WorldWideScience

Sample records for symbiosis final technical

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  2. Designing symbiosis.

    Science.gov (United States)

    Hosoda, Kazufumi; Yomo, Tetsuya

    2011-01-01

    Organisms rarely live as isolated species and usually show symbiosis in nature. As natural selection is not simple in symbiosis, the establishment and development of symbiosis is still unclear. Insight can be gained by not only retracing the history of well-developed natural symbiotic relationships, but also by observing the development of nascent symbiosis. By using synthetic symbiosis composed of two previously noninteracting populations, we can observe the establishment and its development. We have recently simulated the establishment of nascent symbiosis using two genetically engineered auxotrophic strains of Escherichia coli. One strain, 10 h after mixing with the partner strain, began to oversupply metabolites essential for the partner's growth, eventually leading to continual growth of both strains. Transcriptome analysis revealed that the oversupply was accompanied by global metabolic changes. This study demonstrated that an organism has the potential to adapt to the first encounter with another organism to establish symbiosis.

  3. Determinant factors of industrial symbiosis: greening Pasir Gudang industrial park

    Science.gov (United States)

    Teh, B. T.; Ho, C. S.; Matsuoka, Y.; Chau, L. W.; Gomi, K.

    2014-02-01

    Green industry has been identified as an important element in attaining greater sustainability. It calls for harmonizing robust economic growth with environment protection. Industries, particularly in developing and transitional nations such as Malaysia, are in need of a reform. Many experts and international organizations suggest the concept of industrial symbiosis. Mainly, there are successful cases of industrial symbiosis practices around the world. However, there are numerous cases of failure too. As industrial symbiosis is an emerging new approach, with a short history of two decades, a lot of researches are generally focused on narrow context and technical details. There is a lack of concerted efforts to look into the drivers and barriers of industrial symbiosis across different cases. This paper aims to examine the factors influencing the development of industrial symbiosis from various countries to supports such networks to evolve in Pasir Gudang. The findings show institution, law and regulation, finance, awareness and capacity building, technology, research and development, information, collaboration, market, geography proximity, environmental issues and industry structure affect the formation of industrial symbiosis.

  4. Determinant factors of industrial symbiosis: greening Pasir Gudang industrial park

    International Nuclear Information System (INIS)

    Teh, B T; Ho, C S; Chau, L W; Matsuoka, Y; Gomi, K

    2014-01-01

    Green industry has been identified as an important element in attaining greater sustainability. It calls for harmonizing robust economic growth with environment protection. Industries, particularly in developing and transitional nations such as Malaysia, are in need of a reform. Many experts and international organizations suggest the concept of industrial symbiosis. Mainly, there are successful cases of industrial symbiosis practices around the world. However, there are numerous cases of failure too. As industrial symbiosis is an emerging new approach, with a short history of two decades, a lot of researches are generally focused on narrow context and technical details. There is a lack of concerted efforts to look into the drivers and barriers of industrial symbiosis across different cases. This paper aims to examine the factors influencing the development of industrial symbiosis from various countries to supports such networks to evolve in Pasir Gudang. The findings show institution, law and regulation, finance, awareness and capacity building, technology, research and development, information, collaboration, market, geography proximity, environmental issues and industry structure affect the formation of industrial symbiosis

  5. Industrial symbiosis

    DEFF Research Database (Denmark)

    Sacchi, Romain; Remmen, Arne

    2017-01-01

    This study examines the development of industrial symbiosis through a practical model for physical, organizational, and social interactions in six different cases from around the world. The results provide a framework that can be used by industrial symbiosis practitioners to facilitate the creation...

  6. Schoolyard Symbiosis.

    Science.gov (United States)

    Allard, David W.

    1996-01-01

    Discusses different types of symbiosis--mutualism, commensalism, and parasitism--and examples of each type including lichens, legumes, mistletoe, and epiphytes. Describes how teachers can use these examples in the study of symbiosis which allows teachers to focus on many basic concepts in evolution, cell biology, ecology, and other fields of…

  7. Understanding the low occurrence of Symbiosis Industrial in Brazil

    Directory of Open Access Journals (Sweden)

    Iara Tonissi Moroni Cutovoi

    2015-09-01

    Full Text Available This paper contributes to the understanding of the low occurrence of Industrial Symbiosis in Brazil. The importance of public policies in Brazil, the development of public policies is confirmed by the institution of the National Solid Waste Policy (PNRS by Law No. 12,305 / 10. Note that companies seek symbiosis in response to regulatory pressure or to increase the efficiency of resource use, emissions reduction, or wastes. Further the importance of including social, cultural and business approaches in planning synergies between companies. Identifies environmental and cooperation regarding the responsibilities and capabilities of each aspect environmental management. Methodologically the study can be regarded as descriptive and exploratory purposes and in relation to the literature regarding methods. Finally, it will be possible barriers are raised on the relationship to the Industrial Symbiosis practices

  8. Symbiosis: An Evolutionary Innovator.

    Science.gov (United States)

    Case, Emily

    2003-01-01

    Defines symbiosis and describes the connection between symbiosis and evolution, how it is described in science textbooks, and genetic variability. Discusses educational policy and science curriculum content. (YDS)

  9. A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis

    NARCIS (Netherlands)

    van Capelleveen, Guido Cornelis; Amrit, Chintan Amrit; Yazan, Devrim Murat; Otjacques, Benoit; Hitzelberger, Patrik; Naumann, Stefan; Wohlgemuth, Volker

    2017-01-01

    Industrial Symbiosis (IS) is an emerging business tool that is used by practitioners to engage cooperation among industries to reuse waste streams. The key to reveal IS opportunities for organizations is both connecting the supply and demand of various industries and providing technical knowledge on

  10. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  11. Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    Science.gov (United States)

    Allemand, Denis; Weis, Virginia M.

    2012-01-01

    Summary: The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future. PMID:22688813

  12. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole.

    Science.gov (United States)

    Bennett, Gordon M; Moran, Nancy A

    2015-08-18

    Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host-symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host-pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid-Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils.

  13. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  14. Symbiosis: Rich, Exciting, Neglected Topic

    Science.gov (United States)

    Rowland, Jane Thomas

    1974-01-01

    Argues that the topic of symbiosis has been greatly neglected and underemphasized in general-biology textbooks. Discusses many types and examples of symbiosis, and provides an extensive bibliography of the literature related to this topic. (JR)

  15. The role of online information-sharing platforms on the performance of industrial symbiosis networks

    NARCIS (Netherlands)

    Fraccascia, Luca; Yazan, Devrim Murat

    2018-01-01

    From technical perspective, an important condition for developing industrial symbiosis (IS) is the match between waste supply and demand. Such a match is hampered by lack of information among companies, i.e., demand (supply) for waste exists but firms producing (requiring) that waste are not aware

  16. How Symbiosis Creates Diversity

    Science.gov (United States)

    Lord, Joshua

    2010-01-01

    Diversity in habitats on Earth is astounding--whether on land or in the sea--and this is in part due to symbiosis. The lesson described in this article helps students understand how symbiosis affects different organisms through a fun and engaging game where they match hosts and symbionts based on their respective needs. This 45-minute lesson is…

  17. 48 CFR 252.235-7011 - Final scientific or technical report.

    Science.gov (United States)

    2010-10-01

    ... technical report. 252.235-7011 Section 252.235-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.235-7011 Final scientific or technical report. As prescribed in 235.072(d), use the following clause: Final Scientific or Technical Report (NOV 2004) The Contractor...

  18. Guidelines for Preparing Final Technical Reports

    International Development Research Centre (IDRC) Digital Library (Canada)

    fdieudonne

    Prior to submitting the Final Technical Report, any outstanding issues related to dissemination in accordance with ... The report should be an opportunity to reflect on the management of the project from various perspectives: .... of poor quality.

  19. Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA

    Science.gov (United States)

    Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-01-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671

  20. Technical evaluation report of the Fort St. Vrain final draft upgraded technical specifications

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1989-01-01

    This report is a technical evaluation of the final draft of the Fort St. Vrain (FSV) Upgraded Technical Specifications (UT/S) as issued by Public Service of Colorado (PSC) on May 27, 1988 with subsequent supplemental updates issued on June 15, 1988 and August 5, 1988. It has been compared for consistency, and safety conservatism with the Fort St. Vrain (FSV) Updated Final Safety Analysis Report (FSAR), the FSV Safety Evaluation Report (SER), the Facility Operating License, DPR-34, and all amendments to the Facility Operating License issued as of June 1, 1988, and Appendix A to the Operating License DPR-34, Technical Specifications. Because of the age of the plant, no supplements to the Fort St. Vrain SER have been issued since the original SER was not issued as a WASH or a NUREG report. This made it necessary to review all amendments to the Facility Operating License since they would contain the safety evaluations done to support changes to the Facility Operating License. The upgraded Fort St. Vrain Technical Specifications were also broadly compared with the latest Westinghouse Standard Technical Specifications (WSTS) to assure that what was proposed for Fort St. Vrain was consistent with the latest NRC staff practices for standard technical specifications

  1. Differentiation as symbiosis.

    Science.gov (United States)

    Chigira, M; Watanabe, H

    1994-07-01

    Preservation of the identity of DNA is the ultimate goal of multicellular organisms. An abnormal DNA sequence in cells within an individual means its parasitic nature in cell society as shown in tumors. Somatic gene arrangement and gene mutation in development may be considered as de novo formation of parasites. It is likely that the developmental process with genetic alterations means symbiosis between altered cells and germ line cells preserving genetic information without alterations, when somatic alteration of DNA sequence is a major mechanism of differentiation. According to the selfish gene theory of Dawkins, germ line cells permit symbiosis when somatic cell society derives clear profit for the replication of original DNA copies.

  2. Molecular marker genes for ectomycorrhizal symbiosis

    Science.gov (United States)

    Shiv Hiremath; Carolyn McQuattie; Gopi Podila; Jenise. Bauman

    2013-01-01

    Mycorrhizal symbiosis is a mutually beneficial association very commonly found among most vascular plants. Formation of mycorrhiza happens only between compatible partners and predicting this is often accomplished through a trial and error process. We investigated the possibility of using expression of symbiosis specific genes as markers to predict the formation of...

  3. Bacterial Associations: Antagonism to Symbiosis

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.

    mutualism through commensalisms and competition, to antagonism, determined ultimately by balancing the cost of the association against the benefits received (Pianka, 1994). A continuum can be envisioned that spans a dynamic bridge from antagonism... when two organisms form a relationship, which provides an advantage for both the partners at least temporarily. In commensalisms only one partner derives benefit and the other does not. Symbiosis The word, ?symbiosis? is derived from the Greek word...

  4. Symbiosis, Empathy, Suicidal Behavior, and the Family.

    Science.gov (United States)

    Richman, Joseph

    1978-01-01

    This paper discusses the theoretical concept of symbiosis, as described by Mahler and her co-workers, and its clinical applications in suicidal situations. Also, the practical implications of the concept of symbiosis for assessment and treatment are discussed (Author)

  5. Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model

    International Nuclear Information System (INIS)

    Dong, Liang; Fujita, Tsuyoshi; Zhang, Hui; Dai, Ming; Fujii, Minoru; Ohnishi, Satoshi; Geng, Yong; Liu, Zhu

    2013-01-01

    China launched low-carbon city strategy to respond global climate change. Industrial symbiosis (IS) could generate both economic and environmental benefits in clustered industries and communities. This research shed light on how industrial symbiosis contributes to city's low-carbon development. An urban-level hybrid physical input and monetary output (HPIMO) model which covers physical energy inputs and air pollutants emissions, is established for addressing case study in a Chinese typical industrial city (Liuzhou). Based on current energy consumption and industrial symbiosis and the application of HPIMO model, scenarios related to industrial symbiosis, including waste plastics recycling, scrap tires recycling, flying ash recycling and biomass utilization are explored. Results show that compared with business-as-usual (BAU) scenario, IS can reduce solid wastes and further contribute to the co-benefits of energy saving, CO 2 emissions reduction and air pollutants reduction. The finding is critical for national low-carbon strategy. Finally, policy implications to support the ever-improvement of IS promotion in China are proposed and discussed. - Highlights: • Industrial symbiosis could contribute to low-carbon city in terms of co-benefit. • Co-benefit of IS was in terms of waste reduction and air pollutants reduction. • Waste plastics recycling and biomass utilization generated large co-benefit. • Coal fly ash recycling reduced the solid waste while increased air pollutants. • The prices of wastes and facilities investment affected the total cost-benefit

  6. Teaching Symbiosis.

    Science.gov (United States)

    Harper, G. H.

    1985-01-01

    Argues that the meaning of the word "symbiosis" be standardized and that it should be used in a broad sense. Also criticizes the orthodox teaching of general principles in this subject and recommends that priority be given to continuity, intimacy, and associated adaptations, rather than to the harm/benefit relationship. (Author/JN)

  7. Study of cnidarian-algal symbiosis in the "omics" age.

    Science.gov (United States)

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  8. Survival through Symbiosis.

    Science.gov (United States)

    Abdi, S. Wali

    1992-01-01

    Describes symbiosis and its significance in the day-to-day lives of plants and animals. Gives specific examples of mutualism, commensalism, and parasitism in the relationships among fungus and plant roots, animals and bacteria, birds and animals, fish, and predator and prey. (MDH)

  9. Final technical report

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    gas jet chamber and laser beam path from the final focusing mirror. The project consists of three phases: Phase 1: Fundamental studies of cutting front mechanisms, beam propagation, nozzle design and chemical reactions in the cut kerf with special emphasize on high laser powers and thick sections...... cutting nozzle which can be adjusted independently to the laser beam has been developed. The position of the focus relative the workpiece can be adjusted to cutting applications with relatively large processing windows, i.e. both mild and stainless steels, and of a broad thickness range. A build-in auto......This project entails research with the goal to extend laser cutting of steel based metals to thickness above 20 mm and laser powers in the 10 kW range, with adequate accuracy and economically viable cutting speeds. The technical approach is to develop mirror based cutting heads with truly coaxial...

  10. Applying industrial symbiosis to chemical industry: A literature review

    Science.gov (United States)

    Cui, Hua; Liu, Changhao

    2017-08-01

    Chemical industry plays an important role in promoting the development of global economy and human society. However, the negative effects caused by chemical production cannot be ignored, which often leads to serious resource consumption and environmental pollution. It is essential for chemical industry to achieve a sustainable development. Industrial symbiosis is one of the key topics in the field of industrial ecology and circular economy, which has been identified as a creative path leading to sustainability. Based on an extensively searching for literatures on linking industrial symbiosis with chemical industry, this paper aims to review the literatures which involves three aspects: (1) economic and environmental benefits achieved by chemical industry through implementing industrial symbiosis, (2) chemical eco-industrial parks, (3) and safety issues for chemical industry. An outlook is also provided. This paper concludes that: (1) chemical industry can achieve both economic and environmental benefits by implementing industrial symbiosis, (2) establishing eco-industrial parks is essential for chemical industry to implement and improve industrial symbiosis, and (3) there is a close relationship between IS and safety issues of chemical industry.

  11. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.

    Science.gov (United States)

    Andrio, Emilie; Marino, Daniel; Marmeys, Anthony; de Segonzac, Marion Dunoyer; Damiani, Isabelle; Genre, Andrea; Huguet, Stéphanie; Frendo, Pierre; Puppo, Alain; Pauly, Nicolas

    2013-04-01

    Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Systems study 'Alternative Entsorgung'. Final report. Technical annex 10

    International Nuclear Information System (INIS)

    Hartje, B.; Kronschnabel, H.; Mueller, W.F.W.

    1984-01-01

    There is an investigation whether accessibility can be produced to fuel elements stored in a salt mine. All solutions of the problem were followed up until the technically best one was found. Two conditions must be fulfilled for access to the final storage barrel: - There must be a climate which is suitable for people. The Mining Order is the basis for this. - The pit building must be fixed, in the convergence in the salt mine should not lead to it becoming impossible to reach part of the mine. Due to heat-producing waste, rock temperatures are caused in the salt mine, in which mining is no longer possible. Building on the idea of cooling the whole final storage area using concentric sections, the amount of heat to be removal was first estimated. Cooling of the whole final storage area proved to be technically unjustifiable and uninteresting at present. (orig./HP) [de

  13. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Balestrini, Raffaella; Lanfranco, Luisa

    2006-11-01

    Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

  14. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  15. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  16. The engine of the reef: Photobiology of the coral-algal symbiosis

    Directory of Open Access Journals (Sweden)

    Melissa Susan Roth

    2014-08-01

    Full Text Available Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis and recent advances in the field. Studies integrating physiology with the developing omics fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  17. The engine of the reef: photobiology of the coral–algal symbiosis

    Science.gov (United States)

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  18. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Final Scientific and Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL..., including recommendations and conclusions based on the experience and results obtained. The final report...

  19. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Aristos Aristidou Natureworks); Robert Kean (NatureWorks); Tom Schechinger (IronHorse Farms, Mat); Stuart Birrell (Iowa State); Jill Euken (Wallace Foundation & Iowa State)

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  20. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used

  1. On Human Symbiosis and the Vicissitudes of Individuation. Infantile Psychosis, Volume 1.

    Science.gov (United States)

    Mahler, Margaret S.

    The concepts of symbiosis and separation-individuation are explained, and the symbiosis theory of infantile psychosis is presented. Diagnostic considerations and clinical cases of child psychosis are reviewed; prototypes of mother-child interaction are described; and therapy is discussed. A summary of the symbiosis theory and a bibliography of…

  2. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Warshan, Denis; Espinoza, Josh L.; Stuart, Rhona; Richter, Alexander R.; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Kyripides, Nikos; Barry, Kerrie W.; Singan, Vasanth; Lindquist, Erika; Ansong, Charles K.; Purvine, Samuel O.; Brewer, Heather M.; Weyman, Philip D.; Dupont, Chris; Rasmussen, Ulla

    2017-12-31

    Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feather mosses represents the main pathway of biological N input into boreal forests. Despite its significance, little is known about the gene repertoire needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions or regulatory rewiring allowing cyanobacteria to form this symbiosis, we compared closely related Nostoc strains that were either symbiosis-competent or non-competent, using a proteogenomics approach and a unique experimental setup allowing for controlled chemical and physical contact between partners. Thirty-two protein families were only in the genomes of competent strains, including some never before associated with symbiosis. We identified conserved orthologs that were differentially expressed in competent strains, including gene families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, sugar metabolism, and glycosyl-modifying and oxidative stress-mediating exoenzymes. In contrast to other cyanobacteria-plant symbioses, the moss-cyanobacteria epiphytic symbiosis is distinct, with the symbiont retaining motility and chemotaxis, and not modulating N-fixation, photosynthesis, GS-GOGAT cycle, and heterocyst formation. Our work expands our knowledge of plant cyanobacterial symbioses, provides an interaction model of this ecologically significant symbiosis, and suggests new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining this symbiosis.

  3. Signaling events during initiation of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Schmitz, Alexa M; Harrison, Maria J

    2014-03-01

    Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression. © 2014 Institute of Botany, Chinese Academy of Sciences.

  4. Evolution of Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    The attine ant symbiosis is characterized by ancient but varying degrees of diffuse co-evolution between the ants and their fungal cultivars. Domesticated fungi became dependent on vertical transmission by queens and the ant colonies came to rely on their symbiotic fungus for food and thus...... as garden substrate, whereas the more basal genera use leaf litter, insect feces and insect carcasses. We hypothesized that enzyme activity of fungal symbionts has co-evolved with substrate use and we measured enzyme activities of fungus gardens in the field to test this, focusing particularly on plant...... essential for the symbiosis in general, but have contributed specifically to the evolution of the symbiosis....

  5. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis.

    Science.gov (United States)

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-03-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte-UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte-UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml(-1)) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages.

  6. Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis

    Science.gov (United States)

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-01-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte–UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte–UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml−1) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages. PMID:26405830

  7. Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis.

    Science.gov (United States)

    Alford, Elan R; Pilon-Smits, Elizabeth A H; Fakra, Sirine C; Paschke, Mark W

    2012-12-01

    A survey of the root-nodule symbiosis in Astragalus and its interaction with selenium (Se) has not been conducted before. Such studies can provide insight into how edaphic conditions modify symbiotic interactions and influence partner coevolution. In this paper plant-organ Se concentration ([Se]) was investigated to assess potential Se exposure to endophytes. • Selenium distribution and molecular speciation of root nodules from Se-hyperaccumulators Astragalus bisulcatus, A. praelongus, and A. racemosus was determined by Se K-edge x-ray absorption spectroscopy. A series of greenhouse experiments were conducted to characterize the response of root-nodule symbiosis in Se-hyperaccumulators and nonhyperaccumulators. • Nodules in three Se-hyperaccumulators (Astragalus crotalariae, A. praelongus, and A. preussii) are reported for the first time. Leaves, flowers, and fruits from Se-hyperaccumulators were routinely above the hyperaccumulator threshold (1,000 µg Se g(-1) DW), but root samples rarely contained that amount, and nodules never exceeded 110 µg Se g(-1) DW. Nodules from A. bisulcatus, A. praelongus, and A. racemosus had Se throughout, with a majority stored in C-Se-C form. Finally, an evaluation of nodulation in Se-hyperaccumulators and nonhyperaccumulators indicated that there was no nodulation inhibition because of plant Se tolerance. Rather, we found that in Se-hyperaccumulators higher levels of Se treatment (up to 100 µM Se) corresponded with higher nodule counts, indicating a potential role for dinitrogen fixation in Se-hyperaccumulation. The effect was not found in nonhyperaccumulators. • As the evolution of Se hyperaccumulation in Astragalus developed, root-nodule symbiosis may have played an integral role.

  8. Organizational Boundary Change in Industrial Symbiosis: Revisiting the Guitang Group in China

    Directory of Open Access Journals (Sweden)

    Lin Shi

    2017-06-01

    Full Text Available This study revisits the Guitang Group, one of the best known industrial symbiosis cases in the sugar industry. Our goal is to offer an evolutionary understanding of industrial symbiosis at the Guitang Group. This article focuses on the organizational boundary change of the Guitang Group over time, and acknowledges this process as one of the seven industrial symbiosis dynamics proposed by Boons et al. We offer a historical view of the critical forces behind Guitang’s industrial symbiosis evolution since the 1950s; particularly how these changes were influenced by broader economic and institutional contexts of importance in China. These insights include the role of institutionalized research and development (R&D as well as technology-oriented leadership as driving forces for Guitang’s innovation, particularly since the 1990s, when greater efficiency and productivity were emphasized, leading to the establishment of further symbiotic relationships in the company’s evolutionary process. As a result, the Guitang Group grew from 2 internal to 11 internal and external symbiotic exchanges and is now a conglomeration with more than 3000 employees generating more than 1 billion RMB (150 million USD in revenue annually. The driving forces of the Guitang Group’s industrial symbiosis evolution helped to create, disseminate and share information by continuously reinforcing the industrial symbiosis message as part of the Guitang Group’s business model and competitive strategy. In addition, state-level policies such as establishing the Guigang (the city where Guitang is located Eco-Industrial Park enabled industrial symbiosis in Guitang. This study provides prospects for future research on the organizational boundary change dynamic of industrial symbiosis in the sugar manufacturing industry and beyond.

  9. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. Industrial Symbiosis as a Social Process : Developing theory and methods for the longitudinal investigation of social dynamics in the emergence and development of industrial symbiosis

    NARCIS (Netherlands)

    W. Spekkink (Wouter)

    2016-01-01

    markdownabstractIndustrial symbiosis is a process in which firms in regional industrial systems engage in the exchange of by-products and sharing of utilities and services in order to improve their environmental and economic performance. Industrial symbiosis has a prominent social dimension. To

  11. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  12. Speciation by Symbiosis: the Microbiome and Behavior.

    Science.gov (United States)

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. Copyright © 2016 Shropshire and Bordenstein.

  13. Impediment to symbiosis establishment between giant clams and Symbiodinium algae due to sterilization of seawater.

    Science.gov (United States)

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment ("symbiosis rate") is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds.

  14. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis

    Science.gov (United States)

    Warshan, Denis; Espinoza, Josh L; Stuart, Rhona K; Richter, R Alexander; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; C Kyrpides, Nikos; Barry, Kerrie; Singan, Vasanth; Lindquist, Erika; Ansong, Charles; Purvine, Samuel O; M Brewer, Heather; Weyman, Philip D; Dupont, Christopher L; Rasmussen, Ulla

    2017-01-01

    Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis. PMID:28800136

  15. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis.

    Science.gov (United States)

    Warshan, Denis; Espinoza, Josh L; Stuart, Rhona K; Richter, R Alexander; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; C Kyrpides, Nikos; Barry, Kerrie; Singan, Vasanth; Lindquist, Erika; Ansong, Charles; Purvine, Samuel O; M Brewer, Heather; Weyman, Philip D; Dupont, Christopher L; Rasmussen, Ulla

    2017-12-01

    Dinitrogen (N 2 )-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss-cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria-plant symbioses, with Nostoc retaining motility, and lacking modulation of N 2 -fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant-cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria-feathermoss symbiosis.

  16. DOE final technical report 3/1997 to 2/2005

    International Nuclear Information System (INIS)

    Gross, Franz L.

    2005-01-01

    DOE final technical report 3/1997 to 2/2005 This grant supported basic theoretical research into the derivation (from relativistic field theories) of relativistic equations for few body systems, with practical applications to the properties of 2 and 3 nucleon systems and to the nature of few-quark systems

  17. 77 FR 47495 - Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting-National...

    Science.gov (United States)

    2012-08-08

    ... Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical... 34 CFR Chapter III [CFDA Number 84.373Z] Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early Childhood...

  18. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA's Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities

  19. 76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular

    Science.gov (United States)

    2011-04-04

    ... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...

  20. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  1. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state. PMID:27431195

  2. Impediment to Symbiosis Establishment between Giant Clams and Symbiodinium Algae Due to Sterilization of Seawater

    Science.gov (United States)

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment (“symbiosis rate”) is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

  3. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    Science.gov (United States)

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  4. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis.

    Science.gov (United States)

    Maherali, Hafiz; Oberle, Brad; Stevens, Peter F; Cornwell, William K; McGlinn, Daniel J

    2016-11-01

    Mutualistic symbioses with mycorrhizal fungi are widespread in plants. The majority of plant species associate with arbuscular mycorrhizal (AM) fungi. By contrast, the minority associate with ectomycorrhizal (EM) fungi, have abandoned the symbiosis and are nonmycorrhizal (NM), or engage in an intermediate, weakly AM symbiosis (AMNM). To understand the processes that maintain the mycorrhizal symbiosis or cause its loss, we reconstructed its evolution using a ∼3,000-species seed plant phylogeny integrated with mycorrhizal state information. Reconstruction indicated that the common ancestor of seed plants most likely associated with AM fungi and that the EM, NM, and AMNM states descended from the AM state. Direct transitions from the AM state to the EM and NM states were infrequent and generally irreversible, implying that natural selection or genetic constraint could promote stasis once a particular state evolved. However, the evolution of the NM state was more frequent via an indirect pathway through the AMNM state, suggesting that weakening of the AM symbiosis is a necessary precursor to mutualism abandonment. Nevertheless, reversions from the AMNM state back to the AM state were an order of magnitude more likely than transitions to the NM state, suggesting that natural selection favors the AM symbiosis over mutualism abandonment.

  6. AIMES Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Daniel S [Univ. of Illinois, Urbana-Champaign, IL (United States). National Center for Supercomputing Applications (NCSA); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Weissman, Jon [Univ. of Minnesota, Minneapolis, MN (United States); Turilli, Matteo [Rutgers Univ., New Brunswick, NJ (United States)

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.

  7. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis

    DEFF Research Database (Denmark)

    Lin, Senjie; Cheng, Shifeng; Song, Bo

    2015-01-01

    Symbiodinium-specific gene families. No whole-genome duplication was observed, but instead we found active (retro) transposition and gene family expansion, especially in processes important for successful symbiosis with corals. We also documented genes potentially governing sexual reproduction and cyst...... the molecular basis and evolution of coral symbiosis....

  8. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  9. Temperature shapes coral-algal symbiosis in the South China Sea

    Science.gov (United States)

    Tong, Haoya; Cai, Lin; Zhou, Guowei; Yuan, Tao; Zhang, Weipeng; Tian, Renmao; Huang, Hui; Qian, Pei-Yuan

    2017-01-01

    With the increase in sea surface temperature (SST), scleractinian corals are exposed to bleaching threats but may possess certain flexibilities in terms of their associations with symbiotic algae. Previous studies have shown a close symbiosis between coral the and Symbiodinium; however, the spatial variation of the symbiosis and the attribution underlying are not well understood. In the present study, we examined coral-algal symbiosis in Galaxea fascicularis and Montipora spp. from three biogeographic regions across ~10° of latitude in the South China Sea. Analysis of similarities (ANOSIM) indicated a highly flexible coral-algal symbiosis in both G. fascicularis and Montipora spp. and canonical correspondence analysis (CCA) showed that temperature explained 83.2% and 60.1% of the explanatory subclade variations in G. fascicularis and Montipora spp., respectively, which suggested that temperature was the main environmental factor contributing to the diversity of Symbiodinium across the three regions. The geographic specificity of the Symbiodinium phylogeny was identified, revealing possible environmental selection across the three regions. These results suggest that scleractinian corals may have the ability to regulate Symbiodinium community structures under different temperatures and thus be able to adapt to gradual climate change. PMID:28084322

  10. Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis.

    Science.gov (United States)

    Bélanger, Pier-Anne; Bellenger, Jean-Philippe; Roy, Sébastien

    2015-11-01

    Alders have already demonstrated their potential for the revegetation of both mining and industrial sites. These actinorhizal trees and shrubs and the actinobacteria Frankia associate in a nitrogen-fixing symbiosis which could however be negatively affected by the presence of heavy metals, and accumulate them. In our hydroponic assay with black alders, quantification of the roots and shoots metal concentrations showed that, in the absence of stress, symbiosis increases Mo and Ni root content and simultaneously decreases Mo shoot content. Interestingly, the Mo shoot content also decreases in the presence of Ni, Cu, Pb, Zn and Cd for symbiotic alders. In symbiotic alders, Pb shoot translocation was promoted in presence of Pb. On the other hand, Cd exclusion in symbiotic root tissues was observed with Pb and Cd. In the presence of symbiosis, only Cd and Pb showed translocation into aerial tissues when present in the nutrient solution. Moreover, the translocation of Ni to shoot was prevented by symbiosis in the presence of Cd, Ni and Pb. The hydroponic experiment demonstrated that alders benefit from the symbiosis, producing more biomass (total, root and shoot) than non nodulated alders in control condition, and in the presence of metals (Cu, Ni, Zn, Pb and Cd). Heavy metals did not reduce the nodule numbers (SNN), but the presence of Zn or Cd did reduce nodule allocation. Our study suggests that the Frankia-alder symbiosis is a promising (and a compatible) plant-microorganism association for the revegetation of contaminated sites, with minimal risk of metal dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis

    NARCIS (Netherlands)

    Gerz, Maret; Guillermo Bueno, C.; Ozinga, Wim A.; Zobel, Martin; Moora, Mari

    2018-01-01

    Mycorrhizal symbiosis is a widespread association between plant roots and mycorrhizal fungi, which is thought to contribute to plant niche differentiation and expansion. However, this has so far not been explicitly tested. To address the effect of mycorrhizal symbiosis on plants’ realized niches, we

  12. LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume Parasponia

    NARCIS (Netherlands)

    Camp, Op den R.H.M.; Streng, A.J.; Mita, De S.; Cao, Q.; Polone, E.; Liu, W.; Ammiraju, J.S.S.; Kudrna, D.; Wing, R.; Untergasser, A.; Bisseling, T.; Geurts, R.

    2011-01-01

    Rhizobium root nodule symbiosis is generally considered to be unique for legumes. However, there is one exception and that is Parasponia. In this nonlegume, the rhizobial nodule symbiosis evolved independently and is, like in legumes, induced by rhizobium Nod factors. We used Parasponia to identify

  13. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth

    2010-01-01

    , the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...... involved in the early and late stages of AMF symbiosis....

  14. Supply chain collaboration in industrial symbiosis networks

    DEFF Research Database (Denmark)

    Herczeg, Gabor; Akkerman, Renzo; Hauschild, Michael Zwicky

    2018-01-01

    A strategy supporting the development towards a circular economy is industrial symbiosis (IS). It is a form of collaborative supply chain management aiming to make industry more sustainable and achieve collective benefits based on utilization of waste, by-products, and excess utilities between...... economically independent industries. Based on an extensive analysis of published studies on existing IS collaborations and interviews with central stakeholders of a comprehensive IS, this paper investigates IS from a supply chain collaboration perspective. A theoretical framework is built and used to discuss...... how industrial symbiosis pursues sustainability and to identify the main collaboration aspects and performance impacts. This framework is then used in the analysis of selected published cases. Based on this, we derive propositions on the organizational and operational requirements for collaboration...

  15. Importance of mycorrhizal symbiosis for local adaptations of Aster amellus

    OpenAIRE

    Plachá, Hana

    2006-01-01

    3 Abstract The importance of arbuscular mycorrhizal (AM) symbiosis for survival and growth of many plant species is generally recognized. It has been repeatedly shown that symbiosis with mycorrhizal fungi can increase the fitness of many plant species. This increasing fitness is caused by increased uptake of phosphorus and other nutrients or pathogen protection. Most studies on mycorrhizal associations explore these types of relationship using single plant population and single fungal species...

  16. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  17. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  18. Secondary metabolism in the lichen symbiosis.

    Science.gov (United States)

    Calcott, Mark J; Ackerley, David F; Knight, Allison; Keyzers, Robert A; Owen, Jeremy G

    2018-03-05

    Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.

  19. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-01-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities

  20. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  1. The symbiosis between Rhizobium leguminosarum and Pisum sativum : regulation of the nitrogenase activity

    NARCIS (Netherlands)

    Appels, M.A.

    1989-01-01

    Bacteria of the genus Rhizobium can form a symbiosis with plants of the family Leguminosae. Both bacteria and plant show considerable biochemical and morphological changes in order to develop and carry out the symbiosis. The Rhizobia

  2. Supply Chain Management in Industrial Symbiosis Networks

    DEFF Research Database (Denmark)

    Herczeg, Gabor

    2016-01-01

    , as well as in policy documents from e.g. the European Union, the concepts of circular econ- omy and closed-loop supply chains have received significant attention. One of the manifestations of these developments are industrial symbiosis networks. These networks are a collaborative effort to more...... sustainable production op- erations, and are characterized by a supply chain reconfiguration that uses one company’s wastes or by-products as a raw material for another company, avoiding waste disposal while also reducing material requirements. The re- sulting networks of relationships contribute to regional...... sustainable develop- ment efforts, and emphasize synergistic relations, community, and collabora- tion. This thesis takes an operations and supply chain management perspec- tive on industrial symbiosis networks. More specifically, the thesis elaborates on the collaborative and competitive characteristics...

  3. 78 FR 12955 - Final Requirements, Definitions, and Selection Criteria-Native American Career and Technical...

    Science.gov (United States)

    2013-02-26

    ... career and technical education programs (20 U.S.C. 2326(e)). This notice does not preclude us from... DEPARTMENT OF EDUCATION 34 CFR Chapter IV [Docket ID ED-2012-OVAE-0053] Final Requirements, Definitions, and Selection Criteria--Native American Career and Technical Education Program (NACTEP) [Catalog...

  4. Supply chain coordination in industrial symbiosis

    DEFF Research Database (Denmark)

    Herczeg, Gabor; Akkerman, Renzo; Hauschild, Michael Zwicky

    2013-01-01

    Industrial symbiosis (IS) is a form of supply chain cooperation in industrial networks in order to achieve collective benefits by leveraging each other’s by-products and sharing services and utilities. This paper investigates the concept of IS from the perspective of supply chain coordination (SC...

  5. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    Science.gov (United States)

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  6. Technical planning activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  7. Technical planning activity: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements

  8. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle; Stephens, Timothy G.; Gonzá lez-Pech, Raú l; Beltran, Victor H.; Lapeyre, Bruno; Bongaerts, Pim; Cooke, Ira; Bourne, David G.; Forê t, Sylvain; Miller, David John; van Oppen, Madeleine J. H.; Voolstra, Christian R.; Ragan, Mark A.; Chan, Cheong Xin

    2017-01-01

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world's coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  9. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle

    2017-10-06

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world\\'s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  10. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  11. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe

    2017-01-11

    Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Final Waivers and... American Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84... and Technical Education Program (NACTEP), the Secretary waives 34 CFR 75.250 and 75.261(c)(2) in order...

  13. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters.

    Directory of Open Access Journals (Sweden)

    Dongying Wu

    2006-06-01

    Full Text Available Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata, which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192-base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential

  14. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Lick Observatory, San Jose, CA (United States); Kasen, Dan [Univ. of California, Berkeley, CA (United States)

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  15. Achieving carbon emission reduction through industrial and urban symbiosis: A case of Kawasaki

    International Nuclear Information System (INIS)

    Dong, Huijuan; Ohnishi, Satoshi; Fujita, Tsuyoshi; Geng, Yong; Fujii, Minoru; Dong, Liang

    2014-01-01

    Industry and fossil fuel combustion are the main sources for urban carbon emissions. Most studies focus on energy consumption emission reduction and energy efficiency improvement. Material saving is also important for carbon emission reduction from a lifecycle perspective. IS (Industrial symbiosis) and U r S (urban symbiosis) have been effective since both of them encourage byproduct exchange. However, quantitative carbon emission reduction evaluation on applying them is still lacking. Consequently, the purpose of this paper is to fill such a gap through a case study in Kawasaki Eco-town, Japan. A hybrid LCA model was employed to evaluate to the lifecycle carbon footprint. The results show that lifecycle carbon footprints with and without IS and U r S were 26.66 Mt CO 2 e and 30.92 Mt CO 2 e, respectively. The carbon emission efficiency was improved by 13.77% with the implementation of IS and U r S. The carbon emission reduction was mainly from “iron and steel” industry, cement industry and “paper making” industry, with figures of 2.76 Mt CO 2 e, 1.16 Mt CO 2 e and 0.34 Mt CO 2 e, respectively. Reuse of scrape steel, blast furnace slag and waste paper are all effective measures for promoting carbon emission reductions. Finally, policy implications on how to further promote IS and U r S are presented. - Highlights: • We evaluate carbon emission reduction of industrial and urban symbiosis (IS/U r S). • Hybrid LCA model was used to evaluate lifecycle carbon footprint. • Carbon emission efficiency was improved by 13.77% after applying IS/U r S. • The importance of U r S in responding carbon reduction was addressed in the paper

  16. Establishment of coral-algal symbiosis requires attraction and selection.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamashita

    Full Text Available Coral reef ecosystems are based on coral-zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4 within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals-Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral.

  17. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  18. Key technical issues associated with a method of pulse compression. Final technical report

    International Nuclear Information System (INIS)

    Hunter, R.O. Jr.

    1980-06-01

    Key technical issues for angular multiplexing as a method of pulse compression in a 100 KJ KrF laser have been studied. Environmental issues studied include seismic vibrations man-made vibrations, air propagation, turbulence, and thermal gradient-induced density fluctuations. These studies have been incorporated in the design of mirror mounts and an alignment system, both of which are reported. A design study and performance analysis of the final amplifier have been undertaken. The pulse compression optical train has been designed and assessed as to its performance. Individual components are described and analytical relationships between the optical component size, surface quality, damage threshold and final focus properties are derived. The optical train primary aberrations are obtained and a method for aberration minimization is presented. Cost algorithms for the mirrors, mounts, and electrical hardware are integrated into a cost model to determine system costs as a function of pulse length, aperture size, and spot size

  19. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus.

    Science.gov (United States)

    Nishida, Hanna; Tanaka, Sachiko; Handa, Yoshihiro; Ito, Momoyo; Sakamoto, Yuki; Matsunaga, Sachihiro; Betsuyaku, Shigeyuki; Miura, Kenji; Soyano, Takashi; Kawaguchi, Masayoshi; Suzaki, Takuya

    2018-02-05

    Legumes and rhizobia establish symbiosis in root nodules. To balance the gains and costs associated with the symbiosis, plants have developed two strategies for adapting to nitrogen availability in the soil: plants can regulate nodule number and/or stop the development or function of nodules. Although the former is accounted for by autoregulation of nodulation, a form of systemic long-range signaling, the latter strategy remains largely enigmatic. Here, we show that the Lotus japonicus NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1) gene encoding a NIN-LIKE PROTEIN transcription factor acts as a key regulator in the nitrate-induced pleiotropic control of root nodule symbiosis. NRSYM1 accumulates in the nucleus in response to nitrate and directly regulates the production of CLE-RS2, a root-derived mobile peptide that acts as a negative regulator of nodule number. Our data provide the genetic basis for how plants respond to the nitrogen environment and control symbiosis to achieve proper plant growth.

  20. Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki

    OpenAIRE

    Hashimoto, Shizuka; Fujita, Tsuyoshi; Geng, Yong; Nagasawa, Emiri

    2010-01-01

    This article is one effort to examine the present and potential performances of CO2 emission reduction though industrial symbiosis by employing a case study approach and life cycle CO2 analysis for alternative industrial symbiosis scenarios. As one of the first and the best-known eco-town projects, Kawasaki Eco-town was chosen as a case study area. First, the current industrial symbiosis practices in this area are introduced. To evaluate the potential of reducing the total CO2 emission throug...

  1. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  2. Final Technical Report, Wind Generator Project (Ann Arbor)

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Nathan [City of Ann Arbor, MI (United States)

    2017-03-20

    A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.

  3. Supply chain collaboration in industrial symbiosis networks

    NARCIS (Netherlands)

    Herczeg, Gábor; Akkerman, Renzo; Hauschild, Michael Zwicky

    2018-01-01

    A strategy supporting the development towards a circular economy is industrial symbiosis (IS). It is a form of collaborative supply chain management aiming to make industry more sustainable and achieve collective benefits based on utilization of waste, by-products, and excess utilities between

  4. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

    Science.gov (United States)

    Ingraffia, Rosolino; Giambalvo, Dario; Frenda, Alfonso Salvatore

    2017-01-01

    Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non

  5. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat.

    Science.gov (United States)

    Fileccia, Veronica; Ruisi, Paolo; Ingraffia, Rosolino; Giambalvo, Dario; Frenda, Alfonso Salvatore; Martinelli, Federico

    2017-01-01

    Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non

  6. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method

    Science.gov (United States)

    Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto

    2018-02-01

    Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  7. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA Method

    Directory of Open Access Journals (Sweden)

    Siwi Dwi Astuti Rahayu

    2018-01-01

    Full Text Available Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry’s environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  8. Iowa Hill Pumped Storage Project Investigations - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David [Sacramento Municipal Unitlity District, Sacramento, CA (United States)

    2016-07-01

    This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.

  9. Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan.

    Science.gov (United States)

    Van Berkel, Rene; Fujita, Tsuyoshi; Hashimoto, Shizuka; Fujii, Minoru

    2009-03-01

    Colocated firms can achieve environmental benefit and competitive advantage from exchanging physical resources (known as industrial symbiosis) with each other or with residential areas (referenced here as urban symbiosis). Past research illustrated that economic and environmental benefits appear self-evident, although detailed quantification has only been attempted of symbioses for energy and water utilities. This article provides a complimentary case studyfor Kawasaki, Japan. The 14 documented symbioses connect steel, cement, chemical, and paperfirms and their spin-off recycling businesses. Seven key material exchanges divert annually at least 565 000 tons of waste from incineration or landfill. Four of these collectively present an estimated economic opportunity of 13.3 billion JPY (approximately 130 million USD) annually. Five symbioses involve utilization of byproduct and two sharing of utilities. The others are traditional or new recycling industries that do not specifically benefit from geographic proximity. The synergistic effect of urban and industrial symbiosis is unique. The legislative framework for a recycling-oriented society has contributed to realization of the symbioses, as has the availability of government subsidies through the Eco-Town program.

  10. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  11. Brain-Based Indices for User System Symbiosis

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veltman, J.A.; Grootjen, M.

    2010-01-01

    The future generation user system interfaces need to be user-centric which goes beyond user-friendly and includes understanding and anticipating user intentions. We introduce the concept of operator models, their role in implementing user-system symbiosis, and the usefulness of brain-based indices

  12. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice.

    Science.gov (United States)

    Chiu, Chai Hao; Choi, Jeongmin; Paszkowski, Uta

    2018-01-01

    Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2007-01-01

    To estimate dynamics of arbuscular mycorrhizal (AM) symbiosis in heavy metal (HM) phytoremediation, we conducted a literature survey and correlated HM uptake and relative plant growth parameters from published data. After estimating AM feedback responses for these parameters at low and high soil-HM concentration intervals, we determined that the roles of AM symbiosis are characterized by (1) an increased HM phytoextraction via mycorrhizospheric 'Enhanced Uptake' at low soil-HM concentrations, and (2) a reduced HM bioavailability via AM fungal 'Metal-Binding' processes at high soil-HM levels, hence resulting in increased plant biomass and enhanced plant tolerance through HM stress-avoidance. We present two conceptual models which illustrate the important compromise between plant growth, plant HM uptake and HM tolerance, and further emphasize the importance of AM symbiosis in buffering the soil environment for plants under such stress conditions. - This meta-analysis has revealed a transition role of the AM symbiosis in phytoremediation shifting from 'Enhanced Uptake' to 'Metal-Binding' beyond critical soil-HM levels

  14. 77 FR 30514 - Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native Hawaiian Career and Technical Education Program; Final Waiver and... Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84.259A... Technical Education Program (NHCTEP), the Secretary hereby waives 34 CFR 75.261(c)(2) in order to extend the...

  15. Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter 1 Gene Family

    DEFF Research Database (Denmark)

    Yang, Shu-Yi; Grønlund, Mette; Jakobsen, Iver

    2012-01-01

    Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited highgrade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via...... or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands...... the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage...

  16. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Northern Arizona Univ., Flagstaff, AZ (United States); Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  17. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species.

    Science.gov (United States)

    Martín-Robles, Nieves; Lehmann, Anika; Seco, Erica; Aroca, Ricardo; Rillig, Matthias C; Milla, Rubén

    2018-04-01

    The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. The effect of pseudo-microgravity on the symbiosis of plants and microorganisms

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Maki, Asano; Aoki, Toshio; Tamura, Kenji; Wada, Hidenori; Hashimoto, Hirofumi; Yamashita, Masamichi

    The symbiosis of plants and microorganisms is important to conduct agriculture under space environment. However, we have less knowledge on whether this kind of symbiosis can be established under space condition. We examined the functional compounds responsible to symbiosis between rhizobiaum and Lotus japonicus as a model of symbiotic combination. The existence of the substances for their symbiosis, some flavonoids, have already been known from the study of gene expression, but the detail structures have not yet been elucidated. Pseudomicrogravity was generated by the 3D-clinorotation. Twenty flavonoids were found in the extracts of 16 days plants of Lotus japonicus grown under the normal gravity by HPLC. Content of two flavonoids among them was affected by the infection of Mesorhizobium loti to them. It has a possibility that the two flavonoids were key substances for their combination process. The productions of those flavonoids were confirmed also under the pseudo-microgravity. The amount of one flavonoid was increased by both infection of rhizobium and exposure to the normal and pseudo-micro gravity. Chemical species of these flavonoids were identified by LC- ESI/MS and spectroscopic analysis. To show the effects of pseudo-microgravity on the gene expression, enzymic activities related to the functional compounds are evaluated after the rhizobial infection.

  19. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed

  20. A modified Lotka-Volterra model for the evolution of coordinate symbiosis in energy enterprise

    Science.gov (United States)

    Zhou, Li; Wang, Teng; Lyu, Xiaohuan; Yu, Jing

    2018-02-01

    Recent developments in energy markets make the operating industries more dynamic and complex, and energy enterprises cooperate more closely in the industrial chain and symbiosis. In order to further discuss the evolution of coordinate symbiosis in energy enterprises, a modified Lotka-Volterra equation is introduced to develop a symbiosis analysis model of energy groups. According to the equilibrium and stability analysis, a conclusion is obtained that if the upstream energy group and the downstream energy group are in symbiotic state, the growth of their utility will be greater than their independent value. Energy enterprises can get mutual benefits and positive promotions in industrial chain by their cooperation.

  1. A Transient Exposure to Symbiosis-Competent Bacteria Induces Light Organ Morphogenesis in the Host Squid.

    Science.gov (United States)

    Doino, J A; McFall-Ngai, M J

    1995-12-01

    Recent studies of the symbiotic association between the Hawaiian sepiolid squid Euprymna scolopes and the luminous bacterium Vibrio fischeri have shown that colonization of juvenile squid with symbiosis-competent bacteria induces morphogenetic changes of the light organ. These changes occur over a 4-day period and include cell death and tissue regression of the external ciliated epithelium. In the absence of bacterial colonization, morphogenesis does not occur. To determine whether the bacteria must be present throughout the morphogenetic process, we used the antibiotic chloramphenicol to clear the light organ of bacteria at various times during the initial colonization. We provide evidence in this study that a transient, 12-hour exposure to symbiosis-competent bacteria is necessary and sufficient to induce tissue regression in the light organ over the next several days. Further, we show that successful entrance into the light organ is necessary to induce morphogenesis, suggesting that induction results from bacterial interaction with internal crypt cells and not with the external ciliated epithelium. Finally, no difference in development was observed when the light organ was colonized by a mutant strain of V. fischeri that did not produce autoinducer, a potential light organ morphogen.

  2. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  3. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    Science.gov (United States)

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. First Description of Sulphur-Oxidizing Bacterial Symbiosis in a Cnidarian (Medusozoa Living in Sulphidic Shallow-Water Environments.

    Directory of Open Access Journals (Sweden)

    Sylvie Abouna

    Full Text Available Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously.Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM observations and Energy-dispersive X-ray spectroscopy (EDXs analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp.This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.

  5. First Description of Sulphur-Oxidizing Bacterial Symbiosis in a Cnidarian (Medusozoa) Living in Sulphidic Shallow-Water Environments.

    Science.gov (United States)

    Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier

    2015-01-01

    Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.

  6. The vesicular-arbuscular mycorrhizal symbiosis | Quilambo | African ...

    African Journals Online (AJOL)

    Vesicular-arbuscular mycorrhiza fungi are associated with the majority ot the terrestrial plants. Their function ranges from stress alleviation to bioremediation in soils polluted with heavy metals. However, our knowledge about this symbiosis is still limited. For the semi-arid tropics, where some african countries are located, ...

  7. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  8. Energy Impact Illinois - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Daniel [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  9. Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China

    International Nuclear Information System (INIS)

    Dong, Liang; Gu, Fumei; Fujita, Tsuyoshi; Hayashi, Yoshitsugu; Gao, Jie

    2014-01-01

    There is a dilemma for rapid industrializing China to balance economic growth and low carbonization. Industrial symbiosis (IS) provides a system innovation to utilize the industry to fight climate change and pursue sustainable urban development, while few attentions are paid in literatures. Under this circumstance, this study reviews the low-carbon city practice in China and conducts a case study to calculate the CO 2 emissions reduction potential under promoting IS projects in two cities of China, named Jinan and Liuzhou. With the real national project in Jinan as advanced example, new scenarios related to IS are designed for Liuzhou, including comprehensive energy network, waste plastics recycling, scrap tires recycling and flying ash recycling. The material/waste and energy exchange is quantified in the IS network, as well as the related environmental benefit. The material/energy exchange is over 10 million ton and 20 thousands tce in Jinan's case, and 2.5 million ton and 45 thousand tce in Liuzhou's case. Results highlight that IS could effectively reduce CO 2 emissions. The total reduction potential amounts to 3944.05 thousands tCO 2 /year and 2347.88 thousands tCO 2 /year in Jinan and Liuzhou. Finally, policy implications on the ever-improvement of industrial symbiosis and China's sustainable urban development are proposed and discussed. - Highlights: • Investigate two real industrial symbiosis projects in Jinan and Liuzhou of China. • Quantify the material exchange and the CO 2 reduction potential of the IS network. • CO 2 reduction potential is 3944.05 and 2347.88 ktCO 2 /year in Jinan and Liuzhou. • In current China, IS is main in term of material symbiosis. • How to coordinate IS and low-carbon city is discussed

  10. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    Science.gov (United States)

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  11. Two negative regulatory systems of root nodule symbiosis - how are symbiotic benefits and costs balanced?

    Science.gov (United States)

    Nishida, Hanna; Suzaki, Takuya

    2018-05-30

    Root nodule symbiosis is one of the best-characterized mutualistic relationships between plants-microbes symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organs root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that a long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we give an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.

  12. Man-Computer Symbiosis Through Interactive Graphics: A Survey and Identification of Critical Research Areas.

    Science.gov (United States)

    Knoop, Patricia A.

    The purpose of this report was to determine the research areas that appear most critical to achieving man-computer symbiosis. An operational definition of man-computer symbiosis was developed by: (1) reviewing and summarizing what others have said about it, and (2) attempting to distinguish it from other types of man-computer relationships. From…

  13. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: ccharest@science.uottawa.ca

    2007-06-15

    To estimate dynamics of arbuscular mycorrhizal (AM) symbiosis in heavy metal (HM) phytoremediation, we conducted a literature survey and correlated HM uptake and relative plant growth parameters from published data. After estimating AM feedback responses for these parameters at low and high soil-HM concentration intervals, we determined that the roles of AM symbiosis are characterized by (1) an increased HM phytoextraction via mycorrhizospheric 'Enhanced Uptake' at low soil-HM concentrations, and (2) a reduced HM bioavailability via AM fungal 'Metal-Binding' processes at high soil-HM levels, hence resulting in increased plant biomass and enhanced plant tolerance through HM stress-avoidance. We present two conceptual models which illustrate the important compromise between plant growth, plant HM uptake and HM tolerance, and further emphasize the importance of AM symbiosis in buffering the soil environment for plants under such stress conditions. - This meta-analysis has revealed a transition role of the AM symbiosis in phytoremediation shifting from 'Enhanced Uptake' to 'Metal-Binding' beyond critical soil-HM levels.

  14. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

    Science.gov (United States)

    Kong, Zhaoyu; Mohamad, Osama Abdalla; Deng, Zhenshan; Liu, Xiaodong; Glick, Bernard R; Wei, Gehong

    2015-08-01

    The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.

  15. Unethical and Deadly Symbiosis in Higher Education

    Science.gov (United States)

    Crumbley, D. Larry; Flinn, Ronald; Reichelt, Kenneth J.

    2012-01-01

    As administrators are pressured to increase retention rates in accounting departments, and higher education in general, a deadly symbiosis is occurring. Most students and parents only wish for high grades, so year after year many educators engage in unethical grade inflation and course work deflation. Since administrators use the students to audit…

  16. Final Technical Report for DE-FG02-98ER45737

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Harald W.

    2018-04-24

    Final Technical Report For DOE Grant No. DE-FG02-98ER45737 Development of a Scanning Transmission X-Ray Microscope Polymer Thin Films and Self Assembled Monolayers: Pattern Formation and Surface Interactions NEXAFS Microscopy and Resonant Scattering of Polymeric Materials Organic Heterojunction Devices: Structure, Composition, and Performance at <20 nm Resolution Fundamental Science of High Open Circuit Voltage Excitonic Solar Cells Control of Interface- and Mesoscopic Structure in High Performance Organic Solar Cells: Towards a Predictive Device Paradigm

  17. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    Science.gov (United States)

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  18. Summary report of the final technical meeting on 'International Reactor Dosimetry File: IRDF-2002'

    International Nuclear Information System (INIS)

    Griffin, Patrick J.; Paviotti-Corcuera, R.

    2003-10-01

    Presentations, recommendations and conclusions of the Final Technical Meeting on 'International Reactor Dosimetry File: IRDF-2002' are summarized in this report. The main aims of this meeting were to discuss scientific and technical matters related to reactor dosimetry and to assign responsibilities for the preparation of the final version of the IRDF- 2002 library and the associated TECDOC. Tasks were assigned and deadlines were agreed. Participants emphasized that accurate and complete nuclear data for reactor dosimetry are essential to improve the assessment accuracies for reactor pressure vessel service lifetimes in nuclear power plants, as well as for other neutron metrology applications such as boron neutron capture therapy, therapeutic use of medical isotopes, nuclear physics measurements, and reactor safety applications. (author)

  19. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne

    2016-10-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.

  20. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, Tim [ZeaChem Inc., Lakewood, CO (United States); O' Neill, Brian [ZeaChem Inc., Lakewood, CO (United States)

    2016-08-17

    ZeaChem Inc. and US DOE successfully demonstrated the ZeaChem process for producing sugars and ethanol from high-impact biomass feedstocks. The project was executed over a 5-year period under a $31.25 million cooperative agreement (80:20 Federal:ZeaChem cost share). The project was managed by dividing it into three budget periods. Activities during Budget Period 1 were limited to planning, permitting, and other pre-construction planning. Budget Period 2 activities included engineering, procurement, construction, commissioning, start-up and initial operations through the Independent Engineer Test Runs. The scope of construction was limited to the Chem Frac and Hydrogenolysis units, as the Core Facility was already in place. Construction was complete in December 2012, and the first cellulosic ethanol was produced in February 2013. Additional operational test runs were conducted during Budget Period 3 (completed June 2015) using hybrid poplar, corn stover, and wheat straw feedstocks, resulting in the production of cellulosic ethanol and various other biorefinery intermediates. The research adds to the understanding of the Chem Frac and Hydrogenolysis technologies in that the technical performance of each unit was measured, and the resulting data and operational experience can be used as the basis for engineering designs, thus mitigating risks for deployment in future commercial facilities. The Chem Frac unit was initially designed to be operated as two-stage dilute acid hydrolysis, with first stage conditions selected to remove the hemicellulose fraction of the feedstock, and the second stage conditions selected to remove the cellulose fraction. While the Chem Frac unit met or exceeded the design capacity of 10 ton(dry)/day, the technical effectiveness of the Chem Frac unit was below expectations in its initial two-stage dilute acid configuration. The sugars yields were low, the sugars were dilute, and the sugars had poor fermentability caused by excessive inhibitors

  2. The Haendeloe area in Norrkoeping, Sweden: Does it fit for Industrial Symbiosis development?

    Energy Technology Data Exchange (ETDEWEB)

    Hatefipour, Saeid; Baas, Leenard; Eklund, Mats (Div. of Environmental Technology and Management - Dept. of Management and Engineering, Linkoeping Univ., Linkoeping (Sweden)), e-mail: saeid.hatefipour@liu.se

    2011-06-15

    Today, sustainable cities/regions are playing an important role in sustainable development projects. The overall aim of the current paper is to demonstrate an Industrial Symbiosis development in the Haendeloe area of Norrkoeping city in the Oestergoetland county of Sweden. It is part of a research program called 'Sustainable Norrkoeping' focusing on developing links between the industrial and the urban part of the city. As analysis of the current situation is important for understanding the future development, the paper tries to map the current industrial symbiosis links and symbiotic network to identify potentials exist. To achieve this, paper gives a general view of how this area has been developed, constructed, and grown. The next stage is devoted to an inventory of different actors, stakeholders, and companies, their processes and relationships in the form of energy, materials and by-products exchanges, flows and streams into and out of the Haendeloe area considering the Haendeloe/Norrkoeping as system boundaries. In addition, by describing different tools, elements and approaches of industrial symbiosis and considering and applying two main key tools as industrial inventories and input/output matching the paper also tries to show that whether the already industrial activities formed inside the Haendeloe fits for an industrial symbiosis development

  3. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  4. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    Science.gov (United States)

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  5. DE-FG02-04ER63746 FinalTechnicalReport

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, M.E.

    2009-09-05

    This is the final technical report for a project involving the study of stress response systems in the radiation-resistant bacterium, Deinococcus radiodurans. Three stresses of importance for a mixed waste treatment strain were studied, heat shock, solvent shock, and phosphate starvation. In each case, specific genes involved in the ability to survive the stress were identified using a systems biology approach, and analysis of mutants was used to understand mechanisms. This study has led to increased understanding of the ways in which a potential treatment strain could be manipulated to survive multiple stresses for treatment of mixed wastes.

  6. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development.

    Science.gov (United States)

    Takeda, Naoya; Tsuzuki, Syusaku; Suzaki, Takuya; Parniske, Martin; Kawaguchi, Masayoshi

    2013-10-01

    Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) are mutualistic plant-microbe interactions that confer nutritional benefits to both partners. Leguminous plants possess a common genetic system for intracellular symbiosis with AM fungi and with rhizobia. Here we show that CERBERUS and NSP1, which respectively encode an E3 ubiquitin ligase and a GRAS transcriptional regulator and which have previously only been implicated in RNS, are involved in AM fungal infection in Lotus japonicus. Hyphal elongation along the longitudinal axis of the root was reduced in the cerberus mutant, giving rise to a lower colonization level. Knockout of NSP1 decreased the frequency of plants colonized by AM fungi or rhizobia. CERBERUS and NSP1 showed different patterns of expression in response to infection with symbiotic microbes. A low constitutive level of CERBERUS expression was observed in the root and an increased level of NSP1 expression was detected in arbuscule-containing cells. Induction of AM marker gene was triggered in both cerberus and nsp1 mutants by infection with symbiotic microbes; however, the mutants showed a weaker induction of marker gene expression than the wild type, mirroring their lower level of colonization. The common symbiosis genes are believed to act in an early signaling pathway for recognition of symbionts and for triggering early symbiotic responses. Our quantitative analysis of symbiotic phenotypes revealed developmental defects of the novel common symbiosis mutants in both symbioses, which demonstrates that common symbiosis mechanisms also contribute to a range of functions at later or different stages of symbiont infection.

  7. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory NolR

    Science.gov (United States)

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory...

  8. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  9. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  10. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.

    Science.gov (United States)

    Cao, Mengyi; Goodrich-Blair, Heidi

    2017-08-01

    In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis. Copyright © 2017 American Society for Microbiology.

  11. Mathematics Intensive Summer Session (MISS). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This final technical report appears in two parts: the report for the 1995 summer MISS program and the report for the 1996 summer MISS program. Copies of the US Department of Energy Pre-Freshman Enrichment Program 1995 Entry Form and 1996 Entry Form completed by all participants were sent to the Oak Ridge Institute for Science and Education in the fall of 1995 and 1996 respectively. Those forms are on file should they be needed. Attached also is a copy of the Summary of ideas for panel discussions, problem-solving sessions, or small group discussions presented at the Department of Energy Oak Ridge Institute for Science and Education Pre-Freshman Enrichment Program Project Directors Meeting held in San Antonio, TX, November 12--14, 1995.

  12. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  13. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR.

    Science.gov (United States)

    Lee, Soon Goo; Krishnan, Hari B; Jez, Joseph M

    2014-04-29

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.

  14. Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor.

    Science.gov (United States)

    Dunlap, P V; Gould, A L; Wittenrich, M L; Nakamura, M

    2012-09-01

    To determine how each new generation of the sea urchin cardinalfish Siphamia versicolor acquires the symbiotic luminous bacterium Photobacterium mandapamensis, and when in its development the S. versicolor initiates the symbiosis, procedures were established for rearing S. versicolor larvae in an aposymbiotic state. Under the conditions provided, larvae survived and developed for 28 days after their release from the mouths of males. Notochord flexion began at 8 days post release (dpr). By 28 dpr, squamation was evident and the caudal complex was complete. The light organ remained free of bacteria but increased in size and complexity during development of the larvae. Thus, aposymbiotic larvae of the fish can survive and develop for extended periods, major components of the luminescence system develop in the absence of the bacteria and the bacteria are not acquired directly from a parent, via the egg or during mouth brooding. Presentation of the symbiotic bacteria to aposymbiotic larvae at 8-10 dpr, but not earlier, led to initiation of the symbiosis. Upon colonization of the light organ, the bacterial population increased rapidly and cells forming the light-organ chambers exhibited a differentiated appearance. Therefore, the light organ apparently first becomes receptive to colonization after 1 week post-release development, the symbiosis is initiated by bacteria acquired from the environment and bacterial colonization induces morphological changes in the nascent light organ. The abilities to culture larvae of S. versicolor for extended periods and to initiate the symbiosis in aposymbiotic larvae are key steps in establishing the experimental tractability of this highly specific vertebrate and microbe mutualism. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  15. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  16. Earthworms and their Nephridial Symbionts: Co-diversification and Maintenance of the Symbiosis

    DEFF Research Database (Denmark)

    Lund, Marie Braad; Holmstrup, Martin; Davidson, Seana K.

    Earthworms harbor in their nephridia (excretory organs) symbiotic bacteria which densely colonize a specific part of the nephridia, called the ampulla [1]. The symbiosis is species-specific and the symbionts form their own monophyletic genus Verminephrobacter (β-proteobacteria) [2] and are vertic......,J. 1926. Z Morph Ökol Tiere, 6(3):588-624. [2] Schramm,A. et al. 2003. Environ Microbiol 5(9):804-809. [3] Davidson,S.K. & Stahl,D.A. 2006. Appl Environ Microbiol 72(1):769-775. [4] Pandazis,G. 1931. Zentralbl Bakteriol 120:440-453.......Earthworms harbor in their nephridia (excretory organs) symbiotic bacteria which densely colonize a specific part of the nephridia, called the ampulla [1]. The symbiosis is species-specific and the symbionts form their own monophyletic genus Verminephrobacter (β-proteobacteria) [2...... showed no significant differences in growth rate and fecundity between symbiotic and aposymbiotic worms. Thus the symbionts do not appear to have an effect on worm fitness, under growth conditions tested. The underlying functional and maintaining mechanisms of this symbiosis remain a conundrum. [1] Knop...

  17. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  18. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    Science.gov (United States)

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins.

  19. Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis.

    Science.gov (United States)

    Gaither, Michelle R; Rowan, Rob

    2010-04-30

    We characterized the planular-zooxanthellae symbiosis of the coral Pocillopora damicornis using criteria that are familiar in studies on corals. Similar to adult corals, planulae exhibited photoacclimation, as changes in symbiont chlorophyll a (chl a); changes in the light-saturation constant for photosynthesis (I(k)); and, at insufficient light, fewer zooxanthellae, decreased respiration, increased weight loss, and increased sensitivity to photoinhibition. Numbers of zooxanthellae in newly-released planulae varied by at least three-fold within broods. Planulae with low versus high numbers of zooxanthellae (termed pale versus dark planulae, respectively) did not differ in symbiont chl-a content, I(k), or biomass-specific rate of dark respiration. Pale planulae had lower rates of photosynthesis, but this difference vanished after three weeks, when zooxanthellar numbers increased by 225% in pale planulae and by 31% in dark planulae. Numbers of zooxanthellae also increased significantly in planulae cultured in ammonium-enriched seawater; ammonium also apparently prevented weight loss and induced settlement. Approximately 70% of photosynthetically-fixed carbon (labeled using (14)C) apparently was translocated from the zooxanthellae to their host. A comparison of planulae cultured at 0.3% versus 11% sunlight suggested that photosynthesis provided ~ 31% of the energy utilized by the latter. Overall, we conclude that the physiology of symbiosis in planulae of P. damicornis is broadly similar to symbiosis physiology in adult corals.

  20. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

    2005-03-01

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

  1. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations.

    Science.gov (United States)

    Matthews, Jennifer L; Sproles, Ashley E; Oakley, Clinton A; Grossman, Arthur R; Weis, Virginia M; Davy, Simon K

    2016-02-01

    Experimental manipulation of the symbiosis between cnidarians and photosynthetic dinoflagellates (Symbiodinium spp.) is crucial to advancing the understanding of the cellular mechanisms involved in host-symbiont interactions, and overall coral reef ecology. The anemone Aiptasia sp. is a model for cnidarian-dinoflagellate symbiosis, and notably it can be rendered aposymbiotic (i.e. dinoflagellate-free) and re-infected with a range of Symbiodinium types. Various methods exist for generating aposymbiotic hosts; however, they can be hugely time consuming and not wholly effective. Here, we optimise a method using menthol for production of aposymbiotic Aiptasia. The menthol treatment produced aposymbiotic hosts within just 4 weeks (97-100% symbiont loss), and the condition was maintained long after treatment when anemones were held under a standard light:dark cycle. The ability of Aiptasia to form a stable symbiosis appeared to be unaffected by menthol exposure, as demonstrated by successful re-establishment of the symbiosis when anemones were experimentally re-infected. Furthermore, there was no significant impact on photosynthetic or respiratory performance of re-infected anemones. © 2016. Published by The Company of Biologists Ltd.

  2. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Chen, Aiqun; Gu, Mian; Wang, Shuangshuang; Chen, Jiadong; Xu, Guohua

    2018-02-01

    Many terrestrial plants can form root symbiosis with beneficial microorganisms for enhancing uptake of mineral nutrients or increasing fitness to adverse environmental challenges. Arbuscular mycorrhizal (AM) symbiosis that is formed by AM fungi and the roots of vascular flowering plants is the most widespread mutualistic associations in nature. As a typical endosymbiosis, AM interactions involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells, and requires a continuous nutrient exchange between the two partners. AM plants have two pathways for nutrient uptake, either direct uptake via the root hairs and root epidermis at the plant-soil interface, or indirectly through the AM fungal hyphae at the plant-fungus interface. Over the last few years, great progress has been made in deciphering the mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and an increasing number of plant and fungal genes responsible for transporting nutrients from the soil or across the intraradical symbiotic interfaces have been identified and functionally characterized. Here, we summarize the recent advances in the nitrogen uptake, assimilation and translocation in the AM symbiosis, and also explore the current understanding of how the N status and interplay with C and P in modulating the development of AM associations. Copyright © 2017. Published by Elsevier Ltd.

  3. Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp.

    Science.gov (United States)

    Bucher, Madeline; Wolfowicz, Iliona; Voss, Philipp A; Hambleton, Elizabeth A; Guse, Annika

    2016-01-25

    Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level.

  4. Reciprocal genomic evolution in the ant-fungus agricultural symbiosis

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Hu, Haofu; Li, Cai

    2016-01-01

    The attine ant-fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal...

  5. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  6. Symbiosis of chemometrics and metabolomics: past, present, and future

    NARCIS (Netherlands)

    van der Greef, J.; Smilde, A. K.

    2005-01-01

    Metabolomics is a growing area in the field of systems biology. Metabolomics has already a long history and also the connection of metabolomics with chemometrics goes back some time. This review discusses the symbiosis of metabolomics and chemometrics with emphasis on the medical domain, puts the

  7. The rhizobium-pea symbiosis as affected by high temperatures

    NARCIS (Netherlands)

    Frings, J.F.J.

    1976-01-01

    A study has been made concerning the effect of high temperatures on the symbiosis of Rhizobium leguminosarum and pea plants (Pisum sativum). At 30°C, no nodules were found on the roots of plants growing in nutrient solution after inoculation with

  8. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS): Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finamore, William [Univ. of Colorado, Boulder, CO (United States); D' Amore, Phillip [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Albert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Charles [Univ. of Colorado, Boulder, CO (United States); Telg, Hagen [Univ. of Colorado, Boulder, CO (United States); Gao, Ru-Shan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Hock, Terry [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)

    2017-03-29

    This final technical report details activities undertaken as part of the referenced project. Included is information on the preparation of aircraft for deployment to Alaska, summaries of the three deployments covered under this project, and a brief description of the dataset and science directions pursued. Additionally, we provide information on lessons learned, publications, and presentations resulting from this work.

  9. Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China

    International Nuclear Information System (INIS)

    Liu, Zhe; Adams, Michelle; Cote, Raymond P.; Geng, Yong; Chen, Qinghua; Liu, Weili; Sun, Lu; Yu, Xiaoman

    2017-01-01

    Although not yet a global consensus, there is widespread agreement that climate change is the result of anthropogenic sources of greenhouse gases (GHG) emissions. In order to respond to this issue, society has applied such strategies as clean energy development, improving industrial resource efficiency etc. Despite this, GHG emissions are still pursuing an upward trend. As the largest global GHG emitter, China faces a considerable challenge in responding to its agreed target of 40–45% GHG emission mitigation per unit gross domestic production (GDP) by 2020 as compared to 2005 levels. How to practically achieve this is still largely undecided. Comprehensive development of industrial symbiosis around nationwide is considered part of the solution. However, few researchers have studied how to actually implement a comprehensive development of industrial symbiosis for the purpose of GHG emission mitigation. This work intends to address this gap through highlighting the opportunities to develop such an approach for particular application to GHG emissions reduction in China. In addition, this study will also address the challenges ahead associated with the implementation of such a strategy, and outlines the where future research could be focused. Policy implications like establishing industrial symbiosis indicators associated with GHG emission mitigation are proposed. - Highlights: • Urgent issue of GHG mitigation and background of industrial symbiosis are introduced. • The challenges like lack of indicator, investigating methodologies and regional disparity are analyzed. • Opportunities for GHG mitigation through comprehensive development of industrial symbiosis are detailed. • Policy implications for responding GHG mitigation through industrial symbiosis are proposed.

  10. Final Technical Report for contract number DE-FG02-05ER15670

    Energy Technology Data Exchange (ETDEWEB)

    Glazebrook, Jane [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-02-29

    This is the final technical report for contract number DE-FG02-05ER15670. The project is now complete, and results of the project have been published. Two papers were published based on work done in the last three-year funding period. The DOIs of these papers are included below. The abstracts of the papers, providing summaries of the work, are included in the body of the report.

  11. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    Science.gov (United States)

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  12. The genome of Aiptasia, a sea anemone model for coral symbiosis

    KAUST Repository

    Baumgarten, Sebastian; Simakov, Oleg; Esherick, Lisl Y.; Liew, Yi Jin; Lehnert, Erik M.; Michell, Craig; Li, Yong; Hambleton, Elizabeth A.; Guse, Annika; Oates, Matt E.; Gough, Julian; Weis, Virginia M.; Aranda, Manuel; Pringle, John R.; Voolstra, Christian R.

    2015-01-01

    The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying

  13. Technical and logistic provisions for the delivery of radioactive wastes in the final repository Konrad

    International Nuclear Information System (INIS)

    Poeppinghaus, Jens

    2013-01-01

    The beginning of radioactive waste delivery to the final repository Konrad is planned for 2019. The main issue for the technical and logistic provisions is the development of a concept for the transport of the licensed radioactive waste containers to the site, including a turning concept for cylindrical waste forms and planning, construction and manufacture of transport equipment. Further issues include a logistic concept considering specific boundary conditions as administrative processes, priorities, special features of the delivering institutions and technical requirements of the repository.

  14. Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought.

    Science.gov (United States)

    Chitarra, Walter; Maserti, Biancaelena; Gambino, Giorgio; Guerrieri, Emilio; Balestrini, Raffaella

    2016-07-02

    A multidisciplinary approach, involving eco-physiological, morphometric, biochemical and molecular analyses, has been used to study the impact of two different AM fungi, i.e. Funneliformis mosseae and Rhizophagus intraradices, on tomato response to water stress. Overall, results show that AM symbiosis positively affects the tolerance to drought in tomato with a different plant response depending on the involved AM fungal species.

  15. Nuclear symbiosis. Why, when and how

    International Nuclear Information System (INIS)

    Stewart, H.B.

    1978-01-01

    A distinction can be made between an ''asymptotic'' nuclear symbiosis and a ''transitional'' nuclear symbiosis. With the currently projected nuclear energy growth, there appears to be no urgency for introducing nuclear systems required for the asymptotic era before, say, another 50 to 75 years. Consequently, more attention should be directed toward desirable systems for the transitional era, i.e., the next 30 to 50 years. In the classical asymptotic system, an optimal system would consist of a relatively small number of fast breeder reactor plants operating largely as ''fuel factories'' and a large number of thermal spectrum near breeder reactor plants serving as ''energy factories''. The breeding ratio of 238 U/Pu in the FBR plants would be chosen at unity to assure that FBR primary fuel could sustain itself. Excess breeding capacity would be utilized to convert 232 Th and 233 U in the blankets. This excess fuel would then be used to supply make-up requirements for thermal near breeder (NBR) plants. With an FBR breeder ratio of 1.4 and an NBR conversion ratio of 0.9, approximately four NBR plants could be supported for each FBR plant. Perhaps more importantly, the sale of 233 U to the NBR could be used to offset a probable higher capital cost of the FBR plants. In this way, a capital cost penalty of some 30 to 40% relative to LWR plants might be allowable for FBR plants. (author)

  16. Aspects of nitrogen and carbon interchange in the Azolla-Anabaena symbiosis

    International Nuclear Information System (INIS)

    Peters, G.A.; Kaplan, D.; Meeks, J.C.; Buzby, K.M.; Marsh, B.H.; Corbin, J.L.

    1985-01-01

    The free-floating aquatic pteridophytes in the genus Azolla contain an N 2 -fixing cyanobacterium, Anabaena azollae, as a symbiont. Six extant species usually are recognized. In each species the symbiotic Anabaena can provide the total N requirement of the association via N 2 fixation and the Azolla sporophytes are capable of prolific vegetative reproduction in the absence of a combined N source. While vegetative reproduction and growth is more common, sexual reproduction occurs and presumably provides a means for survival during unfavorable environmental conditions. Azolla is heterosporous, producing both megasporocarps and microsporocarps on the same plant. Species demarcation is based primarily upon the morphology of these structures. Anabaena filaments are partitioned into both types of sporocarps during their development. The endophyte within the megasporocarp provides an inoculum for the developing sporophyte, maintaining the symbiosis. This report is restricted to studies conducted with the vegetatively propagated Azolla caroliniana - Anabaena azollae symbiosis grown on medium without combined N. It focuses on recent approaches to further elucidate aspects of host-endophyte interaction and incorporates analyses of soluble amino acids and ammonium, assays of ammonia assimilating enzymes, the use of [ 13 N]N 2 and the analysis of soluble sugars as well as 14 CO 2 -pulse chase studies. For orientation purposes the results are preceded by a description of the symbiosis. 39 references, 3 figures, 3 tables

  17. Transcriptome Analysis of Paraburkholderia phymatum under Nitrogen Starvation and during Symbiosis with Phaseolus Vulgaris

    Directory of Open Access Journals (Sweden)

    Martina Lardi

    2017-12-01

    Full Text Available Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papilionoid legumes. In contrast to the symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we performed an RNA-sequencing (RNA-seq analysis of free-living P. phymatum growing under nitrogen-replete and -limited conditions, the latter partially mimicking the situation in nitrogen-deprived soils. Among the genes upregulated under nitrogen limitation, we found genes involved in exopolysaccharides production and in motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean were generated and compared. Among the genes highly upregulated during symbiosis, we identified—besides the nif gene cluster—an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49. Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities, suggesting an important role of the cytochrome for respiration inside the nodule. The analysis of mutant strains for the RNA polymerase transcription factor RpoN (σ54 and its activator NifA indicated that—similar to the situation in α-rhizobia—P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.

  18. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  19. Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis.

    Science.gov (United States)

    Geurts, Rene; Lillo, Alessandra; Bisseling, Ton

    2012-08-01

    For almost a century now it has been speculated that a transfer of the largely legume-specific symbiosis with nitrogen fixing rhizobium would be profitable in agriculture [1,2]. Up to now such a step has not been achieved, despite intensive research in this era. Novel insights in the underlying signalling networks leading to intracellular accommodation of rhizobium as well as mycorrhizal fungi of the Glomeromycota order show extensive commonalities between both interactions. As mycorrhizae symbiosis can be established basically with most higher plant species it raises questions why is it only in a few taxonomic lineages that the underlying signalling network could be hijacked by rhizobium. Unravelling this will lead to insights that are essential to achieve an old dream. Copyright © 2012. Published by Elsevier Ltd.

  20. Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-07-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    Science.gov (United States)

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis.

    Science.gov (United States)

    Pringle, Elizabeth G; Moreau, Corrie S

    2017-03-15

    Ants have long been renowned for their intimate mutualisms with trophobionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of microbes between interacting macroorganisms, affects the composition and function of symbiotic microbial communities. Here we approached this question by investigating symbiosis within symbiosis. Ant-plant-hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and quantitative PCR to examine community structure of both bacteria and fungi in a Neotropical ant-plant-scale-insect symbiosis. Both phloem-feeding scale insects and honeydew-feeding ants make use of microbial symbionts to subsist on phloem-derived diets of suboptimal nutritional quality. Among the insects examined here, Cephalotes ants and pseudococcid scale insects had the most specialized bacterial symbionts, whereas Azteca ants appeared to consume or associate with more fungi than bacteria, and coccid scale insects were associated with unusually diverse bacterial communities. Despite these differences, we also identified apparent sharing of microbes among the macro-partners. How microbial exchanges affect the consumer-resource interactions that shape the evolution of ant-plant-hemipteran symbioses is an exciting question that awaits further research. © 2017 The Author(s).

  3. Identification of genes that regulate phosphate acquisition and plant performance during arbuscular my corrhizal symbiosis in medicago truncatula and brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Maria J [Boyce Thompson Institute, Ithaca, NY (United States); Hudson, Matthew E [Univ. of Illinois, Champaign, IL (United States)

    2015-11-24

    Most vascular flowering plants have the ability to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots and can have a profound effect on plant productivity, largely through improvements in plant mineral nutrition. Within the root cortical cells, the plant and fungus create novel interfaces specialized for nutrient transfer, while the fungus also develops a network of hyphae in the rhizosphere. Through this hyphal network, the fungus acquires and delivers phosphate and nitrogen to the root. In return, the plant provides the fungus with carbon. In addition, to enhancing plant mineral nutrition, the AM symbiosis has an important role in the carbon cycle, and positive effects on soil health. Here we identified and characterized plant genes involved in the regulation and functioning of the AM symbiosis in Medicago truncatula and Brachypodium distachyon. This included the identification and and characterization of a M. truncatula transcription factors that are required for symbiosis. Additionally, we investigated the molecular basis of functional diversity among AM symbioses in B. distachyon and analysed the transcriptome of Brachypodium distachyon during symbiosis.

  4. Genetic Regulation in the Aiptasia pallida Symbiosis - Performance Report, Year 1

    National Research Council Canada - National Science Library

    Tomb, Jean-Francois

    1997-01-01

    This report describes the progress of the project 'Genetic Regulation in A. pallida Symbiosis'. The main goal of the project in year 1 was to identify sequence tags for differentially expressed genes using the SAGE approach...

  5. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought.

    Science.gov (United States)

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2016-02-01

    Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.

  6. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. © 2015 John Wiley & Sons Ltd.

  7. Correlated charge-changing uion-atom collisions. Final Technical Report

    International Nuclear Information System (INIS)

    John Tanis

    2005-01-01

    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below

  8. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  9. Modelling Spatial Interactions in the Arbuscular Mycorrhizal Symbiosis using the Calculus of Wrapped Compartments

    Directory of Open Access Journals (Sweden)

    Cristina Calcagno

    2011-09-01

    Full Text Available Arbuscular mycorrhiza (AM is the most wide-spread plant-fungus symbiosis on earth. Investigating this kind of symbiosis is considered one of the most promising ways to develop methods to nurture plants in more natural manners, avoiding the complex chemical productions used nowadays to produce artificial fertilizers. In previous work we used the Calculus of Wrapped Compartments (CWC to investigate different phases of the AM symbiosis. In this paper, we continue this line of research by modelling the colonisation of the plant root cells by the fungal hyphae spreading in the soil. This study requires the description of some spatial interaction. Although CWC has no explicit feature modelling a spatial geometry, the compartment labelling feature can be effectively exploited to define a discrete surface topology outlining the relevant sectors which determine the spatial properties of the system under consideration. Different situations and interesting spatial properties can be modelled and analysed in such a lightweight framework (which has not an explicit notion of geometry with coordinates and spatial metrics, thus exploiting the existing CWC simulation tool.

  10. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients

    Directory of Open Access Journals (Sweden)

    Gabriela Jiménez-Valerio

    2016-05-01

    Full Text Available Antiangiogenic drugs are used clinically for treatment of renal cell carcinoma (RCC as a standard first-line treatment. Nevertheless, these agents primarily serve to stabilize disease, and resistance eventually develops concomitant with progression. Here, we implicate metabolic symbiosis between tumor cells distal and proximal to remaining vessels as a mechanism of resistance to antiangiogenic therapies in patient-derived RCC orthoxenograft (PDX models and in clinical samples. This metabolic patterning is regulated by the mTOR pathway, and its inhibition effectively blocks metabolic symbiosis in PDX models. Clinically, patients treated with antiangiogenics consistently present with histologic signatures of metabolic symbiosis that are exacerbated in resistant tumors. Furthermore, the mTOR pathway is also associated in clinical samples, and its inhibition eliminates symbiotic patterning in patient samples. Overall, these data support a mechanism of resistance to antiangiogenics involving metabolic compartmentalization of tumor cells that can be inhibited by mTOR-targeted drugs.

  11. Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion

    Science.gov (United States)

    Dimond, J.; Carrington, E.

    2008-09-01

    Zooxanthellae mitotic index (MI) and expulsion rates were measured in the facultatively symbiotic scleractinian Astrangia poculata during winter and summer off the southern New England coast, USA. While MI was significantly higher in summer than in winter, mean expulsion rates were comparable between seasons. Corals therefore appear to allow increases in symbiont density when symbiosis is advantageous during the warm season, followed by a net reduction during the cold season when zooxanthellae may draw resources from the coral. Given previous reports that photosynthesis in A. poculata symbionts does not occur below approximately 6°C, considerable zooxanthellae division at 3°C and in darkness suggests that zooxanthellae are heterotrophic at low seasonal temperatures. Finally, examination of expulsion as a function of zooxanthellae density revealed that corals with very low zooxanthellae densities export a significantly greater proportion of their symbionts, apparently allowing them to persist in a stable azooxanthellate state.

  12. SIMS study on statistics and environmental factors in health. Final technical report to Department of Energy

    International Nuclear Information System (INIS)

    1982-07-01

    This final technical report to DOE consists of five individual technical reports and one working paper by members of the SIMS Study at Stanford. Research topics include testing goodness-of-fit for the distribution of errors in regression models, mathematical models of cancer and their use in risk assessment, pollutant standards index (Psi), osteosarcomas among beagles exposed to 239 Plutonium, air pollution and respiratory disease, and models of human exposure to air pollution. Individual summaries of the six reports are indexed separately

  13. Final Technical Report DOE/GO/13142-1

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Mulvihill; Quang Nguyen

    2010-09-15

    This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it is advancing the efforts to achieve low-cost fermentable substrates for conversion to transportation fuels. This process combines the hydrolysis of agricultural residues with novel enzymes and organisms to convert the sugars released to transportation fuels. The process development is taking place at a scale allowing commercial development to proceed at a rapid pace.

  14. Symbiosis-inspired approaches to antibiotic discovery.

    Science.gov (United States)

    Adnani, Navid; Rajski, Scott R; Bugni, Tim S

    2017-07-06

    Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.

  15. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress.

    Science.gov (United States)

    Chitarra, Walter; Pagliarani, Chiara; Maserti, Biancaelena; Lumini, Erica; Siciliano, Ilenia; Cascone, Pasquale; Schubert, Andrea; Gambino, Giorgio; Balestrini, Raffaella; Guerrieri, Emilio

    2016-06-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-01-01

    Full Text Available Abstract Background Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip® Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR. Results This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis. Conclusion Transcript profiling using the Affymetrix GeneChip® Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip®. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was

  17. Collaborative planning of operations in industrial symbiosis

    DEFF Research Database (Denmark)

    Herczeg, Gabor; Akkerman, Renzo

    2014-01-01

    Industrial symbiosis (IS) is cooperation between companies to achieve collective benefits by supplying and reusing industrial waste to substitute virgin resources in production. In this paper, we investigate the IS phenomenon from a supply chain management perspective. We propose a collaborative...... planning model to coordinate master planning of operations of waste suppliers and buyers. Furthermore, we analyze planning decisions related to IS when waste exchange is combined with virgin resource procurement. We demonstrate that conditions of virgin resource procurement affect the economic feasibility...

  18. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-01-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

  19. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis.

    Science.gov (United States)

    Clúa, Joaquín; Roda, Carla; Zanetti, María Eugenia; Blanco, Flavio A

    2018-02-27

    The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.

  20. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism

    OpenAIRE

    Inès, Zouari; Alessandra, Salvioli; Matteo, Chialva; Mara, Novero; Laura, Miozzi; Gian Carlo, Tenore; Paolo, Bagnaresi; Paola, Bonfante

    2014-01-01

    Background Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Results Fruits were collected at 55 days after flowering, from plants coloni...

  1. The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics.

    Science.gov (United States)

    Sawers, Ruairidh J H; Ramírez-Flores, M Rosario; Olalde-Portugal, Víctor; Paszkowski, Uta

    2018-04-15

    Contents Summary I. Introduction II. Recruitment of plant metabolites and hormones as signals in AM symbiosis III. Phytohormones are regulators of AM symbiosis and targets of plant breeding IV. Variations in host response to AM symbiosis V. Outlook Acknowledgements References SUMMARY: Cereals (rice, maize, wheat, sorghum and the millets) provide over 50% of the world's caloric intake, a value that rises to > 80% in developing countries. Since domestication, cereals have been under artificial selection, largely directed towards higher yield. Throughout this process, cereals have maintained their capacity to interact with arbuscular mycorrhizal (AM) fungi, beneficial symbionts that associate with the roots of most terrestrial plants. It has been hypothesized that the shift from the wild to cultivation, and above all the last c. 50 years of intensive breeding for high-input farming systems, has reduced the capacity of the major cereal crops to gain full benefit from AM interactions. Recent studies have shed further light on the molecular basis of establishment and functioning of AM symbiosis in cereals, providing insight into where the breeding process might have had an impact. Classic phytohormones, targets of artificial selection during the generation of Green Revolution semi-dwarf varieties, have emerged as important regulators of AM symbiosis. Although there is still much to be learnt about the mechanistic basis of variation in symbiotic outcome, these advances are providing an insight into the role of arbuscular mycorrhiza in agronomic systems. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. DOE FINAL TECHNICAL REPORT RP

    Energy Technology Data Exchange (ETDEWEB)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  3. Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.

    Science.gov (United States)

    Niu, Ben; Huang, Huali; Tan, Lijing; Duan, Qiqi

    2017-01-01

    Inspired by the ideas from the mutual cooperation of symbiosis in natural ecosystem, this paper proposes a new variant of PSO, named Symbiosis-based Alternative Learning Multi-swarm Particle Swarm Optimization (SALMPSO). A learning probability to select one exemplar out of the center positions, the local best position, and the historical best position including the experience of internal and external multiple swarms, is used to keep the diversity of the population. Two different levels of social interaction within and between multiple swarms are proposed. In the search process, particles not only exchange social experience with others that are from their own sub-swarms, but also are influenced by the experience of particles from other fellow sub-swarms. According to the different exemplars and learning strategy, this model is instantiated as four variants of SALMPSO and a set of 15 test functions are conducted to compare with some variants of PSO including 10, 30 and 50 dimensions, respectively. Experimental results demonstrate that the alternative learning strategy in each SALMPSO version can exhibit better performance in terms of the convergence speed and optimal values on most multimodal functions in our simulation.

  4. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  5. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  6. Technical assistance contractor Management Plan. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins & Beckwith Agra, Inc. (SHB Agra), and Geraghty & Miller, Inc. (G&M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC`s groundwater technical breadth and depth, so G&M was brought in to augment the team`s capabilities. The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC`s management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls.

  7. Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Dani, Vincent; Priouzeau, Fabrice; Mertz, Marjolijn; Mondin, Magali; Pagnotta, Sophie; Lacas-Gervais, Sandra; Davy, Simon K; Sabourault, Cécile

    2017-10-01

    The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host-symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol-trafficking Niemann-Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2-a protein is mainly expressed in the epidermis, whereas the NPC2-d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2-d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2-d is a cnidarian-specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann-Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host-symbiont interactions in the anthozoan-dinoflagellate association. © 2017 John Wiley & Sons Ltd.

  8. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Edward R. [University of Colorado, Boulder, CO

    2014-09-12

    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  9. The Mutual Symbiosis between Inclusive Bi-Lingual Education and Multicultural Education

    Science.gov (United States)

    Irby, Beverly J.; Tong, Fuhui; Lara-Alecio, Rafael

    2011-01-01

    In this article the authors postulate a mutual symbiosis between multicultural and inclusive bi-lingual education. Combining bi-lingual and multicultural education to create a symbiotic relationship can stimulate reform in schools and can promote inclusive educational systems, thereby keeping native languages and cultures alive for minority…

  10. Technical Report - FINAL

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  11. A sea slug’s guide to plastid symbiosis

    Directory of Open Access Journals (Sweden)

    Jan de Vries

    2014-12-01

    Full Text Available Some 140 years ago sea slugs that contained chlorophyll-pigmented granules similar to those of plants were described. While we now understand that these “green granules” are plastids the slugs sequester from siphonaceous algae upon which they feed, surprisingly little is really known about the molecular details that underlie this one of a kind animal-plastid symbiosis. Kleptoplasts are stored in the cytosol of epithelial cells that form the slug’s digestive tubules, and one would guess that the stolen organelles are acquired for their ability to fix carbon, but studies have never really been able to prove that. We also do not know how the organelles are distinguished from the remaining food particles the slugs incorporate with their meal and that include algal mitochondria and nuclei. We know that the ability to store kleptoplasts long-term has evolved only a few times independently among hundreds of sacoglossan species, but we have no idea on what basis. Here we take a closer look at the history of sacoglossan research and discuss recent developments. We argue that, in order to understand what makes this symbiosis work, we will need to focus on the animal’s physiology just as much as we need to commence a detailed analysis of the plastids’ photobiology. Understanding kleptoplasty in sacoglossan slugs requires an unbiased multidisciplinary approach.

  12. An Approach to Developing Independent Learning and Non-Technical Skills Amongst Final Year Mining Engineering Students

    Science.gov (United States)

    Knobbs, C. G.; Grayson, D. J.

    2012-01-01

    There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called "soft" skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was…

  13. Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Guest, Jeffrey R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Guisinger, Nathan P. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Hla, Saw Wai [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Schatz, George C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Seideman, Tamar [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2017-04-10

    The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiple SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.

  14. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont.

    Science.gov (United States)

    Xie, Xianan; Lin, Hui; Peng, Xiaowei; Xu, Congrui; Sun, Zhongfeng; Jiang, Kexin; Huang, Antian; Wu, Xiaohui; Tang, Nianwu; Salvioli, Alessandra; Bonfante, Paola; Zhao, Bin

    2016-12-05

    The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A 146 (in transmembrane domain [TMD] IV) and Val 357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. Specificity and stability of the Acromyrmex–Pseudonocardia symbiosis

    DEFF Research Database (Denmark)

    Andersen, Sandra Breum; Hansen, Lars Hestbjerg; Sapountzis, Panagiotis

    2013-01-01

    The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and d...... and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to ...

  16. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales.

    Directory of Open Access Journals (Sweden)

    Martin Vohník

    Full Text Available Ericaceae (the heath family are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet

  17. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis.

    Science.gov (United States)

    Huisman, Rik; Hontelez, Jan; Mysore, Kirankumar S; Wen, Jiangqi; Bisseling, Ton; Limpens, Erik

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and rhizobium bacteria are accommodated in specialized membrane compartments that form a host-microbe interface. To better understand how these interfaces are made, we studied the regulation of exocytosis during interface formation. We used a phylogenetic approach to identify target soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) that are dedicated to symbiosis and used cell-specific expression analysis together with protein localization to identify t-SNAREs that are present on the host-microbe interface in Medicago truncatula. We investigated the role of these t-SNAREs during the formation of a host-microbe interface. We showed that multiple syntaxins are present on the peri-arbuscular membrane. From these, we identified SYNTAXIN OF PLANTS 13II (SYP13II) as a t-SNARE that is essential for the formation of a stable symbiotic interface in both AM and rhizobium symbiosis. In most dicot plants, the SYP13II transcript is alternatively spliced, resulting in two isoforms, SYP13IIα and SYP13IIβ. These splice-forms differentially mark functional and degrading arbuscule branches. Our results show that vesicle traffic to the symbiotic interface is specialized and required for its maintenance. Alternative splicing of SYP13II allows plants to replace a t-SNARE involved in traffic to the plasma membrane with a t-SNARE that is more stringent in its localization to functional arbuscules. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Effect of mycorrhiza symbiosis on the Nacl salinity in Sorghum bicolor

    African Journals Online (AJOL)

    In order to determine mycorrhizal symbiosis on the Nacl salinity tolerance in Sorghum bicolor (aspydfyd cultivar), an experiment with two factors was done in Damghan Islamic Azad University laboratory (Iran) in 2007. The first factor with two levels (mycorihizal and non-mycorihizal) and second factor with six levels Nacl ...

  19. Effect of mycorrhiza symbiosis on the Nacl salinity in Sorghum bicolor

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... Khajehzadeh, 1996). Mycorrhiza is a mutual symbiosis between thallus of some fungi and the root of organic plants. In nature, mycorrhiza is important in satisfying the needs of the plants for water and nutrition. Among the microorganisms living in the soil, arbuscular mycorrhiza fungi are especially important ...

  20. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.

    NARCIS (Netherlands)

    Fellbaum, C.R.; Gachomo, E.W.; Beesetty, Y.; Choudhari, S.; Strahan, G.D.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H.

    2012-01-01

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against

  1. DIMEC - Final Report

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF.......Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF....

  2. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis.

    Science.gov (United States)

    Ponnudurai, Ruby; Kleiner, Manuel; Sayavedra, Lizbeth; Petersen, Jillian M; Moche, Martin; Otto, Andreas; Becher, Dörte; Takeuchi, Takeshi; Satoh, Noriyuki; Dubilier, Nicole; Schweder, Thomas; Markert, Stephanie

    2017-02-01

    The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO 2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous 'symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.

  3. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress1[OPEN

    Science.gov (United States)

    Siciliano, Ilenia

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS. To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. PMID:27208301

  4. Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia.

    Science.gov (United States)

    Oakley, Clinton A; Ameismeier, Michael F; Peng, Lifeng; Weis, Virginia M; Grossman, Arthur R; Davy, Simon K

    2016-07-01

    Coral reef ecosystems are metabolically founded on the mutualism between corals and photosynthetic dinoflagellates of the genus Symbiodinium. The glass anemone Aiptasia sp. has become a tractable model for this symbiosis, and recent advances in genetic information have enabled the use of mass spectrometry-based proteomics in this model. We utilized label-free liquid chromatography electrospray-ionization tandem mass spectrometry to analyze the effects of symbiosis on the proteomes of symbiotic and aposymbiotic Aiptasia. We identified and obtained relative quantification of more than 3,300 proteins in 1,578 protein clusters, with 81 protein clusters showing significantly different expression between symbiotic states. Symbiotic anemones showed significantly higher expression of proteins involved in lipid storage and transport, nitrogen transport and cycling, intracellular trafficking, endocytosis and inorganic carbon transport. These changes reflect shifts in host metabolism and nutrient reserves due to increased nutritional exchange with the symbionts, as well as mechanisms for supplying inorganic nutrients to the algae. Aposymbiotic anemones exhibited increased expression of multiple systems responsible for mediating reactive oxygen stress, suggesting that the host derives direct or indirect protection from oxidative stress while in symbiosis. Aposymbiotic anemones also increased their expression of an array of proteases and chitinases, indicating a metabolic shift from autotrophy to heterotrophy. These results provide a comprehensive Aiptasia proteome with more direct relative quantification of protein abundance than transcriptomic methods. The extension of "omics" techniques to this model system will allow more powerful studies of coral physiology, ecosystem function, and the effects of biotic and abiotic stress on the coral-dinoflagellate mutualism. © 2015 John Wiley & Sons Ltd.

  5. Final Technical Report: Hydrogen Codes and Standards Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Karen I.

    2007-05-12

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  6. Technical support document for land application of sewage sludge. Volume 1. Final report

    International Nuclear Information System (INIS)

    Jones, A.; Beyer, L.; Rookwood, M.; Pacenka, J.; Bergin, J.

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the land application of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in land applied sewage sludge. The management practices associated with land application are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through land application are discussed

  7. Towards preventative eco-industrial development: an industrial and urban symbiosis case in one typical industrial city in China

    DEFF Research Database (Denmark)

    Dong, Liang; Fujita, Tsuyoshi; Dai, Ming

    2016-01-01

    situation. In order to investigate the eco-benefits of eco-industrial development in China, this study focused on an industrial and urban symbiosis case of Guiyang city in which process synergy, municipal solid wastes recycling and waste energy utilization were incorporated in this typical industrial city...... policy implications to address the barriers of promoting industrial and urban symbiosis were proposed. This study is critical for future industrial and urban planning policy making and shed a light on innovative eco-industrial development in China....

  8. Complete Genome Sequence of Bradyrhizobium sp. S23321: Insights into Symbiosis Evolution in Soil Oligotrophs

    Science.gov (United States)

    Okubo, Takashi; Tsukui, Takahiro; Maita, Hiroko; Okamoto, Shinobu; Oshima, Kenshiro; Fujisawa, Takatomo; Saito, Akihiro; Futamata, Hiroyuki; Hattori, Reiko; Shimomura, Yumi; Haruta, Shin; Morimoto, Sho; Wang, Yong; Sakai, Yoriko; Hattori, Masahira; Aizawa, Shin-ichi; Nagashima, Kenji V. P.; Masuda, Sachiko; Hattori, Tsutomu; Yamashita, Akifumi; Bao, Zhihua; Hayatsu, Masahito; Kajiya-Kanegae, Hiromi; Yoshinaga, Ikuo; Sakamoto, Kazunori; Toyota, Koki; Nakao, Mitsuteru; Kohara, Mitsuyo; Anda, Mizue; Niwa, Rieko; Jung-Hwan, Park; Sameshima-Saito, Reiko; Tokuda, Shin-ichi; Yamamoto, Sumiko; Yamamoto, Syuji; Yokoyama, Tadashi; Akutsu, Tomoko; Nakamura, Yasukazu; Nakahira-Yanaka, Yuka; Hoshino, Yuko Takada; Hirakawa, Hideki; Mitsui, Hisayuki; Terasawa, Kimihiro; Itakura, Manabu; Sato, Shusei; Ikeda-Ohtsubo, Wakako; Sakakura, Natsuko; Kaminuma, Eli; Minamisawa, Kiwamu

    2012-01-01

    Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere. PMID:22452844

  9. Mycorrhizal Symbiosis and Local Adaptation in Aster amellus: A Field Transplant Experiment

    Czech Academy of Sciences Publication Activity Database

    Pánková, Hana; Raabová, J.; Münzbergová, Zuzana

    2014-01-01

    Roč. 9, č. 4 (2014), s. 1-7, e93967 E-ISSN 1932-6203 R&D Projects: GA ČR GAP504/10/1486 Institutional support: RVO:67985939 Keywords : mycorrhizal symbiosis * local adaptation * Aster amellus Subject RIV: EF - Botanics Impact factor: 3.234, year: 2014

  10. REVIEW: Symbiosis between the Giant Clams (Bivalvia: Cardiidae and Zooxanthellae (Dinophyceae

    Directory of Open Access Journals (Sweden)

    UDHI EKO HERNAWAN

    2008-01-01

    Full Text Available Giant clams are the largest bivalves in the world that maintain a mutual relationship with zooxanthellae. Individual giant clam can harbor heterogeneous zooxanthellae, at least four taxa in genus Symbiodinium. The Symbiodinium lives in the zooxanthellal tubular system, a tube structure arising from one of the diverticular duct of the clam’s stomach. Since the numbers of zooxanthellae is the one of some significant factors contributing to the clams growth and survival, the giant clams need to adjust the number of zooxanthellae for physiological reason with unclear mechanism. The important role of the symbiotic relationship to the clams can be seen on the survival, growth and nutrition of the clams. There are at least two significant factors determining the symbiosis, i.e. water temperature in related with level of light intensities and ammonium-phosphate rate. Some topic is still unclear, i.e. the determination of species in genus Symbiodinium, the mechanism for adjusting the population numbers of the algae and what kind of environmental factors determining the symbiosis. Thereby further research is still needed to clarify those missing.

  11. The genome of Aiptasia, a sea anemone model for coral symbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2015-08-31

    The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying this endosymbiosis are not well understood, in part because of the difficulties of experimental work with corals. The small sea anemone Aiptasia provides a tractable laboratory model for investigating these mechanisms. Here we report on the assembly and analysis of the Aiptasia genome, which will provide a foundation for future studies and has revealed several features that may be key to understanding the evolution and function of the endosymbiosis. These features include genomic rearrangements and taxonomically restricted genes that may be functionally related to the symbiosis, aspects of host dependence on alga-derived nutrients, a novel and expanded cnidarian-specific family of putative pattern-recognition receptors that might be involved in the animal–algal interactions, and extensive lineage-specific horizontal gene transfer. Extensive integration of genes of prokaryotic origin, including genes for antimicrobial peptides, presumably reflects an intimate association of the animal–algal pair also with its prokaryotic microbiome.

  12. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi.

    Science.gov (United States)

    Jusino, Michelle A; Lindner, Daniel L; Banik, Mark T; Rose, Kevin R; Walters, Jeffrey R

    2016-03-30

    Primary cavity excavators, such as woodpeckers, are ecosystem engineers in many systems. Associations between cavity excavators and fungi have long been hypothesized to facilitate cavity excavation, but these relationships have not been experimentally verified. Fungi may help excavators by softening wood, while excavators may facilitate fungal dispersal. Here we demonstrate that excavators facilitate fungal dispersal and thus we report the first experimental evidence of a symbiosis between fungi and a cavity excavator, the red-cockaded woodpecker (RCW,Picoides borealis). Swab samples of birds showed that RCWs carry fungal communities similar to those found in their completed excavations. A 26-month field experiment using human-made aseptically drilled excavations in live trees, half of which were inaccessible to RCWs, demonstrated that RCWs directly alter fungal colonization and community composition. Experimental excavations that were accessible to RCWs contained fungal communities similar to natural RCW excavations, whereas inaccessible experimental excavations contained significantly different fungal communities. Our work demonstrates a complex symbiosis between cavity excavators and communities of fungi, with implications for forest ecology, wildlife management, and conservation. © 2016 The Author(s).

  13. Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments

    Science.gov (United States)

    Holler, Thomas; Lavik, Gaute; Harder, Jens; Lott, Christian; Littmann, Sten; Kuypers, Marcel M. M.; Dubilier, Nicole

    2015-01-01

    Summary The gutless marine worm O lavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO 2) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O . algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H 2) might also be used as energy sources. We provide direct evidence that the O . algarvensis symbiosis consumes CO and H 2. Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3‐symbiont, uses the energy from CO oxidation to fix CO 2. Pore water analysis revealed considerable in‐situ concentrations of CO and H 2 in the O . algarvensis environment, Mediterranean seagrass sediments. Pore water H 2 concentrations (89–2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36‐fold higher than previously known from shallow‐water marine sediments. Pore water CO concentrations (17–51 nM) were twice as high as in the overlying seawater (no literature data from other shallow‐water sediments are available for comparison). Ex‐situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments. PMID:26013766

  14. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  15. Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia

    Directory of Open Access Journals (Sweden)

    Jansa Jan

    2009-06-01

    Full Text Available Abstract Background Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L. has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2 for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant. Results The tripartite symbiosis of common bean with rhizobia and arbuscular mycorrhizal fungi (AMF was assessed in hydroaeroponic culture with common bean (Phaseolus vulgaris L., by comparing the effects of three fungi spp. on growth, nodulation and mycorrhization of the roots under sufficient versus deficient P supplies, after transfer from initial sand culture. Although Glomus intraradices Schenck & Smith colonized intensely the roots of common bean in both sand and hydroaeroponic cultures, Gigaspora rosea Nicolson & Schenck only established well under sand culture conditions, and no root-colonization was found with Acaulospora mellea Spain & Schenck under either culture conditions. Interestingly, mycorrhization by Glomus was also obtained by contact with mycorrhized Stylosanthes guianensis (Aubl. sw in sand culture under deficient P before transfer into hydroaeroponic culture. The effect of bean genotype on both rhizobial and mycorrhizal symbioses with Glomus was subsequently assessed with the common bean recombinant inbreed line 7, 28, 83, 115 and 147, and the cultivar Flamingo. Significant differences among colonization and nodulation of the roots and growth among genotypes were found. Conclusion The hydroaeroponic culture is a valuable tool for further scrutinizing the physiological interactions and nutrient partitioning within the tripartite symbiosis.

  16. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.

    Science.gov (United States)

    Rao, Minxi; Smith, Brian C; Marletta, Michael A

    2015-05-05

    Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. Bacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a

  17. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.

    Science.gov (United States)

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-12-08

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.

  18. Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae

    KAUST Repository

    Mies, M.

    2017-05-24

    Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium-invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.

  19. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  20. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    Science.gov (United States)

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  1. Misconceptions on the application of biological market theory to the mycorrhizal symbiosis

    NARCIS (Netherlands)

    Kiers, E.T.; West, S.A.; Wyatt, G.A.K.; Garner, A.; Bücking, H.; Werner, G.D.A.

    2016-01-01

    Letter to the Editor — The symbiosis between plants and arbuscular mycorrhizal fungi has been described as a biological market based on evidence that plants supply more carbohydrates to fungal partners that provide more soil nutrients, and vice versa 1–4 . A recent paper by Walder and van der

  2. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    Science.gov (United States)

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    International Nuclear Information System (INIS)

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-01-01

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  4. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; Baca, Georgina [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; O' Connor, Michael [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  5. CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

    Directory of Open Access Journals (Sweden)

    Dietrich Werner

    2008-06-01

    Full Text Available The major pools and turnover  rates of the global carbon (C cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil and geothermal  fuels (natural  gases, both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

  6. The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis.

    Science.gov (United States)

    Cao, Yangrong; Halane, Morgan K; Gassmann, Walter; Stacey, Gary

    2017-04-28

    A classic view of the evolution of mutualism is that it derives from a pathogenic relationship that attenuated over time to a situation in which both partners can benefit. If this is the case for rhizobia, then one might uncover features of the symbiosis that reflect this earlier pathogenic state. For example, as with plant pathogens, it is now generally assumed that rhizobia actively suppress the host immune response to allow infection and symbiosis establishment. Likewise, the host has retained mechanisms to control the nutrient supply to the symbionts and the number of nodules so that they do not become too burdensome. The open question is whether such events are strictly ancillary to the central symbiotic nodulation factor signaling pathway or are essential for rhizobial host infection. Subsequent to these early infection events, plant immune responses can also be induced inside nodules and likely play a role in, for example, nodule senescence. Thus, a balanced regulation of innate immunity is likely required throughout rhizobial infection, symbiotic establishment, and maintenance. In this review, we discuss the significance of plant immune responses in the regulation of symbiotic associations with rhizobia, as well as rhizobial evasion of the host immune system.

  7. Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus.

    Science.gov (United States)

    Nagae, Miwa; Takeda, Naoya; Kawaguchi, Masayoshi

    2014-01-01

    Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) share several common symbiotic components, and many of the common symbiosis mutants block the entry of symbionts into the roots. We recently reported that CERBERUS (an E3 ubiquitin ligase) and NSP1 (a GRAS family transcription factor), required for RNS, also modulate AMS development in Lotus japonicus. The novel common symbiosis mutants, cerberus and nsp1, have low colonization of arbuscular mycorrhiza (AM) fungi, caused by a defect in internal hyphal elongation and by a decreased fungal entry into the roots, respectively. Here, we showed that CERBERUS was induced at the sites of symbiotic fungal or bacterial infection. NSP1 has been implicated in a strigolactone biosynthesis gene DWARF27 expression. Nevertheless, in nsp1, DWARF27 was induced by inoculation with AM fungi, implying the existence of a NSP1-independent regulatory mechanism of strigolactone biosynthesis during AMS establishment. These results support functional analysis of CERBERUS and NSP1, and also contribute to elucidation of common mechanisms in AMS and RNS.

  8. Context Dependency of a Marine Defensive Symbiosis over a Wide Geographic Distribution

    Science.gov (United States)

    Lopanik, N.; Linneman, J.; Mathew, M.

    2016-02-01

    The invasive, temperate marine bryozoan Bugula neritina possesses an uncultured, vertically-transmitted bacterial symbiont that produces natural products known as bryostatins. These unpalatable polyketides protect the host larvae from predation. In the western Atlantic, two host genotypes were thought to be restricted to differing latitudes based on the presence of the defensive symbiont: undefended aposymbiotic Type N animals were found at high latitudes, while defended symbiotic Type S colonies were found at low latitudes, where predation pressure is higher. We found that the host genotypes are more widespread than previously thought, but that the symbiont appeared to be restricted to hosts at lower latitudes, regardless of host phylotype, leading to the question of what factors are involved in restricting the symbiont's range. We performed reciprocal transplant experiments of symbiotic and antibiotic-cured hosts, and measured host growth, a proxy for fitness. Our data indicate that possession of the symbiont appears to present a physiological cost to the host. This cost may be more pronounced at higher latitudes where the benefit of symbiosis is less apparent. In addition, preliminary evidence suggests that symbiont titer in a Type S colony from North Carolina transplanted to Virginia is reduced over a period of nearly 4 months. Taken together, these results suggest that a combination of factors may play a role in the distribution of the defensive symbiont: (i) hosts that possess the symbiont are outcompeted by aposymbiotic conspecifics at high latitude and reduced levels of predation pressure; and (ii) symbiont growth may be inhibited or sanctioned by the host at high latitudes. As defensive symbiosis is an important trait in marine habitats, understanding factors that affect the distribution of both the host and symbiont are necessary to fully appreciate the ecological impact of symbiosis.

  9. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis

    Science.gov (United States)

    The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...

  10. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    Science.gov (United States)

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  11. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement. Refs, figs, tabs

  12. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    International Nuclear Information System (INIS)

    1998-01-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement

  13. Technical review of externalities issues. Final report

    International Nuclear Information System (INIS)

    Niemeyer, V.

    1994-12-01

    Externalities has become the catchword for a major experiment in electric utility regulation. Together with increased competition as a means for economic regulation, this experiment represents a potential revolution in how electric utilities are regulated. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This Technical Review presents four papers covering topics in economics that may play important roles in this revolution. The four papers are: Economic Issues in the Application of Externalities to Electricity Resource Selection; Climate Change, the Marginal Cost of Carbon Dioxide Emissions and the Implications for Carbon Dioxide Emissions Adders; Positive Externalities and Benefits from Electricity; and Socioeconomic Effects of Externality Adders for Electric Utility Emissions

  14. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum"

    DEFF Research Database (Denmark)

    Liu, Zhenfeng; Müller, Johannes; Li, Tao

    2013-01-01

    'Chlorochromatium aggregatum' is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. 'Chlorochromatium aggregatum' is a motile, barrel-shaped aggregate formed from a single cell...

  15. Does origin of mycorrhizal fungus on mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis?

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2001-01-01

    Mycorrhizal effectiveness depends on the compatibility between fungus and plant. Therefore, genetic variation in plant and fungal species affect the effectiveness of the symbiosis. The importance of mycorrhizal plant and mycorrhizal fungus origin was investigated in two experiments. In the first

  16. Improving the environmental performance of biofuels with industrial symbiosis

    International Nuclear Information System (INIS)

    Martin, Michael; Eklund, Mats

    2011-01-01

    In the production of biofuels for transport many critics have argued about the poor energy efficiency and environmental performance of the production industries. Optimism is thus set on the production of second generation biofuels, while first generation biofuels continue to dominate worldwide. Therefore it is interesting to consider how the environmental performance of first generation biofuel industries can be improved. The field of industrial symbiosis offers many possibilities for potential improvements in the biofuel industry and theories from this research field are used in this paper to highlight how environmental performance improvements can be accomplished. This comes in the form of by-product synergies and utility synergies which can improve material and energy handling. Furthermore, the processes and products can gain increased environmental performance improvements by the adaption of a renewable energy system which will act as a utility provider for many industries in a symbiotic network. By-products may thereafter be upcycled through biogas production processes to generate both energy and a bio-fertilizer. A case study of an actual biofuel industrial symbiosis is also reviewed to provide support for these theories. -- Highlights: → By-product and utility synergies may improve the production processes of biofuel industries for reduced energy consumption and improved environmental performance. → Upcycling tenants can make use of wastes to upgrade waste to a valuable product and/or energy source. → Energy systems for biofuel production have a large influence on the performance of biofuel industries.

  17. Quantitative evaluation of protocorm growth and fungal colonization in Bletilla striata (Orchidaceae) reveals less-productive symbiosis with a non-native symbiotic fungus.

    Science.gov (United States)

    Yamamoto, Tatsuki; Miura, Chihiro; Fuji, Masako; Nagata, Shotaro; Otani, Yuria; Yagame, Takahiro; Yamato, Masahide; Kaminaka, Hironori

    2017-02-21

    In nature, orchid plants depend completely on symbiotic fungi for their nutrition at the germination and the subsequent seedling (protocorm) stages. However, only limited quantitative methods for evaluating the orchid-fungus interactions at the protocorm stage are currently available, which greatly constrains our understanding of the symbiosis. Here, we aimed to improve and integrate quantitative evaluations of the growth and fungal colonization in the protocorms of a terrestrial orchid, Blettila striata, growing on a plate medium. We achieved both symbiotic and asymbiotic germinations for the terrestrial orchid B. striata. The protocorms produced by the two germination methods grew almost synchronously for the first three weeks. At week four, however, the length was significantly lower in the symbiotic protocorms. Interestingly, the dry weight of symbiotic protocorms did not significantly change during the growth period, which implies that there was only limited transfer of carbon compounds from the fungus to the protocorms in this relationship. Next, to evaluate the orchid-fungus interactions, we developed an ink-staining method to observe the hyphal coils in protocorms without preparing thin sections. Crushing the protocorm under the coverglass enables us to observe all hyphal coils in the protocorms with high resolution. For this observation, we established a criterion to categorize the stages of hyphal coils, depending on development and degradation. By counting the symbiotic cells within each stage, it was possible to quantitatively evaluate the orchid-fungus symbiosis. We describe a method for quantitative evaluation of orchid-fungus symbiosis by integrating the measurements of plant growth and fungal colonization. The current study revealed that although fungal colonization was observed in the symbiotic protocorms, the weight of the protocorm did not significantly increase, which is probably due to the incompatibility of the fungus in this symbiosis. These

  18. Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symbiosis in Rice.

    Science.gov (United States)

    Miyata, Kana; Hayafune, Masahiro; Kobae, Yoshihiro; Kaku, Hanae; Nishizawa, Yoko; Masuda, Yoshiki; Shibuya, Naoto; Nakagawa, Tomomi

    2016-11-01

    In legume-specific rhizobial symbiosis, host plants perceive rhizobial signal molecules, Nod factors, by a pair of LysM receptor-like kinases, NFR1/LYK3 and NFR5/NFP, and activate symbiotic responses through the downstream signaling components also required for arbuscular mycorrhizal (AM) symbiosis. Recently, the rice NFR1/LYK3 ortholog, OsCERK1, was shown to play crucial roles for AM symbiosis. On the other hand, the roles of the NFR5/NFP ortholog in rice have not been elucidated, while it has been shown that NFR5/NFP orthologs, Parasponia PaNFR5 and tomato SlRLK10, engage in AM symbiosis. OsCERK1 also triggers immune responses in combination with a receptor partner, OsCEBiP, against fungal or bacterial infection, thus regulating opposite responses against symbiotic and pathogenic microbes. However, it has not been elucidated how OsCERK1 switches these opposite functions. Here, we analyzed the function of the rice NFR5/NFP ortholog, OsNFR5/OsRLK2, as a possible candidate of the OsCERK1 partner for symbiotic signaling. Inoculation of AM fungi induced the expression of OsNFR5 in the rice root, and the chimeric receptor consisting of the extracellular domain of LjNFR5 and the intracellular domain of OsNFR5 complemented the Ljnfr5 mutant for rhizobial symbiosis, indicating that the intracellular kinase domain of OsNFR5 could activate symbiotic signaling in Lotus japonicus. Although these data suggested the possible involvement of OsNFR5 in AM symbiosis, osnfr5 knockout mutants were colonized by AM fungi similar to the wild-type rice. These observations suggested several possibilities including the presence of functionally redundant genes other than OsNFR5 or involvement of novel ligands, which do not require OsNFR5 for recognition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Technical study gas storage. Final report

    International Nuclear Information System (INIS)

    Borowka, J.; Moeller, A.; Zander, W.; Koischwitz, M.A.

    2001-01-01

    This study will answer the following questions: (a) For what uses was the storage facility designed and for what use is it currently applied? Provide an overview of the technical data per gas storage facility: for instance, what is its capacity, volume, start-up time, etc.; (b) How often has this facility been used during the past 10 years? With what purpose was the facility brought into operation at the time? How much gas was supplied at the time from the storage facility?; (c) Given the characteristics and the use of the storage facility during the past 10 years and projected gas consumption in the future, how will the storage facility be used in the future?; (d) Are there other uses for which the gas storage facility can be deployed, or can a single facility be deployed for numerous uses? What are the technical possibilities in such cases? Questions (a) and (b) are answered separately for every storage facility. Questions (c) and (d) in a single chapter each (Chapter 2 and 3). An overview of the relevant storage data relating to current use, use in the last 10 years and use in future is given in the Annex

  20. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis

    Science.gov (United States)

    The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

  1. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    Science.gov (United States)

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-08

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  2. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing

    Czech Academy of Sciences Publication Activity Database

    Kostovčík, Martin; Bateman, C.C.; Kolařík, Miroslav; Stelinski, L.L.; Jordal, B.H.; Hulcr, J.

    2015-01-01

    Roč. 9, č. 1 (2015), s. 126-138 ISSN 1751-7362 Institutional support: RVO:61388971 Keywords : ambrosia symbiosis * pyrosequencing Subject RIV: EE - Microbiology, Virology Impact factor: 9.328, year: 2015

  3. 78 FR 29239 - Final Priority; Technical Assistance To Improve State Data Capacity-National Technical Assistance...

    Science.gov (United States)

    2013-05-20

    ... Assistance To Improve State Data Capacity--National Technical Assistance Center To Improve State Capacity To... Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State... (FY) 2013 and later years. We take this action to focus attention on an identified national need to...

  4. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting

  5. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility.

    Science.gov (United States)

    Rey, Thomas; Bonhomme, Maxime; Chatterjee, Abhishek; Gavrin, Aleksandr; Toulotte, Justine; Yang, Weibing; André, Olivier; Jacquet, Christophe; Schornack, Sebastian

    2017-12-16

    The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis.

    Science.gov (United States)

    Ruby, E G; Asato, L M

    1993-01-01

    A pure culture of the luminous bacterium Vibrio fischeri is maintained in the light-emitting organ of the sepiolid squid Euprymna scolopes. When the juvenile squid emerges from its egg it is symbiont-free and, because bioluminescence is part of an anti-predatory behavior, therefore must obtain a bacterial inoculum from the surrounding environment. We document here the kinetics of the process by which newly hatched juvenile squids become infected by symbiosis-competent V. fischeri. When placed in seawater containing as few as 240 colony-forming-units (CFU) per ml, the juvenile became detectably bioluminescent within a few hours. Colonization of the nascent light organ was initiated with as few as 1 to 10 bacteria, which rapidly began to grow at an exponential rate until they reached a population size of approximately 10(5) cells by 12 h after the initial infection. Subsequently, the number of bacteria in the established symbiosis was maintained essentially constant by a combination of both a > 20-fold reduction in bacterial growth rate, and an expulsion of excess bacteria into the surrounding seawater. While V. fischeri cells are normally flagellated and motile, these bacteria did not elaborate these appendages once the symbiosis was established; however, they quickly began to synthesize flagella when they were removed from the light organ environment. Thus, two important biological characteristics, growth rate and flagellation, were modulated during establishment of the association, perhaps as part of a coordinated series of symbiotic responses.

  7. Breaking up and getting together: evolution of symbiosis and cloning by fission in sea anemones (Genus Anthopleura).

    Science.gov (United States)

    Geller, J B; Walton, E D

    2001-09-01

    Clonal growth and symbiosis with photosynthetic zooxanthellae typify many genera of marine organisms, suggesting that these traits are usually conserved. However, some, such as Anthopleura, a genus of sea anemones, contain members lacking one or both of these traits. The evolutionary origins of these traits in 13 species of Anthopleura were inferred from a molecular phylogeny derived from 395 bp of the mitochondrial 16S rRNA gene and 410 bp of the mitochondrial cytochrome oxidase subunit III gene. Sequences from these genes were combined and analyzed by maximum-parsimony, maximum-likelihood, and neighbor-joining methods. Best trees from each method indicated a minimum of four changes in growth mode and that symbiosis with zooxanthellae has arisen independently in eastern and western Pacific species. Alternative trees in which species sharing growth modes or the symbiotic condition were constrained to be monophyletic were significantly worse than best trees. Although clade composition was mostly consistent with geographic sympatry, A. artemisia from California was included in the western Pacific clade. Likewise, A. midori from Japan was not placed in a clade containing only other Asian congeners. The history of Anthopleura includes repeated shifts between clonality and solitariness, repeated attainment of symbiosis with zooxanthellae, and intercontinental dispersal.

  8. SYMBIOSIS: development, implementation, and assessment of a model curriculum across biology and mathematics at the introductory level.

    Science.gov (United States)

    Depelteau, Audrey M; Joplin, Karl H; Govett, Aimee; Miller, Hugh A; Seier, Edith

    2010-01-01

    "It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power." Alan Cohen (Used by permission. All rights reserved. For more information on Alan Cohen's books and programs, see (www.alancohen.com.) With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18 curriculum modules, designed this three-semester curriculum, known as SYMBIOSIS. This curriculum was piloted to two student cohorts during the developmental stage. The positive feedback and assessment results of this project have given us the foundation to implement the SYMBIOSIS curriculum as a replacement for the standard biology majors curriculum at the introductory level. This article addresses the history and development of the curriculum, previous assessment results and current assessment protocol, and the future of ETSU's approach to implementing the SYMBIOSIS curriculum.

  9. Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants.

    Science.gov (United States)

    Peláez-Vico, María A; Bernabéu-Roda, Lydia; Kohlen, Wouter; Soto, María J; López-Ráez, Juan A

    2016-04-01

    Strigolactones (SLs) are multifunctional molecules acting as modulators of plant responses under nutrient deficient conditions. One of the roles of SLs is to promote beneficial association with arbuscular mycorrhizal (AM) fungi belowground under such stress conditions, mainly phosphorus shortage. Recently, a role of SLs in the Rhizobium-legume symbiosis has been also described. While SLs' function in AM symbiosis is well established, their role in the Rhizobium-legume interaction is still emerging. Recently, SLs have been suggested to stimulate surface motility of rhizobia, opening the possibility that they could also act as molecular cues. The possible effect of SLs in the motility in the alfalfa symbiont Sinorhizobium meliloti was investigated, showing that the synthetic SL analogue GR24 stimulates swarming motility in S. meliloti in a dose-dependent manner. On the other hand, it is known that SL production is regulated by nutrient deficient conditions and by AM symbiosis. Using the model alfalfa-S. meliloti, the impact of phosphorus and nitrogen deficiency, as well as of nodulation on SL production was also assessed. The results showed that phosphorus starvation promoted SL biosynthesis, which was abolished by nitrogen deficiency. In addition, a negative effect of nodulation on SL levels was detected, suggesting a conserved mechanism of SL regulation upon symbiosis establishment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Final waste classification and waste form technical position papers

    International Nuclear Information System (INIS)

    1983-05-01

    The waste classification technical position paper describes overall procedures acceptable to NRC staff which may be used by licensees to determine the presence and concentrations of the radionuclides listed in section 61.55, and thereby classifying waste for near-surface disposal. This technical position paper also provides guidance on the types of information which should be included in shipment manifests accompanying waste shipments to near-surface disposal facilities. The technical position paper on waste form provides guidance to waste generators on test methods and results acceptable to NRC staff for implementing the 10 CFR Part 61 waste form requirements. It can be used as an acceptable approach for demonstrating compliance with the 10 CFR Part 61 waste structural stability criteria. This technical position paper includes guidance on processing waste into an acceptable stable form, designing acceptable high-integrity containers, packaging cartridge filters, and minimizing radiation effects on organic ion-exchange resins. The guidance in the waste form technical position paper may be used by licensees as the basis for qualifying process control programs to meet the waste form stability requirements, including tests which can be used to demonstrate resistance to degradation arising from the effects of compression, moisture, microbial activity, radiation, and chemical changes. Generic test data (e.g., topical reports prepared by vendors who market solidification technology) may be used for process control program qualification where such generic data is applicable to the particular types of waste generated by a licensee

  11. Academia-industry symbiosis in organic chemistry.

    Science.gov (United States)

    Michaudel, Quentin; Ishihara, Yoshihiro; Baran, Phil S

    2015-03-17

    Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial "sponsoring" is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry's point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry's desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply "pure science" research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the "real world" at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an

  12. The Metronome of Symbiosis: Interactions Between Microbes and the Host Circadian Clock.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C

    2016-11-01

    The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Cleaning symbiosis as an evolutionary game: To cheat or not to cheat?

    Science.gov (United States)

    Poulin; Vickery

    1995-07-07

    Cleaning symbiosis is an apparently mutualistic relationship, occurring in diverse taxa, in which cleaners remove ectoparasites from the body of their clients. Here its evolution is explored with a simple game theory model in which both participants play against each other using either honest or cheating strategies. Honest clients pose for cleaners and have their ectoparasites removed, cheating clients eat the cleaners. Honest cleaners eat their clients' ectoparasites, cheating cleaners feed mainly on client tissues. The conditions that favour either strategy are obtained when the game is resolved: (i) the cost of being cleaned by a cheat and the proportion of cheats in the cleaner population determine the relative value of honesty in clients, and (ii) the advantages of being an honest cleaner depend on the relative fitness value of ectoparasites as food versus client tissues. A scenario for the origin of the cleaning symbiosis can also be derived from the model, in which the specialization of both participants need not be simultaneous. The model is based on the relationship between specialized cleaner fish and their client fish on coral reefs, but its conclusions are used in an examination of other cleaning associations. Copyright 1995 Academic Press Limited

  14. Symbiosis of near breeder HTR's with hybrid fusion reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-07-01

    In this contribution to INFCE a symbiotic fusion/fission reactor system, consisting of a hybrid beam-driven micro-explosion fusion reactor (HMER) and associated high-temperature gas-cooled reactors (HTR) with a coupled fuel cycle, is proposed. This system is similar to the well known Fast Breeder/Near Breeder HTR symbiosis except that the fast fission breeder - running on the U/Pu-cycle in the core and the axial blankets and breeding the surplus fissile material as U-233 in its radial thorium metal or thorium oxide blankets - is replaced by a hybrid micro-explosion DT fusion reactor

  15. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  16. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  17. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects.

    Science.gov (United States)

    Luan, Jun-Bo; Chen, Wenbo; Hasegawa, Daniel K; Simmons, Alvin M; Wintermantel, William M; Ling, Kai-Shu; Fei, Zhangjun; Liu, Shu-Sheng; Douglas, Angela E

    2015-09-15

    Genomic decay is a common feature of intracellular bacteria that have entered into symbiosis with plant sap-feeding insects. This study of the whitefly Bemisia tabaci and two bacteria (Portiera aleyrodidarum and Hamiltonella defensa) cohoused in each host cell investigated whether the decay of Portiera metabolism genes is complemented by host and Hamiltonella genes, and compared the metabolic traits of the whitefly symbiosis with other sap-feeding insects (aphids, psyllids, and mealybugs). Parallel genomic and transcriptomic analysis revealed that the host genome contributes multiple metabolic reactions that complement or duplicate Portiera function, and that Hamiltonella may contribute multiple cofactors and one essential amino acid, lysine. Homologs of the Bemisia metabolism genes of insect origin have also been implicated in essential amino acid synthesis in other sap-feeding insect hosts, indicative of parallel coevolution of shared metabolic pathways across multiple symbioses. Further metabolism genes coded in the Bemisia genome are of bacterial origin, but phylogenetically distinct from Portiera, Hamiltonella and horizontally transferred genes identified in other sap-feeding insects. Overall, 75% of the metabolism genes of bacterial origin are functionally unique to one symbiosis, indicating that the evolutionary history of metabolic integration in these symbioses is strongly contingent on the pattern of horizontally acquired genes. Our analysis, further, shows that bacteria with genomic decay enable host acquisition of complex metabolic pathways by multiple independent horizontal gene transfers from exogenous bacteria. Specifically, each horizontally acquired gene can function with other genes in the pathway coded by the symbiont, while facilitating the decay of the symbiont gene coding the same reaction. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  19. Long-distance transport of signals during symbiosis

    Science.gov (United States)

    Xie, Zhi-Ping; Illana, Antonio

    2011-01-01

    Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of “systemic acquired resistance” in plant-pathogen interactions. PMID:21455020

  20. BOOKLET TO INSTITUTO PEDAGOGICO NACIONAL TEACHERS ABOUT SYMBIOSIS AND PROCESSES ON BIOTECHNOLOGY: THE BIOFERTILIZER Rhizobium sp IN Phaseolus vulgaris WITH ALTERNATIVE TO SYMBIOSIS FOR Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    María Camila Quevedo Rubiano

    2016-09-01

    Full Text Available This article presents the results of the thesis carried out in the research group of Biotechnology Teaching in Colombia, with the aim of providing teachers of Biology of Instituto Pedagogico Nacional a booklet that can strengthen the teaching of biotechnology processes using Rhizobium sp reduction of chemical fertilizers and symbiosis with Phaseolus vulgaris.   The booklet contains a proposal of practical activities that enable teachers of this institution to use spaces like the farm, enabling to teach biotechnology related to agronomy. Therefore, for this project was considered two Biological and Pedagogical approaches, the first is within the analytical empirical paradigm in the process of microbiological characterization of Rhizobium and their Biofertilizing ability in beans; and the teaching approach within the design of a booklet that includes the findings of this study as a contribution to the reduction of chemical fertilizers school farm. In order to have a complete analysis of the work it was subjected to quantitative and qualitative methods.   This biotech practice is included in the booklet showing in bioassays that bacteria has biofertilizer without inhibiting potential symbiosis, and that research and teaching biological concepts from scientific expertise can be promoted in Biology class for students to understand its context in a significant way, to be used in different levels of education; also it is a teaching strategy.

  1. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    Science.gov (United States)

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae).

    Science.gov (United States)

    Verstraete, Brecht; Janssens, Steven; Rønsted, Nina

    2017-08-01

    Every plant species on Earth interacts in some way or another with microorganisms and it is well known that certain forms of symbiosis between different organisms can drive evolution. Within some clades of Rubiaceae (coffee family), a specific plant-bacteria interaction exists in which non-pathological endophytes are present in the leaves of their hosts. It is hypothesized that the bacterial endophytes, either alone or by interacting with the host, provide chemical protection against herbivory or pathogens by producing toxic or otherwise advantageous secondary metabolites. If the bacteria indeed have a direct beneficial influence on their hosts, it is reasonable to assume that the endophytes may increase the fitness of their hosts and therefore it is probable that their presence also has an influence on the long-term evolution of the particular plant lineages. In this study, the possible origin in time of non-nodulated bacterial leaf symbiosis in the Vanguerieae tribe of Rubiaceae is elucidated and dissimilarities in evolutionary dynamics between species with endophytes versus species without are investigated. Bacterial leaf symbiosis is shown to have most probably originated in the Late Miocene, a period when the savannah habitat is believed to have expanded on the African continent and herbivore pressure increased. The presence of bacterial leaf endophytes appears to be restricted to Old World lineages so far. Plant lineages with leaf endophytes show a significantly higher speciation rate than plant lineages without endophytes, while there is only a small difference in extinction rate. The transition rate shows that evolving towards having endophytes is twice as fast as evolving towards not having endophytes, suggesting that leaf symbiosis must be beneficial for the host plants. We conclude that the presence of bacterial leaf endophytes may also be an important driver for speciation of host plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Mayda [Northwestern University

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  4. State child health; revisions to the regulations implementing the State Children's Health Insurance Program. Interim final rule with comment period; revisions, delay of effective date, and technical amendments to final rule.

    Science.gov (United States)

    2001-06-25

    Title XXI authorizes the State Children's Health Insurance Program (SCHIP) to assist State efforts to initiate and expand the provision of child health assistance to uninsured, low-income children. On January 11, 2001 we published a final rule in the Federal Register to implement SCHIP that has not gone into effect. This interim final rule further delays the effective date, revises certain provisions and solicits public comment, and makes technical corrections and clarifications to the January 2001 final rule based on further review of the comments received and applicable law. Only the provisions set forth in this document have changed. All other provisions set forth in the January 2001 final rule will be implemented without change.

  5. Final priority. Rehabilitation Training: Job-Driven Vocational Rehabilitation Technical Assistance Center. Final priority.

    Science.gov (United States)

    2014-08-19

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Rehabilitation Training program to establish a Job-Driven Vocational Rehabilitation Technical Assistance Center (JDVRTAC). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus on training in an area of national need. Specifically, this priority responds to the Presidential Memorandum to Federal agencies directing them to take action to address job-driven training for the Nation's workers. The JDVRTAC will provide technical assistance (TA) to State vocational rehabilitation (VR) agencies to help them develop for individuals with disabilities training and employment opportunities that meet the needs of today's employers.

  6. Final priority; Technical Assistance on State Data Collection--IDEA Data Management Center. Final priority.

    Science.gov (United States)

    2014-08-05

    The Assistant Secretary for the Office of Special Education and Rehabilitative Services (OSERS) announces a priority under the Technical Assistance on State Data Collection program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to fund a cooperative agreement to establish and operate an IDEA Data Management Center (Center) that will provide technical assistance (TA) to improve the capacity of States to meet the data collection requirements of the Individuals with Disabilities Education Act (IDEA).

  7. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  8. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  9. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont.

    Science.gov (United States)

    Renoz, François; Champagne, Antoine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Foray, Vincent; Hance, Thierry

    2017-01-01

    Symbiotic bacteria are common in insects and can affect various aspects of their hosts' biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro , there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors). In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3 T . Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3 T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.

  10. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont

    Directory of Open Access Journals (Sweden)

    François Renoz

    2017-05-01

    Full Text Available Symbiotic bacteria are common in insects and can affect various aspects of their hosts’ biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro, there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors. In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3T. Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.

  11. Helical computed tomography and the workstation: introduction to a symbiosis

    International Nuclear Information System (INIS)

    Garcia-Santos, J.M.

    1997-01-01

    We do a brief introduction to the possibilities of an helical computed tomography system when it is associated with a powerful workstation. The fast and volumetric way of acquisition constitutes, basically, the main advantage of this sort of computed tomography. The anatomical and radio pathological study, in a workstation, of the acquired information (thanks to multiplanar and 3D reconstruction), increases significantly our capacity of analysis in each patient. Only the clinical and radiological experience will tell us which is the right place that this symbiosis occupies within our diagnosis tools. (Author) 11 refs

  12. The nitrate-reduction gene cluster components exert lineage-dependent contributions to optimization of Sinorhizobium symbiosis with soybeans.

    Science.gov (United States)

    Liu, Li Xue; Li, Qin Qin; Zhang, Yun Zeng; Hu, Yue; Jiao, Jian; Guo, Hui Juan; Zhang, Xing Xing; Zhang, Biliang; Chen, Wen Xin; Tian, Chang Fu

    2017-12-01

    Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix - ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix + ) but ineffective (Eff - ) nodules. These Fix + /Eff - nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Imagining Technicities

    DEFF Research Database (Denmark)

    Liboriussen, Bjarke; Plesner, Ursula

    2011-01-01

    to the elements of taste and skill. In the final analysis those references were synthesized as five imagined technicities: the architect, the engineer, the client, the Chinese, and the Virtual World native. Because technicities are often assumed and rarely discussed as actants who influence practice, their role......, this article focuses on innovative uses of virtual worlds in architecture. We interviewed architects, industrial designers and other practitioners. Conceptually supported by an understanding of technicity found in Cultural Studies, the interviews were then coded with a focus on interviewees’ references...... in cooperation and development of ICTs seems to pass unnoticed. However, since they are aligned into ICTs, technicities impact innovation....

  14. Quantifying the Contribution of Urban-Industrial Efficiency and Symbiosis to Deep Decarbonization: Impact of 637 Chinese Cities

    Science.gov (United States)

    Ramaswami, A.; Tong, K.; Fang, A.; Lal, R.; Nagpure, A.; Li, Y.; Yu, H.; Jiang, D.; Russell, A. G.; Shi, L.; Chertow, M.; Wang, Y.; Wang, S.

    2016-12-01

    Urban activities in China contribute significantly to global greenhouse gas (GHG) emissions and to local air pollution-related health risks. Co-location analysis can help inform the potential for energy- and material-exchanges across homes, businesses, infrastructure and industries co-located in cities. Such co-location dependent urban-industrial symbiosis strategies offer a new pathway toward urban energy efficiency and health that have not previously been quantified. Key examples includes the use of waste industrial heat in other co-located industries, and in residential-commercial district heating-cooling systems of cities. To quantify the impact of these strategies: (1) We develop a new data-set of 637 Chinese cities to assess the potential for efficiency and symbiosis across co-located homes, businesses, industries and the energy and construction sectors in the different cities. (2) A multi-scalar urban systems model quantifies trans-boundary CO2 impacts as well as local health benefits of these uniquely urban, co-location-dependent strategies. (3) CO2 impacts are aggregated across the 637 Chinese cities (home to 701 million people) to quantify national CO2 mitigation potential. (4) The local health benefits are modeled specific to each city and mapped geospatially to identify areas where co-benefits between GHG mitigation and health are maximized. Results: A first order conservative analysis of co-location dependent urban symbiosis indicates potential for reducing 6% of China's national total CO2 emissions in a relatively short time period, yielding a new pathway not previously considered in China's energy futures models. The magnitude of these reductions (6%) was similar in magnitude to sector specific industrial, power sector and buildings efficiency strategeies that together contributed 9% CO2 reduction aggregated across the nation. CO2 reductions mapped to the 637 cities ranged from 40,000 premature deaths (avoided) across all cities. These results

  15. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2018-01-01

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  17. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work.

  18. Sea turtle symbiosis facilitates social monogamy in oceanic crabs via refuge size.

    Science.gov (United States)

    Pfaller, Joseph B; Gil, Michael A

    2016-09-01

    The capacity for resource monopolization by individuals often dictates the size and composition of animal groups, and ultimately, the adoption of mating strategies. For refuge-dwelling animals, the ability (or inability) of individuals to monopolize refuges should depend on the relative size of the refuge. In theory, groups should be larger and more inclusive when refuges are large, and smaller and more exclusive when refuges are small, regardless of refuge type. We test this prediction by comparing the size and composition of groups of oceanic crabs (Planes minutus) living on plastic flotsam and loggerhead sea turtles. We found that (i) surface area of refuges (barnacle colonies on flotsam and supracaudal space on turtles) is a better predictor of crab number than total surface area and (ii) flotsam and turtles with similar refuge surface area host a similar number (1-2) and composition (adult male-female pairs) of crabs. These results indicate that group size and composition of refuge-dwelling animals are modulated by refuge size and the capacity for refuge monopolization. Moreover, these results suggest that sea turtle symbiosis facilitates social monogamy in oceanic crabs, providing insights into how symbiosis can promote specific mating strategies. © 2016 The Author(s).

  19. Academia–Industry Symbiosis in Organic Chemistry

    Science.gov (United States)

    2015-01-01

    Conspectus Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial “sponsoring” is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry’s point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry’s desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply “pure science” research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the “real world” at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate

  20. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato

    NARCIS (Netherlands)

    Ruiz-Lozano, J.M.; Aroca, R.; Zamarreno, A.M.; Molina, S.; Andreo Jimenez, B.; Porcel, R.; Garcia-Mina, J.M.; Ruyter-Spira, C.P.; Lopez-Raez, J.A.

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of

  1. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Sudová, Radka

    2014-01-01

    Roč. 24, č. 3 (2014), s. 209-217 ISSN 0940-6360 R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal * symbiosis * nickel toxicity * semi-hydroponics Subject RIV: EF - Botanics Impact factor: 3.459, year: 2014

  2. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes

    Science.gov (United States)

    Kowalski, Kurt P.; Bacon, Charles R.; Bickford, Wesley A.; Braun, Heather A.; Clay, Keith; Leduc-Lapierre, Michele; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James W. C.; Wilcox, Douglas A.

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis andPhragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.

  3. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes.

    Science.gov (United States)

    Kowalski, Kurt P; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.

  4. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  5. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  6. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  7. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  8. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Díez-Vives, Cristina; Batani, Giampiero; Esteves, Ana Is; Jahn, Martin T; Thomas, Torsten

    2017-07-01

    Despite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C. concentrica, belonging to the proteobacterial family Phyllobacteriaceae, the Nitrospira genus and the thaumarchaeal order Nitrosopumilales. Gene expression was estimated by mapping C. concentrica metatranscriptomic reads. Our analyses indicated that CcPhy is heterotrophic, while CcNi and CcThau are chemolithoautotrophs. CcPhy expressed many transporters for the acquisition of dissolved organic compounds, likely available through the sponge's filtration activity and symbiotic carbon fixation. Coupled nitrification by CcThau and CcNi was reconstructed, supported by the observed close proximity of the cells in fluorescence in situ hybridization. CcPhy facultative anaerobic respiration and assimilation by diatoms may consume the resulting nitrate. Transcriptional analysis of diatom and sponge functions indicated that these organisms are likely sources of organic compounds, for example, creatine/creatinine and dissolved organic carbon, for other members of the symbiosis. Our results suggest that organic nitrogen compounds, for example, creatine, creatinine, urea and cyanate, fuel the nitrogen cycle within the sponge. This study provides an unprecedented view of the metabolic interactions within sponge-microbe symbiosis, bridging the gap between cell- and community-level knowledge.

  9. Programs of Study as a State Policy Mandate: A Longitudinal Study of the South Carolina Personal Pathways to Success Initiative. Final Technical Report: Major Findings and Implications

    Science.gov (United States)

    Hammond, Cathy; Drew, Sam F.; Withington, Cairen; Griffith, Cathy; Swiger, Caroline M.; Mobley, Catherine; Sharp, Julia L.; Stringfield, Samuel C.; Stipanovic, Natalie; Daugherty, Lindsay

    2013-01-01

    This is the final technical report from the National Research Center for Career and Technical Education's (NRCCTE's) five-year longitudinal study of South Carolina's Personal Pathway to Success initiative, which was authorized by the state's Education and Economic Development Act (EEDA) in 2005. NRCCTE-affiliated researchers at the National…

  10. Final Technical Report - Kotzebue Wind Power Project - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  11. Energy-related inventions program invention 637. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The final technical report for the Pegasus plow, a stalk and root embedding apparatus, describes progress from the development stage to the product support stage. The US Department of Agriculture - Agriculture Research Service (ARS) is now in the second year of a three year study comparing the Pegasus to conventional tillage. So far, no downside has been with the Pegasus and the following benefits have been documented: (1) Energy savings of 65.0 kilowatt hours per hectare over conventional tillage. This is when the Pegasus plow is used to bury whole stalks, and represents a 70% savings over conventional tillage (92.5 kilowatt hours per hectare). (2) Four to seven fewer passes of tillage, depending on the particular situation. This represents a substantial time savings to farmers. (3) So far, no differences in cotton yields. Recent cotton boll counts in one study indicate a higher yield potential with the Pegasus. (4) No disease problems. (5) Significantly higher levels of organic matter in the soil. A hypothesis of the study is that whole stalk burial may reduce plant disease problems. This hypothesis has not yet been proven. (6) Significantly higher levels of nitrate nitrogen. Total nitrogen and ammonia nitrogen trended higher but were not significantly different. This shows that whole stalk burial does not adversely affect the nitrogen cycle in the soil and may actually improve it. The marketing support stage of the project is also described in the report.

  12. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2016-05-01

    Full Text Available Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.

  13. Technical considerations associated with spent fuel acceptance. Final report

    International Nuclear Information System (INIS)

    Supko, E.M.

    1996-06-01

    This study was initiated by the Electric Power Research Institute (EPRI) to identify technical considerations associated with spent fuel acceptance and implementation of a waste management system that includes the use of transportable storage systems, and to serve as an opening dialogue among Standard Contract Holders and the department of Energy's Office of Civilian Radioactive Waste management (OCRWM) prior to the development of waste acceptance criteria or issuance of a Notice of Proposed Rulemaking by OCRWM to amend the Standard Contract. The original purpose of the Notice of Proposed Rulemaking was to address changes to the Standard Contract to implement a multi-purpose canister based system and to address other issues that were not adequately addressed in the standard contract. Even if DOE does not develop a multi-purpose canister based system for waste acceptance, it will still be necessary to develop waste acceptance criteria in order to accept spent fuel in transportable storage systems that are being deployed for at-reactor storage. In this study, technical issues associated with spent fuel acceptance will be defined and potential options and alternatives for resolution of technical considerations will be explored

  14. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida

    Directory of Open Access Journals (Sweden)

    Angela ePoole

    2016-04-01

    Full Text Available The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1 characterize complement pathway genes in the symbiotic sea anemone A. pallida, (2 investigate the evolution of complement genes in invertebrates, and (3 examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b and one MASP gene (Ap_MASP. Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggests that the presence of microbes leads to repressed expression. Together these results indicate functional divergence between Ap

  15. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth While Limiting the Spread of Sensitive Nuclear Technology

    International Nuclear Information System (INIS)

    Shropshire, David

    2009-01-01

    Global growth of nuclear energy in the 21. century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Recipient states are slow to accept any concessions to their rights under the Non Proliferation Treaty. To date, decisions to not develop indigenous fuel enrichment capabilities have been driven by economics. However, additional incentives may be required in the future to offset the user state's perceived loss of energy independence. In order for a country to forgo development of sensitive nuclear capabilities, the basis for an equitable economic tradeoff must be established. This paper proposes that the nuclear trade-off can be made through a combination of fuel supply assurances, leveraging work by the United Nations and International Atomic Energy Agency on sustainable nuclear development, and use of 'nuclear symbiosis'. The primary focus of this paper is on how nuclear symbiosis could be used to achieve a user-state's desired economic, energy, and infrastructure development end states. The desired result from this 'symbiosis' is a nuclear-centered industrial complex that creates new economic opportunities through infrastructure improvements, human resource skills development and the development of new sustainable industries. This paper also describes the Nuclear Materials Exchange (NME) as a practical tool for performing nuclear symbiosis. The NME can be used to define existing and new international nuclear resources and

  16. The trilogy nuclear technology-quality-reliability in nuclear energy: the interface technical regulation/industrial norm in the nuclear industry

    International Nuclear Information System (INIS)

    Costa, Jose Ribeiro da

    1995-01-01

    In this paper, it is tried to find out a compatibility among Regulations (mandatory) documents governing Quality Assurance Requirements for the Nuclear Industry (like IAEA/50-C-QA, IAEA/50-SG-QA1, IAEA/50-SG-QA7, and others), with similar documents prescribing same requirements for COnventional Industry (like ISO/900 Series), using the technical support of the prescriptions contained in the IAEA/TR-328 documents. Harmonization and compatibility of these documents is a great deal for Industries engaged -directly or indirectly - in the Nuclear Technology, taking into account that such compatibility can avoid troubles for already ISO/9000 Series Certified Industries in the fulfillment of its contract requirements in the nuclear field. Its also represents in that field a symbiosis between Technical Regulations (mandatory) and Voluntary Standards (Industrial, Consensual Standards). (author). 7 refs., 1 fig., 1 tab

  17. Medicago sativa--Sinorhizobium meliloti Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots.

    Science.gov (United States)

    Zribi, Kais; Nouairi, Issam; Slama, Ines; Talbi-Zribi, Ons; Mhadhbi, Haythem

    2015-01-01

    In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.

  18. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Dionicia Gloria León-Martínez

    2012-06-01

    Full Text Available To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010. Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction.

  19. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Held, Isaac [Princeton Univ., NJ (United States); Balaji, V. [Princeton Univ., NJ (United States); Fueglistaler, Stephan [Princeton Univ., NJ (United States)

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  20. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    Science.gov (United States)

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.

  1. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.

    Science.gov (United States)

    Zgadzaj, Rafal; Garrido-Oter, Ruben; Jensen, Dorthe Bodker; Koprivova, Anna; Schulze-Lefert, Paul; Radutoiu, Simona

    2016-12-06

    Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.

  2. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  3. Implication of the host TGFβ pathway in the onset of symbiosis between larvae of the coral Fungia scutaria and the dinoflagellate Symbiodinium sp. (clade C1f)

    Science.gov (United States)

    Berthelier, Jérémy; Schnitzler, Christine E.; Wood-Charlson, Elisha M.; Poole, Angela Z.; Weis, Virginia M.; Detournay, Olivier

    2017-12-01

    Dinoflagellate-cnidarian associations form both the trophic and structural foundation of coral-reef ecosystems. Previous studies have highlighted the role of host innate immunity in regulation of these partnerships. This study reveals the presence of a transforming growth factor beta (TGFβ) in the coral Fungia scutaria that clusters with TGFβ sensu stricto (ss) from other animals. In functional studies of F. scutaria larvae, we show that (1) TGFβ ss mRNA is expressed during early stages of development prior to the onset of symbiosis; (2) apparent interference of the TGFβ pathway impairs the onset of symbiosis; and (3) this effect is associated with an increase of cytotoxic nitric oxide secretion, an immune response. This work highlights the importance of the TGFβ pathway in early life-history stages of corals by suggesting that its inhibition impacts the onset of symbiosis.

  4. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Bich Thi Ngoc [Univ. of Alabama, Huntsville, AL (United States)

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.

  5. Does plant immunity have a central role in the legume rhizobium symbiosis?

    Directory of Open Access Journals (Sweden)

    Katalin eToth

    2015-06-01

    Full Text Available Plants are exposed to many different microbes in their habitat. These microbes may be benign or pathogenic, but in some cases they are beneficial. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic microorganisms, which raises the question as to how roots can distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens. Plants possess an innate immunity system that can recognize pathogens, through an arsenal of protein receptors. These receptors include receptor-like kinases (RLK and receptor-like proteins (RLP located at the plasma membrane, as well as intracellular receptors (so called NBS-LRR proteins or R proteins that recognize molecules released by microbes into the plant cell. The key rhizobial, symbiotic signaling molecule (called Nod factor is perceived by the host legume plant using LysM-domain containing RLKs. Perception of the symbiotic Nod factor triggers signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis (RNS. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immunity response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range.

  6. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi.

    Science.gov (United States)

    Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães

    2017-01-01

    The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Intracellular Catalytic Domain of Symbiosis Receptor Kinase Hyperactivates Spontaneous Nodulation in Absence of Rhizobia1[W

    Science.gov (United States)

    Saha, Sudip; Dutta, Ayan; Bhattacharya, Avisek; DasGupta, Maitrayee

    2014-01-01

    Symbiosis Receptor Kinase (SYMRK), a member of the Nod factor signaling pathway, is indispensible for both nodule organogenesis and intracellular colonization of symbionts in rhizobia-legume symbiosis. Here, we show that the intracellular kinase domain of a SYMRK (SYMRK-kd) but not its inactive or full-length version leads to hyperactivation of the nodule organogenic program in Medicago truncatula TR25 (symrk knockout mutant) in the absence of rhizobia. Spontaneous nodulation in TR25/SYMRK-kd was 6-fold higher than rhizobia-induced nodulation in TR25/SYMRK roots. The merged clusters of spontaneous nodules indicated that TR25 roots in the presence of SYMRK-kd have overcome the control over both nodule numbers and their spatial position. In the presence of rhizobia, SYMRK-kd could rescue the epidermal infection processes in TR25, but colonization of symbionts in the nodule interior was significantly compromised. In summary, ligand-independent deregulated activation of SYMRK hyperactivates nodule organogenesis in the absence of rhizobia, but its ectodomain is required for proper symbiont colonization. PMID:25304318

  8. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach.

    Directory of Open Access Journals (Sweden)

    Christina Toft

    2009-04-01

    Full Text Available Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote provides the endosymbiont (prokaryote with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity.

  9. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  10. Microscopic heavy-ion theory. Final technical report, June 1, 1993 - May 31, 1996

    International Nuclear Information System (INIS)

    Ernst, D.J.; Oberacker, V.E.; Umar, A.S.

    1998-01-01

    In this Final Technical Report, the authors summarize the research activities of the three Principal Investigators (Professors Ernst, Oberacker, and Umar) at Vanderbilt University since the last reporting period through the subject award expiration date (Dec. 31, 1996) under contract DE-FG05-87ER40376 with the Department of Energy. The research effort is divided between the following three areas: nuclear structure and astrophysics (microscopic nuclear structure studies and properties of exotic nuclei at HRIBF, supernovae calculations in connection with nuclear astrophysics, and nuclear viscosity studies via muon-induced fission at PSI); pion and kaon interactions with the nucleus at high energies (interaction of pions and kaons with nuclei from low energies to 1 GeV, propagation of excited hadrons in the nuclear medium as probed by pion and electron induced reactions); nuclear physics at high energies (dynamical string-parton model to study multi-particle production at RHIC, electromagnetic lepton pair production at RHIC)

  11. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  12. Head Start Impact Study. Technical Report

    Science.gov (United States)

    Puma, Michael; Bell, Stephen; Cook, Ronna; Heid, Camilla; Shapiro, Gary; Broene, Pam; Jenkins, Frank; Fletcher, Philip; Quinn, Liz; Friedman, Janet; Ciarico, Janet; Rohacek, Monica; Adams, Gina; Spier, Elizabeth

    2010-01-01

    This Technical Report is designed to provide technical detail to support the analysis and findings presented in the "Head Start Impact Study Final Report" (U.S. Department of Health and Human Services, January 2010). Chapter 1 provides an overview of the Head Start Impact Study and its findings. Chapter 2 provides technical information on the…

  13. Making the Most of Omics for Symbiosis Research

    Science.gov (United States)

    Chaston, J.; Douglas, A.E.

    2012-01-01

    Omics, including genomics, proteomics and metabolomics, enable us to explain symbioses in terms of the underlying molecules and their interactions. The central task is to transform molecular catalogs of genes, metabolites etc. into a dynamic understanding of symbiosis function. We review four exemplars of omics studies that achieve this goal, through defined biological questions relating to metabolic integration and regulation of animal-microbial symbioses, the genetic autonomy of bacterial symbionts, and symbiotic protection of animal hosts from pathogens. As omic datasets become increasingly complex, computationally-sophisticated downstream analyses are essential to reveal interactions not evident to visual inspection of the data. We discuss two approaches, phylogenomics and transcriptional clustering, that can divide the primary output of omics studies – long lists of factors – into manageable subsets, and we describe how they have been applied to analyze large datasets and generate testable hypotheses. PMID:22983030

  14. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae)

    DEFF Research Database (Denmark)

    Verstraete, Brecht; Janssens, Steven; Rønsted, Nina

    2017-01-01

    Every plant species on Earth interacts in some way or another with microorganisms and it is well known that certain forms of symbiosis between different organisms can drive evolution. Within some clades of Rubiaceae (coffee family), a specific plant-bacteria interaction exists in which non...

  15. The United States and Israel, from alliance to symbiosis

    Directory of Open Access Journals (Sweden)

    Ferran Izquierdo Brichs

    2003-12-01

    Full Text Available The relationship between Israel and the United States has been evolving from that of an alliance during the Cold War to a symbiosis nowadays. American policy toward the Middle East is marked by its interest in oil, to which its growing relationship with Israelhas gradually been added. However, although for a long time the interests it shared with Saudi Arabia and other Arab countries moderated its policy and balanced its support of Israel somewhat, in the last few years its alliance with Israel has come to dominate Washington’s strategy. This is reflected in its invasion of Iraq and its tensions with Arab countries. The reason for this evolution must be sought, primarily, in the influence that Israel and pro-Zionist lobbies have gained in the domestic policy of the United States.

  16. Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping?

    Science.gov (United States)

    Campos, Pedro; Borie, Fernando; Cornejo, Pablo; López-Ráez, Juan A.; López-García, Álvaro; Seguel, Alex

    2018-01-01

    Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated around the world, thus playing a crucial role on human diet. Remarkably, the growing human population requires a significant increase in agricultural production in order to feed everybody. In this context, phosphorus (P) management is a key factor as it is component of organic molecules such as nucleic acids, ATP and phospholipids, and it is the most abundant macronutrient in biomass after nitrogen (N), although being one of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency, as only a fraction of the applied P is acquired by roots, leaving a substantial amount to be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a relatively low cost alternative and can be done through two mechanisms: i) improving P use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal allocation/mobilization of P, and is usually represented by the amount of P accumulated per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly expressed as the relative difference of P acquired under low and high P availability conditions. In this review, plant adaptations related to improved PAE are described, with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to enhance plant P acquisition. A state of the art (1980–2018) of AM growth responses and P uptake in wheat and barley is made to discuss about the commonly accepted growth promoting effect and P increased uptake by AM fungi and the contrasting evidence about the generally accepted lack of positive responses in both plant species. Finally, the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed, highlighting the importance of considering AM functional diversity on future studies and the necessity to improve PAE definition by considering the carbon trading between

  17. Technical advisory panel for the large acceptance spectrometer: Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The Technical Advisory Panel for the Large Acceptance Spectrometer met on November 17--19, 1988, at CEBAF to perform a second review of the status of this project. The charge to the Panel was ''to provide technical advice to the CEBAF directorate on the design, construction, cost, schedule, and implementation of the Large Acceptance Spectrometer.'' In this written report, an overview of the entire project is given. Specific comments on the major components, data handling and analysis, assembly and installation, and management are presented. The Panel's conclusions are contained in the Executive Summary at the beginning of the report

  18. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Charles [Delta Products, Triangle Park, NC (United States)

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical

  19. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Neubauer, Emilie-Fleur; Poole, Angela Z; Neubauer, Philipp; Detournay, Olivier; Tan, Kenneth; Davy, Simon K; Weis, Virginia M

    2017-05-08

    The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum . Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

  20. Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata.

    Science.gov (United States)

    Schwarz, Jodi A; Brokstein, Peter B; Voolstra, Christian; Terry, Astrid Y; Manohar, Chitra F; Miller, David J; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2008-02-25

    Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. We generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and

  1. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    International Nuclear Information System (INIS)

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff's review of Atlas Corporation's proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs

  2. Final Technical Report - SciDAC Cooperative Agreement: Center for Extended Magnetohydrodynamic Modeling/ Transport and Dynamics in Torodial Fusion System

    International Nuclear Information System (INIS)

    Schanck, Dalton D.

    2010-01-01

    Final technical report for research performed by Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Extended MHD Modeling, DE-FC02-06ER54870, for the period 7/1/06 to 2/15/08. Principal results for this period are: 1. Development of a model for computational modeling for the primitive form of the extended MMD equations. This was reported as Phys. Plasmas 13, 058103 (2006). 2. Comparison between the NIMROD and M3D codes for simulation of the nonlinear sawtooth crash in the CDXU tokamak. This was reported in Phys. Plasmas 14, 056105 (2006). 3. Demonstration of 2-fluid and gyroviscous stabilization of interchange modes using computational extended MHD models. This was reported in Phys. Rev. Letters 101, 085005 (2008). Each of these publications is attached as an Appendix of this report. They should be consulted for technical details.

  3. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  4. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin`s Building 100 facility in Valley Forge, PA, which is detailed in Part B.

  5. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1-December 31, 1998

    International Nuclear Information System (INIS)

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin's Building 100 facility in Valley Forge, PA, which is detailed in Part B

  6. Mycorrhizal symbiosis induces plant carbon reallocation differently in C-3 and C-4 Panicum grasses

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Veronika; Slavíková, Renata; Zemková, L.; Konvalinková, Tereza; Procházková, V.; Šťovíček, V.; Hršelová, Hana; Beskid, Olena; Hujslová, Martina; Gryndlerová, Hana; Gryndler, M.; Püschel, David; Jansa, Jan

    2018-01-01

    Roč. 425, 1-2 (2018), s. 441-456 ISSN 0032-079X R&D Projects: GA MŠk(CZ) LK11224; GA ČR(CZ) GA14-19191S Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:61388971 Keywords : C-13 labelling * Carbon (C) allocation * Mycorrhizal symbiosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.052, year: 2016

  7. New city model with environmental symbiosis and energy conservation; Kankyo kyosei sho energy wo mezashita shintoshi koso

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New city concept is studied from the viewpoints of city economy, environmental symbiosis, energy and resources, transportation, urban disaster prevention, information dissemination, etc. As the result, twelve cluster cities equipped with capabilities of state capital function and administrative business, commerce, interchange of people and goods, and recreational activities are dispersed and distributed to form a double ring, populated by 0.6 million and occupying 7000ha. In a simulation of the heat island phenomenon, the temperature is lowered by 0.2-0.3degC by the dispersion of city functions, and by 0.1-0.15degC by environmental symbiosis-related measures. Primary energy consumption is reduced by 17% by reduced demand for power and heat and energy saving of 15% is attained by recyclable energy utilization and enhanced-efficiency energy supply, all thanks to passive solar systems and higher-efficiency electric machines, photovoltaic power generation, heat pump-aided utilization of waste heat and environmental heat, electrothermal energy supply from the MCFC (molten carbonate fuel cell), etc. 64 refs., 56 figs., 25 tabs.

  8. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    Science.gov (United States)

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Induction of Symbiosis in Tridacna crocea (C. Bivalvia, F. Tridacnidae Using Zooxanthellae from T. gigas and from T. crocea: Effects on Clam Survival and Growth

    Directory of Open Access Journals (Sweden)

    S. Suzanne Mingoa-Licuanan

    2000-12-01

    Full Text Available Survival and growth of post-metamorphic Tridacna crocea juveniles were improved by inducing symbiosis with fresh or cloned zooxanthellae (Tg10 derived from T. gigas. Although clam growth was best with Tc4, survival was also poorest. Symbiosis with specific zooxanthellae was established at the pediveliger stage, with reinfection a few days after. It is suggested that while survival and growth may be easily monitored and may be used as indicators of good performance of a functional holobiont, other phenotypic traits such as resistance to disease, bleaching, etc. may also be considered in evaluating the effectivity of the selected zooxanthellae.

  10. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis

    Directory of Open Access Journals (Sweden)

    Francisco J. López-Baena

    2016-05-01

    Full Text Available Sinorhizobium (Ensifer fredii (S. fredii is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides, and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.

  12. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis.

    Science.gov (United States)

    Loram, J E; Trapido-Rosenthal, H G; Douglas, A E

    2007-11-01

    The giant sea anemone Condylactis gigantea associates with members of two clades of the dinoflagellate alga Symbiodinium, either singly or in mixed infection, as revealed by clade-specific quantitative polymerase chain reaction of large subunit ribosomal DNA. To explore the functional significance of this molecular variation, the fate of photosynthetically fixed carbon was investigated by (14)C radiotracer experiments. Symbioses with algae of clades A and B released ca. 30-40% of fixed carbon to the animal tissues. Incorporation into the lipid fraction and the low molecular weight fraction dominated by amino acids was significantly higher in symbioses with algae of clade A than of clade B, suggesting that the genetically different algae in C. gigantea are not functionally equivalent. Symbioses with mixed infections yielded intermediate values, such that this functional trait of the symbiosis can be predicted from the traits of the contributing algae. Coral and sea anemone symbioses with Symbiodinium break down at elevated temperature, a process known as 'coral bleaching'. The functional response of the C. gigantea symbiosis to heat stress varied between the algae of clades A and B, with particularly depressed incorporation of photosynthetic carbon into lipid of the clade B algae, which are more susceptible to high temperature than the algae of clade A. This study provides a first exploration of how the core symbiotic function of photosynthate transfer to the host varies with the genotype of Symbiodinium, an algal symbiont which underpins corals and, hence, coral reef ecosystems.

  13. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Gerlach, Nina; Schmitz, Jessica; Polatajko, Aleksandra; Schlüter, Urte; Fahnenstich, Holger; Witt, Sandra; Fernie, Alisdair R; Uroic, Kalle; Scholz, Uwe; Sonnewald, Uwe; Bucher, Marcel

    2015-08-01

    Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential. © 2015 John Wiley & Sons Ltd.

  14. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  15. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  16. Symbiosis theory-directed green synthesis of silver nanoparticles and their application in infected wound healing

    Directory of Open Access Journals (Sweden)

    Wen L

    2016-06-01

    Full Text Available Lu Wen,1 Pei Zeng,1 Liping Zhang,1 Wenli Huang,1 Hui Wang,2 Gang Chen1 1Department of Pharmaceutics, School of Pharmacy, 2School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China Abstract: In this study, silver nanoparticles (AgNPs were synthesized for the first time using an antibacterial endophytic fungus of Chinese medicinal herb Orchidantha chinensis, which has anti-inflammatory and antimicrobial activities. The AgNPs were analyzed by various characterization techniques to reveal their morphology, chemical composition, and stability. Also, the relationship between Chinese medicinal herbs, endophytic fungi, and the property of AgNPs was investigated for the first time. Interestingly, an experiment performed in this study revealed the proteins produced by the endophytic fungus to be capped on the nanoparticles, which led to an increase in the stability of spherical and polydispersed AgNPs with low aggregation for over 6 months. More importantly, further study demonstrated that the AgNPs possessed superior antibacterial activity and effectively promoted wound healing. Altogether, the biosynthesis of active AgNPs using the endophytic fungus from Chinese medicinal herb based on the symbiosis theory is simple, eco-friendly, and promising. Keywords: silver nanoparticles, Orchidantha chinensis, endophytic fungi, symbiosis theory, wound healing

  17. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  18. Final report on a study of coherence in acceptability criteria for the technical aspects of risks associated with potentially hazardous installations

    International Nuclear Information System (INIS)

    Chicken, J.C.

    1988-01-01

    This report describes the results of the study that was made, under Contract No ECI-1390-B7221-85D, for the European Atomic Energy Community. The aim of the study was to examine and assess the feasibility of developing coherent and uniform criteria for judging the acceptability of the technical aspects of the risks associated with potentially hazardous installations. The report is arranged in five main parts. First the nature of hazardous installations is considered and this provides the basis for examination of the currently-used technical risk acceptability criteria. Next, the possible forms of criteria are explored and then universally consistent partial and overall technical risk acceptability criteria are proposed. Following this the implications of using the criteria proposed at the design, regulatory and operating levels are examined. Then, by testing the criteria against some real decisions, the practical problems of using the proposed criteria are explored. This leads to consideration of possible alternatives to the proposed criteria. Finally the conclusions that appear to be justified are summarized and the need for further work is identified

  19. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  20. FEASIBILITY ANALYSIS ON INDUSTRIAL SYMBIOSIS BETWEEN CEMENT INDUSTRY AND TEA INDUSTRY

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar Yadav

    2015-08-01

    Full Text Available The project aims at analyzing the feasibility of utilizing cement kiln dust (CKD in treating wastewater from tea industry with the concept of industrial symbiosis. CKD is the dust collected at the air pollution control device(s associated with a kiln system from cement industry. A very less percent of CKD is recycled and the rest is land filled /stockpiled; disrupts groundwater through leaching of minerals. Cement Kiln Dust (CKD, rich in CaO, SiO2, behaves as a neutralizing as well as stabilizing agent for tea effluent treatment. The ability of CKD to reduce the BOD, COD, TSS, and phosphates in tea effluent was analyzed and the optimum dosage is determined. The effect of different dosages of Cement Kiln Dust ranging from (1-3 gm/l has been discussed on the bench scale tests. The results show that, for different CKD concentrations, high removal efficiencies of 94.4 and 99.0, 58.9 for BOD, TSS, phosphates and a lower efficiency for COD with 9.09 are achieved for 2.5gm/l. The persistent presence of color providing proteins theaflavins (TF and the arubigins (TR from the leftover tea leaves in the effluent imparts the low removal efficiencies of COD. However, the COD value is within the dischargeable limits (CPCB standards. Moreover, a considerable removal efficiency and high SVI of 0.181 makes CKD a feasible coagulant in treating tea effluent with optimum dosage of 2.5g/l. The objective of developing industrial symbiosis network was thus achieved using the CKD to treat wastewater from tea industries.   International Journal of EnvironmentVolume-4, Issue-3, June-August 2015Page: 20-34

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Gary [RTI International, Research Triangle Park, NC (United States); Albritton, John [RTI International, Research Triangle Park, NC (United States); Denton, David [RTI International, Research Triangle Park, NC (United States); Turk, Brian [RTI International, Research Triangle Park, NC (United States); Gupta, Raghubir [RTI International, Research Triangle Park, NC (United States)

    2018-01-31

    technology has great potential to provide clean syngas from coal and petcoke-based gasification at increased efficiency and at significantly lower capital and operating costs than conventional syngas cleanup technologies. However, before the technology can be deemed ready for scale-up to a full commercial-scale demonstration, additional R&D testing is needed at the site to address the following critical technical risks: WDP sorbent stability and performance; Impact of WDP on downstream cleanup and conversion steps; Metallurgy and refractory; Syngas cleanup performance and controllability; Carbon capture performance and additional syngas cleanup The proposed plan to acquire this additional R&D data involves: Operation of the units to achieve an additional 3,000 hours of operation of the system within the performance period, with a target of achieving 1,000 hours of those hours via continuous operation of the entire integrated pre-commercial demonstration system; Rapid turnaround of repairs and/or modifications required as necessary to return any specific unit to operating status with documentation and lessons learned to support technology maturation, and; Proactive performance of maintenance activities during any unplanned outages and if possible while operating.

  2. Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth.

    Science.gov (United States)

    Michiels, J; Moris, M; Dombrecht, B; Verreth, C; Vanderleyden, J

    1998-07-01

    The Rhizobium etli rpoN1 gene, encoding the alternative sigma factor sigma54 (RpoN), was recently characterized and shown to be involved in the assimilation of several nitrogen and carbon sources during free-living aerobic growth (J. Michiels, T. Van Soom, I. D'hooghe, B. Dombrecht, T. Benhassine, P. de Wilde, and J. Vanderleyden, J. Bacteriol. 180:1729-1740, 1998). We identified a second rpoN gene copy in R. etli, rpoN2, encoding a 54.0-kDa protein which displays 59% amino acid identity with the R. etli RpoN1 protein. The rpoN2 gene is cotranscribed with a short open reading frame, orf180, which codes for a protein with a size of 20.1 kDa that is homologous to several prokaryotic and eukaryotic proteins of similar size. In contrast to the R. etli rpoN1 mutant strain, inactivation of the rpoN2 gene did not produce any phenotypic defects during free-living growth. However, symbiotic nitrogen fixation was reduced by approximately 90% in the rpoN2 mutant, whereas wild-type levels of nitrogen fixation were observed in the rpoN1 mutant strain. Nitrogen fixation was completely abolished in the rpoN1 rpoN2 double mutant. Expression of rpoN1 was negatively autoregulated during aerobic growth and was reduced during microaerobiosis and symbiosis. In contrast, rpoN2-gusA and orf180-gusA fusions were not expressed aerobically but were strongly induced at low oxygen tensions or in bacteroids. Expression of rpoN2 and orf180 was abolished in R. etli rpoN1 rpoN2 and nifA mutants under all conditions tested. Under free-living microaerobic conditions, transcription of rpoN2 and orf180 required the RpoN1 protein. In symbiosis, expression of rpoN2 and orf180 occurred independently of the rpoN1 gene, suggesting the existence of an alternative symbiosis-specific mechanism of transcription activation.

  3. NetView technical research

    Science.gov (United States)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  4. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  5. Adapted to change: The rapid development of symbiosis in newly settled, fast-maturing chemosymbiotic mussels in the deep sea.

    Science.gov (United States)

    Laming, Sven R; Duperron, Sébastien; Gaudron, Sylvie M; Hilário, Ana; Cunha, Marina R

    2015-12-01

    Symbioses between microbiota and marine metazoa occur globally at chemosynthetic habitats facing imminent threat from anthropogenic disturbance, yet little is known concerning the role of symbiosis during early development in chemosymbiotic metazoans: a critical period in any benthic species' lifecycle. The emerging symbiosis of Idas (sensu lato) simpsoni mussels undergoing development is assessed over a post-larval-to-adult size spectrum using histology and fluorescence in situ hybridisation (FISH). Post-larval development shows similarities to that of both heterotrophic and chemosymbiotic mussels. Data from newly settled specimens confirm aposymbiotic, planktotrophic larval development. Sulphur-oxidising (SOX) symbionts subsequently colonise multiple exposed, non-ciliated epithelia shortly after metamorphosis, but only become abundant on gills as these expand with greater host size. This wide-spread bathymodiolin recorded from sulphidic wood, bone and cold-seep habitats, displays a suite of adaptive traits that could buffer against anthropogenic disturbance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Final priority; technical assistance to improve state data capacity--National Technical Assistance Center to improve state capacity to accurately collect and report IDEA data. Final priority.

    Science.gov (United States)

    2013-05-20

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2013 and later years. We take this action to focus attention on an identified national need to provide technical assistance (TA) to States to improve their capacity to meet the data collection and reporting requirements of the Individuals with Disabilities Education Act (IDEA). We intend this priority to establish a TA center to improve State capacity to accurately collect and report IDEA data (Data Center).

  7. Cellular and molecular-genetic mechanisms of symbiosis and associative interaction of microorganisms with plants in rhizosphere

    OpenAIRE

    Lioshina L. G.

    2009-01-01

    The review contains the results of research on symbiotic and associative interaction of microorganisms and plants in rhizosphere. A special attention is given to the process of contact association of microorganisms and plants tissues including the concrete molecular structures and dominant role pertaining to protein-carbohydrate interaction. There are common features and distinctions at formation of arbuscular mycorhiza, rhizobia– legume symbiosis and association of non-leguminous plants with...

  8. Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    Directory of Open Access Journals (Sweden)

    Szmant Alina M

    2008-02-01

    Full Text Available Abstract Background Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp., with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results We generated 14,588 (Ap and 3,854 (Mf high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral. The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap, and 1,732 (Mf unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs with no significant protein-coding region. A significant number of unigenes (25 encode potential pattern recognition receptors (lectins, scavenger receptors, and others, as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases. Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non

  9. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling.

    Science.gov (United States)

    Zhang, Xiaowei; Dong, Wentao; Sun, Jongho; Feng, Feng; Deng, Yiwen; He, Zuhua; Oldroyd, Giles E D; Wang, Ertao

    2015-01-01

    The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Yucca Mountain Climate Technical Support Representative

    International Nuclear Information System (INIS)

    Sharpe, Saxon E

    2007-01-01

    The primary objective of Project Activity ORD-FY04-012, 'Yucca Mountain Climate Technical Support Representative', was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding

  11. Systems study 'Alternative Entsorgung'. Final report. Technical annex 6

    International Nuclear Information System (INIS)

    1984-08-01

    In the conditioning plant, fuel elements which have been stored for ten years are loaded into transport containers, unloaded, identified and welded into a dry storage box. The dry store barrel is introduced into a final storage container, which, after being closed, is packed in lost shielding. This so-called final storage barrel is finally placed in a transport container and leaves the conditioning plant in this form by rail for transport to the final storage mine. The fuel element method of treatment 'packing of three complete fuel elements' was used as the reference process. In addition, the method of treatment 'fuel elements dismantled into fuel rods' was also examined. The handling of fuel elements and secondary waste treatment in the reference process are described in detail. (orig./HP) [de

  12. Identification and Quantification of Cause and Effects in Symbiosis of Corn with Arbuscular Mycorrehiza Fungus using Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    M Jahan

    2015-09-01

    . Finally, RMSE and other validity tests applied to evaluate the model efficacy. The results showed the variables including LAI, D, DM, SPAD readings, H and CT had the most causality effect on corn yield production under field conditions associated with mycorrhizal fungus. At a glance, it seems the direct advantages of mycorrhizal symbiosis revealed by 35 percent cooperation in resource capture.

  13. Human-Avatar Symbiosis for the Treatment of Auditory Verbal Hallucinations in Schizophrenia through Virtual/Augmented Reality and Brain-Computer Interfaces.

    Science.gov (United States)

    Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J; Latorre, José M; Rodriguez-Jimenez, Roberto

    2017-01-01

    This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis.

  14. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis

    DEFF Research Database (Denmark)

    Hao, X.; Taghavi, S.; Xie, P.

    2014-01-01

    Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes...... have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including...... is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals....

  15. Book review of Insect Symbiosis. Volume 2. Bourtzis, K.A. and Miller, T.A. editros. 2006 CRC Press, Taylor and Francis Group, Boca Raton, FL, 276 pp. ISBN 0-8493-1286-8

    International Nuclear Information System (INIS)

    Hoy, M.A.

    2007-01-01

    There are several definitions of symbiosis, but in this book it involves an association where one organism (the symbiont) lives within or on the body of another organism (the host), regardless of the actual effect on the host. Some symbioses are mutualistic, some parasitic, and some involve commensalism, in which one partner derives some benefit without either harming or benefiting the other. This is the second volume in this exciting and rapidly advancing topic by these editors. The first volume was published in 2003 and during the intervening three years additional data have been produced that make this book a useful addition to your library. The first book provided chapters that provided an overview of insect symbiosis, discussions of the primary aphid symbiont Buchnera and other aphid symbionts, symbiosis in tsetse, symbionts in the weevil Sitophilus , the possible use of paratransgenic symbionts of Rhodnius prolixis to prevent disease transmission, bark beetle and fungal symbiosis, symbionts of tephritid fruit flies, symbionts affecting termite behavior, an overview of microsporidia as symbionts (parasites?) of insects, an overview of a newly discovered bacterium that causes sex-ratio distortion in insects and mites (from the Bacteroides group), symbionts that selectively kill male insects, and several chapters on the ubiquitous endosymbiont Wolbachia

  16. IRIS Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed

  17. Cellular and molecular-genetic mechanisms of symbiosis and associative interaction of microorganisms with plants in rhizosphere

    Directory of Open Access Journals (Sweden)

    Lioshina L. G.

    2009-02-01

    Full Text Available The review contains the results of research on symbiotic and associative interaction of microorganisms and plants in rhizosphere. A special attention is given to the process of contact association of microorganisms and plants tissues including the concrete molecular structures and dominant role pertaining to protein-carbohydrate interaction. There are common features and distinctions at formation of arbuscular mycorhiza, rhizobia– legume symbiosis and association of non-leguminous plants with Azospirillum

  18. Cooperation through Competition?Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis

    OpenAIRE

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L.; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By app...

  19. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Dmytrenko, Oleg; Russell, Shelbi L.; Loo, Wesley T.; Fontanez, Kristina M.; Liao, Li; Roeselers, Guus; Sharma, Raghav; Stewart, Frank J.; Newton, Irene LG; Woyke, Tanja; Wu, Dongying; Lang, Jenna; Eisen, Jonathan A.; Cavanaugh, Colleen M.

    2014-01-01

    Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. Results: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.86 Mb), GC-rich (50.4percent), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. Conclusions: The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle

  20. Evolution of the tripartite symbiosis between earthworms, Verminephrobacter and Flexibacter-like bacteria

    Directory of Open Access Journals (Sweden)

    Peter eMøller

    2015-05-01

    Full Text Available Nephridial (excretory organ symbionts are widespread in lumbricid earthworms and the complexity of the nephridial symbiont communities varies greatly between earthworm species. The two most common symbionts are the well-described Verminephrobacter and less well-known Flexibacter-like bacteria. Verminephrobacter are present in almost all lumbricid earthworms, they are species-specific, vertically transmitted, and have presumably been associated with their hosts since the origin of lumbricids. Flexibacter-like symbionts have been reported from about half the investigated earthworms; they are also vertically transmitted. To investigate the evolution of this tri-partite symbiosis, phylogenies for 18 lumbricid earthworm species were constructed based on two mitochondrial genes, NADH dehydrogenase subunit 2 (ND2 and cytochrome c oxidase subunit I (COI, and compared to their symbiont phylogenies based on RNA polymerase subunit B (rpoB and 16S rRNA genes.The two nephridial symbionts showed markedly different evolutionary histories with their hosts. For Verminephrobacter, clear signs of long-term host-symbiont co-evolution with rare host switching events confirmed its ancient association with lumbricid earthworms, likely dating back to their last common ancestor about 100 million years (MY ago. In contrast, phylogenies for the Flexibacter-like symbionts suggested an ability to switch to new hosts, to which they adapted and subsequently became species-specific. Putative co-speciation events were only observed with closely related host species; on that basis, this secondary symbiosis was estimated to be minimum 45 MY old. Based on the monophyletic clustering of the Flexibacter-like symbionts, the low 16S rRNA gene sequence similarity to the nearest described species (<92% and environmental sequences (<94.2 %, and the specific habitat in the earthworm nephridia, we propose a new candidate genus for this group, Candidatus Nephrothrix.

  1. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.

    Science.gov (United States)

    Porcel, Rosa; Aroca, Ricardo; Azcon, Rosario; Ruiz-Lozano, Juan Manuel

    2016-10-01

    Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.

  2. Technical oversight for installation of TNX piezometers, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pidcoe, W.W. Jr. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1997-06-05

    Science Applications International Corporation was tasked under subcontract C002025P to provide technical oversight for the drilling of one pilot borehole, and the drilling and installation of five piezometers in the TNX Area Swamp. The work was performed in accordance with the Statement of Work in Task Order Proposal No. ER39-129 dated August 6, 1996. This report describes the activities associated with the performance of the task.

  3. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  4. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis

    Directory of Open Access Journals (Sweden)

    Emilie F. Neubauer

    2016-11-01

    Full Text Available Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR, the C-type lectin (CTLD and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum

  5. Development of the biosphere code BIOMOD: final report

    International Nuclear Information System (INIS)

    Kane, P.

    1983-05-01

    Final report to DoE on the development of the biosphere code BIOMOD. The work carried out under the contract is itemised. Reference is made to the six documents issued along with the final report. These consist of two technical notes issued as interim consultative documents, a user's guide and a programmer's guide to BIOMOD, a database description, program test document and a technical note entitled ''BIOMOD - preliminary findings''. (author)

  6. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Directory of Open Access Journals (Sweden)

    Guillaume Léotard

    Full Text Available Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants.Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated

  7. A STUDY ON THE SHAREHOLDERS’ BEHAVIOR OF LISTED COMPANIES BASED ON SYMBIOSIS THEORY: A RESEARCH FRAMEWORK

    OpenAIRE

    YANG Songling; LIU Tingli; CHEN Fang

    2014-01-01

    Research on shareholder’s behavior is a hot topic in recent years. Most researches are based on the theory of agency, which proposal that equity decentralization is the major way to solve the conflict problem between large shareholders and minority stockholders. Actually, major shareholder will never be eliminated. This paper introduces the symbiosis theory-ecology theory-to explain the motives and consequences of the behavior of different type shareholders in China’s from a new perspective. ...

  8. An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Ho-Plágaro, Tania; Huertas, Raúl; Tamayo-Navarrete, María I; Ocampo, Juan A; García-Garrido, José M

    2018-01-01

    Solanum lycopersicum , an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes -mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots . S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.

  9. A Detector for Combined SPECT/CT. Final Technical Report

    International Nuclear Information System (INIS)

    Vivek Nagarkar

    2006-01-01

    The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm 2 ) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 (micro)m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, 125 I and 99m Tc radioisotopes. The tomographic reconstruction data obtained using a mouse heart phantom and other phantoms clearly demonstrate the feasibility and efficacy of the detector in small animal research. The following were the objectives specified in the Phase I proposal: (1) In consultation with Professor Hasegawa, develop specifications for the Phase I/Phase II prototype detector; (2) Modify current vapor deposition protocols to fabricate ∼2 mm thick microcolumnar CsI(Tl) scintillators with excellent columnar structure, high light yield, and high spatial resolution; (3) Perform detailed characterization of the film morphology, light output, and spatial resolution, and use

  10. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  11. Virginia Solar Pathways Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Katharine; Cosby, Sarah

    2018-03-28

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments. The U.S. Department of Energy (DOE) funding award enabled DEV to take a focused approach to developing the Solar Strategy for its Virginia service territory. The structure and funding from the DOE award also facilitated valuable input from a formal stakeholder team convened to serve as advisors (Advisory Team) to the VSPP and contribute their perspectives and expertise to both the analysis and strategy development aspects of the Project. The development of the Solar Strategy involved three main goals: • Establish a policy and program framework that would integrate existing solar programs with new options appropriate for the Commonwealth’s policy environment and broader economic development objectives; • Promote wider deployment of solar within a low retail electric rate environment; and • Serve as a sustainable, utility-administered solar model that could be replicated in other states with similar policy environments, including, but not limited to, the entire Southeast region. In support of the VSPP goals, the Project Team commissioned four studies to support the Solar Strategy development. Two studies, completed by Navigant Consulting, focused on the integration of solar into the electric grid. The first solar integration study focused on integration of solar into the distribution grid where the utility system directly connects to and serves end-use customers

  12. FOREX trading strategy formation using technical analysis

    OpenAIRE

    Klimavičius, Domas

    2010-01-01

    FOREX technical analysis indicators, their characteristics and capabilities are researched in this final master thesis. The main goal of this thesis is to determine if technical analysis indicators can recognise patterns in price movements and if they can predict future price movement. The first part of the thesis presents with FOREX theoretical aspects, its characteristics and participants. In the second part of the thesis FOREX analysis tools are overviewed, focusing on technical analysis. ...

  13. Comparative analysis of spatial genetic structure in an ant-plant symbiosis reveals a tension zone and highlights speciation processes in tropical Africa

    NARCIS (Netherlands)

    Blatrix, Rumsaïs; Peccoud, Jean; Born, Céline; Piatscheck, Finn; Benoit, Laure; Sauve, Mathieu; Djiéto-Lordon, Champlain; Atteke, Christiane; Wieringa, Jan J.; Harris, David J.; Mckey, Doyle

    2017-01-01

    Aim: Pleistocene climatic oscillations induced range fluctuations in African rain forest organisms and may have shaped species diversification through allopatric speciation events. We compared the spatial genetic structure of two forest species that live in obligate symbiosis and thus must have

  14. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    Science.gov (United States)

    Lee, K H; Ruby, E G

    1994-04-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.

  15. Perturabation of nodular operation under salt and water deficit stress in rhizobium common bean symbiosis

    International Nuclear Information System (INIS)

    Harzalli Jebara, Salwa

    2006-01-01

    This work aims at the search for markers of tolerance to the osmotic stress and nodular efficiency of symbiosis Haricot Rhizobium. Thus, after having fixed the best period of hydroponic culture, we showed that a severe salt treatment generated an inhibition of the parameters of growth and nodulation. These inhibitions are accompanied by an inhibition of the enzymatic activities: ascorbate peroxidase (APX) and catalase (CAT), but an activation of peroxidase (POX) and superoxide dismutase (SOD), suggesting that these two antioxydants can be biochemical markers of the tolerance to salinity. To check the validity of these markers and to see the participation of the vegetable genotype in the response to the stress, we compared the effect of two concentrations salt 25 and 50 mM NaCe at two contrasting genotypes BAT477 tolerant and sensitive COCOT. This study illustrates the role of the vegetable genotype in the tolerance and efficiency and emphasize a significant result that SOD and POX constitute biochemical markers of tolerance to salinity. In order to ensure itself of the validity of this assumption in the event of water deficit stress, a treatment of 50 mM mannitol is applied to 16 symbioses formed by four genotypes of bean BAT477, COCOT, Flamingo and BRB17 inoculated by four strains of rhizobium CIAT899, 12 to 3, 1 to 6 and 8 to 3. This study permits us to make a screening of these symbioses according to their efficiency and their tolerance based on parameters of growth, of fixing and extent of the antioxydant enzymatic activities. It gets clear that the response of enzymatic antioxydants is in relation to the intrinsic potentialities of the partners of symbioses and appears to act as of the first stages of recognition plants bacterium. It will be retained that activities POX and SOD are markers of nodular tolerance. The CAT is the enzyme most connected to each partner of symbiosis and the APX would play a rather functional role. The heterogeneity of found answer

  16. Final Technical Report for Year 5 Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter"

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)

    2016-05-25

    The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).

  17. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    Science.gov (United States)

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  18. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  19. Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory.

    Science.gov (United States)

    Distel, Daniel L; Altamia, Marvin A; Lin, Zhenjian; Shipway, J Reuben; Han, Andrew; Forteza, Imelda; Antemano, Rowena; Limbaco, Ma Gwen J Peñaflor; Tebo, Alison G; Dechavez, Rande; Albano, Julie; Rosenberg, Gary; Concepcion, Gisela P; Schmidt, Eric W; Haygood, Margo G

    2017-05-02

    The "wooden-steps" hypothesis [Distel DL, et al. (2000) Nature 403:725-726] proposed that large chemosynthetic mussels found at deep-sea hydrothermal vents descend from much smaller species associated with sunken wood and other organic deposits, and that the endosymbionts of these progenitors made use of hydrogen sulfide from biogenic sources (e.g., decaying wood) rather than from vent fluids. Here, we show that wood has served not only as a stepping stone between habitats but also as a bridge between heterotrophic and chemoautotrophic symbiosis for the giant mud-boring bivalve Kuphus polythalamia This rare and enigmatic species, which achieves the greatest length of any extant bivalve, is the only described member of the wood-boring bivalve family Teredinidae (shipworms) that burrows in marine sediments rather than wood. We show that K. polythalamia harbors sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria instead of the cellulolytic symbionts that allow other shipworm species to consume wood as food. The characteristics of its symbionts, its phylogenetic position within Teredinidae, the reduction of its digestive system by comparison with other family members, and the loss of morphological features associated with wood digestion indicate that K. polythalamia is a chemoautotrophic bivalve descended from wood-feeding (xylotrophic) ancestors. This is an example in which a chemoautotrophic endosymbiosis arose by displacement of an ancestral heterotrophic symbiosis and a report of pure culture of a thioautotrophic endosymbiont.

  20. 75 FR 33682 - Export Administration Regulations; Technical Amendments

    Science.gov (United States)

    2010-06-15

    ...-01] RIN 0694-AE93 Export Administration Regulations; Technical Amendments AGENCY: Bureau of Industry... Bureau of Industry and Security (BIS) makes a technical amendment to the Export Administration... review of final decisions and orders issued in BIS export control administrative enforcement proceedings...

  1. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  2. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K + . Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na + and K + , and the expression of several genes associated with photosynthesis ( RppsbA, RppsbD, RprbcL , and RprbcS ) and genes coding for aquaporins or membrane transport proteins involved in K + and/or Na + uptake, translocation, or compartmentalization homeostasis ( RpSOS1, RpHKT1, RpNHX1 , and RpSKOR ) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K + content in plants, but evidently reduced the Na + content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na + in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes ( RppsbA, RppsbD , and RprbcL ) in leaves, and three genes ( RpSOS1, RpHKT1 , and RpSKOR ) encoding membrane transport proteins involved in K + /Na + homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial

  3. Health care fraud and abuse data collection program: technical revisions to Healthcare Integrity and Protection Data Bank data collection activities. Final rule.

    Science.gov (United States)

    2004-09-21

    The rule finalizes technical changes to the Healthcare Integrity and Protection Data Bank (HIPDB) data collection reporting requirements by clarifying the types of personal numeric identifiers that may be reported to the data bank in connection with adverse actions. The rule clarifies that in lieu of a Social Security Number (SSN), an individual taxpayer identification number (ITIN) may be reported to the data bank when, in those limited situations, an individual does not have an SSN.

  4. Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field.

    Science.gov (United States)

    Stanley, Margot R; Koide, Roger T; Shumway, Durland L

    1993-05-01

    We examined in the field the effect of the vesicular-arbuscular (VA) mycorhizal symbiosis on the reproductive success of Abutilon theophrasti Medic., an early successional annual member of the Malvaceae. Mycorrhizal infection greatly enhanced vegetative growth, and flower, fruit and seed production, resulting in significantly greater recruitment the following year. In addition, the seeds produced by mycorrhizal plants were significantly larger and contained significantly more phosphorus than seeds from non-mycorrhizal plants, an effect which may improve offspring vigor. Infection by mycorrhizal fungi may thus contribute to the overall fitness of a host plant and strongly influence long-term plant population dynamics.

  5. Industrial symbiosis and biofuels industry : Business value and organisational factors within cases of ethanol and biogas production

    OpenAIRE

    Mirata, Murat; Eklund, Mats; Gundberg, Andreas

    2017-01-01

    Industrial symbiosis (IS) involves collaborations among diverse, and predominantly local and re- gional, actors that create additional economic and environmental value through by-product ex- changes, utility and service sharing, and joint innovations. While the importance of IS for the de- velopment of biofuels is commonly recognised hypothetically, this study aims at advancing under- standing of the actual contribution provided in two real life examples–one focusing on grain-based ethanol pr...

  6. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis.

    Science.gov (United States)

    Liu, X-P; Gong, C-M; Fan, Y-Y; Eiblmeier, M; Zhao, Z; Han, G; Rennenberg, H

    2013-01-01

    This study aimed to identify drought-mediated differences in amino nitrogen (N) composition and content of xylem and phloem in trees having different symbiotic N(2)-fixing bacteria. Under controlled water availability, 1-year-old seedlings of Robinia pseudoacacia (nodules with Rhizobium), Hippophae rhamnoides (symbiosis with Frankia) and Buddleja alternifolia (no such root symbiosis) were exposed to control, medium drought and severe drought, corresponding soil water content of 70-75%, 45-50% and 30-35% of field capacity, respectively. Composition and content of amino compounds in xylem sap and phloem exudates were analysed as a measure of N nutrition. Drought strongly reduced biomass accumulation in all species, but amino N content in xylem and phloem remained unaffected only in R. pseudoacacia. In H. rhamnoides and B. alternifolia, amino N in phloem remained constant, but increased in xylem of both species in response to drought. There were differences in composition of amino compounds in xylem and phloem of the three species in response to drought. Proline concentrations in long-distance transport pathways of all three species were very low, below the limit of detection in phloem of H. rhamnoides and in phloem and xylem of B. alternifolia. Apparently, drought-mediated changes in N composition were much more connected with species-specific changes in C:N ratios. Irrespective of soil water content, the two species with root symbioses did not show similar features for the different types of symbiosis, neither in N composition nor in N content. There was no immediate correlation between symbiotic N fixation and drought-mediated changes in amino N in the transport pathways. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  8. The evaluation of a framework for measuring the non-technical ward round skills of final year nursing students: An observational study.

    Science.gov (United States)

    Murray, Kara; McKenzie, Karen; Kelleher, Michael

    2016-10-01

    The importance of non-technical skills (NTS) to patient outcomes is increasingly being recognised, however, there is limited research into how such skills can be taught and evaluated in student nurses in relation toward rounds. This pilot study describes an evaluation of a NTS framework that could potentially be used to measure ward round skills of student nurses. The study used an observational design. Potential key NTS were identified from existing literature and NTS taxonomies. The proposed framework was then used to evaluate whether the identified NTS were evident in a series of ward round simulations that final year general nursing students undertook as part of their training. Finally, the views of a small group of qualified nurse educators, qualified nurses and general nursing students were sought about whether the identified NTS were important and relevant to practice. The proposed NTS framework included seven categories: Communication, Decision Making, Situational Awareness, Teamwork and Task Management, Student Initiative and Responsiveness to Patient. All were rated as important and relevant to practice. The pilot study suggests that the proposed NTS framework could be used as a means of evaluating student nurse competencies in respect of many non-technical skills required for a successful ward round. Further work is required to establish the validity of the framework in educational settings and to determine the extent to which it is of use in a non-simulated ward round setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    Paul T. Fini; Shuji Nakamura

    2005-01-01

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  10. Polar source analysis : technical memorandum

    Science.gov (United States)

    2017-09-29

    The following technical memorandum describes the development, testing and analysis of various polar source data sets. The memorandum also includes recommendation for potential inclusion in future releases of AEDT. This memorandum is the final deliver...

  11. Vehicle infrastructure integration proof of concept : technical description--vehicle : final report

    Science.gov (United States)

    2009-05-19

    This report provides the technical description of the VII system developed for the Cooperative Agreement VII Program between the USDOT and the VII Consortium. The basic architectural elements are summarized and detailed descriptions of the hardware a...

  12. Aspects of narcissism and symbiosis, or, essential neurosis of twins.

    Science.gov (United States)

    Kahn, Charlotte

    2012-06-01

    Following a brief introduction I address the relationships of twins from five different perspectives: the Intimate Connection, the Mirror Image and Complementarity, Object- and Self-Representation, Self and Object or Rivalry, and Intersubjective Communication. This approach attempts to understand twin relationships and the individual development of twins in terms of their intense mutual dependence, akin to infantile symbiosis, and in terms of narcissism. In their similarity to each other, twins may choose each other as love objects even as they see themselves in the other. That is, a twin may "love what he himself is" or "someone who was once part of himself." This "type of object-choice … must be termed 'narcissistic'" (Freud, 1914, pp. 90, 88). Such "cathexis of an undifferentiated self-object" is considered to be "primary narcissism" (Burstein, 1977, p. 103). Hoffer (1952) describes primary narcissism as "the lack of all qualities discriminating between self and not-self, inside and outside" (p. 33).

  13. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    Science.gov (United States)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  14. Final Scientific and Technical Report State and Regional Biomass Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  15. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae

    Science.gov (United States)

    Wooldridge, S. A.

    2013-03-01

    Impairment of the photosynthetic machinery of the algal endosymbiont ("zooxanthellae") is the proximal driver of the thermal breakdown of the coral-algae symbiosis ("coral bleaching"). Yet, the initial site of damage, and early dynamics of the impairment are still not well resolved. In this perspective essay, I consider further a recent hypothesis which proposes an energetic disruption to the carbon-concentrating mechanisms (CCMs) of the coral host, and the resultant onset of CO2-limitation within the photosynthetic "dark reactions" as a unifying cellular mechanism. The hypothesis identifies the enhanced retention of photosynthetic carbon for zooxanthellae (re)growth following an initial irradiance-driven expulsion event as a strong contributing cause of the energetic disruption. If true, then it implies that the onset of the bleaching syndrome and setting of upper thermal bleaching limits are emergent attributes of the coral symbiosis that are ultimately underpinned by the characteristic growth profile of the intracellular zooxanthellae; which is known to depend not just on temperature, but also external (seawater) nutrient availability and zooxanthellae genotype. Here, I review this proposed bleaching linkage at a variety of observational scales, and find it to be parsimonious with the available evidence. Future experiments are suggested that can more formally test the linkage. If correct, the new cellular model delivers a valuable new perspective to consider the future prospects of the coral symbiosis in an era of rapid environmental change, including: (i) the underpinning mechanics (and biological significance) of observed changes in resident zooxanthellae genotypes, and (ii) the now crucial importance of reef water quality in co-determining thermal bleaching resistance.

  16. NUSC Technical Publications Guide.

    Science.gov (United States)

    1985-05-01

    Facility personnel especially that of A. Castelluzzo, E. Deland, J. Gesel , and E. Szlosek (all of Code 4343). Reviewed and Approved: 14 July 1980 D...their technical content and format. Review and approve the manual outline, the review manuscript, and the final camera - reproducible copy. Conduct in

  17. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  18. Medium energy measurements of N-N parameters. Final technical report, April 1, 1994--September 30, 1996

    International Nuclear Information System (INIS)

    Ambrose, D.; Betts, W.; Coffey, P.; Glass, G.; McDonough, J.; Riley, P.; Tang, J.L.

    1998-08-01

    This document is a final technical report describing the accomplishments of the medium/high energy nuclear physics research program at the University of Texas at Austin. The research program had four main thrusts, only one of which can be considered as measurements of N-N parameters: (1) finishing the data analyses associated with recent LAMPF and TRIUMPF N-N experiments, whose overall purpose has been the determination of the nucleon-nucleon amplitudes, both for isospin 0 and 1 at medium energies; (2) continuing work on BNL E871, a search for rare decay modes of the K L ; (3) work on the RHIC-STAR project, an experiment to create and study a quark gluon plasma and nuclear matter at high energy density; (4) beginning a new AGS experiment (E896) which will search for the lowest mass state of the predicted strange di-baryons, the Ho, and other exotic states of nuclear matter through nucleus-nucleus collisions

  19. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    Science.gov (United States)

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Comparison of closely related, uncultivated Coxiella tick endosymbiont population genomes reveals clues about the mechanisms of symbiosis.

    Science.gov (United States)

    Tsementzi, Despina; Castro Gordillo, Juan; Mahagna, Mustafa; Gottlieb, Yuval; Konstantinidis, Konstantinos T

    2018-05-01

    Understanding the symbiotic interaction between Coxiella-like endosymbionts (CLE) and their tick hosts is challenging due to lack of isolates and difficulties in tick functional assays. Here we sequenced the metagenome of a CLE population from wild Rhipicephalus sanguineus ticks (CRs) and compared it to the previously published genome of its close relative, CLE of R. turanicus (CRt). The tick hosts are closely related sympatric species, and their two endosymbiont genomes are highly similar with only minor differences in gene content. Both genomes encode numerous pseudogenes, consistent with an ongoing genome reduction process. In silico flux balance metabolic analysis (FBA) revealed the excess production of L-proline for both genomes, indicating a possible proline transport from Coxiella to the tick. Additionally, both CR genomes encode multiple copies of the proline/betaine transporter, proP gene. Modelling additional Coxiellaceae members including other tick CLE, did not identify proline as an excreted metabolite. Although both CRs and CRt genomes encode intact B vitamin synthesis pathway genes, which are presumed to underlay the mechanism of CLE-tick symbiosis, the FBA analysis indicated no changes for their products. Therefore, this study provides new testable hypotheses for the symbiosis mechanism and a better understanding of CLE genome evolution and diversity. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  2. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R. C.; McCarley, T. M.

    2006-05-04

    . Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  3. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  4. Fundamental studies of the chemical vapor deposition of diamond. Final technical report, April 1, 1988--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nix, W.D.

    1995-05-01

    We submit here a final technical report for the research program entitled: Fundamental Studies of the Chemical Vapor Deposition of Diamond, DOE Grant No. DE-FG05-88ER45345-M006. This research program was initiated in 1988 under the direction of the late Professor David A. Stevenson and was renewed in 1992. Unfortunately, at the end of 1992, just as the last phase of this work was getting underway, Professor Stevenson learned that he had developed mesothelioma, a form of cancer based on asbestos. Professor Stevenson died from that disease in February of 1994. Professor William D. Nix, the Chairman of the Materials Science department at Stanford was named the Principal Investigator. Professor Nix has assembled this final technical report. Much of the work of this grant was conducted by Mr. Paul Dennig, a graduate student who will receive his Ph.D. degree from Stanford in a few months. His research findings are described in the chapters of this report and in the papers published over the past few years. The main discovery of this work was that surface topology plays a crucial role in the nucleation of diamond on silicon. Dennig and his collaborators demonstrated this by showing that diamond nucleates preferentially at the tips of asperities on a silicon surface rather than in the re-entrant comers at the base of such asperities. Some of the possible reasons for this effect are described in this report. The published papers listed on the next page of this report also describe this research. Interested persons can obtain copies of these papers from Professor Nix at Stanford. A full account of all of the research results obtained in this work is given in the regular chapters that follow this brief introduction. In addition, interested readers will want to consult Mr. Dennig`s Ph.D. dissertation when it is made available later this year.

  5. Minutes of the IFMIF technical meeting

    International Nuclear Information System (INIS)

    Nakamura, H.; Takeda, M.; Ida, M.; Maebara, S.; Yutani, T.; Sugimoto, M.

    2004-03-01

    The IFMIF Technical Meeting was held on December 4-5, 2003 at Shiran-kaikan, Kyoto University. The main objectives are 1) to finalize the Comprehensive Design Report (CDR), 2) to discuss IFMIF cost and organization, 3) to review technical status of major systems, transition phase activities and EVEDA plan. This report presents a brief summary of the results of the meeting. Agenda, participants list and presentation materials are attached as Appendix. (author)

  6. Establishment of the International Power Institute. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Julius E. Coles

    2000-08-04

    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  7. Effects of atmospheric SO[sub 2] on Azolla and Anabaena symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Hur, J.-S.; Wellburn, A.R. (Division of Biological Sciences, Institute of Environmental and Biological Sciences, Lancaster Univ., Lancaster (United Kingdom))

    1993-01-01

    The water fern Azolla pinnata R. Br. was fumigated for 1 week with either 25, 50 or 100 nl l[sup -1] SO[sub 2]. The symbiosis of Azolla with Anabaena azollae (spp.) was severely damaged by atmospheric SO[sub 2] even at the lowest concentration studied showing significant reductions in growth, reduction of C[sub 2]H[sub 2], NH[sub 3] assimilation, protein synthesis, and heterocyst development. These disturbances appear to be mainly responsible for the extreme sensitivity of this fern to atmospheric SO[sub 2]. Changes in violaxanthin/antheraxanthin and epoxylutein/lutein ratios also indicate that free radical products are induced by atmospheric SO[sub 2]. These results suggest that the Azolla-Anabeana symbiotic system is a very responsive and reliable lower plant model to study the detailed effects of total sulfur deposition upon the balances between various important plant metabolic processes.

  8. Ant-plants and fungi: a new threeway symbiosis.

    Science.gov (United States)

    Defossez, Emmanuel; Selosse, Marc-André; Dubois, Marie-Pierre; Mondolot, Laurence; Faccio, Antonella; Djieto-Lordon, Champlain; McKey, Doyle; Blatrix, Rumsaïs

    2009-06-01

    Symbioses between plants and fungi, fungi and ants, and ants and plants all play important roles in ecosystems. Symbioses involving all three partners appear to be rare. Here, we describe a novel tripartite symbiosis in which ants and a fungus inhabit domatia of an ant-plant, and present evidence that such interactions are widespread. We investigated 139 individuals of the African ant-plant Leonardoxa africana for occurrence of fungus. Behaviour of mutualist ants toward the fungus within domatia was observed using a video camera fitted with an endoscope. Fungi were identified by sequencing a fragment of their ribosomal DNA. Fungi were always present in domatia occupied by mutualist ants but never in domatia occupied by opportunistic or parasitic ants. Ants appear to favour the propagation, removal and maintenance of the fungus. Similar fungi were associated with other ant-plants in Cameroon. All belong to the ascomycete order Chaetothyriales; those from L. africana formed a monophyletic clade. These new plant-ant-fungus associations seem to be specific, as demonstrated within Leonardoxa and as suggested by fungal phyletic identities. Such tripartite associations are widespread in African ant-plants but have long been overlooked. Taking fungal partners into account will greatly enhance our understanding of symbiotic ant-plant mutualisms.

  9. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  10. Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates.

    Science.gov (United States)

    Duponnois, Robin; Assikbetse, Komi; Ramanankierana, Heriniaina; Kisa, Marija; Thioulouse, Jean; Lepage, Michel

    2006-05-01

    The hypothesis of the present study was that the termite mounds of Macrotermes subhyalinus (MS) (a litter-forager termite) were inhabited by a specific microflora that could enhance with the ectomycorrhizal fungal development. We tested the effect of this feeding group mound material on (i) the ectomycorrhization symbiosis between Acacia holosericea (an Australian Acacia introduced in the sahelian areas) and two ectomycorrhizal fungal isolates of Scleroderma dictyosporum (IR408 and IR412) in greenhouse conditions, (ii) the functional diversity of soil microflora and (iii) the diversity of fluorescent pseudomonads. The results showed that the termite mound amendment significantly increased the ectomycorrhizal expansion. MS mound amendment and ectomycorrhizal inoculation induced strong modifications of the soil functional microbial diversity by promoting the multiplication of carboxylic acid catabolizing microorganisms. The phylogenetic analysis showed that fluorescent pseudomonads mostly belong to the Pseudomonads monteillii species. One of these, P. monteillii isolate KR9, increased the ectomycorrhizal development between S. dictyosporum IR412 and A. holosericea. The occurrence of MS termite mounds could be involved in the expansion of ectomycorrhizal symbiosis and could be implicated in nutrient flow and local diversity.

  11. Expectation and task for constructing the volume reduction system of removed soils. In search of the technical integrity from the intermediate storage to final disposal

    International Nuclear Information System (INIS)

    Mori, Hisaki

    2016-01-01

    The intermediate storage volume of the removed soils and incineration ash in Fukushima is supposed about 22 million cubic meters. Within 30 years after starting the intermediate storage, the final disposal outside Fukushima prefecture to these removed soils and incineration ash is determined by the law. Because these removed soils are the very-very low radio activity, the volume reduction method is most effective to reduce the burden of the final disposal. As the volume reduction technology is the stage of research and development, the possibility of the introduction of the volume reduction technology that has the consistency of the final disposal technology is evaluated from the point of view of cost. Since this business is accompanied by economic and technical risk to implement private companies, this project is considered appropriate to be implemented as a national project. (author)

  12. Scalable data management, analysis and visualization (SDAV) Institute. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2017-03-28

    The purpose of the SDAV institute is to provide tools and expertise in scientific data management, analysis, and visualization to DOE’s application scientists. Our goal is to actively work with application teams to assist them in achieving breakthrough science, and to provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community. Over the last 5 years members of our institute worked directly with application scientists and DOE leadership-class facilities to assist them by applying the best tools and technologies at our disposal. We also enhanced our tools based on input from scientists on their needs. Many of the applications we have been working with are based on connections with scientists established in previous years. However, we contacted additional scientists though our outreach activities, as well as engaging application teams running on leading DOE computing systems. Our approach is to employ an evolutionary development and deployment process: first considering the application of existing tools, followed by the customization necessary for each particular application, and then the deployment in real frameworks and infrastructures. The institute is organized into three areas, each with area leaders, who keep track of progress, engagement of application scientists, and results. The areas are: (1) Data Management, (2) Data Analysis, and (3) Visualization. Kitware has been involved in the Visualization area. This report covers Kitware’s contributions over the last 5 years (February 2012 – February 2017). For details on the work performed by the SDAV institute as a whole, please see the SDAV final report.

  13. Medicare and Medicaid programs; salary equivalency guidelines for physical therapy, respiratory therapy, speech language pathology, and occupational therapy services; revised effective date and technical correction--HCFA. Final rule; delay of effective date and correction.

    Science.gov (United States)

    1998-03-31

    This document delays the effective date of the final rule on salary equivalency guidelines, published in the Federal Register (63 FR 5106) on January 30, 1998, from April 1, 1998 to April 10, 1998. In addition, we are making a technical correction in the preamble to the January 30, 1998 final rule.

  14. Summary of the ITER final design report. July 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This document is a summary of the ITER final design report foreseen during the current, Engineering Design Activities (EDA), phase of the ITER project. The report presents the results of collaborative design and supporting technical work undertaken by the ITER Joint Central team (JCT) and the Home Teams (HT) of the parties to the agreement on co-operation in the Engineering Design Activities for ITER (the ITER EDA Agreement). This report marks the achievement of the full technical scope of activities indicated in the ITER EDA Agreement, with a final design which meets the programmatic objective defined in the Agreement and satisfies detailed scientific, technical and costing objectives set by ITER Council in 1998

  15. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae

    Directory of Open Access Journals (Sweden)

    S. A. Wooldridge

    2013-03-01

    Full Text Available Impairment of the photosynthetic machinery of the algal endosymbiont ("zooxanthellae" is the proximal driver of the thermal breakdown of the coral-algae symbiosis ("coral bleaching". Yet, the initial site of damage, and early dynamics of the impairment are still not well resolved. In this perspective essay, I consider further a recent hypothesis which proposes an energetic disruption to the carbon-concentrating mechanisms (CCMs of the coral host, and the resultant onset of CO2-limitation within the photosynthetic "dark reactions" as a unifying cellular mechanism. The hypothesis identifies the enhanced retention of photosynthetic carbon for zooxanthellae (regrowth following an initial irradiance-driven expulsion event as a strong contributing cause of the energetic disruption. If true, then it implies that the onset of the bleaching syndrome and setting of upper thermal bleaching limits are emergent attributes of the coral symbiosis that are ultimately underpinned by the characteristic growth profile of the intracellular zooxanthellae; which is known to depend not just on temperature, but also external (seawater nutrient availability and zooxanthellae genotype. Here, I review this proposed bleaching linkage at a variety of observational scales, and find it to be parsimonious with the available evidence. Future experiments are suggested that can more formally test the linkage. If correct, the new cellular model delivers a valuable new perspective to consider the future prospects of the coral symbiosis in an era of rapid environmental change, including: (i the underpinning mechanics (and biological significance of observed changes in resident zooxanthellae genotypes, and (ii the now crucial importance of reef water quality in co-determining thermal bleaching resistance.

  16. New usable technical specifications

    International Nuclear Information System (INIS)

    Webster, S.A.; Tomasi, L.T.; Bernier, R.A.

    1989-01-01

    After 2 yr of preparation, 1988 finally saw the nuclear industry writing operator-oriented technical specifications. This effort is a continuation of previous efforts to develop improved and usable standard technical specifications (STSs), and is being conducted by the four nuclear steam supply system vendor owners' groups under the auspices of the Nuclear Management Resources Council. Each participant is currently preparing a set of improved STSs based on a writer's guide that was developed through a combined industry effort. In May of 1987, a Human Factors Improvements to Technical Specifications (HFITS) task group was formed to prepare a writer's guide for improved, industrywide STSs. This task group was composed of two representatives from each owners' group, one with a human factors background and one with some operations background. Two documents were prepared in 6 months, a human factors report laying the groundwork for the considerations to go into technical specifications and a writer's guide for their preparation. This paper reports on the application of this writer's guide to the writing of improved STS

  17. TADS Final Evaluation Report, 1980-81. Appendix S.

    Science.gov (United States)

    Suarez, Tanya M.; And Others

    The document contains the final report of the Technical Assistance Development System (TADS), a program which provided technical assistance (TA) services to 53 Handicapped Children's Early Education Program (HCEEP) demonstration projects and 13 State Implementation Grants (SIGs). The evaluation report is divided into five sections. Section 1…

  18. Final report. Geothermal Energy Program: Information dissemination, public outreach, and technical analysis activities. April 1, 1999 to December 31, 2001. USDOE Grant No. DE-FG01-99-EE35098

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2002-03-22

    This is the final report of the accomplishments of the geothermal energy program: information dissemination, public outreach, and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association, and the Washington State University Energy Program.

  19. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  20. Fifth technical meeting on quality

    International Nuclear Information System (INIS)

    Girard, A.

    1998-01-01

    This article reports on the 5th Technical Meeting on Quality which was held in San Diego on 20-22 October 1997 and which was attended by representatives of the Home and Joint Central Team and of manufacturers currently involved in the Large R and D projects. The meeting made progress towards the finalization of the ITER Quality Manual document for inclusion in the Final Design Report and the definition of the quality necessary for ITER procurement and construction

  1. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    1981-02-01

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  2. Growth conditions determine the DNF2 requirement for symbiosis.

    Directory of Open Access Journals (Sweden)

    Fathi Berrabah

    Full Text Available Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.

  3. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti

    Science.gov (United States)

    Pini, Francesco; Frage, Benjamin; Ferri, Lorenzo; De Nisco, Nicole J.; Mohapatra, Saswat S.; Taddei, Lucilla; Fioravanti, Antonella; Dewitte, Frederique; Galardini, Marco; Brilli, Matteo; Villeret, Vincent; Bazzicalupo, Marco; Mengoni, Alessio; Walker, Graham C.; Becker, Anke; Biondi, Emanuele G.

    2013-01-01

    SUMMARY Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis. PMID:23909720

  4. Plant lectins: the ties that bind in root symbiosis and plant defense.

    Science.gov (United States)

    De Hoff, Peter L; Brill, Laurence M; Hirsch, Ann M

    2009-07-01

    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.

  5. Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage.

    Science.gov (United States)

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Muñoz-Sánchez, J Rubén; Marín-Peña, Agustín J; Lluch, Carmen; Herrera-Cervera, José A

    2017-07-01

    Polyamines (PAs) such as spermidine (Spd) and spermine (Spm) are small ubiquitous polycationic compounds that contribute to plant adaptation to salt stress. The positive effect of PAs has been associated to a cross-talk with other anti-stress hormones such as brassinosteroids (BRs). In this work we have studied the effects of exogenous Spd and Spm pre-treatments in the response to salt stress of the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti by analyzing parameters related to nitrogen fixation, oxidative damage and cross-talk with BRs in the response to salinity. Exogenous PAs treatments incremented the foliar and nodular Spd and Spm content which correlated with an increment of the nodule biomass and nitrogenase activity. Exogenous Spm treatment partially prevented proline accumulation which suggests that this polyamine could replace the role of this amino acid in the salt stress response. Additionally, Spd and Spm pre-treatments reduced the levels of H 2 O 2 and lipid peroxidation under salt stress. PAs induced the expression of genes involved in BRs biosynthesis which support a cross-talk between PAs and BRs in the salt stress response of M. truncatula-S. meliloti symbiosis. In conclusion, exogenous PAs improved the response to salinity of the M. truncatula-S. meliloti symbiosis by reducing the oxidative damage induced under salt stress conditions. In addition, in this work we provide evidences of the cross-talk between PAs and BRs in the adaptive responses to salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Final Technical Report for Award DESC0011912, "Trimodal Tapping Mode Atomic Force Microscopy: Simultaneous 4D Mapping of Conservative and Dissipative Probe-Sample Interactions of Energy-Relevant Materials”

    Energy Technology Data Exchange (ETDEWEB)

    Solares, Santiago D. [George Washington Univ., Washington, DC (United States)

    2017-09-22

    The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.

  7. The role of non-technical skills in surgery.

    Science.gov (United States)

    Agha, Riaz A; Fowler, Alexander J; Sevdalis, Nick

    2015-12-01

    Non-technical skills are of increasing importance in surgery and surgical training. A traditional focus on technical skills acquisition and competence is no longer enough for the delivery of a modern, safe surgical practice. This review discusses the importance of non-technical skills and the values that underpin successful modern surgical practice. This narrative review used a number of sources including written and online, there was no specific search strategy of defined databases. Modern surgical practice requires; technical and non-technical skills, evidence-based practice, an emphasis on lifelong learning, monitoring of outcomes and a supportive institutional and health service framework. Finally these requirements need to be combined with a number of personal and professional values including integrity, professionalism and compassionate, patient-centred care.

  8. The role of non-technical skills in surgery

    Science.gov (United States)

    Agha, Riaz A.; Fowler, Alexander J.; Sevdalis, Nick

    2015-01-01

    Non-technical skills are of increasing importance in surgery and surgical training. A traditional focus on technical skills acquisition and competence is no longer enough for the delivery of a modern, safe surgical practice. This review discusses the importance of non-technical skills and the values that underpin successful modern surgical practice. This narrative review used a number of sources including written and online, there was no specific search strategy of defined databases. Modern surgical practice requires; technical and non-technical skills, evidence-based practice, an emphasis on lifelong learning, monitoring of outcomes and a supportive institutional and health service framework. Finally these requirements need to be combined with a number of personal and professional values including integrity, professionalism and compassionate, patient-centred care. PMID:26904193

  9. Final Technical Report - SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Schnack, Dalton D.

    2012-01-01

    Final technical report for research performed by Dr. Thomas G. Jenkins in collaboration with Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodyanics, DE-FC02-06ER54899, for the period of 8/15/06 - 8/14/11. This report centers on the Slow MHD physics campaign work performed by Dr. Jenkins while at UW-Madison and then at Tech-X Corporation. To make progress on the problem of RF induced currents affect magnetic island evolution in toroidal plasmas, a set of research approaches are outlined. Three approaches can be addressed in parallel. These are: (1) Analytically prescribed additional term in Ohm's law to model the effect of localized ECCD current drive; (2) Introduce an additional evolution equation for the Ohm's law source term. Establish a RF source 'box' where information from the RF code couples to the fluid evolution; and (3) Carry out a more rigorous analytic calculation treating the additional RF terms in a closure problem. These approaches rely on the necessity of reinvigorating the computation modeling efforts of resistive and neoclassical tearing modes with present day versions of the numerical tools. For the RF community, the relevant action item is - RF ray tracing codes need to be modified so that general three-dimensional spatial information can be obtained. Further, interface efforts between the two codes require work as well as an assessment as to the numerical stability properties of the procedures to be used.

  10. AIPM Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Mookken

    2006-06-30

    The final AIPM project report consists of six sections. Each section includes information on the original AIPM project and extension work on the high temperature design. The first section (1) provides an overview of the program and highlights the significant targets to meet at the end of the program. The next section (2) summarizes the significant technical accomplishments by the SEMIKRON AIPM team during the course of the project. Greater technical details are provided in a collection of all the quarterly reports which can be found in the appendix. Section three (3) presents some the more significant technical data collected from technology demonstrators. Section four (4) analyzes the manufacturing cost or economic aspects of producing 100,000 units/yr. Section five (5) describes the commercialization efforts of the AIPM technology into the automotive market. The last section (6) recommends follow on work that will build on the efforts and achievements of the AIPM program.

  11. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    2001-01-01

    The 17th Meeting of the ITER Technical Advisory Committee (TAC-17) was held on February 19-22, the ITER Garching Work Site in Germany. The objective of the meeting was to review the Draft Final Design Report of ITER-FEAT and assess the ability of the self-consistent overall design both to satisfy the technical objectives previously defined and to meet the cost limitations. TAC-17 was also organized to confirm that the design and critical elements, with emphasis on the key recommendations made at previous TAC meetings, are such as to extend the confidence in starting ITER construction. It was also intended to provide the ITER Council, scheduled to meet on 27 and 28 February in Toronto, with a technical assessment and key recommendations of the above mentioned report

  12. Technical specification improvements to containment heat removal and emergency core cooling systems: Final report

    International Nuclear Information System (INIS)

    Sullivan, W.P.; Ha, C.; Pentzien, D.C.; Visweswaran, S.

    1988-07-01

    This report presents the results of an analysis for technical specification improvements to the emergency core cooling systems (ECCS) and containment heat removal systems (EPRI Research Project 2142-3). The objective of this project is to further develop a reliability- and risk-based methodology to provide improvements by considering groups of surveillance test intervals and allowed out-of-service times jointly. This was done for the technical specifications for the ECCS, containment heat removal equipment, and supporting systems of a boiling water reactor plant. The project (1) developed a methodology for optimizing groups of surveillance test intervals and allowed out-of-service times jointly, (2) applied the methodology in a case study of a specific operating plant, Hatch-2, and (3) evaluated benefits of the application. The results of the case study demonstrate that beneficial technical specification improvements can be realized with application of the methodology. By tightening a small group of sensitive surveillance test intervals (STIs) and allowed out-of-service times (AOTs), a larger group of less sensitive STIs and AOTs can be extended resulting in an overall plant operating cost improvement without reducing the plant safety. The reliability- and risk-based methodology and results from this project can be effectively applied for technical specification improvements at other operating plants

  13. ITER EDA technical activities

    International Nuclear Information System (INIS)

    Aymar, R.

    1998-01-01

    Six years of technical work under the ITER EDA Agreement have resulted in a design which constitutes a complete description of the ITER device and of its auxiliary systems and facilities. The ITER Council commented that the Final Design Report provides the first comprehensive design of a fusion reactor based on well established physics and technology

  14. DOE Utility Matching Program Final Technical Report

    International Nuclear Information System (INIS)

    Haghighat, Alireza

    2002-01-01

    This is the Final report for the DOE Match Grant (DE-FG02-99NE38163) awarded to the Nuclear and Radiological Engineering (NRE) Department, University of Florida, for the period of September 1999 to January 2002. This grant has been instrumental for maintaining high-quality graduate and undergraduate education at the NRE department. The grant has been used for supporting student entry and retention and for upgrading nuclear educational facilities, nuclear instrumentation, computer facilities, and computer codes to better enable the incorporation of experimental experiences and computer simulations related to advanced light water fission reactor engineering and other advanced reactor concepts into the nuclear engineering course curricula

  15. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Balkwill, David L.

    2002-08-17

    This final technical report describes the research carried out during the final two months of the no-cost extension ending 11/14/01. The primary goals of the project were (1) to determine the potential for transformation of Cr(VI) (oxidized, mobile) to Cr(III) (reduced, immobile) under unsaturated conditions as a function of different levels and combinations of (a) chromium, (b) nitrate (co-disposed with Cr), and (c) molasses (inexpensive bioremediation substrate), and (2) to determine population structure and activity in experimental treatments by characterization of the microbial community by signature biomarker analysis and by RT-PCR and terminal restriction fragment length polymorphism (T-RFLP) and 16S ribosomal RNA genes. It was determined early in the one-year no-cost extension period that the T-RFLP approach was problematic in regard to providing information on the identities of microorganisms in the samples examined. As a result, it could not provide the detailed information on microbial community structure that was needed to assess the effects of treatments with chromium, nitrate, and/or molasses. Therefore, we decided to obtain the desired information by amplifying (using TR-PCR, with the same primers used for T-RFLP) and cloning 16S rRNA gene sequences from the same RNA extracts that were used for T-RFLP analysis. We also decided to use a restriction enzyme digest procedure (fingerprinting procedure) to place the clones into types. The primary focus of the research carried out during this report period was twofold: (a) to complete the sequencing of the clones, and (b) to analyze the clone sequences phylogenetically in order to determine the relatedness of the bacteria detected in the samples to each other and to previously described genera and species.

  16. Technical-tactical analysis of youth olympic taekwondo combat.

    Science.gov (United States)

    Tornello, Francesco; Capranica, Laura; Minganti, Carlo; Chiodo, Salvatore; Condello, Giancarlo; Tessitore, Antonio

    2014-04-01

    The purpose of this study was to define the technical and tactical profiles of official youth taekwondo competitions played under the most recent rules of the International Taekwondo Federation. Tactical actions (i.e., attack, defense, and block), technical executions (from 1- to 4-point scores), kicking legs (i.e., front/rear and right/left), and overall technical effectiveness were investigated in relation to match outcome of semifinal and final competitions (n = 50) of youth (aged 13-14 years) black belt athletes during the Italian Taekwondo Cadet Championship. Differences (p technical exchanges showed differences (p technical executions. Winners resulted more efficient (p technical and tactical variables. In general, these findings showed that Cadets tend to adopt an offensive strategy. In considering that the adoption of the new electronic system requires athletes to execute correct technical actions to have a score assigned, coaches should emphasize the effectiveness of scoring techniques and help athletes to effectively improve their defense and counterattack capabilities.

  17. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp

    2018-05-17

    Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Astrobee Periodic Technical Review (PTR) Delta 3

    Science.gov (United States)

    Provencher, Christopher; Smith, Marion F.; Smith, Ernest Everett; Bualat, Maria Gabriele; Barlow, Jonathan Spencer

    2017-01-01

    Astrobee is a free flying robot for the inside of the International Space Station (ISS). The Periodic Technical Review (PTR) delta 3 is the final design review of the system presented to stakeholders.

  19. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kaiserski; Dan Lloyd

    2012-02-28

    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.

  20. Final Technical Report for subcontract number B612144

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marcu, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    The original statement of work stipulated that the Subcontractor shall perform bacterial and algal cultivation and manipulation, microbe isolation, preparation of samples for sequencing and isotopic analysis, data analysis, and manuscript preparation. The Subcontractor shall work closely with Dr. Mayali and other LLNL scientists, and shall participate in monthly SFA meetings (either in person or by telephone). The Subcontractor shall deliver a final report at the conclusion of the work.

  1. Final Scientific/Technical Report for award DE-FC--07-00AL67053

    International Nuclear Information System (INIS)

    Dixon, Cathy

    2005-01-01

    The project ''Creating an Educational Consortium to Support the Recruitment and Retention of Expertise for the Nuclear Weapons Complex'' was also known as the Advanced Fuel Cycle Initiative (AFCI) University Fellowship Program. Since its inception, the Advanced Fuel Cycle Initiative program and its predecessor, the Advanced Accelerator Applications (AAA) program, have engaged university researchers and students in the sciences necessary to answer technical questions related to reducing high-level waste volumes, optimizing the economics and performance of Yucca Mountain, reducing the technical need for a second repository, reducing the long-term inventories of plutonium in spent fuel, and enabling the proliferation-resistant recovery of the energy contained in spent fuel. The Advanced Fuel Cycle University Fellowship Program is intended to support top students across the nation in a variety of disciplines that will be required to support transmutation research and technology development in the coming decades

  2. Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity.

    Science.gov (United States)

    Del-Saz, Néstor Fernández; Romero-Munar, Antonia; Alonso, David; Aroca, Ricardo; Baraza, Elena; Flexas, Jaume; Ribas-Carbo, Miquel

    2017-11-01

    Growth and maintenance partly depend on both respiration and ATP production during oxidative phosphorylation in leaves. Under stress, ATP is needed to maintain the accumulated biomass. ATP production mostly proceeds from the cytochrome oxidase pathway (COP), while respiration via the alternative oxidase pathway (AOP) may decrease the production of ATP per oxygen consumed, especially under phosphorus (P) limitation and salinity conditions. Symbiosis with arbuscular mycorrhizal (AM) fungi is reputed by their positive effect on plant growth under stress at mature stages of colonization; however, fungal colonization may decrease plant growth at early stages. Thus, the present research is based on the hypothesis that AM fungus colonization will increase both foliar respiration and ATP production at mature stages of plant growth while decreasing them both at early stages. We used the oxygen-isotope-fractionation technique to study the in vivo respiratory activities and ATP production of the COP and AOP in AM and non-AM (NM) tobacco plants grown under P-limiting and saline conditions in sand at different growth stages (14, 28 and 49days). Our results suggest that AM symbiosis represents an ATP cost detrimental for shoot growth at early stages, whilst it represents a benefit on ATP allowing for faster rates of growth at mature stages, even under salinity conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.

    Science.gov (United States)

    Vijayakumar, Vinod; Liebisch, Gerhard; Buer, Benjamin; Xue, Li; Gerlach, Nina; Blau, Samira; Schmitz, Jessica; Bucher, Marcel

    2016-02-01

    Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi-omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus-Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up-regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus-G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS. © 2015 John Wiley & Sons Ltd.

  4. Evaluation of some fungicides on mycorrhizal symbiosis between two Glomus species from commercial inocula and Allium porrum L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Dorrego, A.; Mestre Pares, J.

    2010-07-01

    This paper reports the effect of twenty-five commonly used fungicides in agriculture on two arbuscular mycorrhizal fungi (AMF) present in commercial products of ATENS, S.L.: Glomus intra radices (Schenck and Smith) and Glomus mosseae [(Nicol. and Gerd.) Gerdemann and Trappe], forming the symbiosis with leek plants. Systemic fungicides (Aliette, Beltanol, Caddy 10, Forum, Moncut, Ortiva, Previcur, Ridomil Gold MZ, Ridomil Gold SL, Rubigan, Sinthane, Stroby, Swich, Tachigarem, Teldor, Topas 10 EC, Frupica) and non systemic fungicides (Daconil 75%, Ditiver, Euparem, INACOP, Octagon, Parmex, Terrazole and Metaram), started to be applied to soil and leaves at recommended concentrations and frequencies 4 weeks after transplant and AMF inoculation. The effect of the fungicides was assessed by comparing treated and untreated plants that were inoculated with the AMF through quantification of root mycorrhizal colonization. Among the fungicides applied to the soil, Octagon, Ditiver, Parmex and Metaram virtually eliminated the mycorrhizal symbiosis in treated plants, while the mycorrhizal colonization was not affected by the soil treatment with Beltanol, INACOP and Previcur. Three fungicides of foliar recommended application: Rubigan, Frupica, and Sinthane, strongly inhibited mycorrhizal colonization, but Aliette, Forum, Teldor, Swich and Ortiva, did not seem to reduce it substantially. In addition, the work describes the individual effect of each fungicide applied on both, foliage and soil. (Author) 29 refs.

  5. Basic concepts for crew resource management and non-technical skills.

    Science.gov (United States)

    Flin, Rhona; Maran, Nikki

    2015-03-01

    In this paper, we explain the conceptual background to non-technical skills and show how they can influence job performance in anaesthesia. We then describe the taxonomy of anaesthetists' non-technical skills (ANTS) and related systems, such as ANTS-AP for anaesthetic practitioners. We discuss the training courses that have been designed to teach these non-technical skills, which are called crew resource management (CRM), crisis resource management (CRM) or crisis avoidance resource management (CARMA). Finally, we discuss the application of non-technical skills assessment systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Algal ancestor of land plants was preadapted for symbiosis.

    Science.gov (United States)

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  7. Diversity of Rhizobium-Phaseolus vulgaris symbiosis: Overview and perspectives

    International Nuclear Information System (INIS)

    Martinez-Romero, Esperanza

    2001-01-01

    Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. trap id, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation. (author)

  8. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Richard [Stony Brook Univ., NY (United States); Phillips, Brian [Stony Brook Univ., NY (United States)

    2017-10-18

    A variety of calcifying organisms produce a transient or metastable amorphous calcium carbonate (ACC) precursor phase that is assembled and subsequently transformed into a crystalline biomineral, typically calcite or aragonite. The complex shapes, hierarchical structures, and unique physical properties of the biominerals that result from this calcification pathway have stimulated interest in adapting these concepts for the design and creation of bio-inspired functional materials in the laboratory. ACC also forms as a reactive precursor in diverse inorganic systems and is likely to play a much broader role in calcium carbonate formation. Knowledge of the structure, composition, and behavior of this metastable phase is critical for establishing a structural and mechanistic framework for calcium carbonate formation and its role in biogeochemical processes, including carbon cycling. Minor additives, such as magnesium, phosphorus, and organic macromolecules, are known to play important roles in controlling ACC stability, transformation kinetics, and selection of final crystalline polymorph. Molecular water also occurs in many types of ACC and is thought to play a structural role in its stability and transformation behavior. One of the major challenges that remain unresolved is identification of the structural basis for the role of these minor additives and molecular water. The absence of long-range order in ACC, and other amorphous phases, has posed a challenge for study by techniques commonly used for crystalline solids. Preliminary studies in our group show that the combination of two techniques, synchrotron X-ray-based pair distribution function (PDF) analysis and nuclear magnetic resonance (NMR) spectroscopy can provide entirely new insight to structural properties of synthetic ACC over length scales that are most relevant for understanding its transformation properties. Building on preliminary experiments, we propose a systematic study of synthesis, structure, and

  9. Final Technical Report: "Achieving Regional Energy Efficiency Potential in the Southeast”

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Mandy [Southeast Energy Efficiency Alliance (SEEA), Atlanta, GA (United States)

    2018-03-07

    The overall objective of this award was to facilitate sharing of DOE resources and best practices as well as provide technical assistance to key stakeholders to support greater compliance with energy efficiency standards and increased energy savings. The outcomes of this award include greater awareness among key stakeholders on energy efficiency topics, increased deployment and utilization of DOE resources, and effective policies and programs to support energy efficiency in the Southeast.

  10. [Signaling Systems of Rhizobia (Rhizobiaceae) and Leguminous Plants (Fabaceae) upon the Formation of a Legume-Rhizobium Symbiosis (Review)].

    Science.gov (United States)

    Glyan'ko, A K

    2015-01-01

    Data from the literature and our own data on the participation and interrelation of bacterial signaling Nod-factors and components of the calcium, NADPH-oxidase, and NO-synthase signaling systems of a plant at the preinfection and infectious stages of the formation of a legume-rhizobium symbiosis are summarized in this review. The physiological role of Nod-factors, reactive oxygen species (ROS), calcium (Ca2+), NADPH-oxidase, nitric oxide (NO), and their cross influence on the processes determining the formation of symbiotic structures on the roots of the host plant is discussed.

  11. The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common Bean-Rhizobium etli Nitrogen Fixation Symbiosis1[OPEN

    Science.gov (United States)

    Nova-Franco, Bárbara; Íñiguez, Luis P.; Valdés-López, Oswaldo; Leija, Alfonso; Fuentes, Sara I.; Ramírez, Mario; Paul, Sujay

    2015-01-01

    Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption. PMID:25739700

  12. ITER technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties.

  13. ITER technical basis

    International Nuclear Information System (INIS)

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties

  14. Final Scientific/Technical Report Solar America Initiative: Solar Outreach and Communications

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Jane M

    2011-09-10

    The purpose of the Solar America Initiative: Solar Outreach and Communications grant was to promote better communications among stakeholders; address infrastructure barriers to solar energy; and coordinate with industry, the U.S. Department of Energy, national laboratories, states, cities and counties. The Interstate Renewable Energy Council (IREC), a non-profit organization formed in 1982, approached this grant project by establishing a wide range of communication and outreach activities including newsletters, workshops, webinars, model practices and publications; by advancing easy and fair hook-up rules to the utility grid; and by upgrading training based on industry competency standards. The Connecting to the Grid project and the Solar Codes and Standards Public Hearings project offered communication coupled with technical assistance to overcome interconnection, net metering and other regulatory and program barriers. The Workforce Development Project tackled building a strong workforce through quality training and competency assessment programs. IREC's web site, the semi-monthly state and stakeholder newsletter and the metrics report resulted in better communications among stakeholders. Workshops and phone seminars offered technical assistance and kept stakeholders up-to-date on key issues. All of these activities resulted in implementing sustainable solutions to institutional and market barriers to solar energy and getting the right information to the right people.

  15. The micro-RNA72c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis.

    Science.gov (United States)

    Nova-Franco, Bárbara; Íñiguez, Luis P; Valdés-López, Oswaldo; Alvarado-Affantranger, Xochitl; Leija, Alfonso; Fuentes, Sara I; Ramírez, Mario; Paul, Sujay; Reyes, José L; Girard, Lourdes; Hernández, Georgina

    2015-05-01

    Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. FINAL TECHNICAL REPORT Chagas Prevention in Central America

    International Development Research Centre (IDRC) Digital Library (Canada)

    Carlota Monroy

    INFORME FINAL: PROYECTO ID 106531 - 001. CORRESPONDIENTE AL PERIODO DEL 1 DE MARZO 2011 AL 31 DE MARZO 2014. CONTENIDO. 1. Información general ……………………………………………………………1. 2. Resumen del proyecto ………………………………………………………….2. 3. Metas objetivos ...

  17. AISI Direct Steelmaking Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.

    1994-08-01

    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  18. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation.

    Science.gov (United States)

    Sobariu, Dana Luminița; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca-Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François-Xavier; Gavrilescu, Maria

    2017-10-25

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0

  19. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baxter, Ivan [US Dept. of Agriculture (USDA)., Washington, DC (United States); Brown, Judith [Univ. of Arizona, Tucson, AZ (United States); Carleton, Michael [Matrix Genetics, Seattle, WA (United States); Cattolico, Rose Anne [Univ. of Washington, Seattle, WA (United States); Taraka, Dale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Detter, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devarenne, Timothy P. [Texas Agrilife Research, College Station, TX (United States); Dutcher, Susan K. [Washington Univ., St. Louis, MO (United States); Fox, David T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodenough, Ursula [Washington Univ., St. Louis, MO (United States); Jaworski, Jan [Donald Danforth Plant Science Center, St. Louis, MO (United States); Kramer, David [Michigan State Univ., East Lansing, MI (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCormick, Margaret [Matrix Genetics, Seattle, WA (United States); Merchant, Sabeeha [Univ. of California, Los Angeles, CA (United States); Molnar, Istvan [Univ. of Arizona, Tucson, AZ (United States); Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States); Polle, Juergen [City Univ. (CUNY), NY (United States). Brooklyn College; Sabarsky, Martin [Cellana, Inc., San Diego, CA (United States); Sayre, Richard T. [New Mexico Consortium, Los Alamos, NM (United States); Starkenburg,, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stormo, Gary [Washington Univ., St. Louis, MO (United States); Twary, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Clifford J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Pat J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yuan, Joshua S. [Texas Agrilife Research, College Station, TX (United States); Arnold, Bob [Univ. of Arizona, Tucson, AZ (United States); Bai, Xuemei [Cellana, Inc., San Diego, CA (United States); Boeing, Wiebke [New Mexico State Univ., Las Cruces, NM (United States); Brown, Lois [Texas Agrilife Research, College Station, TX (United States); Gujarathi, Ninad [Reliance Industries Limited, Mumbai (India); Huesemann, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lammers, Pete [New Mexico State Univ., Las Cruces, NM (United States); Laur, Paul [Eldorado Biofuels, Santa Fe, NM (United States); Khandan, Nirmala [New Mexico State Univ., Las Cruces, NM (United States); Parsons, Ronald [Solix BioSystems, Fort Collins, CO (United States); Samocha, Tzachi [Texas Agrilife Research, College Station, TX (United States); Thomasson, Alex [Texas Agrilife Research, College Station, TX (United States); Unc, Adrian [New Mexico State Univ., Las Cruces, NM (United States); Waller, Pete [Univ. of Arizona, Tucson, AZ (United States); Bonner, James [Clarkson Univ., Potsdam, NY (United States); Coons, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernando, Sandun [Texas Agrilife Research, College Station, TX (United States); Goodall, Brian [Valicor Renewables, Dexter, MI (United States); Kadam, Kiran [Valicor Renewables, Dexter, MI (United States); Lacey, Ronald [Texas Agrilife Research, College Station, TX (United States); Wei, Liu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marrone, Babs [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikolov, Zivko [Texas Agrilife Research, College Station, TX (United States); Trewyn, Brian [Colorado School of Mines, Golden, CO (United States); Albrecht, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Capareda, Sergio [Texas Agrilife Research, College Station, TX (United States); Cheny, Scott [Diversified Energy, Gilbert, AZ (United States); Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cesar, Granda [Terrabon, LLC, Bryan, TX (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lupton, Steven [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Lynch, Sharry [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Marchese, Anthony [Colorado State Univ., Fort Collins, CO (United States); Nieweg, Jennifer [Albemarle Catilin, Ames, IA (United States); Ogden, Kimberly [Univ. of Arizona, Tucson, AZ (United States); Oyler, James [Genifuel, Salt Lake City, UT (United States); Reardon, Ken [Colorado State Univ., Fort Collins, CO (United States); Roberts, William [North Carolina State Univ., Raleigh, NC (United States); Sams, David [Albemarle Catilin, Ames, IA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States); Silks, Pete [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archibeque, Shawn [Colorado State Univ., Fort Collins, CO (United States); Foster, James [Texas Agrilife Research, College Station, TX (United States); Gaitlan, Delbert [Texas Agrilife Research, College Station, TX (United States); Lawrence, Addison [Texas Agrilife Research, College Station, TX (United States); Lodge-Ivey, Shanna [New Mexico State Univ., Las Cruces, NM (United States); Wickersham, Tyron [Texas Agrilife Research, College Station, TX (United States); Blowers, Paul [Univ. of Arizona, Tucson, AZ (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Downes, C. Meghan [New Mexico State Univ., Las Cruces, NM (United States); Dunlop, Eric [Pan Pacific Technologies Pty. Ltd., Adelaide (Australia); Frank, Edward [Argonne National Lab. (ANL), Argonne, IL (United States); Handler, Robert [Michigan Technological Univ., Houghton, MI (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, James [Texas Agrilife Research, College Station, TX (United States); Seider, Warren [Univ. of Pennsylvania, Philadelphia, PA (United States); Shonnard, David [Michigan Technological Univ., Houghton, MI (United States); Skaggs, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  20. 76 FR 4645 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC). HTAC... Agenda: (Subject to change; updates will be posted on http://hydrogen.energy.gov and copies of the final...

  1. 76 FR 60478 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of... website at: http://hydrogen.energy.gov and copies of the final agenda will available the date of the...

  2. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  3. Final Scientific Technical Report Crowder College MARET Center

    Energy Technology Data Exchange (ETDEWEB)

    Boyt, Art [Crowder College, Neosho, MO (United States); Eberle, Dan [Crowder College, Neosho, MO (United States); Hudson, Pam [Crowder College, Neosho, MO (United States); Hopper, Russ [Crowder College, Neosho, MO (United States)

    2013-06-30

    , exploring and validating new applications of solar and other renewable technologies, the MARET Facility will house a wide variety of programs which will advance implementation of renewable energy throughout the region. These program goals include; Curriculum in renewable energy for pre-engineering transfer programs; Certification and degree programs for technical degrees for Energy Efficiency, Wind, Photovoltaic and Solar Thermal professionals; Short courses and workshops for building management and design professionals; Public education and demonstration projects in renewable energy through conferences and K-12 educational outreach; Technical degree offering in building construction incorporating “best practices” for energy efficiency and renewables; and Business incubators for new renewable energy businesses and new product development The new MARET facility will support the mission of the US Department of Energy (DOE) Solar Program, “to improve America’s security, environmental quality, and economic prosperity through public-private partnerships that bring reliable and affordable solar energy technologies to the marketplace,” through a variety of educational and business assistance programs. Further, technical innovations planned for the MARET facility and its applied research activities will advance the Solar Program strategic goals to “reduce the cost of solar energy to the point it becomes competitive in relevant energy markets (e.g., buildings, power plants) and for solar technology to enable a sustainable solar industry.” Overarching Goals relative to program needs, future expansion, flexibility, quality of materials, and construction and operational costs:; Experimental: The structure and systems of the building operate as an educational resource. The systems are meant to be a source for data collection and study for building users and instructors; Educational: Part of the evolution of this building and its ongoing goals is to use the building as an

  4. The role of non-technical skills in surgery

    Directory of Open Access Journals (Sweden)

    Riaz A. Agha

    2015-12-01

    This narrative review used a number of sources including written and online, there was no specific search strategy of defined databases. Modern surgical practice requires; technical and non-technical skills, evidence-based practice, an emphasis on lifelong learning, monitoring of outcomes and a supportive institutional and health service framework. Finally these requirements need to be combined with a number of personal and professional values including integrity, professionalism and compassionate, patient-centred care.

  5. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

  6. Final report of the UMTRA independent technical review of TAC audit programs

    International Nuclear Information System (INIS)

    1994-10-01

    This report details the findings of an Independent Technical Review (ITR) of practices and procedures for the Uranium Mill Tailings Remedial Action (UMTRA) Project audit program. The audit program is conducted by Jacobs Engineering Group Inc., the Technical Assistance Contractor (TAC) for the UMTRA Project. The purpose of the ITR was to ensure that the TAC audit program is effective and is conducted efficiently. The ITR was conducted from May 16-20, 1994. A review team observed audit practices in the field, reviewed the TAC audit program's documentation, and discussed the program with TAC staff and management. The format of this report has been developed around EPA guidelines; they comprise most of the major section headings. Each section begins by identifying the criteria that the TAC program is measured against, then describing the approach used by the ITR team to measure each TAC audit program against the criteria. An assessment of each type of audit is then summarized for each component in the following order: Radiological audit summary; Health and safety audit summary; Environmental audit summary; Quality assurance audit summary

  7. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    International Nuclear Information System (INIS)

    1994-01-01

    Hundreds of aging nuclear materials processing facilities within the Department of Energy's (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D ampersand D) program for DOE's nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE's technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D ampersand D services

  8. Technical writing versus technical writing

    Science.gov (United States)

    Dillingham, J. W.

    1981-01-01

    Two terms, two job categories, 'technical writer' and 'technical author' are discussed in terms of industrial and business requirements and standards. A distinction between 'technical writing' and technical 'writing' is made. The term 'technical editor' is also considered. Problems inherent in the design of programs to prepare and train students for these jobs are discussed. A closer alliance between industry and academia is suggested as a means of preparing students with competent technical communication skills (especially writing and editing skills) and good technical skills.

  9. Technical procedures for utilities and solid waste: Environmental Field Program, Deaf Smith County site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    The evaluation of environmental issues and concerns and the addressing of statutory requirements are fundamental parts in the characterization of the site in Deaf Smith County, Texas for the US Department of Energy's Salt Repository Project (SRP). To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Utilities and Solid Waste considerations. This technical procedure (TP) has been developed to implement the field program described in the Utilities and Solid Waste Site Study Plan. The purpose and scope of the Utilities and Solid Waste Technical Procedure is to develop and implement a data collection procedure to fulfill the data base needs of the Utilities and Solid Waste SSP. The procedure describes a method of obtaining, assessing and verifying the capabilities of the regional service utilities and disposal contractors. This data base can be used to identify a preferred service source for the engineering contractor. The technical procedure was produced under the guidelines established in Technical Administrative Procedure No. 1.0, Preparation, Review and Approval of Technical Procedures

  10. KBS Technical report 1-120 (1977-1978). Summaries

    International Nuclear Information System (INIS)

    1979-05-01

    The Swedish nuclear utilities started early in 1977 the KBS (nuclear fuel safety) project to study the high level waste problem and report on how and where a safe final storage could be arranged in Sweden. The docummentation produced by the project during 1977 and 1978 has been collected in a series of technical reports numbered from 1 to 120. The English summaries of the technical reports have been collected in this separate volume, No. 121. (G.B.)

  11. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  12. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    Science.gov (United States)

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  14. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    International Nuclear Information System (INIS)

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  15. Shared skeletal support in a coral-hydroid symbiosis.

    Directory of Open Access Journals (Sweden)

    Olga Pantos

    Full Text Available Hydroids form symbiotic relationships with a range of invertebrate hosts. Where they live with colonial invertebrates such as corals or bryozoans the hydroids may benefit from the physical support and protection of their host's hard exoskeleton, but how they interact with them is unknown. Electron microscopy was used to investigate the physical interactions between the colonial hydroid Zanclea margaritae and its reef-building coral host Acropora muricata. The hydroid tissues extend below the coral tissue surface sitting in direct contact with the host's skeleton. Although this arrangement provides the hydroid with protective support, it also presents problems of potential interference with the coral's growth processes and exposes the hydroid to overgrowth and smothering. Desmocytes located within the epidermal layer of the hydroid's perisarc-free hydrorhizae fasten it to the coral skeleton. The large apical surface area of the desmocyte and high bifurcation of the distal end within the mesoglea, as well as the clustering of desmocytes suggests that a very strong attachment between the hydroid and the coral skeleton. This is the first study to provide a detailed description of how symbiotic hydroids attach to their host's skeleton, utilising it for physical support. Results suggest that the loss of perisarc, a characteristic commonly associated with symbiosis, allows the hydroid to utilise desmocytes for attachment. The use of these anchoring structures provides a dynamic method of attachment, facilitating detachment from the coral skeleton during extension, thereby avoiding overgrowth and smothering enabling the hydroid to remain within the host colony for prolonged periods of time.

  16. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    International Nuclear Information System (INIS)

    Granero, J.J.

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high level radioactive wastes and different solutions searched abroad which seems of interest for Spain. (author)

  17. Santa Barbara Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley

    2013-11-30

    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. During the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative

  18. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  19. Evaluation of effects of phenol recovery on biooxidation and tertiary treatment of SRC-I wastewater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.W.; Watt, J.C.; Cowan, W.F.; Schuyler, S.E.

    1983-09-01

    Addition of phenol recovery to the wastewater treatment scheme in the Baseline Design for the SRC-I Demonstration Plant was evaluated as a major post-Baseline effort. Phenol recovery affects many downstream processes, but this study was designed to assess primarily its effects on biooxidation and subsequent tertiary treatment. Two parallel treatment schemes were set up, one to treat dephenolated wastewaters and the other for processed nondephenolated wastewaters, a simulation of the Baseline Design. The study focused on comparisons of five areas: effluent quality; system stability; the need for continuous, high-dose powdered activated carbon (PAC) augmentation to the bioreactor; minimum bioreactor hydraulic residence time (HRT); and tertiary treatment requirements. The results show that phenol recovery improves the quality of the bioreactor effluent in terms of residual organics and color. With phenol recovery, PAC augmentation is not required; without phenol recovery, PAC is needed to produce a comparable effluent. Dephenolization also enhances the stability of biooxidation, and reduces the minimum HRT required. With tertiary treatment, both schemes can meet the effluent concentrations published in the SRC-I Final Envivornmental Impact Statement, as well as the anticipated effluent limits. However, phenol recovery does provide a wider safety margin and could eliminate the need for some of the tertiary treatment steps. Based solely on the technical merits observed in this study, phenol recovery is recommended. The final selection should, however, also consider economic tradeoffs and results of other studies such as toxicology testing of the effluents. 34 references, 30 figures and 26 tables.

  20. Final Technical Report for Quantum Embedding for Correlated Electronic Structure in Large Systems and the Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Garnet Kin-Lic [Princeton Univ., NJ (United States)

    2017-04-30

    This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical cluster analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).