoxide in two patients. At six months, pulmonary function test results were available for three patients. Two patients continued to have a restrictive pattern, and none of the patients presented with abnormal diffusion capacity for carbon monoxide. All of them had a diffuse ground-glass pattern on high-resolution computed tomography that improved after six months. CONCLUSIONS: Despite the marked severity of lung disease at admission, patients with acute respiratory distress syndrome caused by swine-origin influenza A virus infection presented a late but substantial recovery over six months of follow-up.

  3. Efficacy of peroxisome proliferator activated receptor agonist in the treatment of virus-associated haemophagocytic syndrome in a rabbit model.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Lan, Bau-Shin; Chen, Yi-Ling; Chang, Yao; Chuang, Huai-Chia; Su, Ih-Jen

    2010-01-01

    Virus-associated haemophagocytic syndrome (VAHS) is a fatal complication of viral infections, such as Epstein-Barr virus and H5N1 influenza, that results from macrophage activation and pro inflammatory cytokine injuries. The high comorbidity and mortality of current therapy urgently demands an ideal agent based on VAHS pathogenesis. Peroxisome proliferator activated receptor (PPAR) agonists, regulators of metabolic syndrome, can exhibit immunomodulatory effects on macrophage activation and cytokine secretion. In this study, we adopted rosiglitazone, a PPAR-gamma agonist, for VAHS control in a Herpesvirus papio (HVP)-infected rabbit model. Various doses of rosiglitazone were orally administered to rabbits on day 7 or day 20 after intravenous challenge with 5 x 10(7) copies of HVP. The rabbits that received 4 mg/day rosiglitazone had significantly increased survival when treated at an early stage of infection (P<0.01), whereas a higher dose (8 mg/day) was required at the advanced stage of the disease (P<0.05). All rosiglitazone-treated rabbits had significantly improved laboratory parameters and plasma tumour necrosis factor-alpha levels. Importantly, rosiglitazone could also inhibit viral replication in vitro and in vivo. PPAR agonists could represent a potentially new agent for the therapy of VAHS.

  4. Prevalence of Guillain-Barré syndrome among Zika virus infected cases: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ludovica Barbi

    2018-03-01

    Full Text Available Zika virus (ZIKV is an emergent flavivirus transmitted mainly through Aedes spp. mosquitoes that is posing challenge to healthcare services in countries experiencing an outbreak. Usually ZIKV infection is mild, but in some cases it has been reported to progress into neurological diseases such as microcephaly in infants and Guillain-Barré syndrome (GBS in adults. GBS is a debilitating autoimmune disorder that affects peripheral nerves. Since ZIKV caused massive outbreaks in South America in the past few years, we aimed to systematically review the literature and perform a meta-analysis to estimate the prevalence of GBS among ZIKV-infected individuals. We searched PubMed and Cochrane databases and selected three studies for a meta-analysis. We estimated the prevalence of ZIKV-associated GBS to be 1.23% (95% CI = 1.17–1.29%. Limitations include paucity of data regarding previous flavivirus infections and ZIKV-infection confirmation issues. Our estimate seems to be low, but cannot be ignored, since ZIKV outbreaks affects an overwhelming number of individuals and GBS is a life-threatening debilitating condition, especially in pregnant women. ZIKV infection cases must be closely followed to assure prompt care to reduce the impact of GBS associated-sequelae on the quality of life of those affected. Keywords: Arboviruses, Zika virus, Guillain-Barré syndrome, Epidemiology, Emergent diseases

  5. ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production.

    Directory of Open Access Journals (Sweden)

    Gabrielle Vieyres

    2016-04-01

    Full Text Available Hepatitis C virus (HCV particles closely mimic human very-low-density lipoproteins (VLDL to evade humoral immunity and to facilitate cell entry. However, the principles that govern HCV association with VLDL components are poorly defined. Using an siRNA screen, we identified ABHD5 (α/β hydrolase domain containing protein 5, also known as CGI-58 as a new host factor promoting both virus assembly and release. ABHD5 associated with lipid droplets and triggered their hydrolysis. Importantly, ABHD5 Chanarin-Dorfman syndrome mutants responsible for a rare lipid storage disorder in humans were mislocalised, and unable to consume lipid droplets or support HCV production. Additional ABHD5 mutagenesis revealed a novel tribasic motif that does not influence subcellular localization but determines both ABHD5 lipolytic and proviral properties. These results indicate that HCV taps into the lipid droplet triglyceride reservoir usurping ABHD5 lipase cofactor function. They also suggest that the resulting lipid flux, normally devoted to VLDL synthesis, also participates in the assembly and release of the HCV lipo-viro-particle. Altogether, our study provides the first association between the Chanarin-Dorfman syndrome protein and an infectious disease and sheds light on the hepatic manifestations of this rare genetic disorder as well as on HCV morphogenesis.

  6. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    Science.gov (United States)

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  7. High Serum Adipocyte Fatty Acid Binding Protein Is Associated with Metabolic Syndrome in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Jer-Chuan Li

    2016-01-01

    Full Text Available Adipocyte fatty acid binding protein (A-FABP is a key mediator of obesity-related metabolic syndrome (MetS. The aim of this study was to evaluate the relationship between A-FABP concentration and MetS in type 2 diabetes mellitus (DM patients. Fasting blood samples were obtained from 165 type 2 DM volunteers. MetS and its components were defined using diagnostic criteria from the International Diabetes Federation. Among 165 DM patients, 113 patients (68.5% had MetS. Diabetic persons who had MetS had significantly higher A-FABP levels (P<0.001 than those without MetS. Female DM persons had higher A-FABP level than man (P<0.001. No statistically significant differences in A-FABP levels were found in use of statin, fibrate, or antidiabetic drugs. Multivariate forward stepwise linear regression analysis revealed that body fat mass (P<0.001, logarithmically transformed creatinine (log-creatinine; P<0.001, female DM patients (P<0.001, and logarithmically transformed high sensitive C-reactive protein (log-hs-CRP; P=0.013 were positively correlated, while albumin (P=0.004 and glomerular filtration rate (GFR; P=0.043 were negatively correlated with serum A-FABP levels in type 2 DM patients. In this study, higher serum A-FABP level was positively associated with MetS in type 2 DM patients.

  8. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  9. Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch, IVPhD

    2017-04-01

    Full Text Available Summary: The degradation and release of cardiac myosin binding protein-C (cMyBP-C upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in cardiovascular disease patients. Importantly, cMyBP-C-AAbs were significantly detected in acute coronary syndrome patient sera upon arrival to the emergency department, particularly in ST-segment elevation myocardial infarction patients. Patients positive for cMyBP-C-AAbs had reduced left ventricular ejection fraction and elevated levels of clinical biomarkers of myocardial infarction. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in acute coronary syndrome patients prior to the infarction. Key Words: acute myocardial infarction, autoantibodies, cardiac myosin binding protein-c, cardiomyopathy

  10. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    Science.gov (United States)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.

    Science.gov (United States)

    Wu, Yun-Li; Peng, Xian-E; Zhu, Yi-Bing; Yan, Xiao-Li; Chen, Wan-Nan; Lin, Xu

    2016-02-15

    Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV

  12. Development of a Colloidal Gold Kit for the Diagnosis of Severe Fever with Thrombocytopenia Syndrome Virus Infection

    Directory of Open Access Journals (Sweden)

    Xianguo Wang

    2014-01-01

    Full Text Available It is critical to develop a cost-effective detection kit for rapid diagnosis and on-site detection of severe fever with thrombocytopenia syndrome virus (SFTSV infection. Here, an immunochromatographic assay (ICA to detect SFTSV infection is described. The ICA uses gold nanoparticles coated with recombinant SFTSV for the simultaneous detection of IgG and IgM antibodies to SFTSV. The ICA was developed and evaluated by using positive sera samples of SFTSV infection (n=245 collected from the CDC of China. The reference laboratory diagnosis of SFTSV infection was based on the “gold standard”. The results demonstrated that the positive coincidence rate and negative coincidence rate were determined to be 98.4% and 100% for IgM and 96.7% and 98.6% for IgG, respectively. The kit showed good selectivity for detection of SFTSV-specific IgG and IgM with no interference from positive sera samples of Japanese encephalitis virus infection, Dengue virus infection, Hantavirus infection, HIV infection, HBV surface antigen, HCV antibody, Mycobacterium tuberculosis antibody, or RF. Based on these results, the ICS test developed may be a suitable tool for rapid on-site testing for SFTSV infections.

  13. The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods

    Directory of Open Access Journals (Sweden)

    Lee Byeongchun

    2011-06-01

    Full Text Available Abstract Background There have been many efforts to develop efficient vaccines for the control of porcine reproductive and respiratory syndrome virus (PRRSV. Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved. Results In all groups, the sample to positive (S/P ratio of IDEXX ELISA and the virus neutralization (VN titer remained negative until challenge. While viremia did not reduce in the vaccinated groups, the IDEXX-ELISA-specific immunoglobulin G increased more rapidly and to significantly greater levels 7 days after the challenge in all the vaccinated groups compared to the non-vaccinated groups (p 6 PFU/mL PRRSV vaccine-inoculated and binary ethylenimine (BEI-inactivated groups 22 days after challenge (p Conclusions The inactivated vaccine failed to show the humoral immunity, but it showed different immune response after the challenge compared to mock group. Although the 106 PFU/mL-vaccinated and BEI-inactivated groups showed significantly greater VN titers 22 days after challenge, all the groups were already negative for viremia.

  14. Zika virus infection and Guillain-Barré syndrome: a review focused on clinical and electrophysiological subtypes.

    Science.gov (United States)

    Uncini, Antonino; Shahrizaila, Nortina; Kuwabara, Satoshi

    2017-03-01

    In 2016, we have seen a rapid emergence of Zika virus-associated Guillain-Barré syndrome (GBS) since its first description in a French-Polynesian patient in 2014. Current evidence estimates the incidence of GBS at 24 cases per 100 000 persons infected by Zika virus. This will result in a sharp rise in the number of GBS cases worldwide with the anticipated global spread of Zika virus. A better understanding of the pathogenesis of Zika-associated GBS is crucial to prepare us for the current epidemic. In this review, we evaluate the existing literature on GBS in association with Zika and other flavivirus to better define its clinical subtypes and electrophysiological characteristics, demonstrating a demyelinating subtype of GBS in most cases. We also recommend measures that will help reduce the gaps in knowledge that currently exist. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Assessing Virulence and Transmission Rates of White Spot Syndrome Virus (WSSV) in Two Ecologically Important Palaemonid Shrimp

    Science.gov (United States)

    Bernard, C.; Keesee, B.; Philippoff, C.; Curran, S.; Lotz, J.; Powell, E.

    2016-02-01

    Investigators, including three REU interns, conducted an experiment to quantify parameters for an epidemiological model designed to estimate disease transmission in marine invertebrates. White spot syndrome virus (WSSV) is a highly pathogenic disease affecting commercially important penaeid shrimp fisheries worldwide. The virus devastates penaeid shrimp but other varieties of decapods may serve as reservoirs for disease by being less susceptible to WSSV or refractory to disease. Non-penaeid crustaceans are less susceptible to WSSV, and different species have variable resistance to the disease leading to different potential to serve as reservoirs for transmission of the disease to coastal penaeid fisheries. This study investigates virulence and transmission rates of WSSV in two palaemonid shrimp which are keystone members of coastal food webs, and effects of species interactions on transmission rates of WSSV are estimated in a laboratory setting as a proxy for natural habitats. Two species of grass shrimp were exposed to a Chinese strain of WSSV through feeding the test individuals with previously prepared, inoculated penaeid shrimp. Replicated tanks containing 30 animals were exposed to the virus in arenas containing one or both species for 24 hours, then isolated in 1 liter tanks and monitored. During the isolation period moribund individuals were preserved for later analysis. After 7 days all test individuals were analyzed using qPCR to determine WSSV presence and load in DNA. From these data transmission rates, mortality, and viral concentration were quantified and used as parameters in a simple epidemiological model.

  16. Epstein-Barr virus-containing T-cell lymphoma presents with hemophagocytic syndrome mimicking malignant histiocytosis.

    Science.gov (United States)

    Su, I J; Hsu, Y H; Lin, M T; Cheng, A L; Wang, C H; Weiss, L M

    1993-09-15

    The previously designated malignant histiocytosis (MH) may include lymphoid neoplasms of T-cell lineage as well as patients with benign virus-associated hemophagocytic syndrome (VAHS). In this study, the association of Epstein-Barr virus (EBV) with T cell lymphomas which present with clinicopathologic features indistinguishable from malignant histiocytosis (MH) was investigated further. Four adult patients, three women and one man, were admitted because of fever, cutaneous lesions, hepatosplenomegaly, and jaundice. Laboratory examinations revealed pancytopenia, abnormal liver functions and coagulopathy. All patients ran a fulminant course terminating in a hemophagocytic syndrome within 1 month. Immunophenotypic study, Southern blot analysis, and in situ hybridization were performed on the specimens obtained from the four patients. The biopsy-necropsy specimens from skin, liver, spleen, and bone marrow showed infiltration of atypical large cells with reactive histiocytosis and florid hemophagocytosis activity. Based on the clinical and histologic findings, these cases would have been designated as MH by previous criteria. Immunophenotypic, Southern blot, and in situ hybridization studies, however, showed clonotypic proliferation of EBV genomes in the nuclei of the large atypical cells that expressed T-cell antigens. Therefore, these patients should be diagnosed as a recently described EBV-associated peripheral T-cell lymphoma (EBV-PTCL). EBV-PTCL may present with a fulminant hemophagocytic syndrome indistinguishable from the previously designated MH. This finding represents a step forward in our changing concept regarding MH, some of which only recently has been suggested to be of T-cell lymphoma origin. Differentiation from benign VAHS is clinically important. Features useful in this distinction are tabulated and discussed.

  17. Amphipathic alpha-helices and putative cholesterol binding domains of the influenza virus matrix M1 protein are crucial for virion structure organisation.

    Science.gov (United States)

    Tsfasman, Tatyana; Kost, Vladimir; Markushin, Stanislav; Lotte, Vera; Koptiaeva, Irina; Bogacheva, Elena; Baratova, Ludmila; Radyukhin, Victor

    2015-12-02

    The influenza virus matrix M1 protein is an amphitropic membrane-associated protein, forming the matrix layer immediately beneath the virus raft membrane, thereby ensuring the proper structure of the influenza virion. The objective of this study was to elucidate M1 fine structural characteristics, which determine amphitropic properties and raft membrane activities of the protein, via 3D in silico modelling with subsequent mutational analysis. Computer simulations suggest the amphipathic nature of the M1 α-helices and the existence of putative cholesterol binding (CRAC) motifs on six amphipathic α-helices. Our finding explains for the first time many features of this protein, particularly the amphitropic properties and raft/cholesterol binding potential. To verify these results, we generated mutants of the A/WSN/33 strain via reverse genetics. The M1 mutations included F32Y in the CRAC of α-helix 2, W45Y and W45F in the CRAC of α-helix 3, Y100S in the CRAC of α-helix 6, M128A and M128S in the CRAC of α-helix 8 and a double L103I/L130I mutation in both a putative cholesterol consensus motif and the nuclear localisation signal. All mutations resulted in viruses with unusual filamentous morphology. Previous experimental data regarding the morphology of M1-gene mutant influenza viruses can now be explained in structural terms and are consistent with the pivotal role of the CRAC-domains and amphipathic α-helices in M1-lipid interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A preferred region for recombinational patch repair in the 5' untranslated region of primer binding site-impaired murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Kristensen, K D

    1996-01-01

    , suggesting the involvement of a specific endogenous virus-like sequence in patch repair rescue of the primer binding site mutants. The putative recombination partner RNA was found in virions from psi-2 cells as detected by analysis of glutamine tRNA-initiated cDNA and by sequence analysis of regions...... site to allow correct second-strand transfer in reverse transcription. The system thereby selects for a reverse transcriptase-mediated recombination event in the 5' untranslated region. A panel of sequence differences between the recombination partners in this region has allowed mapping of the site...

  19. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Masaya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Hasegawa, Hideki [Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Tashiro, Masato [Influenza Virus Research Center, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Wang, Lei [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Tanaka, Shinya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan)

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  20. Lipid Transport through the Fetoplacental Barrier by the Fatty Acid-Binding Proteins in Pregnant Women with Herpes Virus Infection in the third Trimester

    Directory of Open Access Journals (Sweden)

    Michael T. Lucenko, PhD, ScD

    2012-12-01

    Full Text Available In this study, the transport of the long chain polyunsaturated fatty acids (LCPUFAs from the lacunar blood through the syncytiotrophoblast of the placental villi to the fetal cord blood via a saturable protein-mediated mechanism by the heart-type fatty acid-binding proteins (H-FABPs has been examined. Exacerbation of the herpes simplex viruses (HSV-1 in the third trimester of gestation reduces the delivery of the fatty acid-binding proteins to the syncytiotrophoblast. During exacerbation of the HSV-1 infection, the selective transfer of the LCPUFAs across the syncytiotrophoblast basal plasma membrane into the fetal cord blood was observed. The supply of anti-inflammatory ω-3 PUFAs was reduced; however, the inflow of inflammatory arachidonic acid and other ω-6 PUFAs into the fetal blood was increased.

  1. Effect of three innovative culture systems on water quality and whitespot syndrome virus (WSSV) viral load in WSSV-fed Penaeus monodon cultured in indoor tanks

    NARCIS (Netherlands)

    Alapide-Tendencia, E.V.; Bosma, R.H.; Rose Sorio, L.

    2012-01-01

    White spot syndrome virus is the most important among the shrimp diseases. It has been devastating the shrimp industry for more than 3 decades. Previous studies reported that greater percentage of yellow colonies on thiosulfate citrate bile salt sucrose agar (yellow vibrios) in the rearing water,

  2. Interferon alpha inhibits viral replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine

    Science.gov (United States)

    Type I interferons, such as interferon alpha (IFNa), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and c...

  3. Mycoplasma pneumoniae preceding Lemierre's syndrome due to Fusobacterium nucleatum complicated by acute Epstein-Barr virus (EBV) infectious mononucleosis in an immunocompetent host.

    Science.gov (United States)

    Klein, Natalie C; Petelin, Andrew; Cunha, Burke A

    2013-01-01

    We report an unusual case of Lemierre's syndrome due to a rare species of Fusobacterium, that is, Fusobacterium nucleatum preceded by Mycoplasma pneumoniae pharyngitis and followed later by Epstein-Barr virus infectious mononucleosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. High Incidence of Recurrent Wheeze in Children With Down Syndrome With and Without Previous Respiratory Syncytial Virus Lower Respiratory Tract Infection

    NARCIS (Netherlands)

    Bloemers, B.; van Furth, A.M.; Weijerman, M.E.; Gemke, R.J.B.J.; Broers, C.J.M.; Kimpen, J.L.L.; Bont, L.

    2010-01-01

    Background: Respiratory syncytial virus (RSV)-induced lower respiratory tract infection (LRTI) is associated with the subsequent development of recurrent wheeze. In a recent study, we found a high incidence (9.9%) of hospitalization for RSV-induced LRTI among children with Down syndrome (DS),

  5. Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.; Zwart, M.P.; Phuong, N.T.; Oanh, D.T.H.; Jong, de M.C.M.; Vlak, J.M.

    2012-01-01

    Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most

  6. Transmission of white spot syndrome virus in improved-extensive and semi-intensive shrimp production systems: A molecular epidemiology study

    NARCIS (Netherlands)

    Tuyet Hoa, T.T.; Zwart, M.P.; Phuong, N.T.; Vlak, J.M.; Jong, de M.C.M.

    2011-01-01

    Experimental evidence suggests that white spot syndrome virus (WSSV) can be transmitted horizontally through water, via carrier organisms and/or by cannibalism of infected shrimp, but also vertically through infected broodstock. However the mode(s) of WSSV transmission in shrimp farming systems and

  7. Low numbers of repeat units in variable number of tandem repeats (VNTR) regions of white spot syndrome virus are correlated with disease outbreaks

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.; Zwart, M.P.; Phuong, N.T.; Jong, de M.C.M.; Vlak, J.M.

    2012-01-01

    White spot syndrome virus (WSSV) is the most important pathogen in shrimp farming systems worldwide including the Mekong Delta, Vietnam. The genome of WSSV is characterized by the presence of two major 'indel regions' found at ORF14/15 and ORF23/24 (WSSV-Thailand) and three regions with variable

  8. Analysis of ORF 1 in European porcine reproductive and respiratory syndrome virus by long RT-PCR and restriction fragment length polymorphism (RFLP) analysis

    DEFF Research Database (Denmark)

    Nielsen, H. S.; Storgaard, Torben; Oleksiewicz, M.B.

    2000-01-01

    A rapid method was developed for partial characterization of the replicase-encoding open reading frame 1 (ORF 1) of porcine reproductive and respiratory syndrome virus (PRRSV). It comprised long RT-PCR amplification of 11.1 kb (94%) of ORF 1, followed by restriction fragment length polymorphism a...

  9. Hashimoto's Thyroiditis Presenting as Acute Painful Thyroiditis and as a Manifestation of an Immune Reconstitution Inflammatory Syndrome in a Human Immunodeficiency Virus-Seropositive Patient.

    NARCIS (Netherlands)

    Visser, R.; Mast, Q. de; Netea-Maier, R.T.; Ven, A.J.A.M. van der

    2012-01-01

    Background: An immune reconstitution inflammatory syndrome (IRIS) may complicate immune restoration following start of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected patients. The occurrence of Graves' disease in the setting of an IRIS is well recognized. We hereby

  10. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    Science.gov (United States)

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  11. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    Lee, Changhee; Yoo, Dongwan

    2006-01-01

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  12. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    International Nuclear Information System (INIS)

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  13. RNA-dependent RNA polymerase of hepatitis C virus binds to its coding region RNA stem-loop structure, 5BSL3.2, and its negative strand.

    Science.gov (United States)

    Kanamori, Hiroshi; Yuhashi, Kazuhito; Ohnishi, Shin; Koike, Kazuhiko; Kodama, Tatsuhiko

    2010-05-01

    The hepatitis C virus NS5B RNA-dependent RNA polymerase (RdRp) is a key enzyme involved in viral replication. Interaction between NS5B RdRp and the viral RNA sequence is likely to be an important step in viral RNA replication. The C-terminal half of the NS5B-coding sequence, which contains the important cis-acting replication element, has been identified as an NS5B-binding sequence. In the present study, we confirm the specific binding of NS5B to one of the RNA stem-loop structures in the region, 5BSL3.2. In addition, we show that NS5B binds to the complementary strand of 5BSL3.2 (5BSL3.2N). The bulge structure of 5BSL3.2N was shown to be indispensable for tight binding to NS5B. In vitro RdRp activity was inhibited by 5BSL3.2N, indicating the importance of the RNA element in the polymerization by RdRp. These results suggest the involvement of the RNA stem-loop structure of the negative strand in the replication process.

  14. Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification.

    Science.gov (United States)

    Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A

    2008-11-01

    Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.

  15. The first human infection with severe fever with thrombocytopenia syndrome virus in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Jing Wei

    2015-06-01

    Conclusions: SFTSV readily infects humans with outdoor exposure. The results of the serological study indicate that the virus circulates widely in Shaanxi Province. SFTSV represents a public health threat in China.

  16. Experimental inoculation of late term pregnant sows with a field isolate of porcine reproductive and respiratory syndrome vaccine-derived virus

    DEFF Research Database (Denmark)

    Nielsen, Jens; Bøtner, Anette; Bille-Hansen, Vivi

    2002-01-01

    The use of a live attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in piglets has been associated with reproductive disorders in non-vaccinated sows. Vaccine-derived virus (VDV) has been isolated from foctuses, stillborn pigs, and dead: piglets, indicating that the l......The use of a live attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in piglets has been associated with reproductive disorders in non-vaccinated sows. Vaccine-derived virus (VDV) has been isolated from foctuses, stillborn pigs, and dead: piglets, indicating...... than 99.6% identity to the attenuated vaccine virus, originated from the lungs of a stillborn pig from a swine herd with a sudden high level of stillborn pigs and increased piglet mortality in the nursing period. Intranasal inoculation of sows with the virus isolate resulted in congenital infection......, foetal death, and preweaning pig mortality. As such, the present study showed that vaccine-derived PRRSV can cause disease in swine consistent with PRRS....

  17. Serum levels of mannan-binding lectin in chickens prior to and during experimental infection with avian infectious bronchitis virus

    DEFF Research Database (Denmark)

    Juul-Madsen, H.R.; Munch, M.; Handberg, Kurt

    2003-01-01

    Mannan-binding lectin (MBL) is a glycoprotein and a member of the C-type lectin super family, the collectin family, and the acute phase protein family. The MBL exerts its function by directly binding to microbial surfaces through its carbohydrate recognition domains, followed by direct opsonizati...

  18. Endogenous Androgens and Sex Hormone-Binding Globulin in Women and Risk of Metabolic Syndrome and Type 2 Diabetes.

    Science.gov (United States)

    Fenske, Benjamin; Kische, Hanna; Gross, Stefan; Wallaschofski, Henri; Völzke, Henry; Dörr, Marcus; Nauck, Matthias; Keevil, Brian G; Brabant, Georg; Haring, Robin

    2015-12-01

    The association of endogenous androgens and sex hormone-binding globulin (SHBG) with metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) mostly 23562 refers to small and selected study samples with immunoassay-based measurements. Thus, we investigated the association of hormone levels with MetS and T2DM in women from a large population-based sample. A total of 2077 women from the Study of Health in Pomerania were assessed at baseline (N = 3160, 1997-2001) and 5-year follow-up (N = 1711, 2002-2006). We investigated associations of total testosterone (T) and androstenedione measured by liquid chromatography-tandem mass spectrometry, SHBG by immunoassay, and free T and free androgen index with MetS and T2DM. Baseline prevalence of MetS and T2DM was 23.1% (N = 365) and 9.5% (N = 196), with an incidence of 17.7 and 7.0 per 1.000 person-years, respectively. Cross-sectional analyses yielded inverse associations of SHBG with MetS (relative risk [RR], 0.67; 95% confidence interval [CI], 0.60-0.74) and T2DM (RR, 0.61; 95% CI, 0.50-0.74) after multivariable adjustment. In longitudinal analyses, only age-adjusted models showed an inverse association of baseline SHBG with incident MetS (RR, 0.61; 95% CI, 0.51-0.73) and T2DM (RR, 0.58; 95% CI, 0.43-0.78). Multivariable-adjusted models stratified by menopausal status revealed an inverse association between SHBG and incident MetS risk in postmenopausal women (RR, 0.65; 95% CI, 0.51-0.81). This longitudinal population-based study revealed independent inverse associations of SHBG with MetS and T2DM, suggesting low SHBG as a potential risk marker for cardiometabolic morbidity, especially among postmenopausal women.

  19. Transmission dynamics of the recently-identified BYD virus causing duck egg-drop syndrome.

    Directory of Open Access Journals (Sweden)

    Naveen K Vaidya

    Full Text Available Baiyangdian (BYD virus is a recently-identified mosquito-borne flavivirus that causes severe disease in ducks, with extremely rapid transmission, up to 15% mortality within 10 days and 90% reduction in egg production on duck farms within 5 days of infection. Because of the zoonotic nature of flaviviruses, the characterization of BYD virus and its epidemiology are important public health concerns. Here, we develop a mathematical model for the transmission dynamics of this novel virus. We validate the model against BYD outbreak data collected from duck farms in Southeast China, as well as experimental data obtained from an animal facility. Based on our model, the basic reproductive number of BYD virus is high (R(0 = 21 indicating that this virus is highly transmissible, consistent with the dramatic epidemiology observed in BYDV-affected duck farms. Our results indicate that younger ducks are more vulnerable to BYD disease and that ducks infected with BYD virus reduce egg production (to about 33% on average for about 3 days post-infection; after 3 days infected ducks are no longer able to produce eggs. Using our model, we predict that control measures which reduce contact between mosquitoes and ducks such as mosquito nets are more effective than insecticides.

  20. Mud crab susceptibility to disease from white spot syndrome virus is species-dependent

    Directory of Open Access Journals (Sweden)

    Sritunyalucksana Kallaya

    2010-11-01

    Full Text Available Abstract Background Based on a report for one species (Scylla serrata, it is widely believed that mud crabs are relatively resistant to disease caused by white spot syndrome virus (WSSV. We tested this hypothesis by determining the degree of susceptibility in two species of mud crabs, Scylla olivacea and Scylla paramamosain, both of which were identified by mitochondrial 16 S ribosomal gene analysis. We compared single-dose and serial-dose WSSV challenges on S. olivacea and S. paramamosain. Findings In a preliminary test using S. olivacea alone, a dose of 1 × 106 WSSV copies/g gave 100% mortality within 7 days. In a subsequent test, 17 S. olivacea and 13 S. paramamosain were divided into test and control groups for challenge with WSSV at 5 incremental, biweekly doses starting from 1 × 104 and ending at 5 × 106 copies/g. For 11 S. olivacea challenged, 3 specimens died at doses between 1 × 105 and 5 × 105 copies/g and none died for 2 weeks after the subsequent dose (1 × 106 copies/g that was lethal within 7 days in the preliminary test. However, after the final challenge on day 56 (5 × 106 copies/g, the remaining 7 of 11 S. olivacea (63.64% died within 2 weeks. There was no mortality in the buffer-injected control crabs. For 9 S. paramamosain challenged in the same way, 5 (55.56% died after challenge doses between 1 × 104 and 5 × 105 copies/g, and none died for 2 weeks after the challenge dose of 1 × 106 copies/g. After the final challenge (5 × 106 copies/g on day 56, no S. paramamosain died during 2 weeks after the challenge, and 2 of 9 WSSV-infected S. paramamosain (22.22% remained alive together with the control crabs until the end of the test on day 106. Viral loads in these survivors were low when compared to those in the moribund crabs. Conclusions S. olivacea and S. paramamosain show wide variation in response to challenge with WSSV. S. olivacea and S. paramamosain are susceptible to white spot disease, and S. olivacea is more

  1. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  2. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Novel Detection Platform for Shrimp White Spot Syndrome Virus Using an ICP11-Dependent Immunomagnetic Reduction (IMR) Assay.

    Science.gov (United States)

    Liu, Bing-Hsien; Lin, Yu-Chen; Ho, Chia-Shin; Yang, Che-Chuan; Chang, Yun-Tsui; Chang, Jui-Feng; Li, Chun-Yuan; Cheng, Cheng-Shun; Huang, Jiun-Yan; Lee, Yen-Fu; Hsu, Ming-Hung; Lin, Feng-Chun; Wang, Hao-Ching; Lo, Chu-Fang; Yang, Shieh-Yueh; Wang, Han-Ching

    2015-01-01

    Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world's most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10(-3) ng/ml, and the linear dynamic range of the assay was 0.1~1 x 10(6) ng/ml. In assays of ICP11 protein in pleopod protein lysates from healthy and WSSV-infected shrimp, IMR signals were successfully detected from shrimp with low WSSV genome copy numbers. We concluded that this IMR assay targeting ICP11 has potential for detecting the WSSV.

  4. Duck "beak atrophy and dwarfism syndrome" disease complex: Interplay of novel goose parvovirus-related virus and duck circovirus?

    Science.gov (United States)

    Li, P; Li, J; Zhang, R; Chen, J; Wang, W; Lan, J; Xie, Z; Jiang, S

    2018-04-01

    As a newly emerged infectious disease, duck "beak atrophy and dwarfism syndrome (BADS)" disease has caused huge economic losses to waterfowl industry in China since 2015. Novel goose parvovirus-related virus (NGPV) is believed the main pathogen of BADS disease; however, BADS is rarely reproduced by infecting ducks with NGPV alone. As avian circovirus infection causes clinical symptoms similar to BADS, duck circovirus (DuCV) is suspected the minor pathogen of BADS disease. In this study, an investigation was carried out to determine the coinfection of NGPV and DuCV in duck embryos and in ducks with BADS disease. According to our study, the coinfection of emerging NGPV and DuCV was prevalent in East China (Shandong, Jiangsu and Anhui province) and could be vertical transmitted, indicating their cooperative roles in duck BADS disease. © 2018 Blackwell Verlag GmbH.

  5. In Vitro Virucidal and Virustatic Properties of the Crude Extract of Cynodon dactylon against Porcine Reproductive and Respiratory Syndrome Virus

    Science.gov (United States)

    Khonghiran, Oapkun; Kunanoppadol, Suchaya; Potha, Teerapong; Chuammitri, Phongsakorn

    2014-01-01

    The in vitro virustatic and virucidal tests of the crude extract of Cynodon dactylon against infection with porcine reproductive and respiratory syndrome virus (PRRSV), a cause of major devastating pig disease, were described. Crude extract of C. dactylon was prepared for cytotoxicity on tissue-culture cells that were used to measure virustatic and virucidal activities against PRRSV. Crude extract of C. dactylon at 0.78 mg/mL showed no cytotoxicity on the cell line, and at that concentration significantly inhibited replication of PRRSV as early as 24 hours post infection (hpi). C. dactylon also inactivated PRRSV as determined by immunoperoxidase monolayer assay (IPMA) compared to the control experiments. In summary, the present study may be among the earliest studies to describe virustatic and virucidal activities of C. dactylon crude extract against PRRSV in vitro. Extracts of C. dactylon may be useful for PRRSV control and prevention on pig farms. PMID:24744959

  6. The UL5 and UL52 subunits of the herpes simplex virus type 1 helicase-primase subcomplex exhibit a complex interdependence for DNA binding.

    Science.gov (United States)

    Biswas, N; Weller, S K

    2001-05-18

    Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex composed of the products of the UL5, UL52, and UL8 genes. The UL5 protein contains seven motifs found in all members of helicase Superfamily 1 (SF1), and the UL52 protein contains several conserved motifs found in primases; however, the contributions of each subunit to the biochemical activities of the subcomplex are not clear. In this work, the DNA binding properties of wild type and mutant subcomplexes were examined using single-stranded, duplex, and forked substrates. A gel mobility shift assay indicated that the UL5-UL52 subcomplex binds more efficiently to the forked substrate than to either single strand or duplex DNA. Although nucleotides are not absolutely required for DNA binding, ADP stimulated the binding of UL5-UL52 to single strand DNA whereas ATP, ADP, and adenosine 5'-O-(thiotriphosphate) stimulated the binding to a forked substrate. We have previously shown that both subunits contact single-stranded DNA in a photocross-linking assay (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076). In this study, photocross-linking assays with forked substrates indicate that the UL5 and UL52 subunits contact the forked substrates at different positions, UL52 at the single-stranded DNA tail and UL5 near the junction between single-stranded and double-stranded DNA. Neither subunit was able to cross-link a forked substrate when 5-iododeoxyuridine was located within the duplex portion. Photocross-linking experiments with subcomplexes containing mutant versions of UL5 and wild type UL52 indicated that the integrity of the ATP binding region is important for DNA binding of both subunits. These results support our previous proposal that UL5 and UL52 exhibit a complex interdependence for DNA binding (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076) and indicate that the UL52 subunit may play a more active role in helicase activity than had previously been

  7. Shrimp hemocyte homeostasis-associated protein (PmHHAP) interacts with WSSV134 to control apoptosis in white spot syndrome virus infection.

    Science.gov (United States)

    Apitanyasai, Kantamas; Amparyup, Piti; Charoensapsri, Walaiporn; Sangsuriya, Pakkakul; Tassanakajon, Anchalee

    2018-05-01

    Hemocyte homeostasis-associated protein (PmHHAP) was first identified as a viral-responsive gene, due to a high upregulation in transcription following white spot syndrome virus (WSSV) infection. Functional studies using RNA interference have suggested that PmHHAP is involved in hemocyte homeostasis by controlling apoptosis during WSSV infection. In this study, the role of PmHHAP in host-viral interactions was further investigated. Yeast two-hybrid assay and co-immunoprecipitation revealed that PmHHAP binds to an anti-apoptosis protein, WSSV134. The viral protein WSSV134 is a late protein of WSSV, expressed 24 h post infection (hpi). Gene silencing of WSSV134 in WSSV-infected shrimp resulted in a reduction of the expression level of the viral replication marker genes VP28, wsv477, and ie-1, which suggests that WSSV134 is likely involved in viral propagation. However, co-silencing of PmHHAP and WSSV134 counteracted the effects on WSSV infection, which implies the importance of the host-pathogen interaction between PmHHAP and WSSV134 in WSSV infection. In addition, caspase 3/7 activity was noticeably induced in the PmHHAP and WSSV134 co-silenced shrimp upon WSSV infection. Moreover, PmHHAP and WSSV134 inhibited caspase-induced activation of PmCasp in vitro in a non-competitive manner. Taken together, these results suggest that PmHHAP and WSSV134 play a role in the host-pathogen interaction and work concordantly to control apoptosis in WSSV infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Generation of an infectious clone of VR-2332, a highly virulent North American type isolate of porcine reproductive and respiratory syndrome virus

    DEFF Research Database (Denmark)

    Nielsen, H.S.; Liu, G.; Nielsen, Jens

    2003-01-01

    A full-length cDNA clone of the prototypical North American porcine reproductive and respiratory syndrome virus (PRRSV) isolate VR-2332 was assembled in the plasmid vector pOK(12). To rescue infectious virus, capped RNA was transcribed in vitro from the pOK(12) clone and transfected into BHK-21C...... cells. The supernatant from transfected monolayers were serially passaged on Marc-145 cells and porcine pulmonary alveolar macrophages. Infectious PRRSV was recovered on Marc-145 cells as well as porcine pulmonary macrophages; thus, the cloned virus exhibited the same cell tropism as the parental VR......-2332 strain. However, the cloned virus was clearly distinguishable from the parental VR-2332 strain by an engineered marker, a BstZ171 restriction site. The full-length cDNA clone had 11 nucleotide changes, 2 of which affected coding, compared to the parental VR-2332 strain. Additionally...

  9. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    International Nuclear Information System (INIS)

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus

  10. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    International Nuclear Information System (INIS)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-01-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14 C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV

  11. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    Energy Technology Data Exchange (ETDEWEB)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  12. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  13. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    Science.gov (United States)

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  14. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    Science.gov (United States)

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  15. [Autoimmune syndrome in the tropical spastic paraparesis/myelopathy associated with human T-lymphotropic virus infections].

    Science.gov (United States)

    Domínguez, Martha C; Torres, Miyerlandi; Tamayo, Oscar; Criollo, William; Quintana, Milton; Sánchez, Adalberto; García, Felipe

    2008-12-01

    Previous reports have given evidence that in tropical spastic paraparesis (TSP)/human T-lymphotrophic virus (HTLV-I)-associated myelopathy (HAM), an autoimmune process occurs as part of its pathogenesis. The roles of autoimmunity and the molecular mimicry was evaluated in TSP/HAM patients. Plasma samples were characterized from patients in the Pacific coastal region of Colombia. Thirty-seven were identified as TSP/HAM, 10 were diagnosed with adult T-cell leukemia virus, 22 were asymptomatic carriers but seropositive for HTLV-I and 20 were seronegative and served as negative controls. Plasmatic levels of the following were determined: antinuclear antibody (ANA) levels, anticardiolipine-2 (ACL-2), interferon- (IFN-gamma) and interleukin-4 (IL-4). Using Western blot, the crossreactivity of the seropositive and seronegative samples was evaluated against proteins extracted from several central nervous system components of non infected Wistar rats. The HTLV-I seropositive plasmas were crossreacted with a monoclonal tax (LT4 anti-taxp40) from spinal cord neurons of non infected Wistar rats. Of the TSP/HAM patients, 70.2% were reactive against ANA and 83.8% against ACL-2, in contrast with those ATL and asymptomatic seropositives subjects that were not reactive (P<0.001). Moreover, 70.3% had detectable levels of IFN and 43.2% had detectable IL-4. LT4 anti-taxp40 and plasma of TSP/HAM exhibited cross reactivity with a MW 33-35 kDa protein from the rat spinal cord nuclei. Support was provided for the existence of an autoimmune syndrome mediated by molecular mimicry; the syndrome was responsible for some of the axonal degeneration observed in TSP/HAM patients.

  16. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane protein of feline infectious peritonitis virus.

    Science.gov (United States)

    Takano, Tomomi; Morioka, Hiroyuki; Gomi, Kohji; Tomizawa, Keisuke; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-04-01

    Feline infectious peritonitis virus (FIP virus: FIPV) causes a fatal disease in wild and domestic cats. The development of an FIP-preventive vaccine requires an antigen that does not induce antibody-dependent enhancement, and T helper (Th)1 activity plays an important role in protect against FIPV infection. In the present study, we identified synthetic peptides including Th1 and a linear immunodominant antibody-binding epitope in the S1 domain and M protein of FIPV. We also identified peptides that strongly induce Th1 activity from those derived from the structural proteins (S, M, and N proteins) of FIPV based on this and previous studies (Satoh et al. [19]). No Th1 epitope-containing peptide was identified in the peptides derived from the S1 domain of type I FIPV. In contrast, 7 Th1 epitope-containing peptides were identified in the S1 domain of type II FIPV, and no linear immunodominant antibody-binding epitope was contained in any of these peptides. Eleven Th1 epitope-containing peptides common to each serotype were identified in the M protein-derived peptides, and 2 peptides (M-11 and M-12) contained the linear immunodominant antibody-binding epitope. Of the peptides derived from the S, M, and N proteins of FIPV, those that induced significantly stronger Th1 activity than that of the FIPV antigen were rescreened, and 4 peptides were identified. When 3 of these peptides (M-9, I-S2-15, and II-S1-24) were selected and administered with CpG-ODNs to SPF cats, M-9 and II-S1-24 induced Th1 activity. Our results may provide important information for the development of a peptide-based vaccine against FIPV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    Directory of Open Access Journals (Sweden)

    Richard Park

    Full Text Available Many viruses target cytoplasmic polyA binding protein (PABPC to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs. During lytic replication of Epstein Barr Virus (EBV we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E, was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.

  18. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis.

    Science.gov (United States)

    Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying

    2016-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of

  19. The human immunodeficiency virus preventive vaccine research at the French National Agency for acquired immunodeficiency syndrome research

    Directory of Open Access Journals (Sweden)

    Elizabeth Fischer

    2005-02-01

    Full Text Available The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS epidemic is of unprecedented gravity and is spreading rapidly, notably in the most disadvantaged regions of the world. The search for a preventive vaccine is thus an absolute priority. For over 10 years the French National Agency for AIDS research (ANRS has been committed to an original program combining basic science and clinical research. The HIV preventive vaccine research program run by the ANRS covers upstream research for the definition of immunogens, animal models, and clinical research to evaluate candidate vaccines. Most researchers in 2004 believe that it should be possible to obtain partial vaccine protection through the induction of a strong and multiepitopic cellular response. Since 1992, the ANRS has set up 15 phases I and II clinical trials in order to evaluate the safety and the capacity of the candidate vaccines for inducing cellular immune responses. The tested candidate vaccines were increasingly complex recombinant canarypox viruses (Alvac containing sequences coding for certain viral proteins, utilized alone or combined with other immunogens (whole or truncated envelope proteins. ANRS has also been developing an original strategy based on the utilization of lipopeptides. These comprise synthetic fragments of viral proteins associated with lipids that facilitate the induction of a cellular immune response. These approaches promptly allowed the assessment of a prime-boost strategy combining a viral vector and lipopeptides.

  20. Risk factors associated with white spot syndrome virus infection in a Vietnamese rice-shrimp farming system.

    Science.gov (United States)

    Corsin, F; Turnbull, J F; Hao, N V; Mohan, C V; Phi, T T; Phuoc, L H; Tinh, N T; Morgan, K L

    2001-10-29

    White spot disease (WSD) is a pandemic disease caused by a virus commonly known as white spot syndrome virus (WSSV). Several risk factors for WSD outbreaks have been suggested. However, there have been very few studies to identify risk factors for WSD outbreaks in culture systems. This paper presents and discusses the risk factors for WSSV infection identified during a longitudinal observational study conducted in a Vietnamese rice-shrimp farming system. A total of 158 variables were measured comprising location, features of the pond, management practices, pond bottom quality, shrimp health and other animals in the pond. At the end of the study period WSSV was detected in 15 of the 24 ponds followed through the production cycle (62.5%). One hundred and thirty-nine variables were used in univariate analyses. All the variables with a p-value Hemigrapsus spp. crabs during the first month of production, feeding vitamin premix or legumes, presence of high numbers of shrimp with bacterial infection and the presence of larger mud crabs or gobies at harvest. No associations were detected with WSSV at harvest and stocking density, presence, or number or weight of wild shrimp in the pond. The multivariate model to identify outcomes associated with WSSV infection highlighted the presence of high mortality as the main variable explaining the data. The results obtained from this study are discussed in the context of WSD control and areas requiring further investigation are suggested.

  1. Incidence and clinical characteristics of Guillain-Barré syndrome before the introduction of Zika virus in Puerto Rico.

    Science.gov (United States)

    Salinas, Jorge L; Major, Chelsea G; Pastula, Daniel M; Dirlikov, Emilio; Styczynski, Ashley; Luciano, Carlos A; Wojna, Valerie; Sharp, Tyler M; Sejvar, James J; Rivera-Garcia, Brenda

    2017-06-15

    Zika virus has been associated with increases in Guillain-Barré syndrome (GBS) incidence. A GBS incidence estimation and clinical description was performed to assess baseline GBS epidemiology before the introduction of Zika virus in Puerto Rico. Hospitalization administrative data from an island-wide insurance claims database and U.S. Census Bureau population estimates provided a crude GBS incidence for 2013. This estimate was adjusted using the proportion of GBS cases meeting Brighton criteria for confirmed GBS from nine reference hospitals. Characteristics of confirmed GBS cases in the same nine hospitals during 2012-2015 are described. A total of 136 GBS hospitalization claims were filed in 2013 (crude GBS incidence was 3.8 per 100,000 population). The adjusted GBS incidence was 1.7 per 100,000 population. Of 67 confirmed GBS cases during 2012-2015, 66% had an antecedent illness. Median time from antecedent illness to GBS onset was 7days. Most cases (67%) occurred during July-September. Puerto Rico's GBS incidence for 2013 was estimated using a combination of administrative data and medical records review; this method could be employed in other regions to monitor GBS incidence before and after the introduction of GBS infectious triggers. Published by Elsevier B.V.

  2. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp

    International Nuclear Information System (INIS)

    Liu Wangjing; Chang Yunshiang; Wang Chunghsiung; Kou, Guang-Hsiung; Lo Chufang

    2005-01-01

    Here, we report for the first time the successful use of cycloheximide (CHX) as an inhibitor to block de novo viral protein synthesis during WSSV (white spot syndrome virus) infection. Sixty candidate IE (immediate-early) genes were identified using a global analysis microarray technique. RT-PCR showed that the genes corresponding to ORF126, ORF242 and ORF418 in the Taiwan isolate were consistently CHX-insensitive, and these genes were designated ie1, ie2 and ie3, respectively. The sequences for these IE genes also appear in the two other WSSV isolates that have been sequenced. Three corresponding ORFs were identified in the China WSSV isolate, but only an ORF corresponding to ie1 was predicted in the Thailand isolate. In a promoter activity assay in Sf9 insect cells using EGFP (enhanced green fluorescence protein) as a reporter, ie1 showed very strong promoter activity, producing higher EGFP signals than the insect Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV) ie2 promoter

  3. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    Science.gov (United States)

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  4. An Elegant Analysis of White Spot Syndrome Virus Using a Graphene Oxide/Methylene Blue based Electrochemical Immunosensor Platform

    Science.gov (United States)

    Natarajan, Anusha; Devi, K. S. Shalini; Raja, Sudhakaran; Senthil Kumar, Annamalai

    2017-04-01

    White spot syndrome virus (WSSV) is a major devastating virus in aquaculture industry. A sensitive and selective diagnostic method for WSSV is a pressing need for the early detection and protection of the aquaculture farms. Herein, we first report, a simple electrochemical immunosensor based on methylene blue dye (MB) immobilized graphene oxide modified glassy carbon electrode (GCE/GO@MB) for selective, quick (35 ± 5 mins) and raw sample analysis of WSSV. The immunosensor was prepared by sequential modification of primary antibody, blocking agent (bovine serum album), antigen (as vp28 protein), secondary antibody coupled with horseradish peroxidase (Ab2-HRP) on the GCE/GO@MB. The modified electrode showed a well-defined redox peak at an equilibrium potential (E1/2), -0.4 V vs Ag/AgCl and mediated H2O2 reduction reaction without any false positive result and dissolved oxygen interferences in pH 7 phosphate buffer solution. Under an optimal condition, constructed calibration plot was linear in a range of 1.36 × 10-3 to 1.36 × 107 copies μL-1 of vp28. It is about four orders higher sensitive than that of the values observed with polymerase chain reaction (PCR) and western blot based WSSV detection techniques. Direct electrochemical immunosensing of WSSV in raw tissue samples were successfully demonstrated as a real sample system.

  5. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2.

    Directory of Open Access Journals (Sweden)

    Jennifer H Stuart

    2016-12-01

    Full Text Available The type I interferon (IFN response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3 complex to the interferon stimulated response element (ISRE. Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.

  6. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA.

    Science.gov (United States)

    Aparicio, Frederic; Vilar, Marçal; Perez-Payá, Enrique; Pallás, Vicente

    2003-08-15

    Binding of coat protein (CP) to the 3' nontranslated region (3'-NTR) of viral RNAs is a crucial requirement to establish the infection of Alfamo- and Ilarviruses. In vitro binding properties of the Prunus necrotic ringspot ilarvirus (PNRSV) CP to the 3'-NTR of its genomic RNA using purified E. coli- expressed CP and different synthetic peptides corresponding to a 26-residue sequence near the N-terminus were investigated by electrophoretic mobility shift assays. PNRSV CP bound to, at least, three different sites existing on the 3'-NTR. Moreover, the N-terminal region between amino acid residues 25 to 50 of the protein could function as an independent RNA-binding domain. Single exchange of some arginine residues by alanine eliminated the RNA-interaction capacity of the synthetic peptides, consistent with a crucial role for Arg residues common to many RNA-binding proteins possessing Arg-rich domains. Circular dichroism spectroscopy revealed that the RNA conformation is altered when amino-terminal CP peptides bind to the viral RNA. Finally, mutational analysis of the 3'-NTR suggested the presence of a pseudoknotted structure at this region on the PNRSV RNA that, when stabilized by the presence of Mg(2+), lost its capability to bind the coat protein. The existence of two mutually exclusive conformations for the 3'-NTR of PNRSV strongly suggests a similar regulatory mechanism at the 3'-NTR level in Alfamo- and Ilarvirus genera.

  7. Experimental and molecular docking studies on DNA binding interaction of adefovir dipivoxil: Advances toward treatment of hepatitis B virus infections

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh

    The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH = 34.4 kJ mol-1; ΔS = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.

  8. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA

    International Nuclear Information System (INIS)

    Aparicio, Frederic; Vilar, Marcal; Perez-Paya, Enrique; Pallas, Vicente

    2003-01-01

    Binding of coat protein (CP) to the 3' nontranslated region (3'-NTR) of viral RNAs is a crucial requirement to establish the infection of Alfamo- and Ilarviruses. In vitro binding properties of the Prunus necrotic ringspot ilarvirus (PNRSV) CP to the 3'-NTR of its genomic RNA using purified E. coli- expressed CP and different synthetic peptides corresponding to a 26-residue sequence near the N-terminus were investigated by electrophoretic mobility shift assays. PNRSV CP bound to, at least, three different sites existing on the 3'-NTR. Moreover, the N-terminal region between amino acid residues 25 to 50 of the protein could function as an independent RNA-binding domain. Single exchange of some arginine residues by alanine eliminated the RNA-interaction capacity of the synthetic peptides, consistent with a crucial role for Arg residues common to many RNA-binding proteins possessing Arg-rich domains. Circular dichroism spectroscopy revealed that the RNA conformation is altered when amino-terminal CP peptides bind to the viral RNA. Finally, mutational analysis of the 3'-NTR suggested the presence of a pseudoknotted structure at this region on the PNRSV RNA that, when stabilized by the presence of Mg 2+ , lost its capability to bind the coat protein. The existence of two mutually exclusive conformations for the 3'-NTR of PNRSV strongly suggests a similar regulatory mechanism at the 3'-NTR level in Alfamo- and Ilarvirus genera

  9. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Wu, Xiaodong; Qi, Xian; Liang, Mifang; Li, Chuan; Cardona, Carol J; Li, Dexin; Xing, Zheng

    2014-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses. © FASEB.

  10. Applications of Bayesian Phylodynamic Methods in a Recent U.S. Porcine Reproductive and Respiratory Syndrome Virus Outbreak

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alkhamis

    2016-02-01

    Full Text Available Classical phylogenetic methods such as neighbor-joining or maximum likelihood trees, provide limited inferences about the evolution of important pathogens and ignore important evolutionary parameters and uncertainties, which in turn limits decision making related to surveillance, control and prevention resources. Bayesian phylodynamic models have recently been used to test research hypothesis related to evolution of infectious agents. However, few studies have attempted to model the evolutionary dynamics of porcine reproductive and respiratory syndrome virus (PRRSV and, to the authors’ knowledge, no attempt has been made to use large volumes of routinely collected data, sometimes referred to as big data, in the context of animal disease surveillance. The objective of this study was to explore and discuss the applications of Bayesian phylodynamic methods for modeling the evolution and spread of a notable 1-7-4 RFLP-type PRRSV between 2014 and 2015. A convenience sample of 288 ORF5 sequences was collected from 5 swine production systems in the United States between September 2003 and March 2015. Using coalescence and discrete trait phylodynamic models, we were able to infer population growth and demographic history of the virus, identified the most likely ancestral system (root state posterior probability = 0.95 and revealed significant dispersal routes (Bayes factor > 6 of viral exchange among systems. Results indicate that currently circulating viruses are evolving rapidly, and show a higher level of relative genetic diversity over time, when compared to earlier relatives. Biological soundness of model results is supported by the finding that sow farms were responsible for PRRSV spread within the systems. Such results can’t be obtained by traditional phylogenetic methods, and therefore, our results provide a methodological framework for molecular epidemiological modeling of new PRRSV outbreaks and demonstrate the prospects of phylodynamic

  11. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins.

    Directory of Open Access Journals (Sweden)

    Yun-Shiang Chang

    Full Text Available BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus, is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.

  12. A Novel Vascular Endothelial Growth Factor Receptor Participates in White Spot Syndrome Virus Infection in Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Shihao Li

    2017-11-01

    Full Text Available Vascular endothelial growth factor (VEGF signaling pathway is known to play key roles in endothelial cell proliferation, migration, angiogenesis, vascular permeability, inhibition of apoptosis, and virus infection. In the present study, a novel VEGFR gene (LvVEGFR2 was identified and characterized from Litopenaeus vannamei. The deduced amino acid sequence of LvVEGFR2 possessed typical features of VEGFRs reported in other species, including six IG-like domains, a transmembrane motif, a protein kinase (PK domain, and one tyrosine-PK active site. The transcripts of LvVEGFR2 were mainly detected in hemocytes and lymphoid organ (Oka. Subcellular localization analysis showed that LvVEGFR2 was a membrane protein. Its expression level was obviously upregulated in hemocytes and Oka of the shrimp after white spot syndrome virus (WSSV infection. Knockdown of LvVEGFR2 gene expression by double-strand RNA mediated interference could lead to a decrease of virus copy number in WSSV-infected shrimp. The interaction between LvVEGFR2 and different LvVEGFs (LvVEGF1, LvVEGF2, and LvVEGF3 in shrimp was analyzed at the transcription level and protein level, respectively. Knockdown of LvVEGF2 or LvVEGF3 could downregulate the expression level of LvVEGFR2, and injection of the recombinant LvVEGF2 or LvVEGF3 could upregulate the expression level of LvVEGFR2. Yeast two-hybrid analysis showed that LvVEGFR2 could interact with LvVEGF2 and LvVEGF3 directly. The study improved our understanding on the VEGF signaling pathway of shrimp and its role during WSSV infection.

  13. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Silva-Campa, Erika; Flores-Mendoza, Lilian; Resendiz, Monica; Pinelli-Saavedra, Araceli; Mata-Haro, Veronica; Mwangi, Waithaka; Hernandez, Jesus

    2009-01-01

    Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3 + CD25 + T cells, an effect that was reversible by IFN-α treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3 + CD25 + T cells is dependent on TGF-β but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3 + CD25 + T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3 + CD25 + T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-α treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

  14. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles

    International Nuclear Information System (INIS)

    Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung; Park, Sun; Shin, Ho-Joon; Kim, Kyongmin

    2008-01-01

    Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate 32 P-ribonucleotides, but not HBV core particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems

  15. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Emerson, S.U.; Schubert, M.

    1987-01-01

    Recombinant DNA techniques were used to delete regions of a cDNA clone of the phosphoprotein NS gene of vesicular stomatitis virus. The complete NS gene and four mutant genes containing internal or terminal deletions were inserted into a modified pGem4 vector under the transcriptional control of the page T7 promoter. Run-off transcripts were synthesized and translated in vitro to provide [ 35 S]methionine-labeled complete NS or deletion mutant NS proteins. Immune coprecipitation assays involving these proteins were developed to map the regions of the NS protein responsible for binding to the structural viral nucleocapsid protein N and the catalytic RNA polymerase protein L. The data indicate the NS protein is a bivalent protein consisting of two discrete functional domains. Contrary to previous suggestions, the negatively charged amino-terminal half of NS protein binds to L protein, while the carboxyl-terminal half of NS protein binds to both soluble recombinant nucleocapsid protein N and viral ribonucleocapsid template

  16. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Science.gov (United States)

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  17. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein.

    Science.gov (United States)

    Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo

    2017-07-11

    Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.

  18. Isolation and Identification of Egg Drop Syndrome Virus with Hemagglutination and Hemagglutination Tests

    Directory of Open Access Journals (Sweden)

    Fidyah Fitrawati

    2015-11-01

    of 0,8. The HA test in uterine sample of both SR/WNO/2011 and FF/Sleman/2011 showed the titer 23 HA units and egg washed water sample of FF/Sleman/2011 showed titer 22 HA units. The HI test for comparison with ND and AI anti serum was negative, while the test with EDS anti serum showed positive results. Based on the HA and HI test results, it was concluded that the virus grown in the allantoic fluid is EDS virus.

  19. CLUSTER MODEL FOR EXTENSIVE GIANT TIGER SHRIMP (Penaeus monodon Fab. TO PREVENT TRANSMISSION OF WHITE SPOT SYNDROME VIRUS

    Directory of Open Access Journals (Sweden)

    Arief Taslihan

    2015-06-01

    Full Text Available White spot syndrome virus (WSSV has become epidemic in Indonesia and affecting shrimp aquaculture interm of its production. White spot syndrome virus is transmitted from one to other ponds, through crustacean, included planktonic copepode as carrier for WSSV and through water from affected shrimp pond. A cluster model, consist of shrimp grow out ponds surrounded by non-shrimp pond as a role of biosecurity has been developed. The model aimed to prevent white spot virus transmission in extensive giant tiger shrimp pond. The study was conducted in two sites at Demak District, Central Java Province. As the treatment, a cluster consist of three shrimp ponds in site I, and two shrimp ponds in site II, each was surrounded by buffer ponds rearing only finfish. As the control, five extensive shrimp grow out ponds in site I and three shrimp grow out ponds in site II, with shrimp pond has neither applied biosecurity nor surrounded by non-shrimp pond as biosecurity as well considered as control ponds. The results found that treatment of cluster shrimp ponds surrounded by non-shrimp ponds could hold shrimp at duration of culture in the grow out pond (DOC 105.6±4.5 days significantly much longer than that of control that harvested at 60.9±16.0 days due to WSSV outbreak. Survival rate in trial ponds was 77.6±3.6%, significantly higher than that of control at 22.6±15.8%. Shrimp production in treatment ponds has total production of 425.1±146.6 kg/ha significantly higher than that of control that could only produced 54.5±47.6 kg/ha. Implementation of Better Management Practices (BMP by arranging shrimp ponds in cluster and surrounding by non-shrimp ponds proven effectively prevent WSSV transmission from traditional shrimp ponds in surrounding area.

  20. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183)

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Norn, Christoffer; Laurent, Stephane

    2012-01-01

    , the family of G protein-coupled seven transmembrane-spanning receptors (7TM receptors) was added to this group. Specifically, the Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) was shown to be activated by several oxysterols, most potently by 7α,25-dihydroxycholesterol (7α,25-OHC). Nothing is known about...

  1. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Prentoe, Jannick

    2011-01-01

    The E2 glycoprotein of hepatitis C virus (HCV) mediates viral attachment and entry into target hepatocytes and elicits neutralizing antibodies in infected patients. To characterize the structural and functional basis of HCV neutralization, we generated a novel panel of 78 monoclonal antibodies (M...

  2. Lipopolysaccharide-binding protein as marker of fetal inflammatory response syndrome after preterm premature rupture of membranes.

    Science.gov (United States)

    Pavcnik-Arnol, Maja; Lucovnik, Miha; Kornhauser-Cerar, Lilijana; Premru-Srsen, Tanja; Hojker, Sergej; Derganc, Metka

    2014-01-01

    Intra-amniotic inflammation with preterm premature rupture of membranes (PPROM) is a risk factor for fetal inflammatory response syndrome (FIRS) and adverse neonatal outcome. To evaluate the diagnostic accuracy of lipopolysaccharide-binding protein (LBP) for detecting FIRS in preterm neonates born after PPROM. This was a prospective study in the level III neonatal intensive care unit (42 neonates; 23 + 6 to 31 + 6 weeks' gestation) of mothers with PPROM. Umbilical cord blood concentrations of LBP, C-reactive protein (CRP), interleukin (IL)-6 and white blood cell count with differential were measured at delivery and 24 h after birth. Neonates were classified into FIRS (n = 22) and no FIRS (n = 20) groups according to clinical criteria and IL-6 level (≥17.5 pg/ml). Histological examination of the placenta and umbilical cord was performed. Neurological examination at 12 months' corrected age was performed. Umbilical cord blood concentration of LBP was significantly higher in the FIRS group than in the no FIRS group at delivery (median 21.6 mg/l vs. median 2.3 mg/l; p < 0.0001) and 24 h after birth (median 17.2 mg/l vs. median 20.0 mg/l; p < 0.001). The area under the ROC curve for FIRS at delivery was 0.98 (95% CI 0.88-1.0) for LBP, 0.92 (95% CI 0.80-0.99) for CRP and 0.82 (95% CI 0.64-0.94) for immature to total neutrophil ratio. Similar results were obtained if FIRS was defined by funisitis. Umbilical cord blood concentration of LBP at delivery was significantly higher in neonates with abnormal neurological exam at 12 months than in those with normal exam (median 19.5 mg/l vs. median 3.75 mg/l; p < 0.015). In preterm neonates born to asymptomatic women with PPROM, LBP in cord blood at delivery is an excellent diagnostic biomarker of FIRS/funisitis with prognostic potential. © 2013 S. Karger AG, Basel.

  3. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    DEFF Research Database (Denmark)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses...... proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered...... attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development....

  4. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  5. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21

    Energy Technology Data Exchange (ETDEWEB)

    Metrick, Claire M.; Heldwein, Ekaterina E. (Tufts-MED)

    2016-04-06

    Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed four regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function.

    IMPORTANCEDue to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire

  6. [Hantavirus pulmonary syndrome (Rio Mamore virus) in the Peruvian Amazon region].

    Science.gov (United States)

    Casapía, Martín; Mamani, Enrique; García, María P; Miraval, María L; Valencia, Pedro; Quino, Alberto H; Alvarez, Carlos; Donaires, Luis F

    2012-01-01

    Hantavirus infection is a viral zoonotic infection borne by rodents which most letal form clinical is the Hantavirus Pulmonary Syndrome (SPH, Spanish abbreviation). The Mamore River variant originates in South America and was found in rodents without any association to human diseases. Two cases of SPH were identified in the Peruvian Amazon region in November 2011. In both cases, a molecular diagnostic testing was conducted by the Instituto Nacional de Salud from Peru. A phylogenetic analysis of a viral genome fragment and a histopathological evaluation were conducted. Both patients developed adult respiratory distress syndrome and refractory shock. A patient died and another one recovered 12 days later.

  7. ATP-dependent chromatin remodeling and histone binding by the Cockayne syndrome B DNA repair-transcription coupling factor.

    NARCIS (Netherlands)

    E. Citterio (Elisabetta); V. van den Boom (Vincent); G. Schnitzler; R. Kanaar (Roland); E. Bonte (Edgar); R.E. Kingston; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim)

    2000-01-01

    textabstractThe Cockayne syndrome B protein (CSB) is required for coupling DNA excision repair to transcription in a process known as transcription-coupled repair (TCR). Cockayne syndrome patients show UV sensitivity and severe neurodevelopmental abnormalities. CSB is a DNA-dependent ATPase of the

  8. Binding of the heterogeneous ribonucleoprotein K (hnRNP K to the Epstein-Barr virus nuclear antigen 2 (EBNA2 enhances viral LMP2A expression.

    Directory of Open Access Journals (Sweden)

    Henrik Gross

    Full Text Available The Epstein-Barr Virus (EBV -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively. EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2 Type 1. The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3 which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K. Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.

  9. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-01-01

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126 -LQxxLxxxGL- 135 . In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.

  10. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2017-05-15

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine

  11. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    Science.gov (United States)

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  12. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  13. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm.

    Science.gov (United States)

    Zhang, J S; Li, Z J; Wen, G L; Wang, Y L; Luo, L; Zhang, H J; Dong, H B

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH 4 -N, and NO 2 -N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases' outbreak after the landfall of tropical storm.

  14. Dengue death with evidence of hemophagocytic syndrome and dengue virus infection in the bone marrow.

    Science.gov (United States)

    Ab-Rahman, Hasliana Azrah; Wong, Pooi-Fong; Rahim, Hafiz; Abd-Jamil, Juraina; Tan, Kim-Kee; Sulaiman, Syuhaida; Lum, Chai-See; Syed-Omar, Syarifah-Faridah; AbuBakar, Sazaly

    2015-01-01

    HPS is a potentially life-threatening histiocytic disorder that has been described in various viral infections including dengue. Its involvement in severe and fatal dengue is probably more common but is presently under recognized. A 38-year-old female was admitted after 5 days of fever. She was deeply jaundiced, leukopenic and thrombocytopenic. Marked elevation of transaminases, hyperbilirubinemia and hypoalbuminemia were observed. She had deranged INR values and prolonged aPTT accompanied with hypofibrinogenemia. She also had splenomegaly. She was positive for dengue IgM. Five days later she became polyuric and CT brain image showed gross generalized cerebral edema. Her conditions deteriorated by day 9, became confused with GCS of 9/15. Her BMAT showed minimal histiocytes. Her serum ferritin level peaked at 13,670.00 µg/mL and her sCD163 and sCD25 values were markedly elevated at 4750.00 ng/mL and 4191.00 pg/mL, respectively. She succumbed to the disease on day 10 and examination of her tissues showed the presence of dengue virus genome in the bone marrow. It is described here, a case of fatal dengue with clinical features of HPS. Though BMAT results did not show the presence of macrophage hemophagocytosis, other laboratory features were consistent with HPS especially marked elevation of ferritin, sCD163 and sCD25. Detection of dengue virus in the patient's bone marrow, fifteen days after the onset of fever was also consistent with the suggestion that the HPS is associated with dengue virus infection. The findings highlight HPS as a possible complication leading to severe dengue and revealed persistent dengue virus infection of the bone marrow. Detection of HPS markers; ferritin, sCD163 and sCD25, therefore, should be considered for early recognition of HPS-associated dengue.

  15. The structure of classical swine fever virus N(pro: a novel cysteine Autoprotease and zinc-binding protein involved in subversion of type I interferon induction.

    Directory of Open Access Journals (Sweden)

    Keerthi Gottipati

    Full Text Available Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (N(pro is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53. After self-cleavage, N(pro is no longer active as a protease. The released N(pro suppresses the induction of the host's type-I interferon-α/β (IFN-α/β response. N(pro binds interferon regulatory factor-3 (IRF3, the key transcriptional activator of IFN-α/β genes, and promotes degradation of IRF3 by the proteasome, thus preventing induction of the IFN-α/β response to pestivirus infection. Here we report the crystal structures of pestivirus N(pro. N(pro is structurally distinct from other known cysteine proteases and has a novel "clam shell" fold consisting of a protease domain and a zinc-binding domain. The unique fold of N(pro allows auto-catalysis at its C-terminus and subsequently conceals the cleavage site in the active site of the protease. Although many viruses interfere with type I IFN induction by targeting the IRF3 pathway, little information is available regarding structure or mechanism of action of viral proteins that interact with IRF3. The distribution of amino acids on the surface of N(pro involved in targeting IRF3 for proteasomal degradation provides insight into the nature of N(pro's interaction with IRF3. The structures thus establish the mechanism of auto-catalysis and subsequent auto-inhibition of trans-activity of N(pro, and its role in subversion of host immune response.

  16. Metabolic syndrome in patients with chronic hepatitis C virus genotype 1 infection who do not have obesity or type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Lucivalda Pereira Magalhães Oliveira

    2012-01-01

    Full Text Available OBJECTIVE: The individual components of metabolic syndrome may be independent predictors of mortality in patients with liver disease. We aimed to evaluate the prevalence of metabolic syndrome and its related components in hepatitis C virus-infected patients who are not obese and do not have type 2 diabetes. METHODS: This cross-sectional study included 125 patients infected with hepatitis C virus genotype 1. Metabolic syndrome was defined according to the International Diabetes Federation. Anthropometric data were measured according to standardized procedures. Bioimpedance analysis was performed on all patients. RESULTS: Metabolic syndrome was diagnosed in 21.6% of patients. Of the subjects with metabolic syndrome, 59.3% had hypertension, 77.8% had insulin resistance, 85.2% were overweight, 48.1% had a high waist circumference, 85.2% had an increased body fat percentage, and 92.3% had an elevated waist:hip ratio. In the bivariate analysis, female sex (OR 2.58; 95% CI: 1.09-6.25, elevated gamma-glutamyl transferase (γGT (OR 2.63; 95% CI: 1.04-7.29, elevated fasting glucose (OR 8.05; 95% CI: 3.17-21.32, low HDL cholesterol (OR 2.80; 95% CI: 1.07-7.16, hypertriglyceridemia (OR 7.91; 95% CI: 2.88-22.71, elevated waist circumference (OR 10.33; 95% CI: 3.72-30.67, overweight (OR 11.33; 95% CI: 3.97-41.07, and increased body fat percentage (OR 8.34; 95% CI: 2.94-30.08 were independent determinants of metabolic syndrome. Using the final multivariate regression model, similar results were observed for abdominal fat (OR 9.98; 95% CI: 2.63-44.41 and total body fat percentage (OR 8.73; 95% CI: 2.33-42.34. However, metabolic syndrome risk was also high for those with blood glucose >5.55 mmol/L or HDL cholesterol <0.9 mmol/L (OR 16.69; 95% CI: 4.64-76.35; OR 7.23; 95% CI: 1.86-32.63, respectively. CONCLUSION: Metabolic syndrome is highly prevalent among hepatitis C virus-infected patients without type 2 diabetes or obesity. Metabolic syndrome was

  17. Absence of evidence of Xenotropic Murine Leukemia Virus-related virus infection in persons with Chronic Fatigue Syndrome and healthy controls in the United States

    Directory of Open Access Journals (Sweden)

    Switzer William M

    2010-07-01

    Full Text Available Abstract Background XMRV, a xenotropic murine leukemia virus (MuLV-related virus, was recently identified by PCR testing in 67% of persons with chronic fatigue syndrome (CFS and in 3.7% of healthy persons from the United States. To investigate the association of XMRV with CFS we tested blood specimens from 51 persons with CFS and 56 healthy persons from the US for evidence of XMRV infection by using serologic and molecular assays. Blinded PCR and serologic testing were performed at the US Centers for Disease Control and Prevention (CDC and at two additional laboratories. Results Archived blood specimens were tested from persons with CFS defined by the 1994 international research case definition and matched healthy controls from Wichita, Kansas and metropolitan, urban, and rural Georgia populations. Serologic testing at CDC utilized a Western blot (WB assay that showed excellent sensitivity to MuLV and XMRV polyclonal or monoclonal antibodies, and no reactivity on sera from 121 US blood donors or 26 HTLV-and HIV-infected sera. Plasma from 51 CFS cases and plasma from 53 controls were all WB negative. Additional blinded screening of the 51 cases and 53 controls at the Robert Koch Institute using an ELISA employing recombinant Gag and Env XMRV proteins identified weak seroreactivity in one CFS case and a healthy control, which was not confirmed by immunofluorescence. PCR testing at CDC employed a gag and a pol nested PCR assay with a detection threshold of 10 copies in 1 ug of human DNA. DNA specimens from 50 CFS patients and 56 controls and 41 US blood donors were all PCR-negative. Blinded testing by a second nested gag PCR assay at the Blood Systems Research Institute was also negative for DNA specimens from the 50 CFS cases and 56 controls. Conclusions We did not find any evidence of infection with XMRV in our U.S. study population of CFS patients or healthy controls by using multiple molecular and serologic assays. These data do not support an

  18. DNA-Binding Properties of African Swine Fever Virus pA104R, a Histone-Like Protein Involved in Viral Replication and Transcription.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Coelho, João; Leitão, Alexandre; Martins, Carlos; Ferreira, Fernando

    2017-06-15

    African swine fever virus (ASFV) codes for a putative histone-like protein (pA104R) with extensive sequence homology to bacterial proteins that are implicated in genome replication and packaging. Functional characterization of purified recombinant pA104R revealed that it binds to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) over a wide range of temperatures, pH values, and salt concentrations and in an ATP-independent manner, with an estimated binding site size of about 14 to 16 nucleotides. Using site-directed mutagenesis, the arginine located in pA104R's DNA-binding domain, at position 69, was found to be relevant for efficient DNA-binding activity. Together, pA104R and ASFV topoisomerase II (pP1192R) display DNA-supercoiling activity, although none of the proteins by themselves do, indicating that the two cooperate in this process. In ASFV-infected cells, A104R transcripts were detected from 2 h postinfection (hpi) onward, reaching a maximum concentration around 16 hpi. pA104R was detected from 12 hpi onward, localizing with viral DNA replication sites and being found exclusively in the Triton-insoluble fraction. Small interfering RNA (siRNA) knockdown experiments revealed that pA104R plays a critical role in viral DNA replication and gene expression, with transfected cells showing lower viral progeny numbers (up to a reduction of 82.0%), lower copy numbers of viral genomes (-78.3%), and reduced transcription of a late viral gene (-47.6%). Taken together, our results strongly suggest that pA104R participates in the modulation of viral DNA topology, probably being involved in viral DNA replication, transcription, and packaging, emphasizing that ASFV mutants lacking the A104R gene could be used as a strategy to develop a vaccine against ASFV. IMPORTANCE Recently reintroduced in Europe, African swine fever virus (ASFV) causes a fatal disease in domestic pigs, causing high economic losses in affected countries, as no vaccine or treatment is currently

  19. Protection against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection through Passive Transfer of PRRSV-Neutralizing Antibodies Is Dose Dependent▿ †

    OpenAIRE

    Lopez, O. J.; Oliveira, M. F.; Garcia, E. Alvarez; Kwon, B. J.; Doster, A.; Osorio, F. A.

    2007-01-01

    Previous work in our laboratory demonstrated that passive transfer of porcine reproductive and respiratory syndrome virus (PRRSV)-neutralizing antibodies (NA) protected pregnant sows against reproductive failure and conferred sterilizing immunity in sows and offspring. We report here on the dose requirement for protection by passive transfer with NA in young weaned pigs. The presence of a 1:8 titer of PRRSV-NA in serum consistently protected pigs against viremia. Nevertheless, their lungs, to...

  20. Consensus on context-specific strategies for reducing the stigma of human immunodeficiency virus/acquired immunodeficiency syndrome in Zambézia Province, Mozambique

    OpenAIRE

    Mukolo, Abraham; Torres, Isabel; Bechtel, Ruth M.; Sidat, Mohsin; Vergara, Alfredo E.

    2014-01-01

    Stigma has been implicated in poor outcomes of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) care. Reducing stigma is important for HIV prevention and long-term treatment success. Although stigma reduction interventions are conducted in Mozambique, little is known about the current nature of stigma and the efficacy and effectiveness of stigma reduction initiatives. We describe action research to generate consensus on critical characteristics of HIV stigma and an...

  1. An unusual case of primary human immunodeficiency virus infection presenting as mononucleosis-like syndrome and acute aseptic meningoencephalitis. Report of a case and review of the literature

    Directory of Open Access Journals (Sweden)

    Marcelo Corti

    2014-01-01

    Full Text Available Clinical presentation of primary human immunodeficiency virus (HIV infection includes a wide spectrum of manifestations from asymptomatic infection to a symptomatic and severe illness. Central nervous system involvement should be always considered as a severe clinical form of primary HIV infection. Physicians should be aware to the broad clinical spectrum of primary HIV infection. We report a case of a female with diagnosis of mononucleosis-like syndrome and acute aseptic meningoencephalitis during primary HIV infection.

  2. Acquired immunodeficiency syndrome/human immunodeficiency virus knowledge, attitudes, and practices, and use of healthcare services among rural migrants: a cross-sectional study in China

    OpenAIRE

    Wang, Ying; Cochran, Christopher; Xu, Peng; Shen, Jay J; Zeng, Gang; Xu, Yanjun; Sun, Mei; Li, Chengyue; Li, Xiaohong; Chang, Fengshui; Lu, Jun; Hao, Mo; Lu, Fan

    2014-01-01

    Background Today’s rapid growth of migrant populations has been a major contributor to the human immunodeficiency virus (HIV) epidemic. However, relatively few studies have focused on HIV/acquired immunodeficiency syndrome (AIDS)-related knowledge, attitudes, and practice among rural-to-urban migrants in China. This cross-sectional study was to assess HIV/AIDS-related knowledge and perceptions, including knowledge about reducing high-risk sex. Methods Two-phase stratified cluster sampling was...

  3. Infection of growing swine with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae — Effects on growth, serum metabolites, and insulin-like growth factor-I.

    OpenAIRE

    Roberts, N. Elizabeth; Almond, Glen W.

    2003-01-01

    This study evaluated the influence of concomitant infections with porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae on growth performance, serum metabolite concentrations, and serum insulin-like growth factor-I (IGF-I) in growing pigs.