WorldWideScience

Sample records for symbiotic star winds

  1. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  2. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  3. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  4. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  5. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  6. Models of symbiotic stars

    Science.gov (United States)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  7. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  8. The evolutionary status of symbiotic stars

    International Nuclear Information System (INIS)

    Rudak, B.

    1982-01-01

    The evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed. (Auth.)

  9. Polarimetry of symbiotic stars

    International Nuclear Information System (INIS)

    Piirola, V.

    1983-01-01

    Five symbiotic stars have been observed for linear polarization (UBVRI) in September 1981. Three systems, CH Cyg, CI Cyg and AG Peg show intrinsic polarization while in the case of Z And and AX Per the observed polarization seems to be mostly of interstellar origin. The position angle of polarization of CI Cyg and AG Peg rotates strongly vs. wavelength, as observed also for CH Cyg in 1977-80. The polarization of CH Cyg has decreased since May 1980, especially in the I, R and U bands, so that the maximum polarization is now in the blue (Psub(B) approx. 0.3%). Probably one is monitoring the formation, growth and disappearance of dust particles in the atmosphere of this star. Two related systems, PU Vul (Nova Vul 1979) and R Aql (Mira) have polarization behaviour rather similar to that of symbiotic stars which suggests that the M type giant present in these systems is responsible for most of the intrinsic polarization. (Auth.)

  10. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  11. Spectrophotometric observations of symbiotic stars

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.

    1985-01-01

    The data of spectrophotometric observations of symbiotic stars Z And, AX Per, CI Cyg, BF Cyg, YY Her, V 443 Her, AG Dra, AG Peg, AS 296, EG And, V 1016 Cyg, and HM Sge are presented. The spectral range of observations is 3300-7500 A, resolution is 50 A. The data obtained allowed to reveal specific characteristics inherent to the radiation of symbiotic stars and to estimate the parameters of their individual components. Analysis of the spectra of symbiotic stars in the range of 1300-7500 A wavelengths suggests a hypothesis, according to which a hot source in the Rayleigh - Jeans spectral range has a less steep inclination in the energy distribution, than a black-body one. A disk, formed during cold star substance accretion through an internal Lagrangian point onto a denser component of the system, can play the role of the source. In this case one manages to obtain the energy distribution in the symbiotic star spectrum consistent with the observed distribution

  12. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  13. Radio observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A E [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics; Allen, D A

    1978-09-01

    A search for 2-cm continuum emission from 91 symbiotic stars has been undertaken using the Parkes radio telescope. Nine sources have been detected, four of which are reported for the first time. The radio spectral indices are mostly about + 0.6; these are interpreted in terms of mass loss. In two stars a portion of the radio spectrum has an index of zero, and for one of these stars (RX Puppis) this is plausibly a manifestation of the cessation of symbiotic activity that occurred about two decades ago. There is an extraordinarily good correlation between the detectability at 2cm and the presence of circumstellar dust, but not between the radio and optical domains. The importance of continued radio monitoring of HM Sagittae over the next few years is stressed.

  14. Infrared variability and nature of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Feast, M W; Robertson, B S.C.; Catchpole, R M [Royal Observatory, Cape Town (South Africa)

    1977-05-01

    Most symbiotic stars may be placed in one of two classes according to their infrared colours. In one group the systems contain an M type giant. In the other there is evidence for a star plus infrared emission from dust. JHKL photometry is given for three members of each class. Photometry of the VV Cephei system FR Sct is also given. No evidence for variability was found for systems without dust. The three systems with dust (RX Pup, RR Tel and PK 280-2/sup 0/.1) each show large variations of the stellar component (..delta..J, 1sup(m).6 to 2sup(m).7). It is concluded that these dusty systems contain Mira variables. For the systems without dust the mass transfer in the system is presumably through the inner Lagrangian point. For systems containing Miras it is possible that the companion accretes matter from a general stellar wind. Symbiotic systems containing Mira variables have more dust than average Mira variables. Either an unusually dense stellar wind is needed to produce a symbiotic system or such a system produces dust, perhaps in a high-density region resulting from the interaction of the stellar wind with the companion.

  15. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  16. Infrared studies of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1982-01-01

    Infrared photometry and spectroscopy of symbiotic stars is reviewed. It is shown that at wavelengths beyond 1 μm these systems are generally dominated by the cool star's photosphere and, indeed, are indistinguishable from ordinary late-type giants. About 25% of symbiotic stars exhibit additional emission due to circumstellar dust. Most of the dusty systems probably involve Mira variables, the dust forming in the atmospheres of the Miras. In a few cases the dust is much cooler and the cool component hotter; the dust must then form in distant gas shielded from the hot component, perhaps by an accretion disk. Spectroscopy at 2 μm can be used to spectral type the cool components, even in the presence of some dust emission. Distances may thereby be estimated, though with some uncertainty. Spectroscopy at longer wavelengths reveals information about the dust itself. In most cases this dust appears to include silicate grains, which form in the oxygen-rich envelope of an M star. In the case of HD 33036, however, different emission features are found which suggest a carbon-rich environment. (Auth.)

  17. Symbiotic stars observed from the IRAS satellite

    International Nuclear Information System (INIS)

    Luud, L.; Tuvikene, T.

    1987-01-01

    Symbiotic stars according to Alfven's catalogue have been checked for coincidence with the IRAS-observed for-infrared sources. 72 symbiotic and possible symbiotic stars have been identified with the IRAS-observed sources. A catalogue of identified stars and energy distributions of representative stars are given. It turns out that the dust in symbiotic stars is a more widespread phenomenon than that it was believed before. Almost 40% of systems are the dusty ones. Among objects with dust temperature some tens of K have been found. It is shown that the only useful two-color diagram is (K-m 12 )-(m 12 -m 25 ). Attention is paid to a type of symbiotic stars with G spectral class cold component which needs special investigation

  18. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  19. Interacting Winds in Eclipsing Symbiotic Systems

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Interacting Winds in Eclipsing Symbiotic Systems – The Case Study of EG Andromedae ... to obtain the physical parameters of a quiescent eclipsing symbiotic system. ... Articles are also visible in Web of Science immediately.

  20. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    Optical and infrared spectrophotometry is presented of the high-excitation emission-line star H1-36. The presence of a variable M giant is established: H1-36 may therefore be classified as a symbiotic star. The observations are interpreted in terms of the usual binary model for symbiotic stars, namely that an unseen star is heated by accretion of gas from its companion M giant. (author)

  1. A polarimetric survey of symbiotic stars

    International Nuclear Information System (INIS)

    Schulte-Ladbeck, R.E.; Magalhaes, A.M.; Magalhaes, A.M.

    1990-01-01

    We present optical and near-infrared linear polarization observations of 24 symbiotic stars, 14 observed with polarimetry for the first time. In combination with published data, we find that ∼ 50% of the symbiotics observed polarimetrically show evidence for intrinsic polarization. We discuss the results in the light of previous observations and comment on the temporal variability and wavelength dependence of the polarization. Dust scattering is identified as the dominant mechanism producing polarization in symbiotic stars. While we cannot exclude that some symbiotic systems are completely engulfed in their dust shells our data indicate that the Hα emission line may originate from outside of the dust-scattering envelopes in some systems

  2. Symbiotic stars according to IRAS observations

    International Nuclear Information System (INIS)

    Luud, L.; Tuvikene, T.

    1987-01-01

    Symbiotic stars contained in Allen's catalog are examined with a view to establishing their coincidence with sources of far infrared radiation in the catalog of point sources observed with the IRAS satellite. Altogether, 72 symbiotic or suspected symbiotic objects have been identified. A list of the identified stars has been compiled, and the energy distributions in the infrared spectra of selected stars are given. It has been found that the presence of dust in symbiotic systems is a more widespread phenomenon than hitherto believed. Almost 40% of them are dust systems. Among them, objects with dust temperature of several tens of degrees kelvin have been found. It is shown that the only useful two-color diagram is the (K - m 12 )-(m 12 - m 25 ) diagram. Finally, attention is drawn to a type of symbiotic stars having cold components of the spectral class G; these require a special investigation

  3. On the model of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungelson, L.R.

    1982-01-01

    The authors discuss conditions necessary for appearance and discovery of the symbiotic star phenomenon within the model of a binary consisting of a red (super)giant 3 solar masses not filling the Roche lobe and of an accreting hot degenerate CO-dwarf 0.8 solar masses. Within this model ''classical'' symbiotic stars may exist only within a narrow region of mass accretion rates and separations of components: 10 -7 approximately -7 solar masses/y and 3x10 13 approximately 14 cm. The evolutionary status of symbiotic stars and related objects and the mechanisms of their variability are discussed. (Auth.)

  4. UV line emission of symbiotic stars

    International Nuclear Information System (INIS)

    Nussbaumer, H.

    1982-01-01

    General characteristics of emission line spectra from symbiotic stars are outlined. Data from some special line ratios in the 1000 A - 3000 A range, and others connecting the visual and the far UV lines are presented, and their application to symbiotic stars is discussed. Integrated fractional abundances for ions easily observed in the far UV are given to facilitate abundance determinations for nebular conditions. It is found that the physical conditions of the regions emitting the emission line spectra differ considerably among different symbiotic stars. (Auth.)

  5. Symbiotic stars as an old disk population

    Energy Technology Data Exchange (ETDEWEB)

    Wallerstein, G [Joint Inst. for Lab. Astrophysics, Boulder, CO (USA)

    1981-10-01

    A table of all symbiotic stars in the General Catalogue of Variable Stars and its supplements has been assembled and their radial velocities have been discussed. A velocity dispersion of 63 +- 14 km/s is found for all the stars and a value of 58 +- 14 km/s is established if the probable halo star, AG Dra, is omitted. The space distribution is similar to that of an old disk population. Some implications of low masses for the symbiotic stars are discussed, and some suggestions are made regarding possibly useful observations.

  6. Symbiotic star H1-36

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed.

  7. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed

  8. Recent photometry of selected symbiotic stars

    Science.gov (United States)

    Vrašťák, M.

    2018-04-01

    A new multicolour (BVRcIc) photometric observations of symbiotic stars UV Aur, YY Her, V443 Her, V1016 Cyg, PU Vul, V407 Cyg, V471 Per and suspected symbiotic stars ZZ CMi, NQ Gem, V934 Her, V335 Vul, V627 Cas is presented. The data were obtained from 2016 October to 2018 January by the metod of classical CCD photometry. The monitoring program is still running, so on this paper partial light curves are presented.

  9. Models for symbiotic stars in the light of the data

    International Nuclear Information System (INIS)

    Friedjung, M.

    1982-01-01

    Different single and binary models of symbiotic stars are examined. Single star models encounter a number of problems, and binary models are probable. There are however difficulties in the interpretation of radial velocities. Accretion disks play a role in some cases, but winds especially from the cool component must be taken into account in realistic models. There is some evidence of excess heating of the outer layers of the cool component. Outbursts may be related to sudden changes in the characteristics of the cool star wind. (Auth.)

  10. Discovery of optical flickering from the symbiotic star EF Aquilae

    Science.gov (United States)

    Zamanov, R. K.; Boeva, S.; Nikolov, Y. M.; Petrov, B.; Bachev, R.; Latev, G. Y.; Popov, V. A.; Stoyanov, K. A.; Bode, M. F.; Martí, J.; Tomov, T.; Antonova, A.

    2017-07-01

    We report optical CCD photometry of the recently identified symbiotic star EF Aql. Our observations in Johnson V and B bands clearly show the presence of stochastic light variations with an amplitude of about 0.2 mag on a time scale of minutes. The observations point toward a white dwarf (WD) as the hot component in the system. It is the 11-th object among more than 200 symbiotic stars known with detected optical flickering. Estimates of the mass accretion rate onto the WD and the mass loss rate in the wind of the Mira secondary star lead to the conclusion that less than 1 per cent of the wind is captured by the WD. Eight further candidates for the detection of flickering in similar systems are suggested.

  11. The collective radio properties of symbiotic stars

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Taylor, A.R.

    1990-01-01

    Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs

  12. Determination of the term symbiotic star

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1982-01-01

    The author proposes the following criteria for the use of the term symbiotic star: The symbiotic stars must have a spectrum which simultaneously present the cool star features (TiO bands or G-band, etc.), and the emission lines of HeII and/or [OIII], and/or [NeIII], and lines which require even higher ionization level. He also proposes a classification of symbiotic stars according to different types of observations: according to 1) UBV photometry, 2) infrared observations, 3) radio observations, 4) absorption spectrum, 5) emission spectrum. The limted amount of ultraviolet and X-ray observations prevents any classification. The author thinks that the groups are not independent, one type showing variations belonging to another group. (Auth./C.F.)

  13. X-ray observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1981-11-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone.

  14. X-ray observations of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1981-01-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone. (author)

  15. AGB stellar evolution and symbiotic stars

    International Nuclear Information System (INIS)

    Schild, H.

    1989-01-01

    Published data on the mass loss rates and periods of Miras and OH/IR stars have been compiled. There is a good correlation between mass loss rate and period and a smooth transition from Miras to OH/IR sources. At periods below 600 d. the mass loss increases exponentially but at longer periods it remains constant. As a Mira evolves from short to longer periods, its mass loss rate increases dramatically. Phenomenologically, the object evolves from a classical Mira into a variable OH/IR source. Symbiotic stars cluster in the transition zone where Miras transform into OH/IR stars and mass loss increase is at its steepest. The red star in these symbiotic systems is in the same evolutionary status as short periodic OH/IR stars. (author)

  16. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  17. Ultraviolet properties of the symbiotic stars

    International Nuclear Information System (INIS)

    Slovak, M.H.; Lambert, D.L.

    1982-01-01

    This article is an interim report on a survey of the symbiotic stars with the IUE satellite, both at low resolution and, for AG Pegasi and CH Cygni, at high resolution. The UV spectra, including both the emission lines and the continua, are presented and discussed. Since it is somewhat premature to draw general conclusions, the emphasis is biased towards a discussion of individual stars. AG Pegasi is used as an illustrative, albeit atypical, example. (Auth./C.F.)

  18. Origin and evolutionary stage of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Tutukov, A V; Yungel' son, L R [AN SSSR, Moscow. Astronomicheskij Sovet

    1976-08-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter at the rate of 10/sup -5/-10/sup -6/ M/yr over the period of 10/sup 5/-10/sup 6/ years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the red giant stage,, and also of closer pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10/sup -6/-10/sup -9/ M/yr, and some consequencies of accretion on a C-O dwarf have been considered.

  19. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  20. Symbiotic and VV Cephei stars in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Walker, A.R.

    1983-01-01

    Three symbiotic stars, including a carbon symbiotic star, are identified in the Small Magellanic Cloud, thus two out of five known symbiotic stars in the Magellanic Clouds have C rather than M components, compared to our own Galaxy where the proportion is much lower. This supports the assertion that the symbiotic phenomenon follows the higher C:M star ratio in the Magellanic Clouds and is not a property of M binaries alone. Two other emission-line stars are discussed; one is the only known VV Cephei star in the SMC while the second is a composite Be + K supergiant system. (author)

  1. Properties of symbiotic stars from studies in the optical region

    International Nuclear Information System (INIS)

    Ciatti, F.

    1982-01-01

    The author uses observations of symbiotic stars in the optical region to discuss the following aspects: definition, photometric and spectroscopic evolution, the three-component model, evidence for the binary nature, spectroscopic properties and anomalies, single-star interpretations, the ''very slow novae'' and BQ// stars and a comparison of symbiotic stars with other classes. (C.F.)

  2. On the nature of the symbiotic star BF Cygni

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S.J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star. 84 refs

  3. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  4. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    Science.gov (United States)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  5. Symbiotic star UV emission and theoretical models

    International Nuclear Information System (INIS)

    Kafatos, M.

    1982-01-01

    Observations of symbiotic stars in the far UV have provided important information on the nature of these objects. The canonical spectrum of a symbiotic star, e.g. RW Hya, Z And, AG Peg, is dominated by strong allowed and semiforbidden lines of a variety of at least twice ionized elements. Weaker emission from neutral and singly ionized species is also present. A continuum may or may not be present in the 1200 - 2000 A range but is generally present in the range 2000 - 3200 A range. The suspected hot subdwarf continuum is seen in some cases in the range 1200 - 2000 A (RW Hya, AG Peg, SY Mus). The presence of an accretion disk is difficult to demonstrate and to this date the best candidate for accretion to a main sequence star remains CI Cyg. A number of equations have been derived by the author that can yield the accretion parameters from the observable quantities. Boundary layer temperatures approximately 10 5 K and accretion rates approximately > 10 -5 solar masses/yr are required for accreting main sequence companions. To this date, though, most of the symbiotics may only require the presence of a approximately 10 5 K hot subdwarf. (Auth.)

  6. A DISCUSSION ON THE CLASSIFICATION AND EVOLUTION OF SYMBIOTIC STARS

    NARCIS (Netherlands)

    SEAL, P

    1990-01-01

    A H-R diagram is drawn from the bolometric luminosities and effective temperatures of 24 symbiotic stars and compared with theoretical evolutionary tracks of Population I metal-rich stars. It is shown that the S-type and D-type symbiotic stars are classified very clearly in course of their evolution

  7. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  8. Photographic infrared spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.; Houziaux, L.

    1982-01-01

    The authors have observed six symbiotic stars during the period 1962-1977 with a grating spectrograph attached to the newtonian focus of the 120-cm telescope at Observatoire de Haute Provence. The reciprocal dispersion is 230 A.mm -1 and the region 5800 to 8800 A has been covered using hypersensitized IN plates. The minimum equivalent width for an emission line to be seen is about 0.5 A. The spectra are displayed and the main spectral characteristics are reviewed briefly. (Auth.)

  9. Observations of the symbiotic star AS 296

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.

    1990-01-01

    Observations of the symbiotic star AS 296 are presented. The spectra, obtained during the quiescent phase, are typical of this kind of object. They show strong molecular bands and some forbidden emission lines, including faint forbidden Fe VII and Ca V lines. Measured intensities of the emission lines are given. Some of the physical parameters of the object are derived. Recently this object has been observed in outburst by Heathcote (1988); a copy of one such spectrum is presented with a brief qualitative description of its main features. 28 refs

  10. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  11. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  12. The first symbiotic stars from the LAMOST survey

    International Nuclear Information System (INIS)

    Li, Jiao; Chen, Xue-Fei; Han, Zhan-Wen; Mikołajewska, Joanna; Luo, A-Li; Wu, Yue; Yang, Ming; Rebassa-Mansergas, Alberto; Hou, Yong-Hui; Wang, Yue-Fei; Zhang, Yong

    2015-01-01

    Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star. (paper)

  13. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  14. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O.; Pereira, C. B. [Observatório Nacional, Rua José Cristino 77, CEP 20921-400, São Cristóvão, Rio de Janeiro (Brazil); Miranda, L. F. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, E-36310 Vigo (Spain)

    2013-11-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in

  15. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    International Nuclear Information System (INIS)

    Baella, N. O.; Pereira, C. B.; Miranda, L. F.

    2013-01-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K s ) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K s ) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10 8-9 cm –3 ), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in identifying new S

  16. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  17. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    International Nuclear Information System (INIS)

    Chen, X.; Han, Z.; Tout, C. A.

    2011-01-01

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr -1 for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  18. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  19. Spectroscopic observations of the symbiotic star AG Draconis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S E; Bopp, B W [Toledo Univ., OH (USA)

    1981-06-01

    Spectroscopic observations, covering the lambdalambda 3500-7000 region, of the symbiotic star AG Draconis are reported. The Balmer and He I line profiles were found to show pronounced blueward asymmetries. Changes in the line profiles of the Balmer lines were observed, and found to be well correlated with the 554-day photometric period of Meinunger, with a second, blueward component being visible in the Balmer emissions at photometric minimum. The weak, blueshifted component in the Balmer emission lines is explained in terms of a stellar wind from the hot secondary at of the order of 60 kms s/sup -1/. The behaviour of the broad emission feature at lambda6380 has been investigated. This feature was found to originate from an ion with an ionization potential in the range 77-101 eV. Various models for AG Dra are discussed.

  20. Late-type components of slow novae and symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia); Royal Observatory, Edinburgh (UK))

    1980-08-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 ..mu..m spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section.

  1. A search for OH emission from symbiotic stars

    International Nuclear Information System (INIS)

    Norris, R.P.; Haynes, R.F.; Wright, A.E.

    1984-01-01

    A search was made for OH maser emission from a sample of 16 symbiotic stars. This sample was selected on the basis of infrared optical depth and variability, so that the stars within it have circumstellar shells similar to those seen in OH/IR and OH/Mira stars. There were no significant detections, except for one unassociated background source, and it is concluded that the presence of a hot binary companion inhibits any possible OH maser action

  2. The Search for Symbiotic Stars in the IPHAS Survey

    Directory of Open Access Journals (Sweden)

    Corradi R. L. M.

    2012-06-01

    Full Text Available We have started a project to search for symbiotic stars using the data from IPHAS, the Hα survey of the Northern Galactic plane. Candidates are selected from the IPHAS photometric catalogue based on their colors, combined with the information in the near-infrared from 2MASS. So far, follow-up spectroscopy allowed us to discover 14 new symbiotic stars, compared to the 10 systems previously known in the IPHAS survey area. Their general characteristics and the most notable cases are briefly presented. the spectroscopic campaign also allowed us to refine the selection criteria for symbiotic stars in IPHAS. Perspectives, which include the extension of the survey in the Southern Galactic plane and a portion of the bulge (VPHAS+, are discussed.

  3. Profile disparity of Raman-scattered O VI in symbiotic stars

    International Nuclear Information System (INIS)

    Lee, Hee-Won

    2016-01-01

    Symbiotic stars are wide binary systems consisting of a hot compact star (usually a white dwarf) and a mass losing giant. Symbiotic activities are believed to occur through gravitational capture of a fraction of the slow stellar wind from the giant. Raman scattered features of O VI resonance doublet 1032 and 1038 appearing at around 6825 Å and 7082 Å are a unique spectroscopic diagnostic tool to probe the mass transfer process in symbiotic stars. The Raman O VI features often exhibit multiple peak structures and in many cases the blue peak of 7082 features is relatively more suppressed than that of 6825 features. We propose that the disparity of the two profiles is attributed to the local variation of optical depths of O VI, implying that the accretion flow is convergent in the red emission region and divergent in the blue emission region. It is argued in this presentation that Raman scattering by atomic hydrogen is a natural mirror to provide an edge-on view of the accretion disk and a lateral view of the bipolar outflow in symbiotic stars. We discuss the spectropolarimetric implications of this interpretation. (paper)

  4. Formation of broad Balmer wings in symbiotic stars

    International Nuclear Information System (INIS)

    Chang, Seok-Jun; Heo, Jeong-Eun; Hong, Chae-Lin; Lee, Hee-Won

    2016-01-01

    Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. In addition to many prominent emission lines symbiotic stars exhibit Raman scattered O VI features at 6825 and 7088 Å. Another notable feature present in the spectra of many symbiotics is the broad wings around Balmer lines. Astrophysical mechanisms that can produce broad wings include Thomson scattering by free electrons and Raman scattering of Ly,β and higher series by neutral hydrogen. In this poster presentation we produce broad wings around Hα and H,β adopting a Monte Carlo techinique in order to make a quantitative comparison of these two mechanisms. Thomson wings are characterized by the exponential cutoff given by the termal width whereas the Raman wings are dependent on the column density and continuum shape in the far UV region. A brief discussion is provided. (paper)

  5. Optical flickering of the symbiotic star CH Cyg

    Science.gov (United States)

    Stoyanov, K. A.; Martí, J.; Zamanov, R.; Dimitrov, V. V.; Kurtenkov, A.; Sánchez-Ayaso, E.; Bujalance-Fernández, I.; Latev, G. Y.; Nikolov, G.

    2018-02-01

    Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.

  6. On origin and evolutionary stage of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1976-01-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter with the rate of 10 -5 -10 -6 M/yr over the period of 10 5 -10 6 years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the stage of red giant, and also of more close pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10 -6 -10 -9 M/yr and some consequencies of accretion on a C-O dwarf have been considered

  7. SYMBIOTIC STARS IN X-RAYS. III. SUZAKU OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nuñez, N. E. [Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE-UNSJ, CONICET), Av. España (S) 1512, J5402DSP, San Juan (Argentina); Nelson, T. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN, 55455 (United States); Mukai, K. [CRESST and X-ray Astrophysics Laboratory, (NASA/GSFC), Greenbelt, MD 20 771, USA. (United States); Sokoloski, J. L. [Columbia Astrophysics Lab, 550 W120th St., 1027 Pupin Hall, MC 5247 Columbia University, 10027, New York (United States); Luna, G. J. M., E-mail: nnunez@icate-conicet.gov.ar [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Av. Inte. Güiraldes 2620, C1428ZAA, Buenos Aires (Argentina)

    2016-06-10

    We describe the X-ray emission as observed by Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA , and Swift . We find that the X-ray spectra of all five sources can be adequately fit with absorbed optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT > 3 keV for all five targets were greater than expected for colliding winds. Based on these high temperatures as well as previous measurements of UV variability and UV luminosity and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small optically thin portion of the emission from these boundary layers. Given the time between previous observations and these observations, we find that the intrinsic X-ray flux and the intervening absorbing column can vary by factors of three or more on a timescale of years. However, the location of the absorber and the relationship between changes in accretion rate and absorption are still elusive.

  8. SYMBIOTIC STARS IN X-RAYS. III. SUZAKU OBSERVATIONS

    International Nuclear Information System (INIS)

    Nuñez, N. E.; Nelson, T.; Mukai, K.; Sokoloski, J. L.; Luna, G. J. M.

    2016-01-01

    We describe the X-ray emission as observed by Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA , and Swift . We find that the X-ray spectra of all five sources can be adequately fit with absorbed optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT > 3 keV for all five targets were greater than expected for colliding winds. Based on these high temperatures as well as previous measurements of UV variability and UV luminosity and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small optically thin portion of the emission from these boundary layers. Given the time between previous observations and these observations, we find that the intrinsic X-ray flux and the intervening absorbing column can vary by factors of three or more on a timescale of years. However, the location of the absorber and the relationship between changes in accretion rate and absorption are still elusive.

  9. Radio molecular maser line study of symbiotic stars

    International Nuclear Information System (INIS)

    Cohen, N.L.; Ghigo, F.D.

    1980-01-01

    A sample of symbiotic stars has been searched for maser emission from the 1665- and 1667-MHz OH mainlines, the 22-GHz H 2 O line, and the 43-GHz SiO line. R Aqr remains the sole symbiotic for which maser emission has been detected. Its SiO spectrum reveals a pedestal of emission with a narrow superposed peak at V/sub LSR/ -26.4 +- 0.7 km/s. The line's existence and the pedestal feature are both characteristic of SiO lines found in late-type variables by Snyder et al. [Astrophys. J. 224, 512 (1978)]. For the other symbiotic stars, it is possible that conditions favorable for maser emission have been suppressed by the presence of a hot companion. Alternatively our findings may argue against the presence of late-type variables in symbiotic stars. In either case, R Aqr seems to be in a class by itself. We cannot confirm the suggestion that R Aqr is a binary, since the spectral feature has not shifted noticeably in the two years since the observations by Lepine, LeSqueren, and Scalise [Astrophys. J. 225, 869 (1978)]. However, we point out that monitoring the pedestal emission over a number of years is the least ambiguous way to discern any velocity shift that might result from orbital motion

  10. Symbiotic binaries

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Iijima, T.

    1988-01-01

    The symbiotic star BF Cyg shows periodic variations in its spectrum. [O3] line intensity changes in antiphase with the blue continuum, H-Balmer and He1 emission line intensity. These variations are interpreted in terms of a hot star moving on an eccentric orbit and ionizing a part of an M-type giant wind. 20 refs., 2 figs., 1 tab. (author)

  11. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    Science.gov (United States)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-04-01

    In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  12. Reconstructing Historical Light Curves of Symbiotic Stars and Novae

    Directory of Open Access Journals (Sweden)

    Jurdana-Šepić R.

    2012-06-01

    Full Text Available We reconstructed photometric histories of symbiotic stars and novae from direct inspection and measurement of photographic plates preserved at historical archives. We have completed the digging of the rich Asiago archive, and have started working on the Harvard plate stack, while other plate collections should be added soon. For homogeneity, we use the same UBV RCIC photometric comparison sequences used in current CCD observations. This data harvest has permitted the discovery of past undetected outbursts and secular trends, or to derive previously unknown orbital periods and recurrence times, which are essential to constrain the nature of these capricious and variegated active binaries.

  13. A multi-frequency study of symbiotic stars: Pt. 1

    International Nuclear Information System (INIS)

    Ivison, R.J.; Bode, M.F.; Roberts, J.A.

    1991-01-01

    The relationship between optical line flux and 5 GHz radio flux is investigated for a sample of 17 northern sky symbiotic stars. Data were obtained near-simultaneously with the Manchester Echelle Spectrograph mounted on the Isaac Newton Telescope, La Palma and the Broad Band Interferometer at Jodrell Bank. Colour excesses, calculated from Balmer hydrogen line fluxes assuming Case B recombination ratios, are compared with other reddening estimates and also combined with extinction maps to provide improved distance estimates. Optical line fluxes are used in combination with radio fluxes to estimate physical parameters of these objects, including mass-loss rates. (author)

  14. Unidentified bands lambda lambda 6830, 7088 in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1980-01-01

    About 60 stars are known which show broad emission bands centred at wavelengths of 6830 and 7088 A. The stars are all classified as symbiotic, since they combine high-excitation emission and M-type absorption spectra. From the behaviour of the bands in the evolution of slow novae as they approach the symbiotic phase, and from the occurrence of the bands in stars of different excitation, it is concluded that the ions responsible have ionization potentials near 100 eV. The similarity of behaviour and profile of the two suggests that both arise in the same species. No suitable identification appears possible at this time, because of the lack of data on highly ionized species. Arguments are presented which narrow the range of possibilities, the most notable argument being the absence of O VI emission. It is suggested that Fe VII or Fe VI may be responsible. In particular, it is recommended that transitions from the z/sup 3/P/sup 0/ and z/sup 1/F/sup 0/ levels of Fe VII be examined in detail. The differing, and time-varying profiles of the 6830 and 7088 bands in the stars observed are best explained in terms of velocity broadening. Velocities in excess of 1000 km s/sup -1/ are present. Rotation is a more credible form of the mass motion than expansion, because of the tendency to double profiles in these bands. If rotation is responsible, these velocities imply that the objects central to the emission nebulae are more compact than main sequence stars.

  15. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  16. Wind accretion and formation of disk structures in symbiotic binary systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  17. SEARCHING FOR NEW YELLOW SYMBIOTIC STARS: POSITIVE IDENTIFICATION OF StHα63

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Pereira, C. B.; Alvarez-Candal, A. [Observatório Nacional/MCTI, Rua Gen. José Cristino, 77, 20921-400, Rio de Janeiro (Brazil); Miranda, L. F., E-mail: nobar.baella@gmail.com, E-mail: claudio@on.br, E-mail: alvarez@on.br, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía- CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2016-04-15

    Yellow symbiotic stars are useful targets for probing whether mass transfer has happened in their binary systems. However, the number of known yellow symbiotic stars is very scarce. We report spectroscopic observations of five candidate yellow symbiotic stars that were selected by their positions in the 2MASS (J − H) versus (H − K{sub s}) diagram and which were included in some emission-line catalogs. Among the five candidates, only StHα63 is identified as a new yellow symbiotic star because of its spectrum and its position in the [TiO]{sub 1}–[TiO]{sub 2} diagram, which indicates a K4–K6 spectral type. In addition, the derived electron density (∼10{sup 8.4} cm{sup −3}) and several emission-line intensity ratios provide further support for that classification. The other four candidates are rejected as symbiotic stars because three of them actually do not show emission lines and the fourth one only Balmer emission lines. We also found that the WISE W3–W4 index clearly separates normal K-giants from yellow symbiotic stars and therefore can be used as an additional tool for selecting candidate yellow symbiotic stars.

  18. Spectroscopic confirmation of the first symbiotic star in a globular cluster

    Science.gov (United States)

    Zurek, David

    2013-10-01

    We have recently discovered an 18-minute period in the ultraviolet of a star in the globular cluster NGC 1851. In the redder optical bands, this star is red and bright, while it shows a clear UV excess relative to other stars at similar positions in the HR diagram. The system is most likely a symbiotic binary, composed of a cool evolved star and a white dwarf, with an 18 minute spin period, accreting the cool star's wind. The binary would be the first such object ever found in a globular cluster, and only the third in the Galaxy where the white dwarf spin period is measured. The only viable alternatives are that the two components are a chance superposition - something with a nontrivial chance of happening in a globular cluster core. In such a case, the 18 minute period would most likely be the spin period of a magnetic white dwarf in an intermediate polar cataclysmic variable {this would be the first confirmed magnetic CV in a globular cluster}, or the orbital period of a double-degenerate AM CVn binary. Each of these three possibilities show unique {and very different} emission line spectra in the blue wavelength range. Two orbits of HST with STIS/G430L will produce a spectrum of sufficient signal-to-noise to distinguish between these 3 scenarios. The result will be an important constraint on N-body models of globular clusters.

  19. SIMULTANEOUS OBSERVATIONS OF SiO AND H2O MASERS TOWARD SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Cho, Se-Hyung; Kim, Jaeheon

    2010-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, J = 1-0, 29 SiO v = 0, J = 1-0, and H 2 O 6 16 -5 23 maser lines performed with the KVN Yonsei 21 m radio telescope from 2009 November to 2010 January. We searched for these masers in 47 symbiotic stars and detected maser emission from 21 stars, giving the first time detection from 19 stars. Both SiO and H 2 O masers were detected from seven stars of which six were D-type symbiotic stars and one was an S-type star, WRAY 15-1470. In the SiO maser emission, the 28 SiO v = 1 maser was detected from 10 stars, while the v = 2 maser was detected from 15 stars. In particular, the 28 SiO v = 2 maser emission without the v = 1 maser detection was detected from nine stars with a detection rate of 60%, which is much higher than that of isolated Miras/red giants. The 29 SiO v = 0 maser emission was also detected from two stars, H 2-38 and BF Cyg, together with the 28 SiO v = 2 maser. We conclude that these different observational results between isolated Miras/red giants and symbiotic stars may be related with the presence of hot companions in a symbiotic binary system.

  20. Evolution of viscous discs. 3. Giant discs in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [Oxford Univ. (UK). Dept. of Astrophysics; Pringle, J E [Cambridge Univ. (UK). Inst. of Astronomy

    1982-10-01

    The structure of time-dependent accretion discs in giant binaries with separation of the order of 10/sup 13/ cm is examined. Radiative ..cap alpha..-viscosity discs with ..cap alpha.. of order unity accreting on to main-sequence stars at accretion rates which generate luminosities greater than a giant companion decay on time-scales of the same order as the binary period, unlike those in dwarf nova binaries which decay on time-scales 100 times longer than the binary period. This results from the lower gravitational potential and consequent larger disc thickness (relative to the radius) of luminous 'giant' discs accreting at high accretion rates. The eruptions of the symbiotic binary C I Cygni are modelled by an ..cap alpha.. = 1 disc with outer radius 8.5 x 10/sup 12/ cm and a sequence of five mass-transfer bursts at rates between 1.5 x 10/sup 21/ and 4 x 10/sup 22/g s/sup -1/.

  1. The infrared variability and nature of symbiotic stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Catchpole, R.M.; Whitelock, P.A.; Carter, B.S.; Roberts, G.

    1983-01-01

    Infrared variability and spectra show that the symbiotic systems (He 2-106, He 2-38, He 2-34) contain Mira variable components. The first two also show a longer term infrared variability. It is suggested that this is due to variable dust obscuration (as in R Aqr). The phenomenon is then too frequent for the dust clouds to be confined to the orbital planes of the binary systems. Seven Miras in symbiotics have known periods which range from 370 to 580 days, suggesting a greater frequency of long-period Miras in symbiotics than in the general field. Symbiotic Miras have dust excesses with colour temperatures near 1000 K. Observations of four other symbiotic systems (Pe 2-3, He 2-87, H 2-5, AG Peg) are consistent with their containing non-variable or low amplitude M-type components. (author)

  2. A new carbon-symbiotic star in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Cowley, A.P.; Hartwick, F.D.A.

    1989-01-01

    A new carbon-symbiotic star, designated as CH-95, was discovered during a study of the kinematics of CH stars in the LMC. The spectrum of CH-95 is presented. Some of the strong emission lines found include H, He I, He II, forbidden O III, and the broad C III/N III blend at 4640 A, often seen in compact systems such as X-ray binaries. A comparison was made with other C-star symbiotics in the LMC, SMC, and Draco. 12 refs

  3. IUE observations of the symbiotic star CH Cygni during an active phase

    International Nuclear Information System (INIS)

    Hack, M.

    1979-01-01

    The observations of CH Cygni reported here were made to determine whether a symbiotic star is a binary system composed of an M6 giant and a hot subdwarf, or whether it is a cooled star surrounded by a thick corona. (author)

  4. IUE observations of the symbiotic star CH Cygni during an active phase

    Energy Technology Data Exchange (ETDEWEB)

    Hack, M [Astronomical Observatory, Trieste (Italy)

    1979-05-24

    The observations of CH Cygni reported here were made to determine whether a symbiotic star is a binary system composed of an M6 giant and a hot subdwarf, or whether it is a cooled star surrounded by a thick corona.

  5. On the late-type components of slow novae and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1980-01-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 μm spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section. (author)

  6. Detection of new southern SiO maser sources associated with Mira and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.; Hall, P.J.; Norris, R.P.; Troup, E.R.; Wark, R.M.; Wright, A.E.

    1989-01-01

    In 1987 July the Parkes radio telescope was used to search for 43.12 GHz SiO maser emission from southern late-type stars. We report the discovery of such emission from 12 Mira-like systems, including the symbiotic star H1-36, and discuss the implications of our data for the symbiotic stars. We identify several M-type Mira variables with unusually low SiO/infrared flux ratios, but with present data are not able to discredit the correlation between the two parameters. In addition, we present line profiles for the only other known symbiotic maser, R Aqr, at unprecedented signal-to-noise ratio; these profiles show linearly polarized emission from several components of the source. (author)

  7. The X-Ray Evolution of the Symbiotic Star V407 Cyg During its 2010 Outburst

    Directory of Open Access Journals (Sweden)

    Mukai K.

    2012-06-01

    Full Text Available We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V407 Cyg. the Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. the Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically thin component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simpe model of the blast wave - wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be larger than previously suggested and the mass-loss rate of the Mira is likely to be relatively low.

  8. The X-Ray Evolution of the Symbiotic Star V407 Cygni During Its 2010 Outburst

    Science.gov (United States)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.

    2011-01-01

    We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.

  9. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  10. Infrared spectroscopy of symbiotic stars and the nature of their cool components

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Gallagher, J.S.

    1983-01-01

    We present low-resolution 2--4 μm spectroscopy of a small sample of symbiotic stars, in an effort to determine if the giant components of these systems fill their Roche Lobes. A [2.35]-[2.2] color index measures the strength of the CO absorption band and provides a useful discriminant of luminosity class among single M-type giants which separates normal giants from supergiants at the same spectral type. Although interpretation of symbiotic spectra is complicated somewhat by their binary nature, our results suggest the late-type components in these systems range from normal red giants to bright asymptotic giants. The possible presence of non-Roche Lobe filling, low-luminosity giants in some symbiotic stars cannot be understood within the framework of existing theories for these interesting objects, and thus may provide important information for understanding mass transfer in binary systems

  11. St 2-22 - Another Symbiotic Star with High-Velocity Bipolar Jets

    Science.gov (United States)

    Tomov, T.; Zamanov, R.; Gałan, C.; Pietrukowicz, P.

    2017-09-01

    We report the detection of high-velocity components in the wings of Hα emission line in spectra of symbiotic binary star St 2-22 obtained in 2005. This finding encouraged us to start the present investigation in order to show that this poorly-studied object is a jet-producing system. We have used high-resolution optical and low-resolution near-infrared spectra, as well as available optical and infrared photometry, to evaluate some physical parameters of the St 2-22 components and characteristics of the jets. We confirm that St 2-22 is a S-type symbiotic star. Our results demonstrate that an unnoticed outburst, similar to those in classical symbiotic systems, occurred in the first half of 2005. During the outburst, collimated bipolar jets were ejected by the hot component of St 2-22 with an average velocity of about 1700 km/s.

  12. Details of the Classification of Symbiotic Stars: The Case of the Symbiotic Nova AG Peg

    Directory of Open Access Journals (Sweden)

    Tatarnikova A. A.

    2016-09-01

    Full Text Available We analyze archival and modern spectroscopic and photometric observations of the oldest known symbiotic nova AG Peg. Its new outburst (which began in 2015 June differs greatly from the first one (which occurred in the mid-1850s. Fast photometric evolution of the new outburst is similar to that of Z And-type outbursts. However, the SED of AG Peg during the 2015 outburst, as well as during the quiescence, can be fitted by a standard three-component model (cool component + hot component + nebula, which is not common for an Z And-type outburst.

  13. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    Science.gov (United States)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  14. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VII. BINARY ORBIT AND LONG SECONDARY PERIOD VARIABILITY OF CH CYGNI

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2009-01-01

    High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 ± 0.1 yr, is shown to result from a binary orbit with a 0.7 M sun white dwarf and 2 M sun M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Wood's sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode nonradial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs, a radiative region is required near the photosphere of pulsating asymptotic giant branch stars.

  15. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    Energy Technology Data Exchange (ETDEWEB)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il [The Wise Observatory and the School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.

  16. Far-infrared data for symbiotic stars. II. The IRAS survey observations

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Fernandez-Castro, T.; Stencel, R.E.

    1988-01-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell. 42 references

  17. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    International Nuclear Information System (INIS)

    Leibowitz, Elia M.; Formiggini, Liliana

    2015-01-01

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems

  18. H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi

    Science.gov (United States)

    Lee, Seong-Jae; Hyung, Siek

    2018-04-01

    The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.

  19. Symbiotic Novae

    OpenAIRE

    Mikolajewska, Joanna

    2010-01-01

    The symbiotic novae are thermonuclear novae in symbiotic binary systems -- interacting binaries with evolved red giant donors, and the longest orbital periods. This paper aims at presenting physical characteristics of these objects and discussing their place among the whole family of symbiotic stars.

  20. Su Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    Science.gov (United States)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  1. A mini atlas of K-band spectra of southern symbiotic stars

    Czech Academy of Sciences Publication Activity Database

    Marchiano, P.E.; Cidale, L.S.; Arias, M.L.; Borges Fernandes, M.; Kraus, Michaela

    2015-01-01

    Roč. 57, č. 1 (2015), s. 87-89 E-ISSN 1669-9521 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk(CZ) 7AMB14AR017 Institutional support: RVO:67985815 Keywords : binaries * symbiotic * stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www. astronomia argentina.org.ar/b57/2015BAAA...57...87M.pdf

  2. Radiation of the symbiotic star CH Cygni in the period 1982 -July 1984

    International Nuclear Information System (INIS)

    Skopal, A.

    1987-01-01

    Spectroscopic behavior is described of the symbiotic star CH Cygni in the period of the activity 1982 - July 1984. Observed variations of the intensities of the emission lines and absorption shell lines are discussed. An analysis of these lines supports the idea that a few different regions of radiation exist in CH Cygni. Drop in brightness and development of jets are interpreted as the consequence of an accretion disk evolution. (author). 4 figs., 10 refs

  3. Observation of Bowen fluorescence and other phenomena in five symbiotic stars

    International Nuclear Information System (INIS)

    Wallerstein, G.; Garnavich, P.M.; Schachter, J.; Oke, J.B.

    1991-01-01

    Wavelength measurements and line identifications in the 3200-3600 A regions are presented for the symbiotic stars AG Dra, HM Sge, V1016 Cyg, V1329 Cyg, Z And, and R Aqr. The O III lines excited via Bowen's mechanism are analyzed in detail, and a shell model yielding reasonable shell thicknesses and electron densities is described. The Ne/Fe ratio is derived for five of the systems, and spectra in the blue region are briefly described. 42 refs

  4. Symbiotic star AS 296: optical and infrared photometry in 1982-1983

    International Nuclear Information System (INIS)

    Taranova, O.G.; Yudin, B.F.

    1985-01-01

    Photometric UBVRJHK observations of the symbiotic star AS 296 are presented. No light valiations exceeding 0sup(m).2 are found. The cool star is classified as M5III. The color excegss is E(B-V)=sup(m).43+-0sup(m).04. Analysis of the photometric and spectral observations has shown that AS 296 is similar to V1016 Cyg at the moment of low brightness of the hot source. The luminosity of the hot component of AS 296 amounts up to approximately 200 Lsub(Sun) if provided its distance to be 2.2 kpc

  5. Symbiotic stars: spectrophotometry at 3-4 and 8-13 μm

    International Nuclear Information System (INIS)

    Roche, P.F.; Aitken, D.K.

    1983-01-01

    Infrared spectrophotometry of 20 symbiotic stars, mostly of dust-rich variety, is presented. HDE 330036 is unique in showing an emission feature at 11.3 μm. The remainder combine a hot grey component and/or optically thin silicate emission. A model in which the grey component is due to optically thick silicate dust is not consistent with the spectra. It is proposed instead that iron-based grains, expected to form in the ejecta of cool stars, are heated by the ultraviolet radiation field of the hot companion. (author)

  6. Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae

    Science.gov (United States)

    Calabrò, Emanuele

    2014-03-01

    We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.

  7. DETECTION OF X-RAYS FROM THE SYMBIOTIC STAR V1329 Cyg

    International Nuclear Information System (INIS)

    Stute, Matthias; Luna, Gerardo J. M.; Sokoloski, Jennifer L.

    2011-01-01

    We report the detection of X-ray emission from the symbiotic star V1329 Cyg with XMM-Newton. The spectrum from the EPIC pn, MOS1, and MOS2 instruments consists of a two-temperature plasma with k T 1 = 0.11 +0.02 -0.02 keV and k T 2 = 0.93 +0.12 -0.14 keV. Unlike the vast majority of symbiotic stars detected in X-rays, the soft component of the spectrum seems to be absorbed only by interstellar material. The shock velocities corresponding to the observed temperatures are about 300 km s -1 and about 900 km s -1 . We did not find either periodic or aperiodic X-ray variability, with upper limits on the amplitudes of such variations being 46% and 16% (rms), respectively. We also did not find any ultraviolet variability with an rms amplitude of more than approximately 1%. The derived velocities and the unabsorbed nature of the soft component of the X-ray spectrum suggest that some portion of the high energy emission could originate in shocks within a jet and beyond the symbiotic nebula. The lower velocity is consistent with the expansion velocity of the extended structure present in Hubble Space Telescope observations. The higher velocity could be associated with an internal shock at the base of the jet or with shocks in the accretion region.

  8. Winds in cataclysmic variable stars

    International Nuclear Information System (INIS)

    Cordova, F.A.; Ladd, E.F.; Mason, K.O.

    1984-01-01

    Ultraviolet spectrophotometry of two dwarf novae, CN Ori and RX And, at various phases of their outburst cycles confirms that the far uv flux increases dramatically about 1-2 days after the optical outburst begins. At this time the uv spectral line profiles indicate the presence of a high velocity wind. The detectability of the wind depends more on the steepness of the spectrum, and thus on the flux in the extreme ultraviolet, than on the absolute value of the far uv luminosity. The uv continuum during outburst consists of (at least) two components, the most luminous of which is located behind the wind and is completely absorbed by the wind at the line frequencies. Several pieces of evidence suggest that the uv emission lines that are observed in many cataclysmic variables during quiescence have a different location in the binary than the wind, and are affected very little by the outburst

  9. Anomalously high intercombination line ratios in symbiotic stars; extreme Bowen pumping?

    International Nuclear Information System (INIS)

    Kastner, S.O.; Bhatia, A.K.; Feibelman, W.A.

    1989-01-01

    We assemble International Ultraviolet Explorer observations of the ratio of the O III intercombination lines near 1660 A, showing that the observed ratios in symbiotic stars are significantly higher than the theoretically predicted optically thin limit of 2.5. The presence of an enhancing physical process is thereby indicated. It is suggested that Bowen pumping of the lower level of the 1666.2 A line in an 'external saturation' limit, coupled with appreciable optical depth, could logically explain the high ratios. Some tentative evidence for this is presented and the relevance of far-infrared observations of the O III 51.8 and 88.3 μm lines in symbiotic sources is emphasized. (author)

  10. Winds of AGB stars: does size matter?

    International Nuclear Information System (INIS)

    Hoefner, S

    2008-01-01

    Asymptotic giant branch (AGB) stars are showing clear signs of significant mass loss through cool stellar winds. These outflows are attributed to the combined effects of pulsation-induced shocks and radiation pressure on dust grains formed in the outer atmospheric layers. This paper gives an overview of the current status of radiation-hydrodynamical modelling of these processes, and presents a toy model that allows analysis of certain features of detailed models, such as the influence of grain size dependent opacities and basic differences in winds of C- and M-type AGB stars.

  11. Infrared spectroscopy of the remnant of Nova Sco 2014: a symbiotic star with too little circumstellar matter to decelerate the ejecta

    Science.gov (United States)

    Munari, U.; Banerjee, D. P. K.

    2018-03-01

    Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.

  12. Interacting Winds in Eclipsing Symbiotic Systems – The Case Study ...

    Indian Academy of Sciences (India)

    produced by the collision of two stellar winds (Vogel 1991, 1993; Girard & Willson ... Therefore, in the nebular environment an energetic zone .... 1b and 1d). .... By applying Kepler's second law, we obtain the time required to cover the corre-.

  13. He 2-467 = LT Del - the yellow symbiotic star with a period about 500 days

    International Nuclear Information System (INIS)

    Arkhipova, V.P.; Noskova, R.I.

    1988-01-01

    By means of broad and narrow-band photometry in UBV spectral region the variability of the object He 2-467 earlier classified as peculiar cenral star of planetary nebyla has been revealed. The brightness amplitude significantly decreases with the wavelength from 1 m .9 in u-band to 0 m .3 in V. The brightness variations were found to be periodic, with P=488 days. The observations of He2-467 were interpreted using the model of binary consisting of very hot subdwarf and G511-giant. The parameters of both components have been derived. The hot star is probably the evolved low mass nucleus of planetary nebula already dissipated. The periodic variations in U-band may be the result of the reflection effect due to the presence of hot extended region on the side of cold star facing the subdwarf. The subdwarf UV-flux can heat and ionize the upper atmosphere of the giant giving birth to the emission lines and Balmer continuum. The yellow symbiotics to which He 2-467 belong may be predecessors of red symbiotics with M giants

  14. NLTE wind models of hot subdwarf stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 329, 1-2 (2010), s. 145-150 ISSN 0004-640X R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.437, year: 2010

  15. NuSTAR Observation of the Symbiotic System GX 1+4

    Science.gov (United States)

    Wolff, Michael Thomas; Becker, Peter A.; Enoto, Teruaki; Pottschmidt, Katja; Wood, Kent

    2017-08-01

    We report on a NuSTAR observation of the symbiotic binary system GX 1+4. GX 1+4 is one of a small number of systems with a red giant mass donor and a magnetic neutron star in orbit around each other. The accreting pulsar in GX 1+4 has a spin period of ~150 seconds with epochs of both spin-up and spin-down. The orbital period that has not been determined. Magnetic accretion theory in such systems suggests that the neutron star has a magnetic field in the range 1013-1014 Gauss although this is not settled because no cyclotron absorption feature has been observed in the X-ray spectrum. The NuSTAR spectrum shows broad Fe-line emission near ~6.5 keV and also shows a broad power law shape detected up to ~60 keV. We analyze and discuss the NuSTAR X-ray data with particular attention to the question of what can the spectrum tell us about the structure of the accretion flow onto the neutron star and the magnetic field strength.

  16. An Indication of the Enhanced Circumstellar Matter Near the Orbital Plane of the Symbiotic Star EG And

    Science.gov (United States)

    Shagatova, N.; Skopal, A.

    2015-07-01

    In this contribution we derive the velocity profile of the material produced by the giant in the symbiotic binary EG And, and the corresponding mass loss rate. Our analysis revealed a significant enhancement of the wind material along the binary plane, which allows a high efficiency of the wind transfer onto the accreting white dwarf.

  17. IR photometry results and dust envelope model for symbiotic Mira star candidate V 335 Vul

    Science.gov (United States)

    Bogdanov, M. B.; Taranova, O. G.; Shenavrin, V. I.

    2017-10-01

    We present the results of JHKLM-photometry for the symbiotic Mira star candidate V 335 Vul. Based on the average flux data, supplemented by IRAS, MSX, AKARI, and WISE mid-IR observations, we calculated a model of a spherically symmetric dust envelope of the star, made up of amorphous carbon and silicon carbide particles. The optical depth of the envelope in the visible range with a dust temperature at the inner boundary of T 1 = 1300 K is τ V = 0.58. For an envelope expansion velocity of 26.5 km s-1, the estimated mass loss rate is equal to 5.7 × 10-7 M ⊙ yr-1.

  18. SWIFT OBSERVATIONS OF HARD X-RAY EMITTING WHITE DWARFS IN SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Kennea, J. A.; Burrows, D. N.; Mukai, K.; Markwardt, C. B.; Sokoloski, J. L.; Luna, G. J. M.; Tueller, J.

    2009-01-01

    The X-ray emission from most accreting white dwarfs (WDs) in symbiotic binary stars is quite soft. Several symbiotic WDs, however, produce strong X-ray emission at energies greater than ∼20 keV. The Swift Burst Alert Telescope (BAT) instrument has detected hard X-ray emission from four such accreting WDs in symbiotic stars: RT Cru, T CrB, CD -57 3057, and CH Cyg. In one case (RT Cru), Swift detected X-rays out to greater than 50 keV at >5σ confidence level. Combining data from the X-Ray Telescope (XRT) and BAT detectors, we find that the 0.3-150 keV spectra of RT Cru, T CrB, and CD -57 3057 are well described by emission from a single-temperature, optically thin thermal plasma, plus an unresolved 6.4-6.9 keV Fe line complex. The X-ray spectrum of CH Cyg contains an additional bright soft component. For all four systems, the spectra suffer high levels of absorption from material that both fully and partially covers the source of hard X-rays. The XRT data did not show any of the rapid, periodic variations that one would expect if the X-ray emission were due to accretion onto a rotating, highly magnetized WD. The X-rays were thus more likely from the accretion-disk boundary layer around a massive, non-magnetic WD in each binary. The X-ray emission from RT Cru varied on timescales of a few days. This variability is consistent with being due to changes in the absorber that partially covers the source, suggesting localized absorption from a clumpy medium moving into the line of sight. The X-ray emission from CD -57 3057 and T CrB also varied during the nine months of Swift observations, in a manner that was also consistent with variable absorption.

  19. IUE observations of the hot components in two symbiotic stars. [R Agr and RW Hya, 1200 to 3200 A

    Energy Technology Data Exchange (ETDEWEB)

    Michalitsianos, A G [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center; Kafatos, M; Hobbs, R W; Maran, S P

    1980-03-13

    Ultraviolet measurements in the 1,200 - 3,200 A range are reported on two symbiotic stars, R Agr and RW Hya. The results indicate the presence of a hot component in each star, supporting the view that each is a binary system with a luminous red primary and a hot, sub-luminous companion. In the case of RW Hya the hot companion manifests itself by exciting a compact nebulosity while in the case of R Agr it is believed that the continuous spectrum of the hot star is directly detected, while the continuum of nebulosity excited by the hot star is detected at longer wavelengths.

  20. The symbiotic star CI Cygni: S-process episode or accretion event

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Webbink, R.F.; Gallagher, J.S.; Truran, J.W.

    1982-01-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the 's-process episode' described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered. (orig.)

  1. Eclipse in the binary system of the CI Cyg symbiotic star

    Energy Technology Data Exchange (ETDEWEB)

    Belyakina, T S

    1979-01-01

    Photoelectric photometry and spectral observations of the symbiotic star CI Cyg were carried out at the Crimean Astrophysical Observatory from April, 1975 through December, 1976. The instrumental photometric system used was close to the UBV. Considerable light variations and spectral changes have been recorded during the period of the observations. Yellow, blue and ultraviolet amplitudes were equal to 2.3, 3.0 and 3sub(m).3 correspondingly. The brightness of CI Cyg reached maximal value in June - July, 1975 when spectrum was F5 with Hsub(..cap alpha..) and Hsub(..beta..) in emission. A sharp and deep minimum in the light curves of CI Cyg was observed during the period of the highest brightness. It was caused by the eclipse of the hot component by the cold one in the binary system.

  2. Symbiotic star CI Cygni: S-process episode or accretion event

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, S J; Webbink, R F; Gallagher, J S; Truran, J W

    1982-02-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the s-process episode described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered.

  3. On the Symbiotic X-Ray Binary Nature of the Star CGCS 5926

    Directory of Open Access Journals (Sweden)

    Masetti N.

    2012-06-01

    Full Text Available We report on multiwavelength (from X-ray to optical follow up observations of a carbon star CGCS 5926, motivated by the fact that it is positionally coincident with a faint X-ray source of the ROSAT catalog, thus suggesting its possible symbiotic X-ray binary (SyXB nature. Our optical spectroscopy confirms that this is a carbon star of type C(6,2. This allows us to infer for CGCS 5926 a distance of ~5 kpc. BVRCIC photometry of the star shows variability of ~0.3 mag with a periodicity of 151 days, which we interpret as due to radial pulsations. the source is not detected with the Swift satellite in X-rays down to a 0.3-10 keV luminosity of ~3 × 1032 erg s−1. This nondetection is apparently in contrast with the ROSAT data; however, the present information does not rule out that CGCS 5926 can be a SyXB. This will be settled by more sensitive observations at high energies.

  4. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  5. The Expanding Bipolar Conic Shell of the Symbiotic Star AG Peg

    Science.gov (United States)

    Lee, Seong-Jae; Hyung, Siek

    2018-06-01

    Symbiotic stars are the most interesting since some systems are believed to host the most massive white dwarf, like SN Ia progenitors. Most recently, Lee and Hyung (2018, LH18) proposed a bipolar conic shell structure for the observed high expansion Hα and Hβ line profiles and other double peak lines observed in 1998 September (phase φ = 10.24): the physical conditions for the white dwarf luminosity and the ionized HII zone, responsible for double Gaussian optical lines including Balmer and Lyman line fluxes, were taken from the P-I model with gas density, nH = 109.85 cm-3 , while the column density for the scattering neutral zone was derived from the broader line components based on the result by Monte Carlo simulations. In this investigation, we examined whether the expanding shells of the bipolar conical geometry as proposed by LH18 would be able to form the other Hα and Hβ line profiles observed in other phases, φ = 11.56 and 11.98 (in 2001 August and 2002 August). We look into the kinematical property of the bipolar conic shell structure responsible for the HII and HI zones and then we discuss the secular variation of the broad line feature and the origin of the bipolar cone, i.e., part of a common envelope formed through the mass inflows from the giant star.

  6. High-Resolution X-Ray Spectra of the Symbiotic Star SS73 17

    Science.gov (United States)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe K(alpha) fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si xiv and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe xxv lines shows that these lines are thermal, not photoionized, in origin.With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  7. HIGH-RESOLUTION X-RAY SPECTRA OF THE SYMBIOTIC STAR SS73 17

    International Nuclear Information System (INIS)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of 'hard X-ray emitting symbiotics'. Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe Kα fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si XIV and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe XXV lines shows that these lines are thermal, not photoionized, in origin. With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  8. Stellar Wind Retention and Expulsion in Massive Star Clusters

    Science.gov (United States)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  9. DO HYDROGEN-DEFICIENT CARBON STARS HAVE WINDS?

    International Nuclear Information System (INIS)

    Geballe, T. R.; Rao, N. Kameswara; Clayton, Geoffrey C.

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 A line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18 O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is as expected.

  10. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  11. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  12. Coordinated NuSTAR and Swift observations of SU Lyncis: a hard X-ray bright symbiotic star with weak optical signatures

    Science.gov (United States)

    Lopes de Oliveira, Raimundo; Mukai, Koji; Luna, Gerardo Juan Manuel; Sokoloski, Jennifer; Nelson, Thomas; Lucy, Adrian B.

    2018-01-01

    The variable M giant SU Lyncis was recently identified as the optical counterpart of a hard, thermal X-ray source. Also considering the fact that the star displays weak high-excitation emission, it was classified as a symbiotic system purely powered by accretion without accompanying nuclear fusion. This discovery revealed the existence of a subclass of symbiotics which is "invisible" to optical surveys and thus underestimated since these surveys favour the identification of systems with more intense emission lines that arise when shell-burning is present. At the same time, this discovery opens up a new window to investigate accretion and evolution of symbiotic systems. Here we report on the X-ray and UV properties of SU Lyncis derived from simultaneous NuSTAR and Swift observations. The investigation is focused on the strong photometric variability in UV and on the X-ray spectral characterization, which is associated with a hot thermal plasma with sub-solar abundance and suffering the effects of a relatively dense local absorber. The results are discussed in the context of the accretion geometry and mass of the white dwarf, and the imposed limits to the reflection fraction.

  13. Theories for the winds from Wolf Rayet stars

    International Nuclear Information System (INIS)

    Cassinelli, J.P.

    1982-01-01

    The massive and fast winds of Wolf Rayet stars present a serious momentum problem for the line-driven wind theories that are commonly used to explain the fast winds of early type stars. It is perhaps possible for the winds to be driven by lines, if multiple scattering occurs and if there are a sufficient number of lines in the spectrum so that large fraction of the continuum is blocked by line opacity in the winds. Several other mechanisms are discussed, in particular two that rely on strong magnetic fields: a) Alfven wave driven wind models like those recently developed by Hartmann and MacGregor for late type supergiants and b) the ''Fast Magnetic Rotator'' model that was developed by Belcher and MacGregor for the winds from pre-main sequence stars. In either model, large magnetic fields (approximately equal to 10 4 gauss) are required to drive the massive and fast winds of Wolf Rayet stars. Smaller fields might be possible if the multiple scattering line radiation force can be relied on to provide a final acceleration to terminal velocity. (Auth.)

  14. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  15. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  16. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C. B.; Drake, N. A.; Roig, F. [Observatório Nacional/MCTIC, Rua Gen. José Cristino 77, Rio de Janeiro, 20921-400 (Brazil); Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Miranda, L. F., E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br, E-mail: nobar.baella@gmail.com, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía - CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2017-05-20

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  17. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    International Nuclear Information System (INIS)

    Pereira, C. B.; Drake, N. A.; Roig, F.; Baella, N. O.; Miranda, L. F.

    2017-01-01

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  18. IUE observations of variability in winds from hot stars

    Science.gov (United States)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  19. Wind bubbles within H ii regions around slowly moving stars

    Science.gov (United States)

    Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert

    2015-01-01

    Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org

  20. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  1. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  2. Massive stars in colliding wind systems: the GLAST perspective

    International Nuclear Information System (INIS)

    Reimer, Anita; Reimer, Olaf

    2007-01-01

    Colliding winds of massive stars in binary systems arc considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory.The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems

  3. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  4. Comoving frame models of hot star winds II. Reduction of O star wind mass-loss rates in global models

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2017-01-01

    Roč. 606, October (2017), A31/1-A31/12 E-ISSN 1432-0746 R&D Projects: GA ČR GA13-10589S Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  5. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    International Nuclear Information System (INIS)

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-01-01

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  6. Symbiotic Miras

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1987-01-01

    This paper concerns interacting binary systems involving Mira variables. Twenty-six objects which potentially fall into this category are identified and observations of them covering the spectral regions from X-ray to radio are reviewed. Particular emphasis is given to near-infrared observations which are pertinent to establishing the presence of a Mira variable and also to new far-infrared data from IRAS. The majority of the objects under consideration have been classified as symbiotic stars. They are closely related to the well-known binary, o Cet, which might be described as mildly symbiotic. It is shown how the knowledge of normal Miras can contribute to the understanding of the evolutionary condition and luminosities of these binary Miras. Distances are derived for those objects with measured pulsation periods. The significance of the relatively long pulsation periods shown by these objects is also discussed. 165 references

  7. Nonspherical Radiation Driven Wind Models Applied to Be Stars

    Science.gov (United States)

    Arauxo, F. X.

    1990-11-01

    ABSTRACT. In this work we present a model for the structure of a radiatively driven wind in the meridional plane of a hot star. Rotation effects and simulation of viscous forces were included in the motion equations. The line radiation force is considered with the inclusion of the finite disk correction in self-consistent computations which also contain gravity darkening as well as distortion of the star by rotation. An application to a typical BlV star leads to mass-flux ratios between equator and pole of the order of 10 and mass loss rates in the range 5.l0 to Mo/yr. Our envelope models are flattened towards the equator and the wind terminal velocities in that region are rather high (1000 Km/s). However, in the region near the star the equatorial velocity field is dominated by rotation. RESUMEN. Se presenta un modelo de la estructura de un viento empujado radiativamente en el plano meridional de una estrella caliente. Se incluyeron en las ecuaciones de movimiento los efectos de rotaci6n y la simulaci6n de fuerzas viscosas. Se consider6 la fuerza de las lineas de radiaci6n incluyendo la correcci6n de disco finito en calculos autoconsistentes los cuales incluyen oscurecimiento gravitacional asi como distorsi6n de la estrella por rotaci6n. La aplicaci6n a una estrella tipica BlV lleva a cocientes de flujo de masa entre el ecuador y el polo del orden de 10 de perdida de masa en el intervalo 5.l0 a 10 Mo/ano. Nuestros modelos de envolvente estan achatados hacia el ecuador y las velocidads terminales del viento en esa regi6n son bastante altas (1000 Km/s). Sin embargo, en la regi6n cercana a la estrella el campo de velocidad ecuatorial esta dominado por la rotaci6n. Key words: STARS-BE -- STARS-WINDS

  8. Infrared Spectroscopy of the Late-Type Star in the Neutron Star X-ray Symbiotic System 4U 1700+24 = V934 Herculis

    Science.gov (United States)

    Hinkle, Kenneth; Fekel, Francis; Joyce, Richard; Mikolajewska, Joanna; Galan, Cezary

    2018-01-01

    V934 Her = 4U 1700+24 is a previously known M giant - neutron star X-ray symbiotic system. Employing newly measured optical and infrared radial velocities spanning 29 years plus the extensive set of velocities in the literature, we have computed the orbit of the M III in that system. We determine an orbital period of 4391 days or 12.0 yr, far longer than the 404 day orbit commonly cited in the literature. In addition to the 12.0 yr orbital period we find a shorter period of 420 days, similar to that previously found. Instead of orbital motion, we attribute this shorter period to a long secondary pulsation (LSP) period in the SRb variable M3 III. The orbit is seen nearly pole on explaining why X-ray pulsations associated with the neutron star have not been detected. Arguments are made that this orientation supports a pulsation origin for LSP. We also measure CNO and Fe peak abundances of the M giant. Basic properties of the M giant are derived. We discuss the possible evolutionary paths this system has taken to get to its current state.

  9. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  10. What Powers the 2006 Outburst of the Symbiotic Star BF Cygni?

    Directory of Open Access Journals (Sweden)

    A. Skopal

    2015-02-01

    Full Text Available BF Cygni is a classical symbiotic binary. Its optical light curve occasionally shows outbursts of the Z And-type, whose nature is not well understood. During the 2006 August, BF Cyg underwent the recent outburst, and continues its active phase to the present. The aim of this contribution is to determine the fundamental parameters of the hot component in the binary during the active phase. For this purpose we used a high- and low-resolution optical spectroscopy and the multicolour UBV RCIC photometry. Our photometric monitoring revealed that a high level of the star’s brightness lasts for unusually long time of > 7 years. A sharp violet-shifted absorption component and broad emission wings in the Hα profile developed during the whole active phase. From 2009, our spectra revealed a bipolar ejection from the white dwarf (WD. Modelling the spectral energy distribution (SED of the low-resolution spectra showed simultaneous presence of a warm (< 10 000 K disk-like pseudophotosphere and a strong nebular component of radiation (emission measure of ~1061 cm−3. The luminosity of the hot active object was estimated to > 5−8×103 Lʘ. Such high luminosity, sustained for the time of years, can be understood as a result of an enhanced transient accretion rate throughout a large disk, leading also to formation of collimated ejection from the WD.

  11. Emission line relative intensity variations in the symbiotic stars: CI Cygni, BF Cygni, AX Persei and V1016 Cygni

    International Nuclear Information System (INIS)

    Oliversen, N.A.

    1982-01-01

    Low resolution spectra (lambda 3800 to lambda 5900) are presented of the symbiotic stars CI Cygni, BF Cygni, AX Persei and V1016 Cygni, which were obtained with the Washburn Observatory Boller and Chivens cassegrain spectrograph and intensified Reticon. The spectra were obtained as part of a monitoring program covering 36 months since November 1978. The nebular electron temperature and density are derived from the [O III] lambda 5007 and lambda 4363 emission lines and the uv intercombination lines of lambda 1661 and lambda 1667. Relative emission line intensity variations were observed in all four stars. The relative emission line changes correlated with photometric minima for CI Cyg, AX Per and possibly BF Cyg. These changes are interpreted as due to a red giant eclipsing a nebula surrounding the exciting source. Based on the [O III] line ratio change, the nebular density of V1016 Cyg has continued to decline since 1978. The thesis also contains a discussion of the use of the emision lines of [Ne III] lambda 3869, [O III] lambda 5007, lambda 4363 and He lambda 5876 to derive nebular electron temperature and density. A decline in the intensity ratios of I(lambda 3869)/(lambda 5007) and I(lambda 5876)/I(lambda 5007) were observed during the 1980 minimum of CI Cyg. The observed I(lambda 3869)/I(lambda 5007) decline was too large to be explained by temperature or density changes. The [Ne III] and He II regions in CI Cyg are therefore closer to the hot source than the more extended (o III] emission region. Contained within the appendix is a discussion of a graphical method of solution ot the nebular temperature and density, which is based on the emission lines of [Ne III], [O III] and He I

  12. Star Formation-Driven Winds in the Early Universe

    Science.gov (United States)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  13. The origin of carbon revisited: winds of carbon-stars

    International Nuclear Information System (INIS)

    Mattsson, L

    2008-01-01

    Chemical evolution models, differing in the nucleosynthesis prescriptions (yields) for carbon, nitrogen and oxygen, have been computed for the Milky Way and Andromeda (NGC 224). All models fit the observed O/H gradients well and reproduce the main characteristics of the gas distributions, but they are also designed to do so. The N/O gradient for NGC 224 cannot be reproduced without ad hoc modifications to the yields and a similar result is obtained for the Milky Way N/O gradient, although in the latter case the slopes of the gradients obtained with unmodified yields are consistent with the observed gradient. For the C/O gradients (obtained from B stars) the results are inconclusive. The C/Fe, N/Fe, O/Fe versus Fe/H, as well as C/O versus O/H trends predicted by the models for the solar neighbourhood were compared with stellar abundances from the literature. For O/Fe versus Fe/H, all models fit the data, but for C/Fe, N/Fe versus Fe/H and C/O versus O/H, only modified sets of yields provide good fits. Since in the best-fit model, the yields were modified such that carbon should be primarily produced in low-mass stars, it is quite possible that in every environment where the peak of star formation happened a few Gyr back in time, the winds of carbon stars are responsible for most of the carbon enrichment, although models with a significant contribution from high-mass stars cannot be ruled out. In the solar neighbourhood, almost two-thirds of the carbon in the interstellar medium may come from carbon stars. Finally, the challenges met by stellar evolution and nucleosynthesis modelling due to this 'carbon star hypothesis' for the origin of carbon are discussed. It is suggested that a mass-loss prescription where the mass-loss rate depends on the carbon excess may act as a self-regulating mechanism for how much carbon a carbon star can deliver to the interstellar medium.

  14. Physical Structure of Four Symbiotic Binaries

    Science.gov (United States)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the

  15. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  16. On the nature of the symbiotic binary CI Cygni

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Oliversen, N.A.; Mikolajewska, J.; Mikolajewski, M.; Stencel, R.E.

    1991-01-01

    An analysis of ultraviolet and optical spectroscopy is presented for the symbiotic binary CI Cyg. This system contains an M5 II asymptotic branch giant Mg of about 1.5 solar mass, transfering material at a few times 0.00001 solar mass/yr into a large accretion disk surrounding a main-sequence star with Mh of about 0.5 solar mass. A boundary layer at the inner edge of the disk photoionizes a small nebula approximately confined to the Roche volume of the accreting star. An extended, more highly ionized region forms when material ejected from the disk interacts with the red giant wind. 115 refs

  17. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    Science.gov (United States)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  18. Outbursts in Symbiotic Binaries

    Science.gov (United States)

    Sonneborn, George (Technical Monitor); Kenyon, Scott J.

    2004-01-01

    Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence. If most symbiotic stars undergo thermonuclear eruptions, then symbiotics are probably poor candidates for type I supernovae. However, they can then provide approx. 10% of the material which stars recycle back into the interstellar medium. If disk instabilities are the dominant eruption mechanism, symbiotics are promising type Ia candidates but recycle less material into the interstellar medium.

  19. Flickering of the symbiotic variable CH Cygni during outburst

    Energy Technology Data Exchange (ETDEWEB)

    Slovak, M H [Texas Univ., Austin (USA). Dept. of Astronomy; Africano, J

    1978-11-01

    High-speed and conventional BVRI photometry are reported for the bright symbiotic variable CH Cygni (M6 IIIe), obtained during the course of a recent outburst. Unlike the quiescent symbiotic stars, the presence of flickering similar in nature to that seen in the cataclysmic variables has been confirmed during this active phase. The BVRI photometry for a sample of stars in the field is used to derive the reddening and the distance to CH Cyg. A composite energy distribution is derived from 0.35 to 11.0 ..mu..m which clearly establishes the existence of a variable, blue continuum. The lack of variability in the near infrared suggests that the blue continuum arises from a hot companion. A binary model including a subluminous hot companion accreting material from the stellar wind of an SRa variable is discussed to account for the observed photometric properties.

  20. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...... for open-/star-winding loads. Elaborately, per phase of the VSI is built with one additional bi-directional switch (MOSFET/IGBT) and all five legs links to the neutral through two capacitors. The structure allows multilevel generation to five-level output with greater potential for fault tolerability under...

  1. Emission-line widths and stellar-wind flows in T Tauri stars

    International Nuclear Information System (INIS)

    Sa, C.; Lago, M.T.V.T.

    1986-01-01

    Spectra are reported of T Tauri stars taken with the IPCS on the Isaac Newton Telescope at the Observatorio del Roque de los Muchachos at a dispersion of l7 A mm -1 . These were taken in order to determine emission-line widths and hence flow velocities in the winds of these stars following the successful modelling of the wind from RU Lupi using such data. Line widths in RW Aur suggest a similar pattern to the wind flow as in RU Lupi with velocities rising in the inner chromosphere of the star and then entering a 'ballistic' zone. The wind from DFTau is also similar but velocities are generally much lower and the lines sharper. (author)

  2. Influence of X-ray radiation on the hot star wind ionization state and on the radiative force

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2016-01-01

    Roč. 58, č. 5 (2016), s. 710-718 ISSN 0273-1177 Institutional support: RVO:67985815 Keywords : Stars * winds * early-type stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  3. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    Science.gov (United States)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star

  4. Interesting star V 627 Cas (=AS 501) is a young object, a Mira variable or a binary symbiotic system

    International Nuclear Information System (INIS)

    Kolotilov, E.A.

    1988-01-01

    The results of spectral and photometric observations of the variable star V 627 Cas carried out in optical and infrared range are presented. The combination of all available data shows the following parameters of the star: spectral class corresponds on the average to M4 bearing some features of high-luminocity. In the emission spectrum the most prominent are hydrogen lines. The star shows strong UV and IR excesses, variable linear polarization in the optical range, with the star are also connected maser lines OH and H 2 O. The brightness of V 627 Cas in the photographic region has decreased for at least 50 years on the average by ∼ 0 m .04 per year

  5. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  6. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    Science.gov (United States)

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  7. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2014-01-01

    Roč. 567, July (2014), A63/1-A63/7 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars: winds * outflows * stars: mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  8. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  9. CARINA OB STARS: X-RAY SIGNATURES OF WIND SHOCKS AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Gagne, Marc; Fehon, Garrett; Savoy, Michael R.; Cohen, David H.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Corcoran, Michael F.; Walborn, Nolan R.; Remage Evans, Nancy; Moffat, Anthony F. J.; Naze, Yael; Oskinova, Lida M.

    2011-01-01

    The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L X /L bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

  10. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  11. Probing the clumpy winds of giant stars with high mass X-ray binaries

    Science.gov (United States)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  12. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  13. Outbursts of symbiotic novae

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Truran, J.W.

    1983-01-01

    We discuss possible conditions under which thermonuclear burning episodes in the hydrogen-rich envelopes of accreting white dwarfs give rise to outbursts similar in nature to those observed in the symbiotic stars AG Peg, RT Ser, RR Tel, AS 239, V1016 Cyg, V1329 Cyg, and HM Sge. In principle, thermonuclear runaways involving low-luminosity white dwarfs accreting matter at low rates produce configurations that evolve into A--F supergiants at maximum visual light and which resemble the outbursts of RR Tel, RT Ser, and AG peg. Very weak, nondegenerage hydrogen shell flashes on white dwarfs accreting matter at high rates (M> or approx. =10 -8 M/sub sun/ yr -1 ) do not produce cool supergiants at maximum, and may explain the outbursts in V1016 Cyg, V1329 Cyg, and HM Sge. The low accretion rates demanded for systems developing strong hydrogen shell flashes on low-luminsoity white dwarfs are not compatible with observations of ''normal'' quiescent symbiotic stars. The extremely slow outbursts of symbiotic novae appear to be typical of accreting white dwarfs in wide binaries, which suggests that the outbursts of classical novae may be accelerated by the interaction of the expanding white dwarf envelope with its close binary companion

  14. Observation of solar wind with radio-star scintillation

    International Nuclear Information System (INIS)

    Watanabe, Takashi

    1974-01-01

    Large solar flares occurred in groups in early August 1972, and many interesting phenomena were observed. The solar wind condition during this period, obtained by scintillation observation, is reviewed. The velocity of solar wind has been determined from the observation of interplanetary space scintillation at Toyokawa, Fujigamine and Sugadaira. Four to ten radio wave sources were observed for ten minutes at each southing every day. Strong earth magnetic storm and the Forbush decrease of cosmic ray were observed during the period from August 3rd to 7th. Pioneer 9 observed a solar wind having the maximum velocity as high as 1,100 km/sec, and HEOS-II observed a solar wind having the velocity close to 2,000 km/sec. On the other hand, according to the scintillation of 3C-48 and 3C-144, the velocity of solar wind passing in the interplanetary space on the westside of the earth was only 300 to 400 km/sec. Therefore it is considered that the condition of solar wind on the east side of the earth differs from that on the west side of the earth. Pioneer 9 observed the pass of a shock wave on August 9th. With all radio wave sources, high velocity solar wind was observed and Pioneer 6 positioned on the west side of the earth also observed it. The thickness of this shock wave is at least 0.3 AU. Discussion is made on the cause for the difference between the asymmetric shock wave in the direction of south-west and symmetrical shock wave. The former may be blast wave, and the latter may be piston driven shock wave and the like. (Iwakiri, K.)

  15. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations

    OpenAIRE

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    2016-01-01

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena?especially the wind situation?when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31?m?s?1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were lik...

  16. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Claus, Brian; Watson, Linda; Moran, James, E-mail: qzhang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2017-03-01

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.

  17. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    Science.gov (United States)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  18. 2D hydrodynamic simulations of super star cluster winds in a bimodal regime

    Czech Academy of Sciences Publication Activity Database

    Wünsch, Richard; Palouš, Jan; Tenorio-Tagle, G.; Silich, S.

    2009-01-01

    Roč. 324, 2-4 (2009), s. 219-223 ISSN 0004-640X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : stellar winds * star clusters * dynamics of ISM Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.404, year: 2009

  19. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  20. Spectrophotometry study of the symbiotic stars He2-417, He2-467 and He2-468

    International Nuclear Information System (INIS)

    Navarro, S.; Costero, R.; Serrano, P.G.A.; Carrasco, L.

    1987-01-01

    A spectrophotometric study of He2-417, 467 and 468 is made. Their spectra show mainly emission lines of H I, He I and He II, as well as absorption bands characteristic of late-type stars. No forbidden lines were detected in the spectra of the objects. We report the line intensity ratios relative to Hβ and compare them with those previously reported in the literature. Some line ratios have varied in He2-417 and 467, the two objects with previous observations. (Author)

  1. Possible evidence for the driving of the winds of hot stars by Alfven waves

    International Nuclear Information System (INIS)

    Underhill, A.B.

    1983-01-01

    Ultraviolet spectra of the supergiants α Cam (09.5 Ia), HD 105056 (ON9.7 Iae), and 15 Sgr (09.7 Lab) are compared, and it is shown that the terminal outflow velocity ν/sub infinity/, of HD 105056 is one-half that of the other two stars even though HD 105056 has the highest effective temperature of the three stars. This anomaly, together with the fact that the observed ν/sub infinity/ values for early-type stars scatter about an empirical correlation between ν/sub infinity/ and log T/sub eff/ by an amount which is larger than the amount which is larger than the amount expected according to the observational errors in determining ν/sub infinity/ and log T/sub eff/, leads to the conclusion that an agent in addition to radiation. Alfven waves, is driving the winds of early-type stars

  2. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  3. Changes in the Silicate Dust Features of the Symbiotic Star R Aquarii Prior to the Upcoming 2022 Eclipse and Periastron Events

    Science.gov (United States)

    Omelian, Eric; Sankrit, Ravi; Helton, Andrew; Gorti, Uma; Wagner, R. Mark

    2018-01-01

    The symbiotic star, R Aquarii (R Aqr) consists of a dusty, pulsating Mira (period 387 days) and a hot white dwarf (WD) that orbit each other with a period of about 44 years. Based on the light curve from ca. 1890 CE onwards, and associated nebular and jet activity, it has been established (with a high degree of confidence) that the WD eclipses the Mira around the time of the periastron passage. One of the phenomena associated with this phase in the orbit is enhanced accretion onto the WD, which in turn energizes the jet outflow. The next eclipse is imminent, and it is estimated that periastron will occur in 2022. Infrared observations of R Aqr have established that the emission consists of a thermal spectrum with an effective temperature of about 2500 K with superposed silicate dust features. These silicate features are known to vary with time, and UKIRT spectra taken within a single Mira phase have shown that some of the variation is correlated with the pulsation of the dust envelope of the AGB star.We have used the FORCAST instrument on SOFIA to observe R Aqr during Cycles 4 and 5 as part of an ongoing monitoring of the system as it goes through eclipse and periastron. Photometry between 6 and 37 μm, and spectra covering the 10 and 18 μm silicate features have shown significant changes in the spectrum compared with earlier data in the same wavelength range obtained by ISO at an epoch closer to apastron. We present our data along with archival data from other IR observatories and use them to characterize the changes in the silicate emission. These data are presented along with model calculations using DUSTY and RADMC-3D that we have used to explore the changes in dust properties that are necessary to explain the differences in the emission profiles. We also present our plans for continued monitoring of R Aqr through the upcoming eclipse, which is required in order to separate the effects of pulsation from the longer-term orbital effects on the dust profiles.

  4. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    Science.gov (United States)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  5. HM Sagittae - a most remarkable star

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The author summarises recent observations of HM Sagittae, a symbiotic star that displays activity in every spectral band from X-ray to radio. He concludes that it is best described as a binary system consisting of a late M giant and a hot compact object which is similar to central stars of planetary nebulae. The presence of a wind from the M giant implies that Roche-lobe overflow is not a necessary condition for mass transfer. The complex structure of the circumstellar nebula is possibly the result of wind interactions. The ongoing spectral evolution of HM Sge after its recent outburst makes it an ideal candidate to test models of the symbiotic phenomenon. (Auth.)

  6. ON THE LAUNCHING AND STRUCTURE OF RADIATIVELY DRIVEN WINDS IN WOLF–RAYET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2016-04-20

    Hydrostatic models of Wolf–Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-loss rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.

  7. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that

  8. HUBBLE SPACE TELESCOPE CONSTRAINTS ON THE WINDS AND ASTROSPHERES OF RED GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Müller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Harper, Graham M., E-mail: brian.wood@nrl.navy.mil [CASA, University of Colorado, Boulder, CO 80309-0389 (United States)

    2016-10-01

    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope , focusing on spectra of the Mg ii h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg ii surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities ( V {sub w} ) are generally found to decrease with spectral type, with V {sub w} decreasing from ∼40 km s{sup −1} at K2 III to ∼20 km s{sup −1} at M5 III. We find two new detections of astrospheric absorption, for σ Pup (K5 III) and γ Eri (M1 III). This absorption signature had previously only been detected for α Tau (K5 III). For the three astrospheric detections, the temperature of the wind after the termination shock (TS) correlates with V {sub w} , but is lower than predicted by the Rankine–Hugoniot shock jump conditions, consistent with the idea that red giant TSs are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the γ Eri astrosphere is provided to explore this further.

  9. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    Science.gov (United States)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  10. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  11. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  12. Detailed empirical models for the winds of early-type stars

    International Nuclear Information System (INIS)

    Olson, G.L.; Castor, J.I.

    1981-01-01

    Owing to the recent accumulation of ultraviolet data from the IUE satellite, of X-ray data from the Einstein (HEAO 2) satellite, of visible data from ground based electronic detectors, and of radio data from the Very Large Array (VLA) telescope, it is becoming possible to build much more complete models for the winds of early-type stars. The present work takes the empirical approach of assuming that there exists a coronal region at the base of a cool wind (T/sub e/roughly-equalT/sub eff/). This will be an extension of previous papers by Olson and by Cassinelli and Olson; however, refinements to the model will be presented, and the model will be applied to seven O stars and one BO star. Ionization equilibria are computed to match the line strengths found in UV spectra. The coronal fluxes that are required to produce the observed abundance of O +5 are compared to the X-ray fluxes observed by the Einstein satellite

  13. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VIII. ORBITS FOR THREE S-TYPE SYSTEMS: AE ARAE, Y CORONAE AUSTRALIS, AND SS 73-147

    International Nuclear Information System (INIS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Wood, Peter R.

    2010-01-01

    With new infrared radial velocities we have computed orbits of the M giants in three southern S-type symbiotic systems. AE Ara and SS 73-147 have circular orbits with periods of 803 and 820 days, respectively. The eccentric orbit of Y CrA has a period that is about twice as long, 1619 days. Except for CH Cyg it is currently the S-type symbiotic system with the longest period for which a spectroscopic orbit has been determined. The Paschen δ emission line velocities of AE Ara are nearly in antiphase with the M giant absorption feature velocities and result in a mass ratio of 2.7. Emission lines in the 1.005 μm region for the other two symbiotic systems are not good proxies for the hot components in those systems. There is no evidence that these three symbiotics are eclipsing. With spectral classes of M5.5 or M6, the three giants presumably also have velocity variations that result from pulsations, but we have been unable to identify specific pulsation periods in the absorption line velocity residuals.

  14. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    Science.gov (United States)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  15. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  16. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  17. Accretion onto hot white dwarfs in relation to symbiotic novae

    International Nuclear Information System (INIS)

    Livio, M.; Prialnik, D.; Regev, O.

    1989-01-01

    Numerical calculations are used to study the hydrodynamic evolution of a hot white dwarf with 1 solar mass accreting hydrogen-rich matter at rates between 10 to the -8th and 10 to the -6th solar masses/yr. It is found that for accretion at a rate of about 10 to the -8th solar masses/yr, nova-type outbursts of long duration occur at intervals of about 1500 yr. About half of the accreted envelope is ejected during these outbursts. At a rate of about 10 to the -7th solar masses/yr, the star alternates between comparable periods at a high plateau luminosity and giant dimensions and periods at a low luminosity and white dwarf dimension. At 10 to the -6th solar masses/yr, equilibrium is achieved with a typical red giant luminosity supported by steady hydrogen burning. It is concluded that symbiotic novae are more likely to occur in detached systems involving wind accretors. Thus, the contribution of symbiotic stars to the frequency of type I supernovae is severely constrained. 39 refs

  18. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R. [Institute for Physics and Astronomy, University Potsdam, 14476 Potsdam (Germany); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245 (United States); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States); Pollock, A. M. T., E-mail: lida@astro.physik.uni-potsdam.de [European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, Villanueva de la Canada, 28691 Madrid (Spain)

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  19. WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND?

    International Nuclear Information System (INIS)

    Chene, A.-N.; Moffat, A. F. J.; Fahed, R.; St-louis, N.; Muntean, V.; Chevrotiere, A. De La; Cameron, C.; Matthews, J. M.; Gamen, R. C.; Lefevre, L.; Rowe, J. F.; Guenther, D. B.; Kuschnig, R.; Weiss, W. W.; Rucinski, S. M.; Sasselov, D.

    2011-01-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ∼ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ∼0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ∼two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.

  20. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    Science.gov (United States)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  1. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    Science.gov (United States)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  2. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. XI. ORBITS FOR SOUTHERN S-TYPE SYSTEMS: HEN 3-461, SY MUS, HEN 3-828, AND AR PAV

    International Nuclear Information System (INIS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Wood, Peter R.

    2017-01-01

    Employing new infrared radial velocities, we have computed spectroscopic orbits of the cool giants in four southern S-type symbiotic systems. The orbits for two of the systems, Hen 3-461 and Hen 3-828, have been determined for the first time, while orbits of the other two, SY Mus and AR Pav, have previously been determined. For the latter two systems, we compare our results with those in the literature. The low mass of the secondary of SY Mus suggests that it has gone through a common envelope phase. Hen 3-461 has an orbital period of 2271 days, one of the longest currently known for S-type symbiotic systems. That period is very different from the orbital period proposed previously from its photometric variations. The other three binaries have periods between 600 and 700 day, values that are typical for S-type symbiotic orbits. Basic properties of the M giant components and the distance to each system are determined.

  3. Symbiotic Cognitive Computing

    OpenAIRE

    Farrell, Robert G.; Lenchner, Jonathan; Kephjart, Jeffrey O.; Webb, Alan M.; Muller, MIchael J.; Erikson, Thomas D.; Melville, David O.; Bellamy, Rachel K.E.; Gruen, Daniel M.; Connell, Jonathan H.; Soroker, Danny; Aaron, Andy; Trewin, Shari M.; Ashoori, Maryam; Ellis, Jason B.

    2016-01-01

    IBM Research is engaged in a research program in symbiotic cognitive computing to investigate how to embed cognitive computing in physical spaces. This article proposes 5 key principles of symbiotic cognitive computing.  We describe how these principles are applied in a particular symbiotic cognitive computing environment and in an illustrative application.  

  4. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  5. Possibly massive symbiotic system V 1329 Cygni

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, T; Mammano, A; Margoni, R [Padua Univ. (Italy). Osservatorio Astrofisico

    1981-04-01

    A new radial velocity curve of V 1329 Cyg has been obtained from emission lines originating around an evolved star. The latter might be faced by an M-type mate, whose mass is larger than 23 +- 6 solar masses. The system seems at vertical stroke Z vertical stroke > 250 pc from the galactic plane. The lambda6830 unidentified band, found in V 1329 Cyg and among BQ ( ) stars, symbiotic stars and a few planetary nebulae, could be used as a diagnostic tool to identify very evolved stars. The close similarity of the optical spectrum of V 1329 Cyg to that of the optical counterpart of GX 1 + 4 is remarkable.

  6. Comoving frame models of hot star winds I. Test of the Sobolev approximation in the case of pure line transitions

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 519, September (2010), A50/1-A50/9 ISSN 0004-6361 R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  7. Investigating the origin of cyclical wind variability in hot, massive stars - I. On the dipolar magnetic field hypothesis

    NARCIS (Netherlands)

    David-Uraz, A.; Wade, G.A.; Petit, V.; ud-Doula, A.; Sundqvist, J.O.; Grunhut, J.; Schultz, M.; Neiner, C.; Alecian, E.; Henrichs, H.F.; Bouret, J.-C.

    2014-01-01

    OB stars exhibit various types of spectral variability associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These are proposed to be caused by either magnetic fields or non-radial pulsations. In this paper, we evaluate the possible relation

  8. Focused Wind Mass Accretion in Mira AB

    Science.gov (United States)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  9. Campaign of AAVSO Monitoring of the CH Cyg Symbiotic System in Support of Chandra and HST Observations

    Science.gov (United States)

    Karovska, M.

    2013-06-01

    (Abstract only) CH Cyg is one of the most interesting interacting binaries in which a compact object, a white dwarf or a neutron star, accretes from the wind of an evolved giant or supergiant. CH Cyg is a member of the symbiotic systems group, and at about 250pc it is one of the closest systems. Symbiotic systems are accreting binaries, which are likely progenitors of a fraction of Pre-Planetary and Planetary Nebulae, and of a fraction of SN type Ia (the cosmic distance scale indicators). We carried out Chandra and HST observations of CH Cyg in March 2012 as part of a follow-up investigation of the central region of CH Cyg and its precessing jet, including the multi-structures that were discovered in 2008. I will describe here the campaign of multi-wavelength observations, including photometry and spectroscopy, that were carried out by AAVSO members in support of the space-based observations.

  10. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    St-Louis, N., E-mail: stlouis@astro.umontreal.ca [Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, QC H3C 3J7 (Canada)

    2013-11-01

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenario in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.

  11. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  12. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  13. On the synthesis of resonance lines in dynamical models of structured hot-star winds

    Science.gov (United States)

    Puls, J.; Owocki, S. P.; Fullerton, A. W.

    1993-01-01

    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.

  14. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  15. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  16. Symbiotic Optimization of Behavior

    Science.gov (United States)

    2015-05-01

    SYMBIOTIC OPTIMIZATION OF BEHAVIOR UNIVERSITY OF WASHINGTON MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...2014 4. TITLE AND SUBTITLE SYMBIOTIC OPTIMIZATION OF BEHAVIOR 5a. CONTRACT NUMBER FA8750-12-1-0304 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT

  17. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    International Nuclear Information System (INIS)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas

  18. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  19. Evolution of the symbiotic binary system AG Dranconis

    Science.gov (United States)

    Mikolajewska, Joanna; Kenyon, Scott J; Mikolajewski, Maciej; Garcia, Michael R.; Polidan, Ronald S.

    1995-01-01

    We present an analysis of new and archival photometric and spectroscopic observations of the symbiotic star AG Draconis. This binary has undergone several 1 - 3 mag optical and ultraviolet eruptions during the past 15 years. Our combination of optical and ultraviolet spectroscopic data allow a more complete analysis of this system than in previous papers. AG Dra is composed of a K-type bright giant M(sub g) approximately 1.5 solar mass) and a hot, compact star M(sub h approximatelly 0.4 - 0.6 solar mass) embedded in a dense, low metallicity nebula. The hot component undergoes occasional thermonuclear runaways that produce 2 - 3 mag optical/ultraviolet eruptions. During these eruptions, the hot component develops a low velocity wind that quenches x-ray emission from the underlying hot white dwarf. The photoionized nebula changes its volume by a factor of 5 throughout an eruptin cycle. The K bright giant occults low ionization emission lines during superior conjunctions at all outburst phases but does not occult high ionization lines in outburst (and perhaps quiescence). This geometry and the component masses suggest a system inclination of i approximately 30 deg - 45 deg.

  20. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. III. X-ray emission from wind-embedded shocks

    Science.gov (United States)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2016-05-01

    Context. Extreme ultraviolet (EUV) and X-ray radiation emitted from wind-embedded shocks in hot, massive stars can affect the ionization balance in their outer atmospheres and can be the mechanism responsible for producing highly ionized atomic species detected in stellar wind UV spectra. Aims: To allow for these processes in the context of spectral analysis, we have implemented the emission from wind-embedded shocks and related physics into our unified, NLTE model atmosphere/spectrum synthesis code FASTWIND. Methods: The shock structure and corresponding emission is calculated as a function of user-supplied parameters (volume filling factor, radial stratification of shock strength, and radial onset of emission). We account for a temperature and density stratification inside the postshock cooling zones, calculated for radiative and adiabatic cooling in the inner and outer wind, respectively. The high-energy absorption of the cool wind is considered by adding important K-shell opacities, and corresponding Auger ionization rates have been included in the NLTE network. To test our implementation and to check the resulting effects, we calculated a comprehensive model grid with a variety of X-ray emission parameters. Results: We tested and verified our implementation carefully against corresponding results from various alternative model atmosphere codes, and studied the effects from shock emission for important ions from He, C, N, O, Si, and P. Surprisingly, dielectronic recombination turned out to play an essential role for the ionization balance of O iv/O v (particularly in dwarfs with Teff~ 45 000 K). Finally, we investigated the frequency dependence and radial behavior of the mass absorption coefficient, κν(r), which is important in the context of X-ray line formation in massive star winds. Conclusions: In almost all of the cases considered, direct ionization is of major influence because of the enhanced EUV radiation field, and Auger ionization only affects N vi

  1. The bipolar jet of the symbiotic star R Aquarii: A study of its morphology using the high-resolution HST WFC3/UVIS camera

    Science.gov (United States)

    Melnikov, Stanislav; Stute, Matthias; Eislöffel, Jochen

    2018-04-01

    Context. R Aqr is a symbiotic binary system consisting of a Mira variable with a pulsation period of 387 days and a hot companion which is presumably a white dwarf with an accretion disk. This binary system is the source of a prominent bipolar gaseous outflow. Aims: We use high spatial resolution and sensitive images from the Hubble Space Telescope (HST) to identify and investigate the different structural components that form the complex morphology of the R Aqr jet. Methods: We present new high-resolution HST WFC3/UVIS narrow-band images of the R Aqr jet obtained in 2013/14 using the [OIII]λ5007, [OI]λ6300, [NII]λ6583, and Hα emission lines. These images also allow us to produce detailed maps of the jet flow in several line ratios such as [OIII]λ5007/[OI]λ6300 and [NII]λ6583/[OI]λ6300 which are sensitive to the outflow temperature and its hydrogen ionisation fraction. The new emission maps together with archival HST data are used to derive and analyse the proper motion of prominent emitting features which can be traced over 20 years with the HST observations. Results: The images reveal the fine gas structure of the jet out to distances of a few tens of arcseconds from the central region, as well as in the innermost region, within a few arcseconds around the stellar source. They reveal for the first time the straight, highly collimated jet component which can be traced to up to 900 AU in the NE direction. Images in [OIII]λ5007, [OI]λ6300, and [NII]λ6583 clearly show a helical pattern in the jet beams which may derive from the small-scale precession of the jet. The highly collimated jet is accompanied by a wide opening angle outflow which is filled by low excitation gas. The position angles of the jet structures as well as their opening angles are calculated. Our measurements of the proper motions of some prominent emission knots confirm the scenario of gas acceleration during the propagation of the outflow. Finally, we produce several detailed line ratio

  2. Revisiting Symbiotic Job Scheduling

    OpenAIRE

    Eyerman , Stijn; Michaud , Pierre; Rogiest , Wouter

    2015-01-01

    International audience; —Symbiotic job scheduling exploits the fact that in a system with shared resources, the performance of jobs is impacted by the behavior of other co-running jobs. By coscheduling combinations of jobs that have low interference, the performance of a system can be increased. In this paper, we investigate the impact of using symbiotic job scheduling for increasing throughput. We find that even for a theoretically optimal scheduler, this impact is very low, despite the subs...

  3. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vink, Jorick S.; Graefener, Goetz, E-mail: jsv@arm.ac.uk [Armagh Observatory, College Hill, BT61 9DG Armagh (United Kingdom)

    2012-06-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of {approx_equal}2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot{sub trans} between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the {approx}50 M{sub Sun} mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  4. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    International Nuclear Information System (INIS)

    Vink, Jorick S.; Gräfener, Götz

    2012-01-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of ≅2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot trans between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the ∼50 M ☉ mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  5. Abell-35 Phenomena in Symbiotic Stars: Discovery of 1.2 and 6.4 Day Periods in VV8 (V471 Per

    Directory of Open Access Journals (Sweden)

    Munari U.

    2012-06-01

    Full Text Available We have collected high precision optical photometry of VV8, so far 782 individual observing runs uniformly distributed over the period 2005 - 2011. This dataset allows us to refine the known long periodicity of VV8 to P = 16.8 yr, with peak-to-valley amplitudes of ΔB = 0.18 and ΔV = 0.14 mag. In addition, we have discovered two new periodicities: 6.431 d (total amplitude ΔB = ΔV = ΔI = 0.05 mag and 1.185 d (ΔB = 0.022, ΔV = 0.018, ΔI = 0.014 mag. These two short periods are reminiscent of the Abell-35 phenomena displayed by binary nuclei of planetary nebulae that have gone through a common envelope phase. Twice the 6.431 d period would nicely correspond to the double-peaked light-curve that the G5 III star in VV8 would display if its Roche lobe would be ellipsoidally distorted.

  6. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    Science.gov (United States)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  7. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the

  8. IGR J17329-2731: The birth of a symbiotic X-ray binary

    Science.gov (United States)

    Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.

    2018-05-01

    We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

  9. NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257

    Science.gov (United States)

    Tombesi, F.; Veilleux, S.; Meléndez, M.; Lohfink, A.; Reeves, J. N.; Piconcelli, E.; Fiore, F.; Feruglio, C.

    2017-12-01

    Galactic winds driven by active galactic nuclei (AGNs) have been invoked to play a fundamental role in the co-evolution between supermassive black holes and their host galaxies. Finding observational evidence of such feedback mechanisms is of crucial importance and it requires a multi-wavelength approach in order to compare winds at different scales and phases. In Tombesi et al., we reported the detection of a powerful ultra-fast outflow (UFO) in the Suzaku X-ray spectrum of the ultra-luminous infrared galaxy IRAS F11119+3257. The comparison with a galaxy-scale OH molecular outflow observed with Herschel in the same source supported the energy-conserving scenario for AGN feedback. The main objective of this work is to perform an independent check of the Suzaku results using the higher sensitivity and wider X-ray continuum coverage of NuSTAR. We clearly detect a highly ionized Fe K UFO in the 100 ks NuSTAR spectrum with parameters N H = (3.2 ± 1.5) × 1024 cm-2, log ξ = {4.0}-0.3+1.2 erg s-1 cm, and {v}{out}={0.253}-0.118+0.061c. The launching radius is likely at a distance of r ≥ 16r s from the black hole. The mass outflow rate is in the range of {\\dot{M}}{out} ≃ 0.5-2 M ⊙ yr-1. The UFO momentum rate and power are {\\dot{P}}{out} ≃ 0.5-2 L AGN/c and {\\dot{E}}{out} ≃ 7%-27% L AGN, respectively. The UFO parameters are consistent between the 2013 Suzaku and the 2015 NuSTAR observations. Only the column density is found to be variable, possibly suggesting a clumpy wind. The comparison with the energetics of molecular outflows estimated in infrared and millimeter wavelengths support a connection between the nuclear and galaxy-scale winds in luminous AGNs.

  10. Relaxing the Small Particle Approximation for Dust-grain opacities in Carbon-star Wind Models

    OpenAIRE

    Mattsson, Lars; Höfner, Susanne

    2010-01-01

    We have computed wind models with time-dependent dust formation and grain-size dependent opacities, where (1) the problem is simplified by assuming a fixed dust-grain size, and where (2) the radiation pressure efficiency is approximated using grain sizes based on various means of the actual grain size distribution. It is shown that in critical cases, the effect of grain sizes can be significant. For well-developed winds, however, the effects on the mass-loss rate and the wind speed are small.

  11. A Composite Light Curve Model of the Symbiotic Nova PU Vul (1979

    Directory of Open Access Journals (Sweden)

    Kato M.

    2012-06-01

    Full Text Available PU Vul (1979 is a symbiotic nova that shows a long-lasting flat optical peak followed by a slow decline. We made a quasi-evolution model for outbursts on a 0.6 M⊙ white dwarf consisting of a series of static solutions with optically-thin winds. Our theoretical models reproduce well the observed visual/UV light curves as well as the new estimates of the temperature and radius of the hot component. We also modeled the light curve of the 1980 and 1994 eclipses as the total eclipse occulted by a pulsating M-giant companion star. In the second eclipse, the visual magnitude is dominated by nebular emission which is possibly ejected from the hot component between 1990 to 2000. We have quantitatively estimated three components of emission, i.e., the white dwarf, companion and nebular, and made a composite light curve that represents well the evolution of the PU Vul outburst.

  12. Isotopic anomalies in cosmic rays and winds from Wolf-Rayet stars - a new model

    International Nuclear Information System (INIS)

    Maeder, A.

    1984-01-01

    The insufficiency of the metal-rich supernovae model and of the Wolf-Rayet star model for explaining the isotopic anomalies in the galactic cosmic ray source (GCRS) is examined, and a new model for attacking the anomaly problem is proposed. The main properties of WR stars relevant to the study of GCRS are recalled, with particular emphasis on their chemical excesses and the steep galactic gradient in their distribution. The proposed model assumes that GCRs originate from two main sources of different composition and galactic distribution, probably SN's and WR stars. Their properties may change with galactocentric distance. The relevant physical physicochemical relationships are derived, and some approximations which account for the contributions of WR and SN sources in GCRS are worked out for comparison with observations. The model is found to account very well for the observed anomalies. 33 references

  13. CIRCUMSTELLAR SHELL FORMATION IN SYMBIOTIC RECURRENT NOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Bildsten, Lars [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-12-20

    We present models of spherically symmetric recurrent nova shells interacting with circumstellar material (CSM) in a symbiotic system composed of a red giant (RG) expelling a wind and a white dwarf accreting from this material. Recurrent nova eruptions periodically eject material at high velocities ({approx}> 10{sup 3} km s{sup -1}) into the RG wind profile, creating a decelerating shock wave as CSM is swept up. High CSM densities cause the shocked wind and ejecta to have very short cooling times of days to weeks. Thus, the late-time evolution of the shell is determined by momentum conservation instead of energy conservation. We compute and show evolutionary tracks of shell deceleration, as well as post-shock structure. After sweeping up all the RG wind, the shell coasts at a velocity {approx}100 km s{sup -1}, depending on system parameters. These velocities are similar to those measured in blueshifted CSM from the symbiotic nova RS Oph, as well as a few Type Ia supernovae that show evidence of CSM, such as 2006X, 2007le, and PTF 11kx. Supernovae occurring in such systems may not show CSM interaction until the inner nova shell gets hit by the supernova ejecta, days to months after the explosion.

  14. Coevolution of Symbiotic Species

    OpenAIRE

    Leok, Boon Tiong Melvin

    1996-01-01

    This paper will consider the coevolution of species which are symbiotic in their interaction. In particular, we shall analyse the interaction of squirrels and oak trees, and develop a mathematical framework for determining the coevolutionary equilibrium for consumption and production patterns.

  15. Influence of extreme ultraviolet radiation on the P v ionization fraction in hot star winds

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2012-01-01

    Roč. 427, č. 1 (2012), s. 84-90 ISSN 0035-8711 R&D Projects: GA ČR GA205/08/0003 Institutional support: RVO:67985815 Keywords : hydrodynamics * early-type stars * mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.521, year: 2012

  16. New Solutions to Line-Driven Winds of Hot Massive Stars

    Science.gov (United States)

    Gormaz-Matamala, Alex C.; Curé, Michel; Cidale, Lydia; Venero, Roberto

    2017-11-01

    In the frame of radiation driven wind theory (Castor et al.1975), we present self-consistent hydrodynamical solutions to the line-force parameters (k, α, δ) under LTE conditions. Hydrodynamic models are provided by HydWind (Curé 2004). We evaluate these results with those ones previously found in literature, focusing in different regions of the optical depth to be used to perform the calculations. The values for mass-loss rate and terminal velocity obtained from our calculations are also presented. We also examine the line-force parameters for the case when large changes in ionization throughout the wind occurs (δ-slow solutions, Curé et al.2011).

  17. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    International Nuclear Information System (INIS)

    Chene, A.-N.; St-Louis, N.

    2011-01-01

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of ∼100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v ∼ 12.5, and some WR stars with 12.5 < v ≤ 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars (∼22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.

  18. Analysis of Properties of Induction Machine with Combined Parallel Star-Delta Stator Winding

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2017-01-01

    Roč. 113, č. 1 (2017), s. 147-153 ISSN 0239-3646 R&D Projects: GA ČR(CZ) GA16-07795S Institutional support: RVO:61388998 Keywords : induction machine * parallel combined stator winding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering

  19. Evolution of the symbiotic binary system AG Pegasi - The slowest classical nova eruption ever recorded

    Science.gov (United States)

    Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.

  20. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    Science.gov (United States)

    Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.

    2007-06-01

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  1. He 2-104 - A symbiotic proto-planetary nebula?

    International Nuclear Information System (INIS)

    Schwarz, H.E.; Aspin, C.; Lutz, J.H.

    1989-01-01

    CCD observations are presented for He 2-104, an object previously classified as both PN and symbiotic star, which show that this is in fact a protoplanetary nebula (PPN) with a dynamical age of about 800 yr. The presence of highly collimated jets, extending over 75 arcsec on the sky, combined with an energy distribution showing a hot as well as a cool component, indicates that He 2-104 is a binary PPN. Since the primary is probably a Mira with a 400-d period (as reported by Whitelock, 1988), it is proposed that the system is a symbiotic PPN. 16 refs

  2. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (rstandard models of photoionization, shocks, and starbursts). We present four detailed emission

  3. Symbiotic Origin of Aging.

    Science.gov (United States)

    Greenberg, Edward F; Vatolin, Sergei

    2018-06-01

    Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.

  4. First Resolved Images of the Mira AB Symbiotic Binary at Centimeter Wavelengths

    OpenAIRE

    Matthews, Lynn D.; Karovska, Margarita

    2005-01-01

    We report the first spatially resolved radio continuum measurements of the Mira AB symbiotic binary system, based on observations obtained with the Very Large Array (VLA). This is the first time that a symbiotic binary has been resolved unambiguously at centimeter wavelengths. We describe the results of VLA monitoring of both stars over a ten month period, together with constraints on their individual spectral energy distributions, variability, and radio emission mechanisms. The emission from...

  5. Fluctuations at the blue edge of saturated wind lines in IUE spectra of O-type stars

    Science.gov (United States)

    Owocki, Stanley P.; Fullerton, Alex

    1993-01-01

    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-Lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles and then derived from formal solution integration using this source function. The more appropriate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10 percent or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.

  6. LINEAR RELATION FOR WIND-BLOWN BUBBLE SIZES OF MAIN-SEQUENCE OB STARS IN A MOLECULAR ENVIRONMENT AND IMPLICATION FOR SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yang; Zhou Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Chu Youhua [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2013-05-20

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R{sub b} Almost-Equal-To 1.22 M/M{sub Sun} - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M{sub Sun} will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  7. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  8. Symbiotic nature of the object M1-77

    International Nuclear Information System (INIS)

    Kondrt'eva, L.N.

    2004-01-01

    Many year spectral observations show, that the object M1-77 is the symbiotic system, which consists of a M-giant and a B-star. An emission spectra arises from an envelope, which was formed from a giant's extended atmosphere, and now is ionized by the hotter component. Some spectral changes were registered in M1-77: the forbidden lines intensities increase relatively to that of Hα. It is connected with the decrease of hydrogen emission. (author)

  9. Orbital evolution of colliding star and pulsar winds in 2D and 3D: effects of dimensionality, EoS, resolution, and grid size

    Science.gov (United States)

    Bosch-Ramon, V.; Barkov, M. V.; Perucho, M.

    2015-05-01

    Context. The structure formed by the shocked winds of a massive star and a non-accreting pulsar in a binary system suffers periodic and random variations of orbital and non-linear dynamical origins. The characterization of the evolution of the wind interaction region is necessary for understanding the rich phenomenology of these sources. Aims: For the first time, we simulate in 3 dimensions the interaction of isotropic stellar and relativistic pulsar winds along one full orbit, on scales well beyond the binary size. We also investigate the impact of grid resolution and size, and of different state equations: a γ̂-constant ideal gas, and an ideal gas with γ̂ dependent on temperature. Methods: We used the code PLUTO to carry out relativistic hydrodynamical simulations in 2 and 3 dimensions of the interaction between a slow dense wind and a mildly relativistic wind with Lorentz factor 2, along one full orbit in a region up to ~100 times the binary size. The different 2-dimensional simulations were carried out with equal and larger grid resolution and size, and one was done with a more realistic equation of state than in 3 dimensions. Results: The simulations in 3 dimensions confirm previous results in 2 dimensions, showing: a strong shock induced by Coriolis forces that terminates the pulsar wind also in the opposite direction to the star; strong bending of the shocked-wind structure against the pulsar motion; and the generation of turbulence. The shocked flows are also subject to a faster development of instabilities in 3 dimensions, which enhances shocks, two-wind mixing, and large-scale disruption of the shocked structure. In 2 dimensions, higher resolution simulations confirm lower resolution results, simulations with larger grid sizes strengthen the case for the loss of the general coherence of the shocked structure, and simulations with two different equations of state yield very similar results. In addition to the Kelvin-Helmholtz instability, discussed in

  10. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  11. Symbiotic binaries. Part 1. Spectrophotometry of AX Persei

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Iijima, T.

    1987-01-01

    Secular and eclipse variations of optical emission lines during almost three orbital cycles of the symbiotic star AX Per are presented. The permitted lines show pronounced but nontotal eclipse effects while forbidden lines (i.e. [O3], [Ne3], [Fe7]) do not show such effects. The data are discussed in terms of physical conditions and geometry of the line formation region. The possible presence of the reflection of a hot star light from a red-giant companion is considered. 37 refs., 2 figs., 1 tab. (author)

  12. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  13. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  14. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  15. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  16. Dynamics of Mass Transfer in Wide Symbiotic Systems

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  17. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    Science.gov (United States)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  18. The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR

    Science.gov (United States)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.; hide

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  19. Request for regular monitoring of the symbiotic variable RT Cru

    Science.gov (United States)

    Waagen, Elizabeth O.

    2014-08-01

    Dr. Margarita Karovska (Harvard-Smithsonian Center for Astrophysics) and colleagues have requested AAVSO observer assistance in their campaign on the symbiotic variable RT Cru (member of a new class of hard X-ray emitting symbiotic binaries). Weekly or more frequent monitoring (B, V, and visual) beginning now is requested in support of upcoming Chandra observations still to be scheduled. "We plan Chandra observations of RT Cru in the near future that will help us understand the characteristics of the accretion onto the white dwarf in this sub-class of symbiotics. This is an important step for determining the precursor conditions for formation of a fraction of asymmetric Planetary Nebulae, and the potential of symbiotic systems as progenitors of at least a fraction of Type Ia supernovae." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  20. Isolated/Non-Isolated Quad-Inverter Configuration for Multilevel Symmetrical/Asymmetrical Dual Six-Phase Star-Winding Converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Hontz, Michael R.; Khanna, Raghav

    2016-01-01

    This article presents the developments of a novel isolated/non-isolated quad inverter configuration for multilevel dual six-phase (twelve-phase) star-winding converter. The modular circuit consists of four standard voltage source inverters (VSIs). Each VSI is incorporated with one bi-directional ...... systems, electrical vehicles, AC tractions, and `More-Electric Aircraft' propulsion systems....... converter is numerically modeled using Matlab/PLECS simulation software and the predicted behavior of the system is analyzed and presented. Good agreement is obtained between these results and the theoretical analysis. Suitable applications for the converter include (low-voltage/high-current) medium power...

  1. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  2. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland

    Science.gov (United States)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-04-01

    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought

  3. Discovery of a Possible Symbiotic Binary in the Large Magellanic Cloud

    Science.gov (United States)

    Mathew, Blesson; Reid, Warren A.; Mennickent, R. E.; Banerjee, D. P. K.

    2017-12-01

    We report the discovery of a possible symbiotic star, in the Large Magellanic Cloud (LMC). The object under consideration here, designated as RP 870, was detected during the course of a comprehensive H$\\alpha$ survey of the LMC by Reid & Parker (2012). The spectrum of RP 870 showed high ionization emission lines of He I, He II and [O III] and molecular absorption bands of TiO $\\lambda$$\\lambda$6180, 7100. The collective signatures of a hot component (high excitation/ionization lines) and of a cool component (TiO molecular bands) are seen in RP 870, from which we propose it as a symbiotic star. Since known symbiotic systems are rare in the LMC, possibly less than a dozen are known, we thought the present detection to be interesting enough to be reported.

  4. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  5. Influence of a stellar wind on the evolution of a star of 30 M/sub sun/

    International Nuclear Information System (INIS)

    Stothers, R.; Chin, C.

    1980-01-01

    A coarse grid of theoretical evolutionary tracks has been computed for a star of 30 M/sub sun/, in an attempt to delineate the role of mass loss in the star's evolution during core helium burning. For all of the tracks, Cox-Stewart opacities have been adopted, and the free parameters have included the rate of mass loss, criterion for convection, and initial chemical composition. With the use of the Schwarzschild criterion, the star suffers little mass loss during core helium burning and remains almost to the end, a blue supergiant, well separated from main-sequence stars on the H-R diagram. With the use of the Ledoux criterion, the same consequences are obtained only in the case of a relatively low initial hydrogen or initial metals abundance. Otherwise, the star evolves, first, into a red supergiant, whereupon rapid mass loss must be assumed to take place, if the observed paucity of very bright red supergiants is to be accounted for. The stellar remnant then consists of little more than the original helium core, and may appear, for a time, bluer than equally luminous main-sequence stars, provided that the the initial hydrogen and metals abundances are normal. Thus, a wide variety of possible evolutionary tracks can be obtained for an initial mass of 30 M/sub sun/ with reasonable choices of the free parameters

  6. Effects of coronal regions on the x-ray flux and ionization conditions in the winds of ob supergiants and of stars

    International Nuclear Information System (INIS)

    Cassinelli, J.P.; Olson, G.L.

    1979-01-01

    The anomalously strong O VI and N V lines in O stars and the C IV lines in B supergiants may be due to Auger ionization by X-rays from a thin coronal zone at the base of the cool stellar winds. We determine the size of a corona that is necessary to produce the overall ionization conditions in zeta Pup as has been deduced by Olson from line profile analysis. In the ionization balance calculations we account for diffuse radiation field in the wind and for the large optical depths in the He II continuum due to radiative and Auger ionization edges of abundant elements. The X-ray flux transmitted through the wind is calculated and compared with upper limits derived for upper limits derived for zeta Pup observations from ANS and Uhuru satellites. It is found that a coronal zone with a temperature of 5x10 6 K and a volume emission measure of 10 58 cm -3 can produce the required ionization in a wind having a temperature of 30,000--35,000 K. The emergent X-ray flux bears little resemblance to the coronal emissivity because of the opacity of the wind. The X-ray flux nearly reaches the upper limits derived from the ANS observations and, at several energy bands, should be detectable by the HEAO B satellite. A simplified analysis of the Auger ionization process is developed and applied to other Of and OB supergiants. We find that the model can explain the presence of C IV and Si IV in supergaints with effective temperatures as low as 12,000 K and can explain the appearance of O VI and N V lines in early type supergiants as late as BO.5 and B2, respectively

  7. THE DISK WIND IN THE RAPIDLY SPINNING STELLAR-MASS BLACK HOLE 4U 1630–472 OBSERVED WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    King, Ashley L.; Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Walton, Dominic J.; Fürst, Felix; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, Steven E.; Craig, William W.; Krivonos, Roman; Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, Andy C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, Charles J.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Natalucci, Lorenzo [Istituto Nazionale di Astrofisica, INAF-IAPS, via del Fosso del Cavaliere, I-00133 Roma (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: ashking@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-20

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630–472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a{sub ∗}=0.985{sub −0.014}{sup +0.005} (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 ± 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log ξ=3.6{sub −0.3}{sup +0.2}) and is dominated by He-like Fe XXV, the wind has a velocity of v/c=0.043{sub −0.007}{sup +0.002} (12900{sub −2100}{sup +600} km s{sup –1}). If the line is instead associated with a more highly ionized gas (log ξ=6.1{sub −0.6}{sup +0.7}), and is dominated by Fe XXVI, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  8. A 3D dynamical model of the colliding winds in binary systems

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  9. The Symbiotic System SS73 17 seen with Suzaku

    Science.gov (United States)

    Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig

    2007-01-01

    We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.

  10. On planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    International Nuclear Information System (INIS)

    Allen, D.A.

    1979-01-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered. (author)

  11. Planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1979-06-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered.

  12. New outburst of the symbiotic nova AG Pegasi after 165 yr

    Science.gov (United States)

    Skopal, A.; Shugarov, S. Yu.; Sekeráš, M.; Wolf, M.; Tarasova, T. N.; Teyssier, F.; Fujii, M.; Guarro, J.; Garde, O.; Graham, K.; Lester, T.; Bouttard, V.; Lemoult, T.; Sollecchia, U.; Montier, J.; Boyd, D.

    2017-08-01

    Context. AG Peg is known as the slowest symbiotic nova, which experienced its nova-like outburst around 1850. After 165 yr, during June of 2015, it erupted again showing characteristics of the Z And-type outburst. Aims: The primary objective is to determine basic characteristics, the nature and type of the 2015 outburst of AG Peg. Methods: We achieved this aim by modelling the spectral energy distribution using low-resolution spectroscopy (330-750 nm; R = 500-1000), medium-resolution spectroscopy (420-720 nm; R 11 000), and UBVRCIC photometry covering the 2015 outburst with a high cadence. Optical observations were complemented with the archival HST and FUSE spectra from the preceding quiescence. Results: During the outburst, the luminosity of the hot component was in the range of 2-11 × 1037 (d/ 0.8 kpc)2 erg s-1, being in correlation with the light curve (LC) profile. To generate the maximum luminosity by the hydrogen burning, the white dwarf (WD) had to accrete at 3 × 10-7 M⊙ yr-1, which exceeds the stable-burning limit and thus led to blowing optically thick wind from the WD. We determined its mass-loss rate to a few × 10-6 M⊙ yr-1. At the high temperature of the ionising source, 1.5-2.3 × 105 K, the wind converted a fraction of the WD's photospheric radiation into the nebular emission that dominated the optical. A one order of magnitude increase of the emission measure, from a few × 1059 (d/ 0.8 kpc)2 cm-3 during quiescence, to a few × 1060 (d/ 0.8 kpc)2 cm-3 during the outburst, caused a 2 mag brightening in the LC, which is classified as the Z And-type of the outburst. Conclusions: The very high nebular emission and the presence of a disk-like H I region encompassing the WD, as indicated by a significant broadening and high flux of the Raman-scattered O vi 6825 Å line during the outburst, is consistent with the ionisation structure of hot components in symbiotic stars during active phases. Full Table 1 and Table 6 are only available at the CDS are

  13. X-ray Jets in the CH Cyg Symbiotic System

    Science.gov (United States)

    Karovska, Margarita; Gaetz, T.; Lee, N.; Raymond, J.; Hack, W.; Carilli, C.

    2009-09-01

    Symbiotic binaries are interacting systems in which a compact stellar source accretes matter from the wind of the cool evolved companion. There are a few hundred symbiotic systems known today, but jet activity has been detected in only a few of them, including in CH Cyg. CH Cyg is a symbiotic system that has shown significant activity since the mid 1960s. Jets have been detected in optical and radio since 1984, and more recently in 2001 in X-rays using Chandra observations.In 2008 we carried out coordinated multi-wavelength observations of the CH Cyg system with Chandra, HST, and the VLA, in order to study the propagation and interaction with the circumbinary medium of the jet detected in 2001. We report here on the detection of the 2001 SE jet which has expanded in seven years from ˜350AU to ˜1400 AU. The apex of the loop delineating the region of interaction with the circumbinary matter is moving with a speed of ˜700 km/s. Assuming a linear expansion, the jet was launched during the 1999-2000 active phase. We also report on a detection of a powerful new jet in the SW direction, observed in X-ray, optical and radio wavelengths. The new jet has a multi-component structure including an inner jet and counter jet, and a SW component ending in several clumps extending up to a distance of about 750AU.

  14. The formation of secondary stellar generations in massive young star clusters from rapidly cooling shocked stellar winds

    Czech Academy of Sciences Publication Activity Database

    Wünsch, Richard; Palouš, Jan; Tenorio-Tagle, G.; Ehlerová, Soňa

    2017-01-01

    Roč. 835, č. 1 (2017), 60/1-60/15 ISSN 0004-637X R&D Projects: GA ČR GA15-06012S Grant - others:Ga MŠk(CZ) LM2015070 Institutional support: RVO:67985815 Keywords : galaxies * ISM * star clusters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  15. Contribution of stellar winds to the composition of cosmic rays - exotic Ne and Fe from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Dearborn, D.S.P.

    1984-01-01

    The results of previous calculations of the production of Al-26 and the enhancement of heavy isotopes of Fe by Wolf-Rayet (WR) stars are discussed. Mass fractions of Al-26 in WR ejects and in WR H-rich envelopes are given as a function of stellar mass. It is concluded that the predicted mass of Al-26 in the ISM and its galactic distribution are such that WR stars are expected to be a significant if not the major source of the Al-26. The results suggest that He-22 enhancement must be accompanied by 4-8X enhancement of Fe-57, 20-45X enhancement of Fe-58, and 5-10X enhancement of Co-59. The isotopes of Fe are found to be affected before an appreciable enhancement of Ne-22 occurs. The size of the Ne-22 enhancement depends on the details of the mass-loss history whereas the Fe enhancement does not. 11 references

  16. AN X-RAY AND OPTICAL LIGHT CURVE MODEL OF THE ECLIPSING SYMBIOTIC BINARY SMC3

    International Nuclear Information System (INIS)

    Kato, Mariko; Hachisu, Izumi; Mikołajewska, Joanna

    2013-01-01

    Some binary evolution scenarios for Type Ia supernovae (SNe Ia) include long-period binaries that evolve to symbiotic supersoft X-ray sources in their late stage of evolution. However, symbiotic stars with steady hydrogen burning on the white dwarf's (WD) surface are very rare, and the X-ray characteristics are not well known. SMC3 is one such rare example and a key object for understanding the evolution of symbiotic stars to SNe Ia. SMC3 is an eclipsing symbiotic binary, consisting of a massive WD and red giant (RG), with an orbital period of 4.5 years in the Small Magellanic Cloud. The long-term V light curve variations are reproduced as orbital variations in the irradiated RG, whose atmosphere fills its Roche lobe, thus supporting the idea that the RG supplies matter to the WD at rates high enough to maintain steady hydrogen burning on the WD. We also present an eclipse model in which an X-ray-emitting region around the WD is almost totally occulted by the RG swelling over the Roche lobe on the trailing side, although it is always partly obscured by a long spiral tail of neutral hydrogen surrounding the binary in the orbital plane.

  17. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  18. Energy distributions of symbiotic novae

    International Nuclear Information System (INIS)

    Bryan, G.L.; Kwok, S.

    1991-01-01

    The IRAS low-resolution spectra of three recent symbiotic novae are fitted with a dust continuum radiative transfer model. It is found that the dust shells are detached from the photosphere and that the sizes of the inner radii are correlated with times since outburst. An analysis of the IUE spectra of HM Sge at different epochs suggests that the strength of the 2200 A feature is decreasing with times and the grains responsible for the feature are probably formed in the white dwarf ejecta. A complete accounting of the entire energy budget from radio to X-ray shows that most of the energy is emitted by the cool component in the infrared, and a significant fraction of the flux of the hot component is escaping in the far-ultraviolet. The density-bounded nature of the circumstellar gas nebulae could be the result of a bipolar geometry of the nebulae. Unlike classical novae, the optical outburst of symbiotic novae is due to the ionization of the preexisting envelope of the cool component and is not the result of a sudden ejection by the hot component. 55 refs

  19. The extreme, possible symbiotic Mira V407 Cyg and its relevance to the OH/IR sources

    International Nuclear Information System (INIS)

    Munari, U.; Margoni, R.; Stagni, R.

    1990-01-01

    New optical and IR magnitudes are presented and we review all the available photometric data on the very interesting variable V407 Cyg. A preliminary discussion of new high- and low-resolution optical spectra is given. The nature of V407 Cyg is discussed in the light of available data and a classification as a symbiotic star is suggested. (author)

  20. The wind and the magnetospheric accretion onto the T Tauri star S Coronae Australis at sub-au resolution

    Science.gov (United States)

    Gravity Collaboration; Garcia Lopez, R.; Perraut, K.; Caratti O Garatti, A.; Lazareff, B.; Sanchez-Bermudez, J.; Benisty, M.; Dougados, C.; Labadie, L.; Brandner, W.; Garcia, P. J. V.; Henning, Th.; Ray, T. P.; Abuter, R.; Amorim, A.; Anugu, N.; Berger, J. P.; Bonnet, H.; Buron, A.; Caselli, P.; Clénet, Y.; Coudé Du Foresto, V.; de Wit, W.; Deen, C.; Delplancke-Ströbele, F.; Dexter, J.; Eckart, A.; Eisenhauer, F.; Garcia Dabo, C. E.; Gendron, E.; Genzel, R.; Gillessen, S.; Haubois, X.; Haug, M.; Haussmann, F.; Hippler, S.; Hubert, Z.; Hummel, C. A.; Horrobin, M.; Jocou, L.; Kellner, S.; Kervella, P.; Kulas, M.; Kolb, J.; Lacour, S.; Le Bouquin, J.-B.; Léna, P.; Lippa, M.; Mérand, A.; Müller, E.; Ott, T.; Panduro, J.; Paumard, T.; Perrin, G.; Pfuhl, O.; Ramirez, A.; Rau, C.; Rohloff, R.-R.; Rousset, G.; Scheithauer, S.; Schöller, M.; Straubmeier, C.; Sturm, E.; Thi, W. F.; van Dishoeck, E.; Vincent, F.; Waisberg, I.; Wank, I.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Zins, G.

    2017-12-01

    Aims: To investigate the inner regions of protoplanetary discs, we performed near-infrared interferometric observations of the classical T Tauri binary system S CrA. Methods: We present the first VLTI-GRAVITY high spectral resolution (R 4000) observations of a classical T Tauri binary, S CrA (composed of S CrA N and S CrA S and separated by 1.̋4), combining the four 8m telescopes in dual-field mode. Results: Our observations in the near-infrared K-band continuum reveal a disc around each binary component, with similar half-flux radii of about 0.1 au at d 130 pc, inclinations (i = 28 ± 3° and i = 22 ± 6°), and position angles (PA = 0°± 6° and PA = –2°± 12°), suggesting that they formed from the fragmentation of a common disc. The S CrA N spectrum shows bright He I and Brγ line emission exhibiting inverse P Cygni profiles, typically associated with infalling gas. The continuum-compensated Brγ line visibilities of S CrA N show the presence of a compact Brγ emitting region whose radius is about 0.06 au, which is twice as big as the truncation radius. This component is mostly tracing a wind. Moreover, a slight radius change between the blue- and red-shifted Brγ line components is marginally detected. Conclusions: The presence of an inverse P Cygni profile in the He I and Brγ lines, along with the tentative detection of a slightly larger size of the blue-shifted Brγ line component, hint at the simultaneous presence of a wind and magnetospheric accretion in S CrA N.

  1. Search for magnetic fields in the symbiotic and VV Cephei variables

    International Nuclear Information System (INIS)

    Slovak, M.H.

    1982-01-01

    The McDonald Observatory's 2.7 m photoelectric analyzer was used to examine five symbiotic and VV Cephei variables for the presence of coherent longitudinal fields. Repeated observations of magnetic Ap stars indicates an absolute sensitivity of +- 100--200 gauss. To this level, no new evidence is found supporting the reported kilogauss fields on the quiescent symbiotics AG Pegasi and EG Andromedae, nor for the VV Cephei stars VV Cephei and WY Geminorum, contrary to extant photographic determinations. Observations of CH Cygni following its 1977 eruption also yielded null results. The lack of significant line broadening correlated with effective z-values further rules out the presence of large transverse components

  2. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  3. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    Science.gov (United States)

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  4. ON THE NATURE OF THE HOT COMPONENT IN THE SYMBIOTIC, SUPERSOFT X-RAY BINARY AG DRACONIS

    Energy Technology Data Exchange (ETDEWEB)

    Sion, Edward M.; Moreno, Jackeline; Godon, Patrick [Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States); Sabra, Bassem [Department of Physics and Astronomy, Notre Dame University-Louaize, Zouk Mosbeh (Lebanon); Mikolajewska, Joanna, E-mail: edward.sion@villanova.edu, E-mail: jackeline.moreno@villanova.edu, E-mail: patrick.godon@villanova.edu, E-mail: bsabra@ndu.edu.lb, E-mail: mikolaj@camk.edu.pl [Copernicus Astronomical Center, Warsaw (Poland)

    2012-12-01

    AG Dra is a symbiotic variable consisting of a metal-poor, yellow giant mass donor underfilling its Roche lobe and a hot accreting white dwarf, possibly surrounded by an optically thick, bright accretion disk (which could be present from wind accretion). We constructed NLTE synthetic spectral models for white dwarf spectra and optically thick accretion disk spectra to model a FUSE spectrum of AG Dra, obtained when the hot component is viewed in front of the yellow giant. The spectrum has been dereddened (E(B - V) = 0.05) and the model fitting carried out, with the distance regarded as a free parameter but required to be larger than the Hipparcos lower limit of 1 kpc. We find that the best-fitting model is a bare accreting white dwarf with M{sub wd} = 0.4 M{sub Sun }, T{sub eff} = 80,000 K, and a model-derived distance of 1543 pc. Higher temperatures are ruled out due to excess flux at the shortest wavelengths while a lower temperature decreases the distance below 1 kpc. Any accretion disk that might be present is only a minor contributor to the far-UV flux. This raises the possibility that the soft X-rays originate from a very hot boundary layer between a putative accretion disk and the accreting star.

  5. Kuwano's peculiar object is a novalike (symbiotic) binary with a red giant. Discussion of observational results

    International Nuclear Information System (INIS)

    Belyakina, T.S.; Gershberg, R.E.; Efimov, Yu.S.; Krasnobabtsev, V.I.; Pavlenko, E.P.; Petrov, P.P.; Chuvaev, K.K.; Shenavrin, V.I.

    1982-01-01

    Photometric, polarimetric and spectral observations carried out at the Crimea permit to conclude that the Kuwano object is a binary system that consists of an M-giant and of a low-luminosity star. During the 1979 flare, the absolute magnitude of the weak component has increased up to about -6sup(m), the M-giant had apparently small variations as well. A distance to the object is estimated to be 5-7 kpc, and it is located certainly out of the galactic plane. Similarities between the Kuwano object and slow novae and symbiotic stars are noted [ru

  6. Dust around the Cool Component of D-Type Symbiotic Binaries

    Science.gov (United States)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  7. Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    Energy Technology Data Exchange (ETDEWEB)

    Slocum, Alex [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-02-22

    The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test a second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean u

  8. Classification spectra of Sanduleak and Stephenson emission-line stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1978-01-01

    Low dispersion slit spectra of 89 emission-line stars are described; these stars were originally located and classified by Sanduleak and Stephenson in an objective-prism survey. The new data broadly confirm the classification scheme adopted by Sanduleak and Stephenson. In particular most of the large number of symbiotic stars they classified have been confirmed and others found. Many of these contain strong, broad emission bands in their red spectra. Two new Wolf-Rayet stars, one new planetary nebula and two new bipolar reflection nebulae involving hidden emission-line stars have been found. (author)

  9. Classification spectra of Sanduleak and Stephenson emission-line stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1978-09-01

    Low dispersion slit spectra of 89 emission-line stars are described; these stars were originally located and classified by Sanduleak and Stephenson in an objective-prism survey. The new data broadly confirm the classification scheme adopted by Sanduleak and Stephenson. In particular most of the large number of symbiotic stars they classified have been confirmed and others found. Many of these contain strong, broad emission bands in their red spectra. Two new Wolf-Rayet stars, one new planetary nebula and two new bipolar reflection nebulae involving hidden emission-line stars have been found.

  10. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    International Nuclear Information System (INIS)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-01-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s −1 . Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  11. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Garcia, Michael R., E-mail: skenyon@cfa.harvard.edu, E-mail: michael.r.garcia@nasa.gov [NASA Headquarters, Mail Suite 3Y28, 300 E Street SW, Washington, DC 20546-0001 (United States)

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s{sup −1}. Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T{sub h} ≈ 75,000 K ionizes the wind from the red giant.

  12. EG Andromedae: A New Orbit and Additional Evidence for a Photoionized Wind

    Science.gov (United States)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s-1. Combined with previous data, these observations rule out an elliptical orbit at the 10σ level. Equivalent widths of H I Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H II region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  13. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  14. The spectral energy distribution and nature of the symbiotic system AS 296 in outburst

    International Nuclear Information System (INIS)

    Munari, U.; Whitelock, P.A.

    1989-01-01

    Photometry covering the spectral range 0.36 to 5 μm is reported for the symbiotic star As 296 about two months after the onset of the first recorded nova-like outburst. Analysis of published pre-outburst photometry provides evidence for the presence of an accreting white dwarf of high luminosity. This information together with the new observations is used to eliminate, for the 1988 event, various mechanisms which have been suggested for the outbursts in symbiotic objects. It is shown that hydrogen burning of accreted material can produce the white dwarf luminosity during quiescence. The outburst is then the result of a thermonuclear runaway in the unburnt material. The evidence is somewhat conflicting on the question of degeneracy conditions prior to the thermonuclear runaway. (author)

  15. SPARCHS: Symbiotic, Polymorphic, Automatic, Resilient, Clean-Slate, Host Security

    Science.gov (United States)

    2016-03-01

    SPARCHS: SYMBIOTIC , POLYMORPHIC, AUTOMATIC, RESILIENT, CLEAN-SLATE, HOST SECURITY COLUMBIA UNIVERSITY MARCH 2016 FINAL... SYMBIOTIC , POLYMORPHIC, AUTOTOMIC, RESILIENT, CLEAN-SLATE, HOST SECURITY 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA8750-10-2-0253 5c. PROGRAM...17 4.2.3 SYMBIOTIC EMBEDDED MACHINES

  16. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  17. Bipolar Jet Growth and Decline in Hen 3-1341: A Direct Link to Fast Wind and Outburst Evolution

    National Research Council Canada - National Science Library

    Munari, Ulisse; Siviero, A; Henden, A

    2005-01-01

    We report on and investigate the evolution and disappearance in the symbiotic star Hen 3-1341 of collimated bipolar jets, which take the form of symmetrically displaced components of emission lines...

  18. Symbiots: Conceptual Interventions Into Urban Energy Systems

    DEFF Research Database (Denmark)

    Bergström, Jenny; Mazé, Ramia; Redströmand, Johan

    2009-01-01

    Symbiots set out to examine values such as ease-of-use, comfort, and rationality assumed within conventions of ‘good design’, in order to expose issues related to energy consumption and current human- (versus eco-) centered design paradigms. Exploring re-interpretations of graphical patterns, arc...

  19. Effect of diseases on symbiotic systems.

    Science.gov (United States)

    Tiwari, Pankaj Kumar; Sasmal, Sourav Kumar; Sha, Amar; Venturino, Ezio; Chattopadhyay, Joydev

    2017-09-01

    There are many species living in symbiotic communities. In this study, we analyzed models in which populations are in the mutualism symbiotic relations subject to a disease spreading among one of the species. The main goal is the characterization of symbiotic relations of coexisting species through their mutual influences on their respective carrying capacities, taking into account that this influence can be quite strong. The functional dependence of the carrying capacities reflects the fact that the correlations between populations cannot be realized merely through direct interactions, as in the usual predator-prey Lotka-Volterra model, but also through the influence of each species on the carrying capacities of the other one. Equilibria are analyzed for feasibility and stability, substantiated via numerical simulations, and global sensitivity analysis identifies the important parameters having a significant impact on the model dynamics. The infective growth rate and the disease-related mortality rate may alter the stability behavior of the system. Our results show that introducing a symbiotic species is a plausible way to control the disease in the population. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Investigating Tactile Stimulation in Symbiotic Systems

    DEFF Research Database (Denmark)

    Orso, Valeria; Mazza, Renato; Gamberini, Luciano

    2017-01-01

    The core characteristics of tactile stimuli, i.e., recognition reliability and tolerance to ambient interference, make them an ideal candidate to be integrated into a symbiotic system. The selection of the appropriate stimulation is indeed important in order not to hinder the interaction from...

  1. Mass loss from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Willis, A.J.

    1982-01-01

    Recent results relating to the stellar winds and mass loss rates of the WR stars are reviewed, emphasising new data and their interpretation acquired at UV, IR and Radio wavelengths. The subject is discussed under the headings: physical and chemical properties of WR stars (effective temperatures and radiative luminosities; masses; chemical abundances); velocity, ionisation and excitation structure of WR winds; mass loss rates of WR stars; mass loss properties of WR stars in the LMC; comparisons with theoretical models of mass loss; ring nebulae around WR stars; conclusions. (author)

  2. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    Science.gov (United States)

    Lopez-Coto, Ruben

    2015-07-01

    lowest possible energy threshold with the LSTs of CTA. Together with this work, the trigger of the MAGIC telescopes was improved. We have simulated, tested and commissioned a new concept of stereoscopic trigger. This new system, that uses the information of the position of the showers on each of the MAGIC cameras, is dubbed "Topo-trigger". The scientific fraction of the thesis deals with galactic sources observed with the MAGIC telescopes. In Part III, I talk about the analysis of the VHE γ-ray emission of Pulsar Wind Nebulae (PWNe): the discovery of VHE γ-ray emission from the puzzling PWN 3C 58, the likely remnant of the SN 1181 AD and the weakest PWN detected at VHE to date; the characterization of the VHE tail of the Crab nebula by observing it at the highest zenith angles; and the search for an additional inverse Compton component during the Crab nebula flares reported by Fermi-LAT in the synchrotron regime. Part IV is concerned with searches for VHE γ-ray emission of cataclysmic variable stars. I studied, on a multiwavelength context, the VHE γ-ray nature of the previously claimed pulsed γ-ray emission of the cataclysmic variable AE Aqr. I also performed observations of novae and a dwarf nova to pinpoint the ac- celeration mechanisms taking place in this kind of objects and to discover a putative hadronic component of the soft γ-ray emission. A conclusion chapter summarizes all the work performed and lists prospects related with the topics treated in this thesis.

  3. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    Science.gov (United States)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  4. The disk wind in the rapidly spinning stellar-mass black hole 4U 1630-472 observed with NuSTAR

    DEFF Research Database (Denmark)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we...... find evidence for a rapidly spinning black hole, (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also...

  5. Symbiotic architecture: Redefinition of recycling design principles

    OpenAIRE

    Milan Šijaković; Ana Perić

    2018-01-01

    The study seeks to examine the possibility of implementing the biological concept of symbiosis into the field of architecture for redefining the design principles of architectural recycling. Through an in-depth analysis of the biological concept of symbiosis (i.e., a close and often long-term interaction between two or more different biological species and the criteria that govern the differentiation between symbiotic associations), three redefined design principles of recycling—commensalism,...

  6. Economics of symbiotic nuclear fleets at equilibrium

    International Nuclear Information System (INIS)

    Bidaud, Adrien; Guillemin, P.; Lecarpentier, David

    2008-01-01

    Many decades of industrial experience have proven that thermal reactors are able to provide a safe, reliable and competitive source of electricity. The higher construction costs of fast reactors compared to thermal reactors could be compensated by their better use of fissile material during the probable fast development of nuclear energy in the first half of the century. Thus, despite the over-cost of their cores, on the longer term, fast reactors are expected to take the lead in the nuclear reactor race. In the mean term, multi-strata symbiotic parks, using high conversion-rate thermal reactors, may delay fast reactor start up. We compare projected fuel cycle costs and cost of electricity of various symbiotic nuclear fleets, on the basis of a simple economic model and elementary costs estimated on publicly available data. These parameters and their evolution over reactor-life time scale can hardly be estimated. That is why we look at the sensitivities of our results to large modifications of the input parameters. The aim of our simple economic model is to understand which reactor characteristics should be optimized to enhance their economic performance when working as a single symbiotic fleet. (authors)

  7. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    Science.gov (United States)

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High Energy Emission of Symbiotic Recurrent Novae: RS Oph and V407 Cyg

    Directory of Open Access Journals (Sweden)

    Hernanz M.

    2012-06-01

    Full Text Available Recurrent novae occurring in symbiotic binaries are candidate sources of high energy photons, reaching GeV energies. Such emission is a consequence of particle acceleration leading to pion production. the shock between matter ejected by the white dwarf, undergoing a nova explosion, and the wind from the red giant companion are responsible for such a process, which mimics a supernova remnant but with much smaller energetic output and much shorter time scales. Inverse Compton can also be responsible for high energy emission. Recent examples are V407 Cyg, detected by Fermi, and RS Oph, which unfortunately exploded in 2006, before Fermi was launched.

  9. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    to nodule primordia formation, and the infection thread initiation in the root hairs guiding bacteria towards dividing cortical cells. This chapter focuses on the plant genes involved in the recognition of the symbiotic signal produced by rhizobia, and the downstream genes, which are part of a complex...... symbiotic signalling pathway that leads to the generation of calcium spiking in the nuclear regions and activation of transcription factors controlling symbiotic genes induction...

  10. Nonlinear behavior analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach

    Directory of Open Access Journals (Sweden)

    Azizian Davood

    2016-12-01

    Full Text Available Regarding the importance of short circuit and inrush current simulations in the split-winding transformer, a novel nonlinear equivalent circuit is introduced in this paper for nonlinear simulation of this transformer. The equivalent circuit is extended using the nonlinear inductances. Employing a numerical method, leakage and magnetizing inductances in the split-winding transformer are extracted and the nonlinear model inductances are estimated using these inductances. The introduced model is validated and using this nonlinear model, inrush and short-circuit currents are calculated. It has been seen that the introduced model is valid and suitable for simulations of the split-winding transformer due to various loading conditions. Finally, the effects of nonlinearity of the model inductances are discussed in the following.

  11. Effect of neem cake/fertilizers on symbiotic and non-symbiotic N2 fixing bacteria

    International Nuclear Information System (INIS)

    Akhtar, S.; Solangi, A.H.; Gilani, G.; Pirzada, M.H.

    2002-01-01

    Neem cake amendment in soil at 1.3% no adverse effect on the population of four symbiotic Rhizobium species viz., japonicum, R. leguminosarum, R. Phaseoli and R. Fredii and three non-symbiotic free living nitrogen fixers bacteria viz., Pseudomonas diazotrophicus, Klebsiella planticola and Enterobacter cloacae. Neem cake extracted with n-hexane stimulated the growth of Rhizobium species in vitro, whereas Neem cake expeller extracted neither inhibited nor stimulated the growth of Rhizobium species except for R. Fredii, whose was slightly retarded. The fertilizers (urea, NPK and DAP) had no adverse effect on these bacteria even at the dosage ten times higher the recommended dose. (author)

  12. Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System

    Science.gov (United States)

    Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra

    2013-04-01

    The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.

  13. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Science.gov (United States)

    2012-08-13

    ... Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC; Pacific Wind, LLC; Colorado Highlands Wind, LLC; Shooting Star Wind Project, LLC; Notice of Effectiveness of Exempt Wholesale Generator or... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-63-000; EG12-64-000...

  14. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  15. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    Energy Technology Data Exchange (ETDEWEB)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki [Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397 (Japan)

    2017-10-01

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference, we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.

  16. Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California.

    Science.gov (United States)

    Hollowell, A C; Regus, J U; Gano, K A; Bantay, R; Centeno, D; Pham, J; Lyu, J Y; Moore, D; Bernardo, A; Lopez, G; Patil, A; Patel, S; Lii, Y; Sachs, J L

    2016-04-01

    The patterns and drivers of bacterial strain dominance remain poorly understood in natural populations. Here, we cultured 1292 Bradyrhizobium isolates from symbiotic root nodules and the soil root interface of the host plant Acmispon strigosus across a >840-km transect in California. To investigate epidemiology and the potential role of accessory loci as epidemic drivers, isolates were genotyped at two chromosomal loci and were assayed for presence or absence of accessory "symbiosis island" loci that encode capacity to form nodules on hosts. We found that Bradyrhizobium populations were very diverse but dominated by few haplotypes-with a single "epidemic" haplotype constituting nearly 30 % of collected isolates and spreading nearly statewide. In many Bradyrhizobium lineages, we inferred presence and absence of the symbiosis island suggesting recurrent evolutionary gain and or loss of symbiotic capacity. We did not find statistical phylogenetic evidence that the symbiosis island acquisition promotes strain dominance and both symbiotic and non-symbiotic strains exhibited population dominance and spatial spread. Our dataset reveals that a strikingly few Bradyrhizobium genotypes can rapidly spread to dominate a landscape and suggests that these epidemics are not driven by the acquisition of accessory loci as occurs in key human pathogens.

  17. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  18. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  19. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  20. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  1. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  2. Time-dependent mass loss from hot stars with and without radiative driving

    International Nuclear Information System (INIS)

    Castor, J.I.; Owocki, S.P.; Rybicki, G.B.

    1988-01-01

    A numerical hydrodynamics code is used to investigate two aspects of the winds of hot stars. The first is the question of the instability of the massive radiatively-driven wind of an O star that is caused by the line shape mechanism: modulation of the radiation force by velocity fluctuations. The evolution of this instability is studied in a model O star wind, and is found, /ital modulo/ some numerical uncertainty, to lead to wave structures that are compatible with observations of wind instabilities. The other area of investigation is of main-sequence B star winds. Attempts were made to simulate a radiatively-driven and a pulsation-driven wind in a B star, but in each case the wind turned out to be very weak. It is argued that the pulsation-driven wind model is not likely to apply to B stars. 28 refs., 11 figs

  3. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  4. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  5. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  6. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

    Science.gov (United States)

    Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.

    2018-06-01

    Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other

  7. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  8. Phylogeny of Symbiotic Genes and the Symbiotic Properties of Rhizobia Specific to Astragalus glycyphyllos L.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Łotocka, Barbara; Wójcik, Magdalena

    2015-01-01

    The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99-100% in the case of nodAC and nifH genes, and 98-99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar "glycyphyllae", based on nodA and nodC genes sequences.

  9. Ad-hoc Symbiotic Interactive Displays through DLNA

    DEFF Research Database (Denmark)

    Bitsch, Jannick Elimar; Bouvin, Niels Olof

    2012-01-01

    The concept of symbiotic displays covers the opportunistic pairing of mobile devices with screen devices that can be discovered and controlled across a network. Mobile applications that use symbiotic displays can offer the user an improved experience, but the lack of a widely deployed infras......- tructure means that the concept has seen little use. We design and implement a solution for using DLNA playback devices as symbiotic screens. DLNA devices are not designed to support interactive content, but to share and play media content in the home. Our work includes constructing a mechanism for real...

  10. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  11. Kinematics of the symbiotic system R Aqr

    Science.gov (United States)

    Navarro, S.; Corral, L. J.; Steffen, W.

    2014-04-01

    We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.

  12. Symbiotic empirical ethics: a practical methodology.

    Science.gov (United States)

    Frith, Lucy

    2012-05-01

    Like any discipline, bioethics is a developing field of academic inquiry; and recent trends in scholarship have been towards more engagement with empirical research. This 'empirical turn' has provoked extensive debate over how such 'descriptive' research carried out in the social sciences contributes to the distinctively normative aspect of bioethics. This paper will address this issue by developing a practical research methodology for the inclusion of data from social science studies into ethical deliberation. This methodology will be based on a naturalistic conception of ethical theory that sees practice as informing theory just as theory informs practice - the two are symbiotically related. From this engagement with practice, the ways that such theories need to be extended and developed can be determined. This is a practical methodology for integrating theory and practice that can be used in empirical studies, one that uses ethical theory both to explore the data and to draw normative conclusions. © 2010 Blackwell Publishing Ltd.

  13. Moving inhomogeneous envelopes of stars

    Czech Academy of Sciences Publication Activity Database

    Oskinova, L.M.; Kubátová, Brankica; Hamann, W.-R.

    2016-01-01

    Roč. 183, Special Issue (2016), s. 100-112 ISSN 0022-4073. [International Conference on Radiation Mechanisms of Astrophysical Objects - Classics Today. St. Petersburg, 21.09.2016-25.09.2016] Institutional support: RVO:67985815 Keywords : stars * mass-loss * winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.419, year: 2016

  14. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  15. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  16. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    Energy Technology Data Exchange (ETDEWEB)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 106 Pleasant Street S.E., Minneapolis, MN 55455 (United States); Helton, L. A. [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Evans, A. [Astrophysics Group, Lennard Jones Laboratory, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Keller, L. D. [Department of Physics and Astronomy, 264 Center for Natural Sciences, Ithaca College, Ithaca, NY 14850 (United States); Hinkle, K. H. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Jura, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Lebzelter, T. [Institute for Astrophysics (IfA), University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lisse, C. M. [Solar System Exploration Branch, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Rushton, M. T. [Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, Bucharest, 040557 (Romania); Mizrachi, J., E-mail: arneson@astro.umn.edu [Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-07-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  17. Chemistry in T Tauri winds

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, J M.C.; Williams, D A; Canto, J

    1988-02-15

    The chemistry occurring in the winds of T Tauri stars is investigated. On the assumption that the wind is dust-free, then routes to H/sub 2/ are inhibited under the conditions in the wind, and subsequent chemistry does not produce substantial molecular abundances. The major losses to the chemical network lie in the geometrical dilution and collisional dissociation rather than in chemical destruction and photodissociation. Mass loading of the wind with dust and H/sub 2/ may, however, occur. This stimulates the chemistry and may in some circumstances lead to a conversion of approx.1-10 per cent of carbon into CO. This gives a column density of CO which is marginally detectable. A positive detection of CO at high wind velocities would imply that the winds must be cool and that mixing of molecular material from a disc, which may play a role in collimating the wind, or the remnants of a disc, must occur.

  18. Cytokinins in Symbiotic Nodulation: When, Where, What For?

    Science.gov (United States)

    Gamas, Pascal; Brault, Mathias; Jardinaud, Marie-Françoise; Frugier, Florian

    2017-09-01

    Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Frankia. Both the nonsymbiotic and symbiotic genes retained their specific patterns of expression when introduced into the legume Lotus corniculatus. We interpret this finding to mean that the controls of expression of the symbiotic gene in Casuarina must be similar to the controls of expression...... of the leghemoglobin genes that operate in nodules formed during the interaction between rhizobia and legumes. Deletion analyses of the promoters of the Casuarina symbiotic genes delineated a region that contains nodulin motifs identified in legumes; this region is critical for the controlled expression...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  20. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  1. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  2. A D'-type symbiotic binary in the planetary nebula SMP LMC 88

    Science.gov (United States)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Miszalski, Brent; Kozłowski, Szymon; Udalski, Andrzej

    2018-05-01

    SMP LMC 88 is one of the planetary nebulae (PNe) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083 Å. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D'-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the orbital variability of Galactic D'-type SySt with its low amplitude and sinusoidal light-curve shape. The SySt classification is also supported by the He I diagnostic diagram.

  3. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    Energy Technology Data Exchange (ETDEWEB)

    Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Riera, A. [Departament de Física I Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, E-08036 Barcelona (Spain); Raga, A.; Velázquez, P. F. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 D.F. (Mexico); Kwitter, K. B., E-mail: balick@uw.edu, E-mail: angels.riera@upc.edu, E-mail: raga@nucleares.unam.mx, E-mail: pablo@nucleares.unam.mx, E-mail: kkwitter@williams.edu [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States)

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  4. The evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1980-01-01

    The evolution of stars with masses between 15 M 0 and 100 M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution. The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities. Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15 M 0 and a 25 M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed. The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface. The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed. The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined. Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss. (orig.)

  5. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  6. Microbiome change by symbiotic invasion in lichens

    Science.gov (United States)

    Maier, Stefanie; Wedin, Mats; Fernandez-Brime, Samantha; Cronholm, Bodil; Westberg, Martin; Weber, Bettina; Grube, Martin

    2016-04-01

    Biological soil crusts (BSC) seal the soil surface from erosive forces in many habitats where plants cannot compete. Lichens symbioses of fungi and algae often form significant fraction of these microbial assemblages. In addition to the fungal symbiont, many species of other fungi can inhabit the lichenic structures and interact with their hosts in different ways, ranging from commensalism to parasitism. More than 1800 species of lichenicolous (lichen-inhabiting) fungi are known to science. One example is Diploschistes muscorum, a common species in lichen-dominated BSC that infects lichens of the genus Cladonia. D. muscorum starts as a lichenicolous fungus, invading the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Furthermore, bacterial groups, such as Alphaproteobacteria and Acidobacteria, have been consistently recovered from lichen thalli and evidence is rapidly accumulating that these microbes may generally play integral roles in the lichen symbiosis. Here we describe lichen microbiome dynamics as the parasitic lichen D. muscorum takes over C. symphycarpa. We used high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing to track bacterial and algal transitions during the infection process, and employed fluorescence in situ hybridization to localize bacteria in the Cladonia and Diploschistes lichen thalli. We sampled four transitional stages, at sites in Sweden and Germany: A) Cladonia with no visible infection, B) early infection stage defined by the first visible Diploschistes thallus, C) late-stage infection with parts of the Cladonia thallus still identifiable, and D) final stage with a fully developed Diploschistes thallus, A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of

  7. NEW X-RAY DETECTIONS OF WNL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), University of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space and Solar-Terrestrial Research Institute, Moskovska str. 6, Sofia-1000 (Bulgaria); Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner [Physikalisch-Meteorologisches Observatorium Davos (PMOD), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland); Sokal, Kimberly R., E-mail: Stephen.Skinner@colorado.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  8. NEW X-RAY DETECTIONS OF WNL STARS

    International Nuclear Information System (INIS)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-01-01

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L x ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v ∞ ). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L x with wind luminosity L wind = (1/2)M-dot v 2 ∞ , suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  9. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  10. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  11. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  12. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  13. Where is the X-ray emission coming from in RT Cru Symbiotic System?

    Science.gov (United States)

    Karovska, Margarita

    2014-11-01

    RT Cru is a member of a new sub-class of symbiotic interacting binaries with copious hard X-ray emission. It consists of a high-mass WD (>1.3 Ms) accreting from the wind of an M giant, and it is an important system to study in order to constrain precursor conditions for asymmetric PN and SN Ia. The Chandra HRC-I observation (Dec 2012), and an overlapping Swift observation, detected intermittent soft X-ray flaring, and we find evidence for a significant soft component in the spectrum. The flaring could be a consequence of clumped absorption columns moving in and out of the line of sight, or the variations could be due to changes at the accretion boundary layer. Further observations are needed to determine the origin of the soft emission and its relation to the hard emission.

  14. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  15. Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis

    Directory of Open Access Journals (Sweden)

    Deleury Emeline

    2009-07-01

    Full Text Available Abstract Background Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm can be easily separated. Results A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed. We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs. Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial. We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. Conclusion This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest

  16. Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis.

    Science.gov (United States)

    Sabourault, Cécile; Ganot, Philippe; Deleury, Emeline; Allemand, Denis; Furla, Paola

    2009-07-23

    Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm) can be easily separated. A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed). We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs). Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial). We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest available genome, the sea anemone N. vectensis, as well as

  17. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  18. Environments of T Tauri stars

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    The environments of T Tauri stars are probably determined by the interaction of a stellar wind with matter which is falling toward a newly formed star. As shown by Ulrich, the steady infall of cool gas with angular momentum toward the star leads to a density distribution with rhoproportionalr/sup -1/2/ inside a radius r/sub d/ and rhoproportionalr/sup -3/2/ outside r/sub d/. The radius r/sub d/ is determined by the angular momentum of the infalling gas. The expansion of the wind into this medium depends on the parameter α = M/sub w/v/sub w//M/sub in/v/sub in/(r/sub d/), where v/sub in/(r/sub d/) is the free-fall velocity at r/sub d/, M/sub in/ is the mass accretion rate, v/sub w/ is the wind velocity, and M/sub w/ is the mass loss rate. For α 14 cm, v/sub w/ = 150 km s -1 , M/sub in/ = 10 -7 M/sub sun/ yr -1 , and M/sub w/ = 3 x 10 -8 M/sub sun/ yr -1 . The inflow is clumpy. The shocked wind gives the radio emission and nebular emission from T Tauri, and dust within the clumps gives the infrared emission. T Tauri is in a transitory phase in which most of the wind has only recently propagated beyond r/sub d/. The model naturally predicts variable obscuration of T Tauri stars because the infalling clumps move on nonradial trajectories. The infrared emission can vary either because of structural changes in the circumstellar gas or because of variations in the stellar luminosity. Infrared variability should be small at short time scales because of light-travel time effects

  19. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids.

    Science.gov (United States)

    Zhu, Feng; Cusumano, Antonino; Bloem, Janneke; Weldegergis, Berhane T; Villela, Alexandre; Fatouros, Nina E; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Vogel, Heiko; Poelman, Erik H

    2018-05-15

    Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.

  20. Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum

    Science.gov (United States)

    Sachs, Joel L.; Russell, James E.; Hollowell, Amanda C.

    2011-01-01

    Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown. PMID:22073160

  1. Outbursts In Symbiotic Binaries (FUSE 2000)

    Science.gov (United States)

    Kenyon, Scott J.; Sonneborn, George (Technical Monitor)

    2002-01-01

    During the past year, we made good progress on analysis of FUSE observations of the symbiotic binary Z And. For background, Z And is a binary system composed of a red giant and a hot component of unknown status. The orbital period is roughly 750 days. The hot component undergoes large-scale eruptions every 10-20 yr. An outburst began several years ago, triggering this FUSE opportunity. First, we obtained an excellent set of ground-based optical data in support, of the FUSE observations. We used FAST, a high throughput low resolution spectrograph on the 1.5-m telescope at Mt. Hopkins, Arizona. A 300 g/ mm grating blazed at 4750 A, a 3 in. slit, and a thinned Loral 512 x 2688 CCD gave us spectra covering 3800-7500 A at a resolution of 6 A. The wavelength solution for each spectrum has a probable error of +/- 0.5 A or better. Most of the resulting spectra have moderate signal-to-noise, S/.N approx. greater than 30 per pixel. The time coverage for these spectra is excellent. Typically, we acquired spectra every 1-2 nights during dark runs at Mt. Hopkins. These data cover most of the rise and all of the decline of the recent outburst. The spectra show a wealth of emission lines, including H I, He I, He II, [Fe V11], and the Raman scattering bands at 6830 A and 7088 A. The Raman bands and other high ionization features vary considerably throughout the outburst. These features will enable us to correlate variations in the FUSE spectra with variations in the optical spectra. Second, we began an analysis of FUSE spectra of Z And. We have carefully examined the spectra, identifying real features and defects. We have identified and measured fluxes for all strong emission lines, including the O VI doublet at 1032 A and 1038 A. These and several other strong emission lines display pronounced P Cygni absorption components indicative of outgrowing gas. We will attempt to correlate these velocities with similar profiles observed on optical spectra. The line velocities - together

  2. Wind models for zeta Orionis

    International Nuclear Information System (INIS)

    Olson, G.L.

    1979-01-01

    Several models for the winds of O stars have been proposed to explain the unexpected presence of high ionization potential ions such as N +4 and O +5 . Lamers and Snow (1978) proposed that the winds of stars showing N V and O VI lines have elevated temperatures near 4 +- 2 x 10 5 K while cooler stars with anomalous Si IV lines have Tsub(e) approximately 7+-3 x 10 4 K. Alternately, Cassinelli and Olson (1978, CO) and Olson (1978) have explained the presence of these ions by showing that a thin corona at the base of a cool wind (Tsub(e) < approximately Tsub(eff)) can produce these ions by the Auger photoionization process where a single X-ray photon causes the ejection of two electrons. A third possibility is that the winds are at only slightly elevated temperatures (40 000 to 60 000K) and photoionization in an optically thick wind produces the unexpected ions. The present analysis tests the ability of these three wind models to fit the observations of zeta Orionis A 09.7 Ib. (Auth.)

  3. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  4. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  5. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  8. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  9. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  10. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    Science.gov (United States)

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  11. Nodulation outer proteins: double-edged swords of symbiotic rhizobia.

    Science.gov (United States)

    Staehelin, Christian; Krishnan, Hari B

    2015-09-15

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research. © 2015 Authors; published by Portland Press Limited.

  12. Effect of Subliminal Stimulation of Symbiotic Fantasies on Behavior Modification Treatment of Obesity.

    Science.gov (United States)

    And Others; Silverman, Lloyd H.

    1978-01-01

    Obese women were treated in behavior modification programs for overeating. Behavior programs were accompanied by subliminal stimulation and by symbiotic and control messages. The symbiotic condition gave evidence of enhancing weight loss. This finding supports the proposition that subliminal stimulation of symbiotic fantasies can enhance the…

  13. Spheroidal Populated Star Systems

    Science.gov (United States)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  14. Symbiotic fungal associations in 'lower' land plants.

    Science.gov (United States)

    Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

    2000-06-29

    An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of

  15. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M C , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M C are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10 6 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  16. Properties of hot luminous stars; Proceedings of the First Boulder-Munich Workshop, Boulder, CO, Aug. 6-11, 1988

    International Nuclear Information System (INIS)

    Garmany, C.D.

    1990-01-01

    Various papers on the properties of hot luminous stars are presented. Individual topics addressed include: problems in photometry of early-type stars; digital optical morphology of OB spectra; massive-star content of the Magellanic Clouds; observations of massive OB stars; LSS 3074, a new double-lined early O-type binary; non-LTE line blanketing with elements 1-28; non-LTE analysis of four PG1159 stars; rescaling method for model atmospheres of hot stars; stellar wind albedo effects on hot photospheres; atomic data and models for hot star abundance determinations; ring nebulae analysis as a probe for WR atmospheres; coordinated observations of P Cygni; radiation-driven winds of hot luminous stars; winds of O stars: velocities and ionization; methods of radiative transfer in expanding atmospheres; mass loss from extragalactic O stars; H-alpha observations of O- and B-type stars; applicability of steady models for hot-star winds; mass of the O6Iaf star HD 153919; stellar winds in Beta Lyrae; models of WR stars; observational abundances of WR stars, the all-variable WC7 binary HD193793

  17. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  18. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  19. Survivability of probiotics in symbiotic low fat buffalo milk yogurt ...

    African Journals Online (AJOL)

    In present study, symbiotic low fat buffalo milk yogurt prototypes (plain and blueberry) were developed using a commercial starter containing probiotics. Samples were analyzed for physicochemical and microbiological properties, and the survivability of probiotics during 10 weeks of storage. Gross composition results were: ...

  20. Role of symbiotic nitrogen fixation in the improvement of legume ...

    African Journals Online (AJOL)

    Role of symbiotic nitrogen fixation in the improvement of legume productivity under stressed environments. R Serraj, J Adu-Gyamfi. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/wajae.v6i1.45613.

  1. "SYMBIOTIC" HEMOFILTRATION FOR CHRONIC RENAL F AILURE COMPENSATION

    Directory of Open Access Journals (Sweden)

    E. A. Yumatov

    2015-01-01

    Full Text Available AbstractWidely used nowadays hemodialysis and hemofiltration cannot replace completely the excretory function of human kidneys in the natural conditions of physiological regulation. The aim of our study is to develop and create a new method and apparatus for CRF patients «symbiotic» compensation, based on hemofiltration and healthy humans kidneys natural physiological functions, excluding mixing of partners blood.Method of «symbiotic» hemofiltration is based on mutual exchange of equivalent blood ultrafiltrate volumes between healthy person and CRF patient, needed to be cleansed from metabolites. During exchange procedure patient’s and a healthy person’s circulations are separated by hemofilters excluding blood mixing.During CRF patient’s blood cleansing from metabolic products separate hemofiltration of healthy donor and CRF patient in equal volumes is processed. Patient’s blood ultrafiltrate enters the bloodstream of a healthy person, as a healthy person ultrafiltrate in the same extent enters the bloodstream of CRF patient. At the same time remaining after filtration blood components of donor and patient are returned in their bloodstream respectively.Fundamentally important advantage of «symbiotic» hemofiltration is that CRF patient’s blood is cleansed from uremic metabolites due to healthy human kidneys natural physiological functions. «Symbiotic» hemofiltration is a highly effective physiological method of CRP patient’s blood purification from the uremic substances.

  2. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with ...

    African Journals Online (AJOL)

    Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. C Appunu, B Dhar. Abstract. Eight acid tolerant strains of Bradyrhizobium isolated from soybean plants grown on acid soils in Madhya Pradesh, India, were examined for their ability to survive in soil and YEMB at low pH levels. All the ...

  3. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    Science.gov (United States)

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  4. Biodiversity and studies of marine symbiotic siphonostomatoids off ...

    African Journals Online (AJOL)

    Current knowledge of the biodiversity of the symbiotic marine siphonostomatoids from South African waters (136 species) is sparse compared to that globally (1 388 species). The difference is especially apparent when taking into account the diversity of fish (more than 2 000 species) and invertebrates (approximately 12 ...

  5. The symbiotic intestinal ciliates and the evolution of their hosts

    NARCIS (Netherlands)

    Moon-van der Staay, S.Y.; Staay, G.W. van der; Michalowski, T.; Jouany, J.P.; Pristas, P.; Javorsky, P.; Kisidayova, S.; Varadyova, Z.; McEwan, N.R.; Newbold, C.J.; Alen, T. van; Graaf, R. de; Schmid, M.; Huynen, M.A.; Hackstein, J.H.

    2014-01-01

    The evolution of sophisticated differentiations of the gastro-intestinal tract enabled herbivorous mammals to digest dietary cellulose and hemicellulose with the aid of a complex anaerobic microbiota. Distinctive symbiotic ciliates, which are unique to this habitat, are the largest representatives

  6. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Douglas R; Riely, Brendan K

    2010-09-01

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors of symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co

  7. Microscopic observation of symbiotic and aposymbiotic juvenile corals in nutrient-enriched seawater.

    Science.gov (United States)

    Tanaka, Yasuaki; Iguchi, Akira; Inoue, Mayuri; Mori, Chiharu; Sakai, Kazuhiko; Suzuki, Atsushi; Kawahata, Hodaka; Nakamura, Takashi

    2013-03-15

    Symbiotic and aposymbiotic juvenile corals, which were grown in the laboratory from the gametes of the scleractinian coral Acropora digitifera and had settled down onto plastic culture plates, were observed with a microscope under different nutrient conditions. The symbiotic corals successfully removed the surrounding benthic microalgae (BMA), whereas the aposymbiotic corals were in close physical contact with BMA. The areal growth rate of the symbiotic corals was significantly higher than that of the aposymbiotic corals. The addition of nutrients to the culture seawater increased the chlorophyll a content in the symbiotic coral polyps and enhanced the growth of some of the symbiotic corals, however the average growth rate was not significantly affected, most likely because of the competition with BMA. The comparison between the symbiotic and aposymbiotic juvenile corals showed that the establishment of a symbiotic association could be imperative for post-settlement juvenile corals to survive in high-nutrient seawater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; de Mink, S.E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V.V.; Huβman, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass

  9. Evolutionary effects of mass loss in low-mass stars

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    The effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 solar masses) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed. (Auth.)

  10. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  11. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  12. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.

    1976-01-01

    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  13. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  14. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  15. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  16. Observations of mass loss from OB and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1982-01-01

    In this review, three observationally accessible parameters of the winds of OB and Wolf-Rayet stars are discussed: (1) Terminal velocities, (2) Velocity laws, (3) Mass loss rates. In addition, some discussion of the ionisation structure of the winds is included. In general, only the most recent results for OB stars are mentioned. (Auth.)

  17. Are luminous and metal-rich Wolf Rayet stars inflated?

    NARCIS (Netherlands)

    Petrovic, J.; Pols, O.; Langer, N.

    2006-01-01

    Aims. We investigate the influence of metallicity and stellar wind mass loss on the radius of Wolf-Rayet stars. Methods. We have calculated chemically homogeneous models of Wolf-Rayet stars of 10 to 200 M for two metallicities (Z = 0.02 and Z = 0.001), without mass loss, using OPAL opacities. We

  18. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  19. Early X- and HE γ-ray emission from the symbiotic recurrent novae V745 Sco & RS Oph.

    Science.gov (United States)

    Delgado, L.; Hernanz, M.

    2017-10-01

    RS Oph was the first nova for which evidence of particle acceleration during its 2006 outburst was found. In recent years, several nova explosions - eight classical and two symbiotic recurrent novae - have been detected by Fermi/LAT at E>100 MeV. In most cases, this emission has been observed early after the explosion, around the optical maximum, and for a short period of time. The high-energy γ-ray emission is a consequence of π^{0} decay and/or Inverse Compton, which are related to particle (p and e^{-}) acceleration in the strong shock between the nova ejecta and the circumstellar matter. Our aim is to understand the acceleration process through the analysis of contemporaneous X-ray emission, and in particular, through the evolution of the shock wave. A deep analysis of early X-ray observations of the symbiotic recurrent novae V745 Sco (2014) by Swift/XRT, Chandra/HETG and NuStar, and RS Oph (2006) by XMM-Newton/EPIC and RGS, Swift/XRT and BAT and RXTE/PCA is presented taking into account the contemporaneous information from the IR and radio observations. This provides for the first time a global view of the early evolution of a nova remnant and its relationship with particle acceleration.

  20. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  1. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    OpenAIRE

    Yongsheng Zhao; Jianmin Yang; Yanping He

    2012-01-01

    Currently, floating wind turbines (FWTs) may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP) foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP) was developed for the NREL 5-MW offshore wind...

  2. The theory of radiation driven stellar winds and the Wolf-Rayet phenomenon

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1982-01-01

    The author considers the question of whether the mass loss observed from Wolf-Rayet stars can be explained by a version of wind theory which is scaled to the conditions found in the envelopes of Wolf-Rayet stars. He discusses the following topics: - The calculated radiation pressure in OB stars, and its dependence on temperature, density, and chemical composition. - A comparison between predicted and observed mass loss rates and terminal velocities for OB stars. - The applicability of the standard radiation driven wind models to Wolf-Rayet stars. - Speculations on how Wolf-Rayet stars achieve their enormous mass loss rates within the context of the radiation pressure mechanism. (Auth.)

  3. "Wonderful" Star Reveals its Hot Nature

    Science.gov (United States)

    2005-04-01

    to become a white dwarf. The internal turmoil in Mira A could create magnetic disturbances in the upper atmosphere of the star and lead to the observed X-ray outbursts, as well as the rapid loss of material from the star in a blustery, strong, stellar wind. Some of the gas and dust escaping from Mira A is captured by its companion Mira B. In stark contrast to Mira A, Mira B is thought to be a white dwarf star about the size of the Earth. Some of the material in the wind from Mira A is captured in an accretion disk around Mira B, where collisions between rapidly moving particles produce X-rays. Animation of Interacting Stars Animation of Interacting Stars One of the more intriguing aspects of the observations of Mira AB at both X-ray and ultraviolet wavelengths is the evidence for a faint bridge of material joining the two stars. The existence of a bridge would indicate that, in addition to capturing material from the stellar wind, Mira B is also pulling material directly off Mira A into the accretion disk. Chandra observed Mira with its Advanced CCD Imaging Spectrometer on December 6, 2003 for about 19 hours. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  4. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  5. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hony, Sacha [Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universitt Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  6. Gamma-ray bursts from tidally spun-up Wolf-Rayet stars?

    NARCIS (Netherlands)

    Detmers, R.G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R.G.

    2008-01-01

    Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact

  7. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NARCIS (Netherlands)

    Szécsi, D.; Langer, N.; Yoon, S.C.; Sanyal, D.; de Mink, S.; Evans, C.J.; Dermine, T.

    2015-01-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires

  8. Mass-loss rates of cool stars

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  9. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    Directory of Open Access Journals (Sweden)

    Haizhou Wu

    2016-01-01

    Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  10. Symbiotic N fixation of several soybean varieties and mutants

    International Nuclear Information System (INIS)

    Soertini, G.; Hendratno

    1988-01-01

    Symbiotic N fixation of several soybean varieties and mutants. Research activities comprising of three experiments were carried out to screen several soybean varieties and mutants for symbiotic N fixation potential. The first two experiments involved screening of seven rhizobium strains/isolate for effective N fixation. Depending on the medium used, plant response to strains was different. In sterile medium, rhizobium strain USDA 136, 142 and TAL 102 showed a high nitrogen fixation potential. In soil only rhizobium strain USDA 110 had better performance and proved to be competitive to the native strains. Nitrogen-15 dilution method was used to screen nitrogen fixing ability of several soybean varieties and mutants. Guntur variety showed a better response to high dose of N fertilizer without disturbance in its fixing ability. This variety then was considered good to be introduced in the cropping system. (author). 8 refs

  11. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  12. Infrared properties of Mira-type variables and other cool stars as determined from JHKL photometry

    Energy Technology Data Exchange (ETDEWEB)

    Feast, M W; Robertson, B S.C.; Catchpole, R M; Evans, T L; Glass, I S; Carter, B S [South African Astronomical Observatory, Cape

    1982-11-01

    Extensive infrared photometry of Me(Mira) variables and of C, S, SC and related stars is used to establish two-colour diagrams and period-colour relations. The characteristic areas in these plots occupied by the different classes of objects are delineated. The main aim is to provide a norm with which other stars (e.g. red variables in the Galactic Center and in the Magellanic Clouds and peculiar stars) can be compared. The (J-H) versus period relation offers a method for determining the interstellar reddenings of Me variables. The strong concentration to the longer periods of Miras which are OH masers is probably due primarily to the fact that in the sample surveyed, these stars also have the brightest apparent bolometric magnitudes. Period-amplitude plots are shown for Me variables. The Mira components in symbiotic stars are found to have exceptionally large amplitudes.

  13. Information Systems and the Humanities: A Symbiotic Relationship?

    OpenAIRE

    Kroeze, JH

    2009-01-01

    The lecture explores the nature of the relationship between the study fields of Information Systems and the humanities. Although literature on Humanities Computing states in principle that there is a bi-directional, beneficial symbiotic relationship, most studies and reflections investigate only the application of information technology in the humanities. This suggests that the relation is commensalistic rather that mutualistic. However, studies do exist that implement theor...

  14. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  15. The iron curtain of WC9 stars

    International Nuclear Information System (INIS)

    Hucht, K.A. van der; Willis, A.J.

    1982-01-01

    High resolution (Δlambda approximately equal to 0.1 A) IUE spectra have been obtained of the two WC9 stars HD 164270 and HD 136488, covering the wavelength range lambdalambda1150-2050. The former star shows P Cygni profiles indicating a stellar wind terminal velocity of Vsub(infinity) approximately equal to 1400 km s -1 , and the latter Vsub(infinity) approximately equal to -1800 km s -1 . A common feature in the spectra of both stars is narrow displaced absorptions due to Fe III (UV34) transitions arising from a metastable lower level. These features are displaced at sub-terminal velocities (-830 km s -1 for HD 164270 and -1030 km s -1 for Hd 136488) and are believed to be formed in the deceleration region of their stellar winds. The properties of these inferred Fe III circumstellar shells derived from these data are discussed. (Auth.)

  16. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  17. Formulation of a peach ice cream as potential symbiotic food

    Directory of Open Access Journals (Sweden)

    Fernando Josué VILLALVA

    Full Text Available Abstract Today’s population increasingly demands and consumes healthy products. For this reason, the food industry has been developing and marketing food with added bioactive components. The aim of this work was to formulate a peach ice cream reduced in calories with an added probiotic (Bifidobacterium lactis Bb-12 and prebiotics (inulin, and to evaluate its sensory quality and acceptability as potential symbiotic food. The moisture content was 76.47%; 7.14% protein; 0.15% fat; 6.37%; carbohydrates; 9.87% inulin; 1.22% ash; 0.201% calcium, 0.155% phosphorus and 0.168% sodium. On the first and 21th day of storage counts of B. lactis Bb – 12 was 4 x 108 CFU/mL and 1.5 x 107 CFU/mL, respectively. It was possible to formulate a peach ice cream reduced in calories, fat, and sugar and with potential symbiotic effect, by addition of B. lactis Bb – 12. A product with suitable organoleptic characteristics, creamy texture, peachy colour, taste and flavour, and no ice crystals was obtained. This ice cream would be a suitable food matrix to incorporate prebiotic and probiotic ingredients as a potential symbiotic food.

  18. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  19. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition.

    Science.gov (United States)

    Mills, Benjamin J W; Batterman, Sarah A; Field, Katie J

    2018-02-05

    Fossil evidence from the Rhynie chert indicates that early land plants, which evolved in a high-CO 2 atmosphere during the Palaeozoic Era, hosted diverse fungal symbionts. It is hypothesized that the rise of early non-vascular land plants, and the later evolution of roots and vasculature, drove the long-term shift towards a high-oxygen, low CO 2 climate that eventually permitted the evolution of mammals and, ultimately, humans. However, very little is known about the productivity of the early terrestrial biosphere, which depended on the acquisition of the limiting nutrient phosphorus via fungal symbiosis. Recent laboratory experiments have shown that plant-fungal symbiotic function is specific to fungal identity, with carbon-for-phosphorus exchange being either enhanced or suppressed under superambient CO 2 By incorporating these experimental findings into a biogeochemical model, we show that the differences in these symbiotic nutrient acquisition strategies could greatly alter the plant-driven changes to climate, allowing drawdown of CO 2 to glacial levels, and altering the nature of the rise of oxygen. We conclude that an accurate depiction of plant-fungal symbiotic systems, informed by high-CO 2 experiments, is key to resolving the question of how the first terrestrial ecosystems altered our planet.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  20. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  1. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    1999-01-01

    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  2. XMM-Newton study of the supersoft symbiotic system Draco C1

    Science.gov (United States)

    Saeedi, Sara; Sasaki, Manami; Ducci, Lorenzo

    2018-01-01

    We present the results of the analysis of thirty-one XMM-Newton observations of the symbiotic star Draco C1 located in the Draco dwarf spheroidal galaxy. This object had been identified as a supersoft source based on ROSAT data. We analysed X-ray, ultraviolet (UV) and optical data taken with XMM-Newton in order to obtain the physical parameters and the geometry of the system. We have also performed the first X-ray timing analysis of Draco C1. The X-ray spectrum is well fitted with a blackbody model with a temperature of (1.8 ± 0.3) × 105 K. We obtained a bolometric luminosity of ≳1038 erg s-1 for the white dwarf. The X-ray spectrum and luminosity suggest stable nuclear burning on the surface of the white dwarf. The low column density derived from the X-ray spectrum is consistent with the lack of nebular lines found in previous UV studies. The long-term variability in the optical and the UV suggests that the system is not observed face-on and that the variability is caused by the reflection effect. For the red giant companion, we estimate a radius of ∼110 R⊙ and an upper limit ≲1.5 M⊙ for its mass assuming Roche lobe overflow.

  3. The Contribution of Stellar Winds to Cosmic Ray Production

    Science.gov (United States)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  4. Symbiotic Activity of Pea (Pisum sativum) after Application of Nod Factors under Field Conditions

    OpenAIRE

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-01-01

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10−11 M) or water (control) before planting. Symbiotic activity was evaluated by measurement...

  5. Half a Century after the Outburst of the Symbiotic Nova V1016 Cyg

    Directory of Open Access Journals (Sweden)

    Arkhipova V. P.

    2016-03-01

    Full Text Available We present the results of our long-term UBV JHKLM photometry and spectroscopic monitoring of the symbiotic nova V1016 Cyg. After its outburst in 1964, the star showed fading in the U, B, V bands at a rate of about 0.03 mag per year. The behavior of the B − V and U − B color indices reflects variations of the emission lines, fading of the erupted component, weakening and reddening of the cool giant. Also, monotonic color and brightness variations in the infrared (IR were observed at a scale of several thousand days. After 2004, the yearly mean IR brightness showed a decline and IR colors, reddening, due to the increase of the optical depth of the dust. The parameters of the cool star and of the dust envelope were estimated. The pulsation period of the Mira-type variable was refined, P = 465±5 days. The Mira’s photospheric temperature varied from 2100 to 2700 K in the pulsation cycle. The mass of the dust shell has grown twice during the recent decade, at a dust penetration rate of ∆Mdust ~ 10−7M⊙/yr. Our spectroscopic monitoring of V1016 Cyg over 1995−2013 showed variations in the emission line strengths. The absolute fluxes of most lines decreased after 2000, whereas the relative intensities of [O III], [Ar III], [Fe VII], [Ca VII] lines with respect to Hβ are increasing after the possible minimum that could happen in the 1990s. An essential flux decline (approximately ten-fold between 1995 and 2013 in the Raman scattered O VI line at λ6825 shows the change of conditions in its formation zone, due to absorption of O VI 1032 Å quanta in the new dust shell of the cool component.

  6. A review of the properties of the symbiotic star CH Cygni

    International Nuclear Information System (INIS)

    Hack, M.; Selvelli, P.L.

    1982-01-01

    The authors summarise the results of observations of the 1967-70 activity phase in the photographic spectral range (3300-4900), and of the activity phase which started in 1977 in the spectral range 6700-3400 A and 3100-1175 A, and then compare the phenomena observed during the two outbursts. (C.F./Auth.)

  7. N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

    Science.gov (United States)

    Hyung, Siek; Lee, Seong-Jae; Lee, Kang Hwan

    2018-03-01

    We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near λ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about 5 km·s-1 greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

  8. Recent increase of the activity of the symbiotic star CH Cygni

    International Nuclear Information System (INIS)

    Chochol, D.; Hric, L.

    1982-01-01

    CH Cyg has exhibited a great deal of activity in recent times. The authors have obtained two spectra with dispersion of 9 A/mm with the 2 m telescope of the Ondrejov Observatory on the nights of July 4/5 and August 6/7, 1981. The differences between these spectra are conspicuous, and the description of the spectral changes during this period are presented. (Auth.)

  9. The Spectroscopic Evolution of the Symbiotic-like Recurrent Nova V407 Cygni During Its 2010 Outburst. 2. The Circumstellar Environment and the Aftermath

    Science.gov (United States)

    Shore, S. N.; Wahlgren, G. M.; Augusteijn, T.; Liimets, T.; Koubsky, P.; Slechta, M.; Votruba, V.

    2011-01-01

    The nova outburst of V407 Cyg in 2010 Mar. 10 was the first observed for this star but its close resemblance to the well known symbiotic-like recurrent nova RS Oph suggests that it is also a member of this rare type of Galactic novae. The nova was the first detected at gamma-ray energies and is the first known nova explosion for this system. The extensive multiwavelength coverage of this outburst makes it an ideal comparison with the few other outbursts known for similar systems. We extend our previous analysis of the Mira and the expanding shock from the explosion to detail the time development of the photoionized Mira wind, circumstellar medium, and shocked circumstellar environment to derive their physical parameters and how they relate to large scale structure of the environment, extending the previous coverage to more than 500 days after outburst. We use optical spectra obtained at high resolution with the Nordic Optical Telescope (NOT) (R approx. =.45000 to 65000) and medium resolution Ondrejov Observatory (R approx. = 12000) data and compare the line variations with publicly available archival measurements at 30 GHz OVNR and at X-rays with Swift during the first four months of the outburst, through the end of the epoch of strong XR emission. We use nebular diagnostics and high resolution profile variations to derive the densities and locations of the extended emission. We find that the higher the ionization and/or the higher the excitation energy, the more closely the profiles resemble the He II/Ca V-type high velocity shock profile discussed in Paper I. This also accounts for the comparative development of the [N II] and [O III] isoelectronic transitions: the [O III] 4363A profile does not show the low velocity peaks while the excited [N II] 5754A does. If nitrogen is mainly N(+3) or higher in the shock, the upper state of the [N II] nebular lines will contribute but if the oxygen is O(+2) then this line is formed by recombination, masking the nebular

  10. Peculiar variable star R Aquarii and its jet

    Energy Technology Data Exchange (ETDEWEB)

    Kafatos, M; Michalitsianos, A G [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1982-08-05

    The formation of a jet from the central star in the symbiotic variable R Aquarii is discussed and it is suggested that it is the result of supercritical accretion of mass transferred from the cool 387-day period Mira to the hot companion in a highly elliptical orbit. Ancient Japanese astronomical records suggest a nova outburst in AD930 may be associated with R Aquarii which formed the outer extended nebulosity. It is considered that the jet may help explain the outbursts of this object as well as the excitation of the R Aquarii nebula.

  11. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  12. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  13. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  14. The solar wind in time: a change in the behaviour of older winds?

    Science.gov (United States)

    O'Fionnagáin, D.; Vidotto, A. A.

    2018-05-01

    In this paper, we model the wind of solar analogues at different ages to investigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray luminosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in Time' project with ages between 120 and 7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (\\dot{M}) at roughly 2 Gyr, with \\dot{M} (t 2 Gyr) ∝ t-3.9. This steep decay in \\dot{M} at older ages could be the reason why older stars are less efficient at carrying away angular momentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected. Combining our models with dynamo evolution models for the magnetic field of the Earth, we find that, at early ages (≈100 Myr), our Earth had a magnetosphere that was three or more times smaller than its current size.

  15. Innovative Offshore Wind Plant Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, William L. [Glosten Associates, Inc., Seattle, WA (United States); Nordstrom, Charles J. [Glosten Associates, Inc., Seattle, WA (United States); Morrison, Brent J. [Glosten Associates, Inc., Seattle, WA (United States)

    2013-12-18

    Technological advancements in the Glosten PelaStar floating wind turbine system have led to projected cost of energy (COE) reductions from today’s best-in-class offshore wind systems. The PelaStar system is projected to deliver a COE that is 35% lower than that delivered by the current offshore wind plants. Several technology developments have been achieved that directly target significant cost of energy reductions. These include: Application of state-of-the-art steel construction materials and methods, including fatigue-resistant welding techniques and technologies, to reduce hull steel weight; Advancements in synthetic fiber tendon design for the mooring system, which are made possible by laboratory analysis of full-scale sub-rope specimens; Investigations into selected anchor technologies to improve anchor installation methods; Refinement of the installation method, specifically through development of the PelaStar Support Barge design. Together, these technology developments drive down the capital cost and operating cost of offshore wind plants and enable access to superb wind resources in deep water locations. These technology developments also reduce the uncertainty of the PelaStar system costs, which increases confidence in the projected COE reductions.

  16. Do some x-ray stars have white dwarf companions

    Science.gov (United States)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  17. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  18. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  19. Destruction of a Magnetized Star

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart

  20. Symbiotic nitrogen fixation and nitrate uptake by the pea crop

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1986-08-01

    Symbiotic nitrogen fixation and nitrate uptake by pea plants (Pisum sativum L.) were studied in field and pot experiments using the 15 N isotope dilution technique and spring barley as a non-fixing reference crop. Barley, although not ideal, seemed to be a suitable reference for pea in the 15 N-technique. Maximum N 2 fixation activity of 10 kg N fixed per ha per day was reached around the flat pod growth stage, and the activity decreased rapidly during pod-filling. The pea crop fixed between 100 and 250 kg N ha -1 , corresponding to from 45 to 80 per cent of total crop N. The amount of symbiotically fixed N 2 depended on the climatic conditions in the experimental year, the level of soil mineral N and the pea cultivar. Field-grown pea took up 60 to 70 per cent of the N-fertilizer supplied. The supply of 50 kg NO 3 -N ha -1 inhibited the N 2 fixation approximately 15 per cent. Small amounts of fertilizer N, supplied at sowing (starter-N), slightly stimulated the vegetative growth of pea, but the yields of seed dry matter and protein were not significantly influenced. In the present field experiments the environmental conditions, especially the distribution of rainfall during the growth season, seemed to be more important in determining the protein and dry matter yield of the dry pea crop, than the ability of pea to fix nitrogen symbiotically. However, fertilizer N supplied to pot-grown pea plants at the flat pod growth stage or as split applications significantly increased the yield of seed dry matter and protein. (author)

  1. Transcriptome analyses to investigate symbiotic relationships between marine protists

    Science.gov (United States)

    Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice

    2015-01-01

    Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria. PMID:25852650

  2. Formulation of a peach ice cream as potential symbiotic food

    OpenAIRE

    VILLALVA, Fernando Josué; CRAVERO BRUNERI, Andrea Paula; VINDEROLA, Gabriel; GONÇALVEZ DE OLIVEIRA, Enzo; PAZ, Noelia Fernanda; RAMÓN, Adriana Noemí

    2017-01-01

    Abstract Today’s population increasingly demands and consumes healthy products. For this reason, the food industry has been developing and marketing food with added bioactive components. The aim of this work was to formulate a peach ice cream reduced in calories with an added probiotic (Bifidobacterium lactis Bb-12) and prebiotics (inulin), and to evaluate its sensory quality and acceptability as potential symbiotic food. The moisture content was 76.47%; 7.14% protein; 0.15% fat; 6.37%; carbo...

  3. Microsatellite Primers in the Lichen Symbiotic Alga Trebouxia decolorans (Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Francesco Dal Grande

    2013-03-01

    Full Text Available Premise of the study: Polymorphic microsatellite markers were developed for the symbiotic green alga Trebouxia decolorans to study fine-scale population structure and clonal diversity. Methods and Results: Using Illumina pyrosequencing, 20 microsatellite primer sets were developed for T. decolorans. The primer sets were tested on 43 individuals sampled from four subpopulations in Germany. The primers amplified di-, tri-, and tetranucleotide repeats with three to 15 alleles per locus, and the unbiased haploid diversity per locus ranged from 0.636 to 0.821. Conclusions: The identified microsatellite markers will be useful to study the genetic diversity, dispersal, and reproductive mode of this common lichen photobiont.

  4. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Casuarina glauca has a gene encoding hemoglobin (cashb-nonsym). This gene is expressed in a number of plant tissues. Casuarina also has a second family of hemoglobin genes (cashb-sym) expressed at a high level in the nodules that Casuarina forms in a nitrogen-fixing symbiosis with the actinomycete...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  5. 75 FR 11530 - Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status

    Science.gov (United States)

    2010-03-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status March 4, 2010. Docket Nos. Crystal Lake Wind III, LLC EG10-6-000 GardenGarden Wind, LLC EG10-7-000 Star Point Wind Project LLC EG10-8-000...

  6. The Trust Project - Symbiotic Human Machine Teams: Social Cueing for Trust and Reliance

    Science.gov (United States)

    2016-06-30

    AFRL-RH-WP-TR-2016-0096 THE TRUST PROJECT - SYMBIOTIC HUMAN-MACHINE TEAMS: SOCIAL CUEING FOR TRUST & RELIANCE Susan Rivers, Monika Lohani, Marissa...30 JUN 2012 – 30 JUN 2016 4. TITLE AND SUBTITLE THE TRUST PROJECT - SYMBIOTIC HUMAN-MACHINE TEAMS: SOCIAL CUEING FOR TRUST & RELIANCE 5a. CONTRACT

  7. Non-symbiotic haemoglobins-What's happening beyond nitric oxide scavenging?

    Science.gov (United States)

    Hill, Robert D

    2012-01-01

    Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction.

  8. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  9. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Science.gov (United States)

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  10. Non-symbiotic haemoglobins—What's happening beyond nitric oxide scavenging?

    Science.gov (United States)

    Hill, Robert D.

    2012-01-01

    Background and aims Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. Principal results Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. Conclusions Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction. PMID:22479675

  11. Symbiotic N2-fixation by the cover crop Pueraria phaseoloides as influenced by litter mineralization

    DEFF Research Database (Denmark)

    Vesterager, J.M.; Østerby, S.; Jensen, E.S.

    1995-01-01

    The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N-2- fixation. The contribution from symbiotic N-2-fixation (Ndfa...

  12. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  13. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  14. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  15. Radio emission from symbiotic variables: CI Cygni, Z Andromedae, and EG Andromedae - Temporal variability as clues to the nature of symbiotics

    International Nuclear Information System (INIS)

    Torbett, M.V.; Campbell, B.

    1989-01-01

    A continuing survey of interacting binary systems has yielded first detections of the symbiotic variables CI Cyg and EG And and reproduced previous flux measurements for Z And. The CI Cyg observation implies considerable radio variability for some symbiotics, while the radio flux from Z And indicates this object has been reasonably stable in the radio for years. Rapid radio variability may indicate the presence of mass transfer through an accretion disk. 27 refs

  16. The environment of the wind-wind collision region of η Carinae

    Science.gov (United States)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  17. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    Science.gov (United States)

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  18. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  19. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  20. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  1. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  2. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  3. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  4. Multi-Wavelength Polarimetry of Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Roberto P. Mignani

    2018-03-01

    Full Text Available Isolated neutron stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10 12 – 10 15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetized, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarization signature. Measuring the neutron star polarization brings important information about the properties of their magnetosphere and of their highly magnetized environment. Being the most numerous class of isolated neutron stars, polarization measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarize multi-wavelength linear polarization measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

  5. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  6. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  7. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  8. Ecology of planktonic foraminifera and their symbiotic algae

    International Nuclear Information System (INIS)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs in one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the 14 C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of 14 C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts

  9. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  10. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  11. Colored-noise-induced discontinuous transitions in symbiotic ecosystems

    Science.gov (United States)

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E 65, 051108 (2002)]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.

  12. Extensive Differences in Gene Expression Between Symbiotic and Aposymbiotic Cnidarians

    Science.gov (United States)

    Lehnert, Erik M.; Mouchka, Morgan E.; Burriesci, Matthew S.; Gallo, Natalya D.; Schwarz, Jodi A.; Pringle, John R.

    2013-01-01

    Coral reefs provide habitats for a disproportionate number of marine species relative to the small area of the oceans that they occupy. The mutualism between the cnidarian animal hosts and their intracellular dinoflagellate symbionts provides the nutritional foundation for coral growth and formation of reef structures, because algal photosynthesis can provide >90% of the total energy of the host. Disruption of this symbiosis (“coral bleaching”) is occurring on a large scale due primarily to anthropogenic factors and poses a major threat to the future of coral reefs. Despite the importance of this symbiosis, the cellular mechanisms involved in its establishment, maintenance, and breakdown remain largely unknown. We report our continued development of genomic tools to study these mechanisms in Aiptasia, a small sea anemone with great promise as a model system for studies of cnidarian–dinoflagellate symbiosis. Specifically, we have generated de novo assemblies of the transcriptomes of both a clonal line of symbiotic anemones and their endogenous dinoflagellate symbionts. We then compared transcript abundances in animals with and without dinoflagellates. This analysis identified >900 differentially expressed genes and allowed us to generate testable hypotheses about the cellular functions affected by symbiosis establishment. The differentially regulated transcripts include >60 encoding proteins that may play roles in transporting various nutrients between the symbiotic partners; many more encoding proteins functioning in several metabolic pathways, providing clues regarding how the transported nutrients may be used by the partners; and several encoding proteins that may be involved in host recognition and tolerance of the dinoflagellate. PMID:24368779

  13. Symbiotic propagation of seedlings of Cyrtopodium glutiniferum Raddi (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Rodrigues Guimarães

    2013-09-01

    Full Text Available In nature, orchid seeds obtain the nutrients necessary for germination by degrading intracellular fungal structures formed after colonization of the embryo by mycorrhizal fungi. Protocols for asymbiotic germination of orchid seeds typically use media with high concentrations of soluble carbohydrate and minerals. However, when reintroduced into the field, seedlings obtained via asymbiotic germination have lower survival rates than do seedlings obtained via symbiotic germination. Tree fern fiber, the ideal substrate for orchid seedling acclimatization, is increasingly scarce. Here, we evaluated seed germination and protocorm development of Cyrtopodium glutiniferum Raddi cultivated in asymbiotic media (Knudson C and Murashige & Skoog and in oatmeal agar (OA medium inoculated with the mycorrhizal fungus Epulorhiza sp., using non-inoculated OA medium as a control. We also evaluated the performance of tree fern fiber, pine bark, eucalyptus bark, corncob and sawdust as substrates for the acclimatization of symbiotically propagated plants. We determined germination percentages, protocorm development and growth indices at 35 and 70 days of cultivation. Relative growth rates and the effects of substrates on mycorrhizal formation were calculated after 165 days of cultivation. Germination efficiency and growth indices were best when inoculated OA medium was used. Corncob and pine bark showed the highest percentages of colonized system roots. The OA medium inoculated with Epulorhiza sp. shows potential for C. glutiniferum seedling production. Corncob and pine bark are promising substitutes for tree fern fiber as substrates for the acclimatization of orchid seedlings.

  14. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  15. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  16. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  17. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  18. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  19. Quasar Winds as Dust Factories at High Redshift

    OpenAIRE

    Elvis, Martin; Marengo, Massimo; Karovska, Margarita

    2003-01-01

    Winds from AGN and quasars will form large amounts of dust, as the cool gas in these winds passes through the (pressure, temperature) region where dust is formed in AGB stars. Conditions in the gas are benign to dust at these radii. As a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.

  20. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  1. X-rays from stars

    Science.gov (United States)

    Güdel, Manuel

    2004-07-01

    Spectroscopic studies available from Chandra and XMM-Newton play a pivotal part in the understanding of the physical processes in stellar (magnetic and non-magnetic) atmospheres. It is now routinely possible to derive densities and to study the influence of ultraviolet radiation fields, both of which can be used to infer the geometry of the radiating sources. Line profiles provide important information on bulk mass motions and attenuation by neutral matter, e.g. in stellar winds. The increased sensitivity has revealed new types of X-ray sources in systems that were thought to be unlikely places for X-rays: flaring brown dwarfs, including rather old, non-accreting objects, and terminal shocks in jets of young stars are important examples. New clues concerning the role of stellar high-energy processes in the modification of the stellar environment (ionization, spallation, etc.) contribute significantly to our understanding of the "astro-ecology" in forming planetary systems. Technological limitations are evident. The spectral resolution has not reached the level where bulk mass motions in cool stars become easily measurable. Higher resolution would also be important to perform X-ray "Doppler imaging" in order to reconstruct the 3-D distribution of the X-ray sources around a rotating star. Higher sensitivity will be required to perform high-resolution spectroscopy of weak sources such as brown dwarfs or embedded pre-main-sequence sources. A new generation of satellites such as Constellation-X or XEUS should pursue these goals.

  2. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  3. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  4. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  5. Body size and symbiotic status influence gonad development in Aiptasia pallida anemones.

    Science.gov (United States)

    Carlisle, Judith F; Murphy, Grant K; Roark, Alison M

    2017-01-01

    Pale anemones ( Aiptasia pallida ) coexist with dinoflagellates (primarily Symbiodinium minutum ) in a mutualistic relationship. The purpose of this study was to investigate the role of these symbionts in gonad development of anemone hosts. Symbiotic and aposymbiotic anemones were subjected to light cycles that induced gametogenesis. These anemones were then sampled weekly for nine weeks, and gonad development was analyzed histologically. Anemone size was measured as mean body column diameter, and oocytes or sperm follicles were counted for each anemone. Generalized linear models were used to evaluate the influence of body size and symbiotic status on whether gonads were present and on the number of oocytes or sperm follicles produced. Body size predicted whether gonads were present, with larger anemones being more likely than smaller anemones to develop gonads. Both body size and symbiotic status predicted gonad size, such that larger and symbiotic anemones produced more oocytes and sperm follicles than smaller and aposymbiotic anemones. Overall, only 22 % of aposymbiotic females produced oocytes, whereas 63 % of symbiotic females produced oocytes. Similarly, 6 % of aposymbiotic males produced sperm follicles, whereas 60 % of symbiotic males produced sperm follicles. Thus, while gonads were present in 62 % of symbiotic anemones, they were present in only 11 % of aposymbiotic anemones. These results indicate that dinoflagellate symbionts influence gonad development and thus sexual maturation in both female and male Aiptasia pallida anemones. This finding substantiates and expands our current understanding of the importance of symbionts in the development and physiology of cnidarian hosts.

  6. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    Science.gov (United States)

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.

  7. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism

    Science.gov (United States)

    Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.; Kiers, E. Toby

    2015-01-01

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they “lock” the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships. PMID:26041807

  8. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    Science.gov (United States)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  9. Journal entries facilitating preprofessional scientific literacy and mutualistic symbiotic relationships

    Science.gov (United States)

    Vander Vliet, Valerie J.

    This study explored journal writing as an alternative assessment to promote the development of pre-professional scientific literacy and mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The larger context of this study is an action reaction project of the attempted transformation of a traditional first year undergraduate pre-professional biology class to sociocultural constructivist principles. The participants were commuter and residential, full and part-time students ranging in age from 18 to 27 and 18/21 were female. The backgrounds of the students varied considerably, ranging from low to upper middle income, including students of Black and Asian heritage. The setting was a medium-sized Midwestern university. The instructor has twenty years of experience teaching Biology at the college level. The data were analyzed using the constant comparative method and the development of grounded theory. The journal entries were analyzed as to their function and form in relationship to the development of multiple aspects of pre-professional scientific literacy. The perceptions of the students as to the significance of the use of journal entries were also determined through the analysis of their use of journal entries in their portfolios and statements in surveys and portfolios. The analysis revealed that journal entries promoted multiple aspects of pre-professional scientific literacy in both students and the instructor and facilitated the development of mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The function analysis revealed that the journal entries fulfilled the functions intended for the development of multiple aspects of pre-professional scientific literacy. The complexity of journal writing emerged from the form analysis, which revealed the multiple form elements inherent in journal entries. Students perceived journal

  10. Morula-like cells in photo-symbiotic clams harboring zooxanthellae.

    Science.gov (United States)

    Nakayama, K; Nishijima, M; Maruyama, T

    1998-06-01

    Symbiosis is observed between zooxanthellae, symbiotic dinoflagellates, and giant clams and related clams which belong to the families Tridacnidae and Cardiidae. We have previously shown that a photo-symbiotic clam Tridacna crocea has three types of hemocytes, the eosinophilic granular hemocyte with phagocytic activity, the agranular cell with electron lucent granules, and the morula-like cell with large (ca. 2 mum in diameter) colorless granules. The function of the morula-like cell is not clear, but it has not been reported in any other bivalves except photo-symbiotic clams T. crocea and Tridacna maxima. In order to clarify whether it is specific to photo-symbiotic clams or not, we studied hemocytes in the photo-symbiotic clams Tridacna derasa (Tridacnidae), Hippopus hippopus (Tridacnidae) and Corculum cardissa (Cardiidae), and a closely related non-symbiotic clam Fulvia mutica (Cardiidae). The eosinophilic granular hemocytes and the agranular cells were found in all of the clams examined. However, the morula-like cells which were packed with many large electron dense granules (ca. 2 mum in diameter), were observed only in the photo-symbiotic clams. In F. mutica, a closely related non-symbiotic clam, this type of hemocyte was not found. Instead a hemocyte with vacuoles and a few large granules containing peroxidase activity was observed. The large granules of F. mutica varied in size from ca. 1-9 mum in diameter. Present data suggests that the presence of morula-like cells is restricted to photo-symbiotic clams and that the hemocytes associated with the morula-like cells may have some functional relationship to symbiosis with zooxanthellae.

  11. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  12. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  13. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  14. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  15. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  16. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  17. Gamma rays from active regions in the galaxy: the possible contribution of stellar winds

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Montmerle, Thierry.

    1982-08-01

    Massive stars release a considerable amount of mechanical energy in the form of strong stellar winds. A fraction of this energy may be transferred to relativistic cosmic rays by diffusive shock acceleration at the wind boundary, and/or in the expanding, turbulent wind itself. Massive stars are most frequently found in OB associations, surrounded by H II regions lying at the edge of dense molecular clouds. The interaction of the freshly accelerated particles with matter gives rise to #betta#-ray emission. In this paper, we first briefly review the current knowledge on the energetics of strong stellar winds from O and Wolf-Rayet stars, as well as from T Tauri stars. Taking into account the finite lifetime of these stars, we then proceed to show that stellar winds dominate the energetics of OB associations during the first 4 to 6 million years, after which supernovae take over. In the solar neighborhood, the star formation rate is constant, and a steady-state situation prevails, in which the supernova contribution is found to be dominant. A small, but meaningful fraction of the CO S-B #betta#-ray sources may be fueled by WR and O stellar winds in OB associations, while the power released by T Tauri stars alone is perhaps insufficient to account for the #betta#-ray emission of nearby dark clouds. Finally, we discuss some controversial aspects of the physics of particle acceleration by stellar winds

  18. The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis

    Science.gov (United States)

    Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia

    2017-08-01

    T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while

  19. Properties of O dwarf stars in 30 Doradus

    Science.gov (United States)

    Sabín-Sanjulián, Carolina; VFTS Collaboration

    2017-11-01

    We perform a quantitative spectroscopic analysis of 105 presumably single O dwarf stars in 30 Doradus, located within the Large Magellanic Cloud. We use mid-to-high resolution multi-epoch optical spectroscopic data obtained within the VLT-FLAMES Tarantula Survey. Stellar and wind parameters are derived by means of the automatic tool iacob-gbat, which is based on a large grid of fastwind models. We also benefit from the Bayesian tool bonnsai to estimate evolutionary masses. We provide a spectral calibration for the effective temperature of O dwarf stars in the LMC, deal with the mass discrepancy problem and investigate the wind properties of the sample.

  20. Bacteriophages encode factors required for protection in a symbiotic mutualism.

    Science.gov (United States)

    Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A

    2009-08-21

    Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.