WorldWideScience

Sample records for switching simulating nucleotide-dependent

  1. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2009-03-01

    Full Text Available Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound active and inactive conformational states. Understanding the complete reaction path of this conformational change and its intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational transition using multiple-barrier-crossing accelerated molecular dynamics (aMD simulations. These transitions, achieved for the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD simulations due to the large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of the crystallographic structures enabled identification of highly populated intermediate structures. These structures have unique switch orientations (residues 25-40 and 57-75 intermediate between GTP and GDP states, or distinct loop3 (46-49, loop7 (105-110, and alpha5 C-terminus (159-166 conformations distal from the nucleotide-binding site. In addition, these barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of alpha2 (residues 66-74 with alpha3-loop7 (93-110, loop2 (26-37 with loop10 (145-151, and loop3 (46-49 with alpha5 (152-167. The interconversion between newly identified Ras conformations revealed by this study advances our mechanistic understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-dependent conformational exchange, and captured in aMD (but absent in cMD simulations, is a low-frequency motion intrinsic to the structure.

  2. Simulation of linear Switched Reluctance Motor drives

    OpenAIRE

    Garcia Amoros, Jordi; Blanqué Molina, Balduino; Andrada Gascón, Pedro

    2011-01-01

    This paper presents a simulation model of linear switched reluctance motor drives. A Matlab-Simulink environment coupled with finite element analysis is used to perform the simulations. Experimental and simulation results for a double sided linear switched motor drive prototype are reported and compared to verify the simulation model.

  3. Simulation of plasma erosion opening switches

    International Nuclear Information System (INIS)

    Mason, R.J.; Jones, M.E.

    1988-01-01

    Recent progress in the modeling of Plasma Erosion Opening Switches is reviewed, and new results from both fluid and particle simulation compared. Three-fluid simulations with the ANTHEM code for switches on the NRL GAMBLE I machine and SNL PBFA II machine have shown strong dependence of the opening dynamics on the anode structure, the threshold for electron emission, on the possible presence of anomalous resistivity, and on advection of the magnetic field with cathode emitted electrons. Simulations with the implicit particle-in-cell code ISIS confirm these observations, but manifest broader current channels---in better agreement with GAMBLE I experimental results. 7 refs., 3 figs

  4. Fast simulation techniques for switching converters

    Science.gov (United States)

    King, Roger J.

    1987-01-01

    Techniques for simulating a switching converter are examined. The state equations for the equivalent circuits, which represent the switching converter, are presented and explained. The uses of the Newton-Raphson iteration, low ripple approximation, half-cycle symmetry, and discrete time equations to compute the interval durations are described. An example is presented in which these methods are illustrated by applying them to a parallel-loaded resonant inverter with three equivalent circuits for its continuous mode of operation.

  5. Simulation of plasma erosion opening switches

    International Nuclear Information System (INIS)

    Mason, R.J.; Jones, M.E.

    1988-01-01

    The plasma erosion opening switch (PEOS) has been studied with the ANTHEM and ISIS implicit simulation codes. The switch consists of plasma fill injected into a transmission line. The plasma initially shorts out the circuit, but eventually it is removed by self-electrical forces, allowing for the delivery of energy to a load. ANTHEM models the plasma by multiple fluids with electron inertia retained, or by the particle-in-cell (PIC) technique. ISIS is an optimized PIC code. Both codes determine electric and magnetic fields by the implicit moment method. This allows for the study of long time full-switch behavior with simulational zone sizes and time steps that are large compared to a Debye length and plasma period, respectively. Thus, the authors have modeled switch behavior at densities ranging from 5 x 10 11 to 5 x 10 14 electrons/cm -3 over drive pulses ranging from 5 to 250 ns. Here, the magnetic field rose linearly from zero to 0.8 or 3.0 Tesla. Switch gaps spanned from 1.0 to 8.0 cm, and inner radii ranged from 0.5 to 20.0 cm. Opening dynamics is shown to depend sensitively on the assumed electron emission thresholds at the cathode, and on the effective conductivity of the anode. The particle simulations predict broader current channels than the multi-fluid calculations - reasons for this are discussed. The effect of numerical diffusion in implicit simulations is examined. The response to realistic load impedances (10 Ohms for Sandia National Laboratory's PBFA II accelerator) of the opening characteristics is described. Advantages from plasma fill near the load are investigated. The action of preset initial magnetic fields aligned with the power flow, and of trigger magnetic fields for controlled removal of the plasma is discussed

  6. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  7. Particle in cell simulation of peaking switch for breakdown evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.; Saxena, A.; Singh, N.M., E-mail: sachin.b.umbarkar@gmail.com [Department of Electric Engineering, Veermata Jijabai Technological Institute, Mumbai (India); Sharma, Archana; Saroj, P.C.; Mittal, K.C. [Accelerator Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (without peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)

  8. A Simulator of Periodically Switching Channels for Power Line Communications

    Science.gov (United States)

    Hayasaki, Taro; Umehara, Daisuke; Denno, Satoshi; Morikura, Masahiro

    An indoor power line is one of the most attractive media for in-home networks. However, there are many technical problems for achieving in-home power line communication (PLC) with high rate and high reliability. One of such problem is the degradation in the performance of the in-home PLC caused by periodically time-varying channel responses, particularly when connecting the switching power supply equipment. We present a measurement method for power line channel responses and reveal the switching of the channel responses synchronized with power-frequency voltage when connecting switching power supply equipment in sending or receiving outlets. In this paper, we term them periodically switching channel responses. The performance of PLC adapters is seriously affected by the periodically switching channel responses. Therefore, we provide a modeling of the periodically switching channel responses by using finite impulse response (FIR) filters with a shared channel memory and construct a simulator for in-home power line channels including the periodically switching channel responses in order to evaluate the various communication systems through the power line. We present the validity of the proposed simulator through the performance evaluation of OFDM/64QAM over periodically switching channels with additive white Gaussian noise. Furthermore, we evaluate the influence of the periodically switching channel responses on the communication quality of a time-invariant modulation scheme by using the proposed simulator.

  9. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  10. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  11. Anthem simulation studies of the plasma opening switch

    International Nuclear Information System (INIS)

    Mason, R.J.

    1993-01-01

    For a deeper understanding of the physical processes governing the Plasma Opening Switch (POS) the authors use the ANTHEM 2D implicit simulation code to study: (1) ion dynamical effects on electrohydrodynamic (EHD) waves propagating along steep density interfaces in the switch plasmas. At radial interfaces where the density jumps toward the anode, these waves can drive a finger of magnetic field into the plasma toward the load. Ion dynamics can open the rear of such fingers into a wedge-like density gap. Then: (2) they examine ion effects in uniform switch plasmas. These first develop potential hill structures at the drive edge of the cathode from the competition between electron velocity advection and EHD magnetic exclusion waves. Magnetic pressure gradients at the hill periphery and EHD effects then establish a density gap propagating along the cathode with radial electron emission from its tip. Similar results are obtained under both multi-fluid and PIC modeling on the plasma components

  12. Simulation and test of the thermal behavior of pressure switch

    Science.gov (United States)

    Liu, Yifang; Chen, Daner; Zhang, Yao; Dai, Tingting

    2018-04-01

    Little, lightweight, low-power microelectromechanical system (MEMS) pressure switches offer a good development prospect for small, ultra-long, simple atmosphere environments. In order to realize MEMS pressure switch, it is necessary to solve one of the key technologies such as thermal robust optimization. The finite element simulation software is used to analyze the thermal behavior of the pressure switch and the deformation law of the pressure switch film under different temperature. The thermal stress releasing schemes are studied by changing the structure of fixed form and changing the thickness of the substrate, respectively. Finally, the design of the glass substrate thickness of 2.5 mm is used to ensure that the maximum equivalent stress is reduced to a quarter of the original value, only 154 MPa when the structure is in extreme temperature (80∘C). The test results show that after the pressure switch is thermally optimized, the upper and lower electrodes can be reliably contacted to accommodate different operating temperature environments.

  13. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  14. Simulation of a processor switching circuit with APLSV

    International Nuclear Information System (INIS)

    Dilcher, H.

    1979-01-01

    The report describes the simulation of a processor switching circuit with APL. Furthermore an APL function is represented to simulate a processor in an assembly like language. Both together serve as a tool for studying processor properties. By means of the programming function it is also possible to program other simulated processors. The processor is to be used in the processing of data in real time analysis that occur in high energy physics experiments. The data are already offered to the computer in digitalized form. A typical data rate is at 10 KB/ sec. The data are structured in blocks. The particular blocks are 1 KB wide and are independent from each other. Aprocessor has to decide, whether the block data belong to an event that is part of the backround noise and can therefore be forgotten, or whether the data should be saved for a later evaluation. (orig./WB) [de

  15. Optimizing switching frequency of the soliton transistor by numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izadyar, S., E-mail: S_izadyar@yahoo.co [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of); Niazzadeh, M.; Raissi, F. [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of)

    2009-10-15

    In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.

  16. Optimizing switching frequency of the soliton transistor by numerical simulation

    International Nuclear Information System (INIS)

    Izadyar, S.; Niazzadeh, M.; Raissi, F.

    2009-01-01

    In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.

  17. Asymmetric switching in a homodimeric ABC transporter: a simulation study.

    Directory of Open Access Journals (Sweden)

    Jussi Aittoniemi

    2010-04-01

    Full Text Available ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs.

  18. Analytical Modeling and Simulation of Four-Switch Hybrid Power Filter Working with Sixfold Switching Symmetry

    Czech Academy of Sciences Publication Activity Database

    Tlustý, J.; Škramlík, Jiří; Švec, J.; Valouch, Viktor

    2012-01-01

    Roč. 2012, č. 292178 (2012), s. 1-17 ISSN 1024-123X Institutional support: RVO:61388998 Keywords : analytical modeling * four-switch hybrid power filter * sixfold switching symmetry Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.383, year: 2012 http://www.hindawi.com/journals/mpe/2012/292178/

  19. OpenFlow Switching Performance using Network Simulator - 3

    OpenAIRE

    Sriram Prashanth, Naguru

    2016-01-01

    Context. In the present network inventive world, there is a quick expansion of switches and protocols, which are used to cope up with the increase in customer requirement in the networking. With increasing demand for higher bandwidths and lower latency and to meet these requirements new network paths are introduced. To reduce network load in present switching network, development of new innovative switching is required. These required results can be achieved by Software Define Network or Trad...

  20. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application

    OpenAIRE

    Yanik, G.; Isen, E.

    2015-01-01

    —This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...

  1. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  2. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  3. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase

    Science.gov (United States)

    Wang, Quan; Serban, Andrew J.; Wachter, Rebekka M.; Moerner, W. E.

    2018-03-01

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ˜0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  4. Micromagnetic Simulation of Strain-Assisted Current-Induced Magnetization Switching

    Directory of Open Access Journals (Sweden)

    H. B. Huang

    2016-01-01

    Full Text Available We investigated the effect of substrate misfit strain on the current-induced magnetization switching in magnetic tunnel junctions by combining micromagnetic simulation with phase-field microelasticity theory. Our results indicate that the positive substrate misfit strain can decrease the critical current density of magnetization switching by pushing the magnetization from out-of-plane to in-plane directions, while the negative strain pushes the magnetization back to the out-of-plane directions. The magnetic domain evolution is obtained to demonstrate the strain-assisted current-induced magnetization switching.

  5. A behavioral simulator for switched-capacitor sigma-delta modulator analog-to-digital converter

    International Nuclear Information System (INIS)

    San, H. Y.; Rezaul Hasan, S. M.

    1998-01-01

    In this paper, a PC-based simulator for state of the art oversampled switched-capacitor sigma-delta analog-to-digital converters is presented. The proposed simulator employs behavioral model of switched-capacitor integrator and non-linear quantizer to stimulate the system. The behavioral simulation of the integrator is also verified with SPICE. The simulator is fully integrated and standalone. It integrates an input netlist file interpreter, a behavioral simulator, a generic part library and a powerful post-processor to evaluate the SNR, SDR And TSNR. Both passive and active sensitivities can be investigated by the proposed simulator. The simulator is coded in C++, and is very fast

  6. A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    Science.gov (United States)

    Rao, Hariprasad Nannapaneni

    1989-01-01

    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.

  7. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  8. Simulated Switching Transients in the External Grid of Walney Offshore Wind Farm

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Johnsen, D. T.; Soerensen, T.

    2011-01-01

    . These switching operations were simulated using the EMT software PSCAD/EMTDC A number of parameters were varied in order to determine the most critical transients. Based on the results, it was concluded that the worst line-to-line transient overvoltage occurred in the DC05 and EF06 turbines, when a 25km cable......This paper presents the results of several simulations to assess the highest possible line-to-line overvoltage at the terminals of wind turbine converters after the switching operation of a cable or capacitor bank in the external grid of Walney 1, one of two phases of Walney Offshore Wind Farm...

  9. Micromagnetic simulation of energy consumption and excited eigenmodes in elliptical nanomagnetic switches

    International Nuclear Information System (INIS)

    Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.

    2014-01-01

    Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process

  10. Simulation Analysis of DC and Switching Impulse Superposition Circuit

    Science.gov (United States)

    Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang

    2018-03-01

    Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.

  11. Assessing methods for dealing with treatment switching in randomised controlled trials: a simulation study

    Directory of Open Access Journals (Sweden)

    Latimer Nicholas

    2011-01-01

    Full Text Available Abstract Background We investigate methods used to analyse the results of clinical trials with survival outcomes in which some patients switch from their allocated treatment to another trial treatment. These included simple methods which are commonly used in medical literature and may be subject to selection bias if patients switching are not typical of the population as a whole. Methods which attempt to adjust the estimated treatment effect, either through adjustment to the hazard ratio or via accelerated failure time models, were also considered. A simulation study was conducted to assess the performance of each method in a number of different scenarios. Results 16 different scenarios were identified which differed by the proportion of patients switching, underlying prognosis of switchers and the size of true treatment effect. 1000 datasets were simulated for each of these and all methods applied. Selection bias was observed in simple methods when the difference in survival between switchers and non-switchers were large. A number of methods, particularly the AFT method of Branson and Whitehead were found to give less biased estimates of the true treatment effect in these situations. Conclusions Simple methods are often not appropriate to deal with treatment switching. Alternative approaches such as the Branson & Whitehead method to adjust for switching should be considered.

  12. Acoustic noise simulation for switched reluctance motors with audible output p

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, P.O.; Blaabjerg, F.; Pedersen, J.K.; Kjaer, P.C. [Aalborg Univ., Inst. of Energy Technology (Denmark); Miller, T.J.E. [Univ. of Glasgow, SPEED Lab., Dep. of Electronics and Electrical Engineering (United Kingdom)

    1999-07-01

    Acoustic noise in switched reluctance motors is one of the last problems which have to be solved before a more widespread use will come. In order to design a low noise Switched Reluctance Motor drive, simulation tools are needed, and this paper describes a design programme where acoustic noise of electromagnetic origin can be estimated and even be heard by the motor-designer. The design program is based on a new, simple developed vibrational and acoustic model where the parameters can be calculated based on the geometry of the motor. The vibrational and acoustic model is verified in both time and frequency domain where vibrations and acoustic noise have been considered. (au)

  13. Micromagnetic simulation of thermally activated switching in fine particles

    International Nuclear Information System (INIS)

    Scholz, Werner; Schrefl, Thomas; Fidler, J.

    2001-01-01

    Effects of thermal activation are included in micromagnetic simulations by adding a random thermal field to the effective magnetic field. As a result, the Landau-Lifshitz equation is converted into a stochastic differential equation of Langevin type with multiplicative noise. The Stratonovich interpretation of the stochastic Landau-Lifshitz equation leads to the correct thermal equilibrium properties. The proper generalization of Taylor expansions to stochastic calculus gives suitable time integration schemes. For a single rigid magnetic moment the thermal equilibrium properties are investigated. It is found, that the Heun scheme is a good compromise between numerical stability and computational complexity. Small cubic and spherical ferromagnetic particles are studied

  14. IGBT Switching Characteristic Curve Embedded Half-Bridge MMC Modelling and Real Time Simulation Realization

    Science.gov (United States)

    Zhengang, Lu; Hongyang, Yu; Xi, Yang

    2017-05-01

    The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.

  15. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes

    Science.gov (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming

    2008-07-01

    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  16. Antiferroelectric polarization switching and dynamic scaling of energy storage: A Monte Carlo simulation

    Science.gov (United States)

    Huang, B. Y.; Lu, Z. X.; Zhang, Y.; Xie, Y. L.; Zeng, M.; Yan, Z. B.; Liu, J.-M.

    2016-05-01

    The polarization-electric field hysteresis loops and the dynamics of polarization switching in a two-dimensional antiferroelectric (AFE) lattice submitted to a time-oscillating electric field E(t) of frequency f and amplitude E0, is investigated using Monte Carlo simulation based on the Landau-Devonshire phenomenological theory on antiferroelectrics. It is revealed that the AFE double-loop hysteresis area A, i.e., the energy loss in one cycle of polarization switching, exhibits the single-peak frequency dispersion A(f), suggesting the unique characteristic time for polarization switching, which is independent of E0 as long as E0 is larger than the quasi-static coercive field for the antiferroelectric-ferroelectric transitions. However, the dependence of recoverable stored energy W on amplitude E0 seems to be complicated depending on temperature T and frequency f. A dynamic scaling behavior of the energy loss dispersion A(f) over a wide range of E0 is obtained, confirming the unique characteristic time for polarization switching of an AFE lattice. The present simulation may shed light on the dynamics of energy storage and release in AFE thin films.

  17. Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites

    Science.gov (United States)

    Quintana, Jorge A.; Lizanich, Paul J.

    1995-01-01

    The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.

  18. Simulation of Novel NEMS Contact Switch Using MRTD with Alterable Steps

    Directory of Open Access Journals (Sweden)

    Wen-Ge Yu

    2010-01-01

    Full Text Available In order to apply Radio Frequency Micro-nano-Electro-Mechanical System (MEMS/NEMS technologies to produce miniature, high isolation, low insertion loss, good linear characteristic, and low power consumption microwave switches, we present a novel NEMS switch with nanoscaling in this paper through the analysis of electrics and mechanics of the RF switch. The measured data show the pull-in voltage of 24.1 V and the good RF performance of the insertion loss of below −10 dB at 0 GHz on the “on” state, and the isolation of beyond –40 dB at 0–40 GHz on the “off” state, indicating that the witch is suitable for the 0–40 GHz applications. Our analysis shows that the NEMS switch not only can work in wide frequency bands, but also has better isolation performance in lower frequency, thus extending the application to the lower band. The Haar-wavelet-based multiresolution time domain (MRTD with compactly supported scaling function is used for modeling and analyzing the nanomachine switch for the first time. The major advantage of the MRTD algorithms is their capability to develop real-time time and space adaptive grids through the efficient thresholding of the wavelet coefficients. The error between the measured and computed results is below 5%, this indicated that the Haar-wavelet-based multiresolution time domain was suitable for simulating the nano-scaling contact switch.

  19. A Fourier analysis for a fast simulation algorithm. [for switching converters

    Science.gov (United States)

    King, Roger J.

    1988-01-01

    This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.

  20. Simulation and optimization of a totally free flexible RF MEMS switch

    International Nuclear Information System (INIS)

    Lorphelin, N; Robin, R; Rollier, A S; Touati, S; Kanciurzewski, A; Millet, O; Segueni, K

    2009-01-01

    This paper presents the principle and the modeling of an innovative RF MEMS switch designed for low voltage applications, especially for mobile phones. This switch is based on a totally free flexible membrane, which is supported by pillars and actuated electrostatically by two pairs of electrodes, enabling two forced states. The main advantage of this structure is the use of a lever effect in order to provide high deflections above the transmission line even with a small gap, which explains why the actuation voltage is small compared to classical MEMS switches. The Euler–Bernoulli beam theory is applied to build an analytical 1D model with boundary conditions, which depend on the type of actuation and if pull-in is reached or not. This model is discretized and solved by the finite difference method. Then, a more accurate 3D finite element method is applied to add corrections to the first model. Once this modeling approach is validated, it is used to determine adequate geometrical parameters for the desired switch specifications. Mechanical characterizations on processed components show a pull-in voltage about 7.5 V, which is in good agreement with simulated values. RF measurements show excellent performances

  1. Particle-in-cell simulations of plasma opening switch with external magnetic field

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju

    2003-01-01

    Fully electromagnetic particle-in-cell simulations are performed to study the effects of an external magnetic field on coaxial plasma opening switch (POS). The simulation results show that POS opening performance can be significantly improved only when external longitudinal magnetic field coils are placed at the cathode side, and an additional azimuthal magnetic field is effective whether the central electrode is of positive or negative polarity. Voltage multiplication coefficient K rises with the additional magnetic field increasing till the electron current is completely magnetically insulated during the opening of POS

  2. Multiscale simulation of thermal disruption in resistance switching process in amorphous carbon

    International Nuclear Information System (INIS)

    Popov, A M; Nikishin, N G; Shumkin, G N

    2015-01-01

    The switching of material atomic structure and electric conductivity is used in novel technologies of making memory on the base of phase change. The possibility of making memory on the base of amorphous carbon is shown in experiment [1]. Present work is directed to simulation of experimentally observed effects. Ab initio quantum calculations were used for simulation of atomic structure changes in amorphous carbon [2]. These simulations showed that the resistance change is connected with thermally induced effects. The temperature was supposed to be the function of time. In present paper we propose a new multiscale, self-consistent model which combines three levels of simulation scales and takes into account the space and time dependencies of the temperature. On the first level of quantum molecular dynamic we provide the calculations of phase change in atomic structure with space and time dependence of the temperature. Nose-Hover thermostats are used for MD simulations to reproduce space dependency of the temperature. It is shown that atomic structure is localized near graphitic layers in conducting dot. Structure parameter is used then on the next levels of the modeling. Modified Ehrenfest Molecular Dynamics is used on the second level. Switching evolution of electronic subsystem is obtained. In macroscopic scale level the heat conductivity equation for continuous media is used for calculation space-time dependence of the temperature. Joule heat source depends on structure parameter and electric conductivity profiles obtained on previous levels of modeling. Iterative procedure is self-consistently repeated combining three levels of simulation. Space localization of Joule heat source leads to the thermal disruption. Obtained results allow us to explain S-form of the Volt-Ampere characteristic observed in experiment. Simulations were performed on IBM Blue Gene/P supercomputer at Moscow State University. (paper)

  3. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

  4. The Numerical Simulation of the Nanosecond Switching of a p-SOS Diode

    Science.gov (United States)

    Podolska, N. I.; Lyublinskiy, A. G.; Grekhov, I. V.

    2017-12-01

    Abrupt high-density reverse current interruption has been numerically simulated for switching from forward to reverse bias in a silicon p + P 0 n + structure ( p-SOS diode). It has been shown that the current interruption in this structure occurs as a result of the formation of two dynamic domains of a strong electric field in regions in which the free carrier concentration substantially exceeds the concentration of the doping impurity. The first domain is formed in the n + region at the n + P 0 junction, while the second domain is formed in the P 0 region at the interface with the p + layer. The second domain expands much faster, and this domain mainly determines the current interruption rate. Good agreement is achieved between the simulation results and the experimental data when the actual electric circuit determining the electron-hole plasma pumping in and out is accurately taken into account.

  5. Modeling, Simulation, and Experiment of Switched Reluctance Ocean Current Generator System

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2013-01-01

    Full Text Available This paper presents nonlinear simulation model of switched reluctance (SR ocean current generator system on MATLAB/SIMULINK with describing the structure of generator system. The developed model is made up of main model, rotor position calculation module, controller module, gate module, power converter module, phase windings module, flux-linkage module, torque module, and power calculation module. The magnetization curves obtained by two-dimensional finite-element electromagnetic field calculation and the conjugated magnetic energy graphics obtained from the three-dimensional graphics of flux linkage are stored in the “Lookup Table” modules on MATLAB/SIMULINK. The hardware of the developed three-phase 12/8 structure SR ocean current generator system prototype with the experimental platform is presented. The simulation of the prototype is performed by the developed models, and the experiments have been carried out under the same condition with different output power, turn-off angle, and rotor speed. The simulated phase current waveforms agree well with the tested phase current waveforms experimentally. The simulated output voltage curves agree well with the tested output voltage curves experimentally. It is shown that the developed nonlinear simulation model of the three-phase 12/8 structure SR ocean current generator system is valid.

  6. Fluid simulation of the conduction phase of the plasma erosion opening switch

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Mosher, D.; Ottinger, P.F.

    1987-01-01

    The conduction phase of the plasma erosion openings switch (PEOS) is studied using a 1 1/2-D electromagnetic two-fluid code. The focus of this work is on understanding how two effects, a current-limiting model of electron emission, and the magnetic insulation of electrons at the cathode, determine current conduction in the plasma. Simulations are performed in the parameter regimes of the Gamble I, POP, and PBFA II pulsed power generators, and previous low-density, short-rise time simulations of the PEOS. Fluid code results are compared to a 1-D analytic theory and to the Gamble I and POP experiments. Good agreement between theory and simulation, but mixed agreement between simulation and experiment is found. Experimental Β-field measurements on POP show weaker j x Β compression than the simulation. Current penetration and plasma current channels qualitatively similar to experimental observation are found in the Gamble I regime. However, magnetic insulation of electrons emitted from the cathode bunches the electron flow into narrower current channels than observed experimentally. In several cases, the presence of an electron-scattering or energy-loss mechanism near the cathode must be invoked to overcome magnetic insulation and widen the current channels

  7. Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point

    International Nuclear Information System (INIS)

    Cai Haogang; Ding Guifu; Yang Zhuoqing; Su Zhijuan; Zhou Jiansheng; Wang Hong

    2008-01-01

    A novel inertial switch based on a micro-electro-mechanical system (MEMS) was designed, which consists of three main parts: a proof mass as the movable electrode, a cross beam as the stationary electrode and a movable contact point to prolong the contact time. A MATLAB/Simulink model, which had been verified by comparison with ANSYS transient simulation, was built to simulate the dynamic response, based on which the contact-enhancing mechanism was confirmed and the dependence of threshold acceleration on the proof mass thickness was studied. The simulated dynamic responses under various accelerations exhibit satisfactory device behaviors: the switch-on time is prolonged under transient acceleration; the switch-on state is more continuous than the conventional design under long lasting acceleration. The inertial micro-switch was fabricated by multilayer electroplating technology and then tested by a drop hammer experiment. The test results indicate that the contact effect was improved significantly and a steady switch-on time of over 50 µs was observed under half-sine wave acceleration with 1 ms duration, in agreement with the dynamic simulation

  8. Two-dimensional single fluid MHD simulations of plasma opening switches

    International Nuclear Information System (INIS)

    Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.

    1989-01-01

    Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab

  9. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Fang, E-mail: jfwang@gordonlifescience.org [Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235 (China); Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 (United States); Chou, Kuo-Chen [Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 (United States)

    2009-12-18

    Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.

  10. Design and Simulation of an RF-MEMS Switch and analysis of its Electromagnetic aspect in realtion to stress

    Directory of Open Access Journals (Sweden)

    Amna Riaz

    2018-01-01

    Full Text Available Microelectromechanical Systems (MEMS are devices made up of several electrical and mechanical components. They consist of mechanical functions (sensing, thermal, inertial and electrical functions (switching, decision making on a single chip made by microfabrication methods. These chips exhibit combined properties of the two functions. The size of system has characteristic dimensions less than 1mm but more than 1μm. The configuration of these components determine the final deliverables of the switch. MEMS can be designed to meet user requirements on any level from microbiological application such as biomedical transducers or tissue engineering, to mechanical systems such as microfluidic diagnoses or chemical fuel cells. The low cost, small mass and minimal power consumption of the MEMS makes it possible to readily integrate to any kind of system in any environment. MEMS are faster, better and cheaper. They offer excellent electrical performances. MEMS working at Radio frequencies are RF MEMS. RF-MEMS switches find huge market in the modern telecommunication networks, biological, automobiles, satellites and defense systems because of their lower power consumptions at relatively higher frequencies and better electrical performances. But the reliability is the major hurdle in the fate of RF MEMS switches. Reliability mainly arises due to the presence of residual stresses, charging current, fatigue and creep and contact degradation. The presence of residual stresses in switches the S-Parameters of the switches are affected badly and the residual stress affects the final planarity of the fabricated structure. Design and simulation of an RF-MEMS switch is proposed considering the residual stresses in both on and off state. The operating frequency band is being optimized and the best possible feasible fabrication technique for the proposed switch design is being analyzed. S-Parameters are calculated and a comparison for the switches with stress and

  11. A numerical simulation model of valence-change-based resistive switching

    OpenAIRE

    Marchewka, Astrid

    2017-01-01

    Due to their superior scalability and performance, nanoscale resistive switches based on the valence-change mechanism are considered promising candidates for future nonvolatile memory and logic applications. These devices are metal-oxide-metal structures that can be reversibly switched between different resistance states by electrical signals. Typically, they contain one Schottky-like and one ohmic-like metal-oxide contact and exhibit bipolar switching. The switching mechanism and the initial...

  12. Adjusting for treatment switching in randomised controlled trials - A simulation study and a simplified two-stage method.

    Science.gov (United States)

    Latimer, Nicholas R; Abrams, K R; Lambert, P C; Crowther, M J; Wailoo, A J; Morden, J P; Akehurst, R L; Campbell, M J

    2017-04-01

    Estimates of the overall survival benefit of new cancer treatments are often confounded by treatment switching in randomised controlled trials (RCTs) - whereby patients randomised to the control group are permitted to switch onto the experimental treatment upon disease progression. In health technology assessment, estimates of the unconfounded overall survival benefit associated with the new treatment are needed. Several switching adjustment methods have been advocated in the literature, some of which have been used in health technology assessment. However, it is unclear which methods are likely to produce least bias in realistic RCT-based scenarios. We simulated RCTs in which switching, associated with patient prognosis, was permitted. Treatment effect size and time dependency, switching proportions and disease severity were varied across scenarios. We assessed the performance of alternative adjustment methods based upon bias, coverage and mean squared error, related to the estimation of true restricted mean survival in the absence of switching in the control group. We found that when the treatment effect was not time-dependent, rank preserving structural failure time models (RPSFTM) and iterative parameter estimation methods produced low levels of bias. However, in the presence of a time-dependent treatment effect, these methods produced higher levels of bias, similar to those produced by an inverse probability of censoring weights method. The inverse probability of censoring weights and structural nested models produced high levels of bias when switching proportions exceeded 85%. A simplified two-stage Weibull method produced low bias across all scenarios and provided the treatment switching mechanism is suitable, represents an appropriate adjustment method.

  13. Simulation of medical Q-switch flash-pumped Er:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanlin; Huang Chuyun; Yao Yucheng; Zou Xiaolin, E-mail: Wangyanlin0@126.com, E-mail: chuyunh@163.com, E-mail: yyuch@soho.com, E-mail: zouxiaol@126.com [Physics school, Hubei University of Technology, Wuhan, China 430068 (China)

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm{sup -1}. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  14. NUMERICAL SIMULATION OF Q-SWITCHED Nd: YAG LASER WITH UNSTABLE RESONATOR AND OUTPUT VARIABLE REFLECTIVITY MIRROR

    Directory of Open Access Journals (Sweden)

    I. N. Dubinkin

    2017-05-01

    Full Text Available The article deals with a method of numerical simulation of laser oscillation in the radially symmetric unstable resonator with an output variable reflectivity mirror (VRM. Research results of the VRM parameters influence on the spatial and energy properties of the laser radiation are obtained. Numerical simulation of laser oscillation in active and passive Q-switching and comparative analysis of the spatial and energy radiation characteristics is done for these modes.

  15. Switching Operation Simulations in a Large Offshore Wind Farm with Use of Parametric Variation and Frequency Domain Severity Factor

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana, Ivan

    2012-01-01

    Transient voltages resulting from switching operations depend on an interaction between the breaker, the transformer, cables and a neighbourhood grid and imply a risk for the transformer and other components. In this paper the Frequency Domain Severity Factor (FDSF) is used to assess the severity...... of electrical stress imposed on wind turbine transformers by voltage waveforms produced during switching operations. The method is implemented in Matlab together with automatic and systematic variation of parameters. Simulations of a radial energization are performed on a 90MVA offshore wind farm model...

  16. Computer simulation of the behaviour of Julia sets using switching processes

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Ashish [Department of Computer Science and Engineering, G.B. Pant Engineering College, Pauri Garhwal 246001 (India)], E-mail: ashish_ne@yahoo.com; Rani, Mamta [Department of Computer Science, Galgotia College of Engineering and Technology, UP Technical University, Knowledge Park-II, Greater Noida, Gautam Buddha Nagar, UP (India)], E-mail: vedicmri@sancharnet.in; Mahanti, P.K. [Department of CSAS, University of New Brunswick, Saint Johhn, New Brunswick, E2L4L5 (Canada)], E-mail: pmahanti@unbsj.ca

    2008-08-15

    Inspired by the study of Julia sets using switched processes by Lakhtakia and generation of new fractals by composite functions by Shirriff, we study the effect of switched processes on superior Julia sets given by Rani and Kumar. Further, symmetry for such processes is also discussed in the paper.

  17. Computer simulation of the behaviour of Julia sets using switching processes

    International Nuclear Information System (INIS)

    Negi, Ashish; Rani, Mamta; Mahanti, P.K.

    2008-01-01

    Inspired by the study of Julia sets using switched processes by Lakhtakia and generation of new fractals by composite functions by Shirriff, we study the effect of switched processes on superior Julia sets given by Rani and Kumar. Further, symmetry for such processes is also discussed in the paper

  18. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure.

    Science.gov (United States)

    Lee, Eric; Oki, Lorence R

    2013-09-15

    Slow sand filtration has been shown to effectively reduce Phytophthora zoospores in irrigation water. This experiment tested the reduction of Phytophthora colony forming units (CFUs) by slow sand filtration systems after switching the pathogen contaminating plant leachate from Fusarium to Phytophthora and the resilience of the system to a short period without water, as might be caused by a pump failure. The slow sand filtration system greatly reduced Phytophthora CFUs and transmission after switching the pathogens. In addition, Phytophthora reduction by the slow sand filter was equally effective before and after the simulated pump failure. Reduction of Fusarium was not seen by the SSFs, before or after the simulated pump failure. The results suggest that slow sand filters are effective at reducing larger organisms, such as Phytophthora zoospores, even after a pump failure or a change in pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A Survey on Modeling and Simulation of MEMS Switches and Its Application in Power Gating Techniques

    OpenAIRE

    Pramod Kumar M.P; A.S. Augustine Fletcher

    2014-01-01

    Large numbers of techniques have been developed to reduce the leakage power, including supply voltage scaling, varying threshold voltages, smaller logic banks, etc. Power gating is a technique which is used to reduce the static power when the sleep transistor is in off condition. Micro Electro mechanical System (MEMS) switches have properties that are very close to an ideal switch, with infinite off-resistance due to an air gap and low on-resistance due to the ohmic metal to m...

  20. Contribution of rivaroxaban to the international normalized ratio when switching to warfarin for anticoagulation as determined by simulation studies.

    Science.gov (United States)

    Siegmund, Hans-Ulrich; Burghaus, Rolf; Kubitza, Dagmar; Coboeken, Katrin

    2015-06-01

    This study evaluated the influence of rivaroxaban 20 mg once daily on international normalized ratio (INR) during the co-administration period when switching from rivaroxaban to warfarin. We developed a calibrated coagulation model that was qualified with phase I clinical data. Prothrombin time and INR values were simulated by use of phospholipid concentrations that matched Neoplastin Plus® and Innovin® reagents. To simulate the combined effects of rivaroxaban and warfarin on INR during switching, warfarin initiation was simulated by adjusting the magnitude of the warfarin effect to reach the desired target INRs over the course of 21 days. The warfarin effect values (obtained every 6 h) and the desired rivaroxaban plasma concentrations were used. Nomograms were generated from rivaroxaban induced increases in INR. The simulation had good prediction quality. Rivaroxaban induced increases in the total INR from the warfarin attributed INR were seen, which increased with rivaroxaban plasma concentration. When the warfarin only INR was 2.0-3.0, the INR contribution of rivaroxaban with Neoplastin Plus® was 0.5-1.2, decreasing to 0.3-0.6 with Innovin® at median trough rivaroxaban plasma concentrations (38 μg l(-1) ). The data indicate that measuring warfarin induced changes in INR are best performed at trough rivaroxaban concentrations (24 h after rivaroxaban dosing) during the co-administration period when switching from rivaroxaban to warfarin. Furthermore, Innovin® is preferable to Neoplastin Plus® because of its substantially lower sensitivity to rivaroxaban, thereby reducing the influence of rivaroxaban on the measured INR. © 2014 The British Pharmacological Society.

  1. Simulation and analysis of transient over voltages due to capacitor banks switching

    International Nuclear Information System (INIS)

    Jadid, Sh.; Yazdanpanah, D.

    2002-01-01

    The switching of any capacitor bank produces over voltages. Transient overvoltage will always occur in the switching device, the switching of shunt capacitor bank has become the most common source of transient voltage on power systems. Transient over voltages due to switching the capacitor bands hurt not only to the capacitor banks, but also to other equipment, such as circuit breakers and transformers. Several methods are available for reducing energising transients. These devices include pre-insertion resistors, pre-insertion inductors,synchronous closing, and MOV arresters. However, not all are practical or economical. The other important problem is existence of capacitor banks in presence of harmonics.Capacitors do not produce harmonics;however,the addition of capacitors to the electrical system will change the frequency response characteristics of the system will change the frequency response characteristics of the system, and in some cases can result in magnification of the voltage and current distortion in the system. In other word in presence of harmonic-producing loads,the capacitors used for power factor correction,may cause parallel resonance with the system inductance, so they increase the total harmonic distortion of voltage and current waveforms

  2. Generalized Simulation Model for a Switched-Mode Power Supply Design Course Using MATLAB/SIMULINK

    Science.gov (United States)

    Liao, Wei-Hsin; Wang, Shun-Chung; Liu, Yi-Hua

    2012-01-01

    Switched-mode power supplies (SMPS) are becoming an essential part of many electronic systems as the industry drives toward miniaturization and energy efficiency. However, practical SMPS design courses are seldom offered. In this paper, a generalized MATLAB/SIMULINK modeling technique is first presented. A proposed practical SMPS design course at…

  3. A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Ji-Hyun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of); Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Lee, Dongsoo [Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Jeon, Sanghun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of)

    2015-11-16

    A model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO{sub 2}/TaO{sub x} BL-ReRAM that can be explained by the two types of traps, i.e., shallow and deep traps in ZrO{sub 2}.

  4. Monte Carlo simulations of an Ising-like model for photoinduced spin-state switching in nanoparticles of transition metal complexes

    International Nuclear Information System (INIS)

    Kawamoto, Tohru; Abe, Shuji

    2005-01-01

    We investigated the switching behavior of small particles of an Ising-like model under constant excitation by means of Monte Carlo simulations to study photoinduced spinstate switching in nanoparticles of transition metal complexes. The threshold intensity required for that switching becomes drastically small in small particles with diameter of less than 10 pseudospins. This lower intensity results enhancement of the pseudospin fluctuation at the surface in the small particles. Our result might originate the increase of the photoinduced magnetization in nanoparticles of a Mo-Cu cyanide

  5. Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium

    Science.gov (United States)

    Alexandrov, A. L.; Schweigert, I. V.

    2018-05-01

    The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.

  6. Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region.

    Directory of Open Access Journals (Sweden)

    Ambuj Kumar

    Full Text Available Ras-related C3 botulinum toxin substrate 1 (RAC1 is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RAC(F28L is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue.

  7. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  8. Simulator comparison of thumball, thumb switch, and touch screen input concepts for interaction with a large screen cockpit display format

    Science.gov (United States)

    Jones, Denise R.; Parrish, Russell V.

    1990-01-01

    A piloted simulation study was conducted comparing three different input methods for interfacing to a large screen, multiwindow, whole flight deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side arm controller. The multifunction control throttle and stick (MCTAS) concept employed a thumb switch located in the throttle handle. The touch screen concept provided data entry through a capacitive touch screen installed on the display surface. The objective and subjective results obtained indicate that, with present implementations, the thumball concept was the most appropriate for interfacing with aircraft systems/subsystems presented on a large screen display. Not unexpectedly, the completion time differences between the three concepts varied with the task being performed, although the thumball implementation consistently outperformed the other two concepts. However, pilot suggestions for improved implementations of the MCTAS and touch screen concepts could reduce some of these differences.

  9. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    Science.gov (United States)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-01

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  10. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator.

    Science.gov (United States)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-28

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  11. Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion.

    Science.gov (United States)

    Zininga, Tawanda; Achilonu, Ikechukwu; Hoppe, Heinrich; Prinsloo, Earl; Dirr, Heini W; Shonhai, Addmore

    2016-05-01

    The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.

  12. Simulation of thermal reset transitions in resistive switching memories including quantum effects

    Energy Technology Data Exchange (ETDEWEB)

    Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B. [Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s/n, 18071 Granada (Spain); González, M. B.; Campabadal, F. [Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra (Spain); Suñé, J.; Miranda, E. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra Cerdanyola del Vallès 08193 (Spain); Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avd. Fuentenueva s/n, 18071 Granada (Spain)

    2014-06-07

    An in-depth study of reset processes in RRAMs (Resistive Random Access Memories) based on Ni/HfO{sub 2}/Si-n{sup +} structures has been performed. To do so, we have developed a physically based simulator where both ohmic and tunneling based conduction regimes are considered along with the thermal description of the devices. The devices under study have been successfully fabricated and measured. The experimental data are correctly reproduced with the simulator for devices with a single conductive filament as well as for devices including several conductive filaments. The contribution of each conduction regime has been explained as well as the operation regimes where these ohmic and tunneling conduction processes dominate.

  13. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  14. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering

    2004-07-01

    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  15. Application of users’ light-switch stochastic models to dynamic energy simulation

    DEFF Research Database (Denmark)

    Camisassi, V.; Fabi, V.; Andersen, Rune Korsholm

    2015-01-01

    deterministic inputs, due to the uncertain nature of human behaviour. In this paper, new stochastic models of users’ interaction with artificial lighting systems are developed and implemented in the energy simulation software IDA ICE. They were developed from field measurements in an office building in Prague......The design of an innovative building should include building overall energy flows estimation. They are principally related to main six influencing factors (IEA-ECB Annex 53): climate, building envelope and equipment, operation and maintenance, occupant behaviour and indoor environment conditions...

  16. Adaptive switching of interaction potentials in the time domain: an extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back.

    Science.gov (United States)

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2015-06-09

    An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.

  17. Study of simulations q-switching and mode-locking in Nd:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2007-12-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber.(author)

  18. Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time

    International Nuclear Information System (INIS)

    Wang, Yang; Yang, Zhuoqing; Xu, Qiu; Chen, Wenguo; Ding, Guifu; Zhao, Xiaolin

    2015-01-01

    This paper reports an inertia switch with a flexible carbon nanotubes/copper (CNTs/Cu) composite array layer between movable and fixed electrodes, which achieves a longer contact time compared to the traditional design using rigid-to-rigid impact between electrodes. The CNTs/Cu layer is fabricated using the composite electroplating method, and the whole device is completed by multi-layer metal electroplating based on the micro-electro-mechanical systems (MEMS) process. The dynamic responses of the designed inertia switch and the contact impact between a single CNT and a fixed electrode/another CNT have both been simulated by the ANSYS finite-element-method (FEM). It is shown that the contact time of the designed inertia switch is about 100 µs under the applied 80 g half-sine-shaped acceleration in the sensing direction. Finally, the fabricated MEMS inertia switch with the flexible CNTs/Cu composite array layer between electrodes has been evaluated by a dropping hammer system. The test contact time is about112 µs, which has a good agreement with the simulation and is much longer than that of the traditional design. (paper)

  19. A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions

    Directory of Open Access Journals (Sweden)

    Lan-Rong Dung

    2016-01-01

    Full Text Available A new battery simulator based on a hybrid model is proposed in this paper for dynamic discharging behavior and runtime predictions in existing electronic simulation environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their battery-powered electronic systems. The hybrid battery model combines a diffusion model and a switching overpotential model, which automatically switches overpotential resistance mode or overpotential voltage mode to accurately describe the voltage difference between battery electro-motive force (EMF and terminal voltage. Therefore, this simulator can simply run in an electronic simulation software with less computational efforts and estimate battery performances by further considering nonlinear capacity effects. A linear extrapolation technique is adopted for extracting model parameters from constant current discharging tests, so the EMF hysteresis problem is avoided. For model validation, experiments and simulations in MATLAB and PSIM environments are conducted with six different profiles, including constant loads, an interrupted load, increasing and decreasing loads and a varying load. The results confirm the usefulness and accuracy of the proposed simulator. The behavior and runtime prediction errors can be as low as 3.1% and 1.2%, respectively.

  20. A 3D kinetic Monte Carlo simulation study of resistive switching processes in Ni/HfO2/Si-n+-based RRAMs

    International Nuclear Information System (INIS)

    Aldana, S; García-Fernández, P; Jiménez-Molinos, F; Gómez-Campos, F; Roldán, J B; Rodríguez-Fernández, Alberto; Romero-Zaliz, R; González, M B; Campabadal, F

    2017-01-01

    A new RRAM simulation tool based on a 3D kinetic Monte Carlo algorithm has been implemented. The redox reactions and migration of cations are developed taking into consideration the temperature and electric potential 3D distributions within the device dielectric at each simulation time step. The filamentary conduction has been described by obtaining the percolation paths formed by metallic atoms. Ni/HfO 2 /Si-n + unipolar devices have been fabricated and measured. The different experimental characteristics of the devices under study have been reproduced with accuracy by means of simulations. The main physical variables can be extracted at any simulation time to clarify the physics behind resistive switching; in particular, the final conductive filament shape can be studied in detail. (paper)

  1. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  2. Synchronization Between Two Different Switched Chaotic Systems By Switching Control

    Directory of Open Access Journals (Sweden)

    Du Li Ming

    2016-01-01

    Full Text Available This paper is concerned with the synchronization problem of two different switched chaotic systems, considering the general case that the master-slave switched chaotic systems have uncertainties. Two basic problems are considered: one is projective synchronization of switched chaotic systems under arbitrary switching; the other is projective synchronization of switched chaotic systems by design of switching when synchronization cannot achieved by using any subsystems alone. For the two problems, common Lyapunov function method and multiple Lyapunov function method are used respectively, an adaptive control scheme has been presented, some sufficient synchronization conditions are attainted, and the switching signal is designed. Finally, the numerical simulation is provide to show the effectiveness of our method.

  3. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  4. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications

    Science.gov (United States)

    Panda, D. K.; Lenka, T. R.

    2017-06-01

    An enhancement mode p-GaN gate AlGaN/GaN HEMT is proposed and a physics based virtual source charge model with Landauer approach for electron transport has been developed using Verilog-A and simulated using Cadence Spectre, in order to predict device characteristics such as threshold voltage, drain current and gate capacitance. The drain current model incorporates important physical effects such as velocity saturation, short channel effects like DIBL (drain induced barrier lowering), channel length modulation (CLM), and mobility degradation due to self-heating. The predicted I d-V ds, I d-V gs, and C-V characteristics show an excellent agreement with the experimental data for both drain current and capacitance which validate the model. The developed model was then utilized to design and simulate a single-pole single-throw (SPST) RF switch.

  5. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    Science.gov (United States)

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  6. Simulation and Experimental Testing of an Actuator for a Fast Switching On-Off Valve Suitable to Efficient Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Bech, Michael Møller

    2014-01-01

    Digital Displacement (DD) fluid power machines are upcoming technology, improving the efficiency compared to traditional variable displacement machines, especially at low displacements where currently available fluid power pumps/motors suffer from mediocre efficiency. This efficiency improvement...... is made possible using independent electronically controlled seat valves for each pressure chamber, which is controlled corresponding to the rotation of the crankshaft. By control of these pressure chamber seat valves, the total displacement are controlled in discrete steps, and the pressure chambers...... not contributing to the displacement are not pressurized, which has been shown to improve the efficiency. To make this type of displacement control possible and energy efficient, the seat valves must be fast switching (ms range) and exhibit a very low pressure loss during operation, setting strict requirements...

  7. A New Application of the Multi-Resonant Zero-Current Switching Buck Converter: Analysis and Simulation in a PMSG Based WECS

    Directory of Open Access Journals (Sweden)

    Tiara Freitas

    2015-09-01

    Full Text Available A new application of the three-phase buck-resonant converter is presented in this paper. It is shown that the analyzed converter is suitable to operate as the rectifier stage in low power wind energy conversion systems (WECS based on permanent magnet synchronous generators (PMSG with variable wind speed. As main features, it presents a single controlled switch, simple implementation and control, and operates with a high power factor and low harmonic distortion over all wind speed ranges. The converter topology, its design equations and its operation are presented, as well as the simulation results of the PMSG based conversion system. From the analysis carried out in the paper it is concluded that the converter is indicated to be employed in distributed generation and hybrid systems where wind generation is associated with other sources.

  8. An in-depth description of bipolar resistive switching in Cu/HfOx/Pt devices, a 3D kinetic Monte Carlo simulation approach

    Science.gov (United States)

    Aldana, S.; Roldán, J. B.; García-Fernández, P.; Suñe, J.; Romero-Zaliz, R.; Jiménez-Molinos, F.; Long, S.; Gómez-Campos, F.; Liu, M.

    2018-04-01

    A simulation tool based on a 3D kinetic Monte Carlo algorithm has been employed to analyse bipolar conductive bridge RAMs fabricated with Cu/HfOx/Pt stacks. Resistive switching mechanisms are described accounting for the electric field and temperature distributions within the dielectric. The formation and destruction of conductive filaments (CFs) are analysed taking into consideration redox reactions and the joint action of metal ion thermal diffusion and electric field induced drift. Filamentary conduction is considered when different percolation paths are formed in addition to other conventional transport mechanisms in dielectrics. The simulator was tuned by using the experimental data for Cu/HfOx/Pt bipolar devices that were fabricated. Our simulation tool allows for the study of different experimental results, in particular, the current variations due to the electric field changes between the filament tip and the electrode in the High Resistance State. In addition, the density of metallic atoms within the CF can also be characterized along with the corresponding CF resistance description.

  9. Estimation of the Required Modeling Depth for the Simulation of Cable Switching in a Cable-based Network

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth; Balle Holst, Per

    2012-01-01

    . If the area is too large, the simulation requires a long period of time and numerical problems are more likely to exist. This paper proposes a method that can be used to estimate the depth of the modeling area using the grid layout, which can be obtained directly from a PSS/E file, or equivalent...

  10. Validation of a Switching Operation in the External Grid of Gunfleet Sand Offshore Wind Farm by Means of EMT Simulations

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Okholm, J.; Holbøll, Joachim

    2011-01-01

    using PSCAD/EMTDC. The simulation model then was modified to investigate the influence of a capacitor bank connection. It was found that for this kind of transients, the amount of wind turbines (wind turbine transformers, high frequency filters and wind turbine converter) included in the model makes...

  11. Contribution to the electrothermal simulation in power electronics. Development of a simulation methodology applied to switching circuits under variable operating conditions; Contribution a la simulation electrothermique en electronique de puissance. Developpement d`une methode de simulation pour circuits de commutation soumis a des commandes variables

    Energy Technology Data Exchange (ETDEWEB)

    Vales, P.

    1997-03-19

    In modern hybrid or monolithic integrated power circuits, electrothermal effects can no longer be ignored. A methodology is proposed in order to simulate electrothermal effects in power circuits, with a significant reduction of the computation time while taking into account electrical and thermal time constants which are usually widely different. A supervising program, written in Fortran, uses system call sequences and manages an interactive dialog between a fast thermal simulator and a general electrical simulator. This explicit coupling process between two specific simulators requires a multi-task operating system. The developed software allows for the prediction of the electrothermal power dissipation drift in the active areas of components, and the prediction of thermally-induced coupling effects between adjacent components. An application to the study of hard switching circuits working under variable operating conditions is presented

  12. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  13. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  14. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  15. Multilevel inverter switching controller using a field programmable ...

    African Journals Online (AJOL)

    Conducted simulation and measurement results verified and validated the switching controller design functionality and requirement. Keywords: multilevel inverter, switching controller; FPGA, general purpose processor (GPP);digital signal processing (DSP); IGBT; Verilog, power consumption; harmonic elimination (SHE).

  16. Demonstration of Ultra-Fast Switching in Nano metallic Resistive Switching Memory Devices

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Interdependency of switching voltage and time creates a dilemma/obstacle for most resistive switching memories, which indicates low switching voltage and ultra-fast switching time cannot be simultaneously achieved. In this paper, an ultra-fast (sub-100 ns) yet low switching voltage resistive switching memory device (“nano metallic ReRAM”) was demonstrated. Experimental switching voltage is found independent of pulse width (intrinsic device property) when the pulse is long but shows abrupt time dependence (“cliff”) as pulse width approaches characteristic RC time of memory device (extrinsic device property). Both experiment and simulation show that the onset of cliff behavior is dependent on physical device size and parasitic resistance, which is expected to diminish as technology nodes shrink down. We believe this study provides solid evidence that nano metallic resistive switching memory can be reliably operated at low voltage and ultra-fast regime, thus beneficial to future memory technology.

  17. Optical switches based on surface plasmons

    International Nuclear Information System (INIS)

    Chen Cong; Wang Pei; Yuan Guanghui; Wang Xiaolei; Min Changjun; Deng Yan; Lu Yonghua; Ming Hai

    2008-01-01

    Great attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches. (authors)

  18. Ferroelectric switching of elastin

    Science.gov (United States)

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  19. Switched on!

    CERN Multimedia

    2008-01-01

    Like a star arriving on stage, impatiently followed by each member of CERN personnel and by millions of eyes around the world, the first beam of protons has circulated in the LHC. After years in the making and months of increasing anticipation, today the work of hundreds of people has borne fruit. WELL DONE to all! Successfully steered around the 27 kilometres of the world’s most powerful particle accelerator at 10:28 this morning, this first beam of protons circulating in the ring marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. "It’s a fantastic moment," said the LHC project leader Lyn Evans, "we can now look forward to a new era of understanding about the origins and evolution of the universe". Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronize...

  20. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  1. Análisis por medio de la simulación de un accionamiento con motor de reluctancia conmutada; Analysis by Means of Simulation of a Switched Reluctance Machines Drive

    Directory of Open Access Journals (Sweden)

    Javier Muñoz Álvarez

    2011-02-01

    Full Text Available Se presentan los fundamentos teóricos que modelan el comportamiento de los motores de reluctancia conmutaday sus accionamientos. Se exponen las características constructivas generales, las ecuaciones diferencialesque constituyen el modelo matemático del motor y se describen los bloques en Simulink utilizados para lasimulación. El sistema modular se valida comparando el comportamiento de las variables de salida con señalesobtenidas experimentalmente. Es empleado, además, para realizar diversos estudios sobre la instalación. Losresultados obtenidos en cada corrida son reflejados y se exponen las condiciones de operación y la explicaciónteórica de lo obtenido.  This paper presents the theoretical basis that models the behavior of The switched reluctance machines andtheir drives. The general characteristics, the differential equation system that constitutes the mathematicalmodel of the motor and the Simulink's blocks, which have been built for running the simulation, are outlined. Theresults of the simulation have been shown and compared with those obtained experimentally. The Simulinkmodel is used for studying the Switched Reluctance motor drive behavior under some operation conditions andtheoretical explanations for the simulation's results are given in every case.

  2. Optimization of multi-branch switched diversity systems

    KAUST Repository

    Nam, Haewoon

    2009-10-01

    A performance optimization based on the optimal switching threshold(s) for a multi-branch switched diversity system is discussed in this paper. For the conventional multi-branch switched diversity system with a single switching threshold, the optimal switching threshold is a function of both the average channel SNR and the number of diversity branches, where computing the optimal switching threshold is not a simple task when the number of diversity branches is high. The newly proposed multi-branch switched diversity system is based on a sequence of switching thresholds, instead of a single switching threshold, where a different diversity branch uses a different switching threshold for signal comparison. Thanks to the fact that each switching threshold in the sequence can be optimized only based on the number of the remaining diversity branches, the proposed system makes it easy to find these switching thresholds. Furthermore, some selected numerical and simulation results show that the proposed switched diversity system with the sequence of optimal switching thresholds outperforms the conventional system with the single optimal switching threshold. © 2009 IEEE.

  3. Modeling and analysis of the Rimfire gas switch

    International Nuclear Information System (INIS)

    Gahl, John M.; Kemp, Mark A.; Struve, Kenneth William; Curry, Randy D.; McDonald, Ken F.

    2005-01-01

    Many accelerators at Sandia National Laboratories utilize the Rimfire gas switch for high-voltage, high-power switching. Future accelerators will have increased performance requirements for switching elements. When designing improved versions of the Rimfire switch, there is a need for quick and accurate simulation of the electrical effects of geometry changes. This paper presents an advanced circuit model of the Rimfire switch that can be used for these simulations. The development of the model is shown along with comparisons to past models and experimental results.

  4. Switching overvoltages in offshore wind power grids

    DEFF Research Database (Denmark)

    Arana Aristi, Ivan

    and cables are presented. In Chapter 4 results from time domain measurements and simulations of switching operations in offshore wind power grids are described. Specifically, switching operations on a single wind turbine, the collection grid, the export system and the external grid measured in several real...... offshore wind farms are shown together with simulation results. Switching operations in offshore wind power grids can be simulated with different electromagnetic transient programs. Different programs were used in the project and compared results are included in Chapter 4. Also in Chapter 4 different......Switching transients in wind turbines, the collection grid, the export system and the external grid in offshore wind farms, during normal or abnormal operation, are the most important phenomena when conducting insulation coordination studies. However, the recommended models and methods from...

  5. Generalized Multi-Cell Switched-Inductor and Switched-Capacitor Z-source Inverters

    DEFF Research Database (Denmark)

    Li, Ding; Chiang Loh, Poh; Zhu, Miao

    2013-01-01

    . Their boosting gains are, therefore, limited in practice. To overcome these shortcomings, the generalized switched-inductor and switched-capacitor Z-source inverters are proposed, whose extra boosting abilities and other advantages have already been verified in simulation and experiment....

  6. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  7. On The Snubber Influence To The Switching And Conduction Losses In A Converter Using Switched Capacitor

    Directory of Open Access Journals (Sweden)

    Viorel DUGAN

    2002-12-01

    Full Text Available The paper deals to design and to compute the snubber parameters influence on the switching and conduction losses of the transistors (IGBT used as bidirectional switches in a converter with switched capacitor. The converter was modelled with difference equations, and the transistors during turn-on and turn-off processes were simulated by dynamically varying resistance models. The energy loss per switching, commutation time, the variation of the transistor voltage etc. and the influence of snubber parameters in each of these cases are shown in the context of a converter used as a 50Hz reactive power controller unit

  8. Multistage switching hardware and software implementations for student experiment purpose

    Science.gov (United States)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  9. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  10. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  11. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  12. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  13. FreeSWITCH Cookbook

    CERN Document Server

    Minessale, Anthony

    2012-01-01

    This is a problem-solution approach to take your FreeSWITCH skills to the next level, where everything is explained in a practical way. If you are a system administrator, hobbyist, or someone who uses FreeSWITCH on a regular basis, this book is for you. Whether you are a FreeSWITCH expert or just getting started, this book will take your skills to the next level.

  14. Elements of magnetic switching

    International Nuclear Information System (INIS)

    Aaland, K.

    1983-01-01

    This chapter describes magnetic switching as a method of connecting a capacitor bank (source) to a load; reviews several successful applications of magnetic switching, and discusses switching transformers, limitations and future possibilities. Some of the inflexibility and especially the high cost of magnetic materials may be overcome with the availability of the new splash cooled ribbons (Metglas). Experience has shown that magnetics works despite shock, radiation or noise interferences

  15. Pemodelan Markov Switching Autoregressive

    OpenAIRE

    Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi

    2014-01-01

    Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...

  16. New mode switching algorithm for the JPL 70-meter antenna servo controller

    Science.gov (United States)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  17. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  18. Average contraction and synchronization of complex switched networks

    International Nuclear Information System (INIS)

    Wang Lei; Wang Qingguo

    2012-01-01

    This paper introduces an average contraction analysis for nonlinear switched systems and applies it to investigating the synchronization of complex networks of coupled systems with switching topology. For a general nonlinear system with a time-dependent switching law, a basic convergence result is presented according to average contraction analysis, and a special case where trajectories of a distributed switched system converge to a linear subspace is then investigated. Synchronization is viewed as the special case with all trajectories approaching the synchronization manifold, and is thus studied for complex networks of coupled oscillators with switching topology. It is shown that the synchronization of a complex switched network can be evaluated by the dynamics of an isolated node, the coupling strength and the time average of the smallest eigenvalue associated with the Laplacians of switching topology and the coupling fashion. Finally, numerical simulations illustrate the effectiveness of the proposed methods. (paper)

  19. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    Science.gov (United States)

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analysis of Switched-Rigid Floating Oscillator

    Directory of Open Access Journals (Sweden)

    Prabhakar R. Marur

    2009-01-01

    Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.

  1. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  2. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  3. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  4. Optimal switching using coherent control

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2013-01-01

    that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....

  5. Low pull-in voltage electrostatic MEMS switch using liquid dielectric

    KAUST Repository

    Zidan, Mohammed A.

    2014-08-01

    In this paper, we present an electrostatic MEMS switch with liquids as dielectric to reduce the actuation voltage. The concept is verified by simulating a lateral dual gate switch, where the required pull-in voltage is reduced by more than 8 times after using water as a dielectric, to become as low as 5.36V. The proposed switch is simulated using COMSOL multiphysics using various liquid volumes to study their effect on the switching performance. Finally, we propose the usage of the lateral switch as a single switch XOR logic gate.

  6. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  7. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  8. Switch on, switch off: stiction in nanoelectromechanical switches

    KAUST Repository

    Wagner, Till J W

    2013-06-13

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the \\'ON\\' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between \\'free\\', \\'pinned\\' and \\'clamped\\' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. © 2013 IOP Publishing Ltd.

  9. Avalanche photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.

  10. Avalanche photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  11. Behavioral plasticity through the modulation of switch neurons.

    Science.gov (United States)

    Vassiliades, Vassilis; Christodoulou, Chris

    2016-02-01

    A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron". A switch neuron regulates the flow of information in NNs by selectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some information about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate "switch modules" in order to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  13. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, M.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  14. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, M.; Asadi, K. (Kamal); Blom, P.W.M.; Leeuw, de D.M.

    2012-01-01

    The availability of a reliable memory element is crucial for the fabrication of ‘plastic’ logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  15. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, Martijn; Asadi, Kamal; Blom, Paul W. M.; de Leeuw, Dago M.

    The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  16. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  17. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  18. Electromechanical magnetization switching

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-01-01

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained

  19. JUNOS Enterprise Switching

    CERN Document Server

    Reynolds, Harry

    2009-01-01

    JUNOS Enterprise Switching is the only detailed technical book on Juniper Networks' new Ethernet-switching EX product platform. With this book, you'll learn all about the hardware and ASIC design prowess of the EX platform, as well as the JUNOS Software that powers it. Not only is this extremely practical book a useful, hands-on manual to the EX platform, it also makes an excellent study guide for certification exams in the JNTCP enterprise tracks. The authors have based JUNOS Enterprise Switching on their own Juniper training practices and programs, as well as the configuration, maintenanc

  20. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  1. Noise analysis of switched integrator preamplifiers

    International Nuclear Information System (INIS)

    Sun Hongbo; Li Yulan; Zhu Weibin

    2004-01-01

    The main noise sources of switched integrator preamplifiers are discussed, and their noise performance are given combined PSpice simulation and experiments on them. Then, some practical methods on how to reduce noise of preamplifiers in two different integrator modes are provided. (authors)

  2. Manufacture of Radio Frequency Micromachined Switches with Annealing

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2014-01-01

    Full Text Available The fabrication and characterization of a radio frequency (RF micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  3. Manufacture of radio frequency micromachined switches with annealing.

    Science.gov (United States)

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-17

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  4. IGBT Dynamic Loss Reduction through Device Level Soft Switching

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2018-05-01

    Full Text Available Due to its low conduction loss, hence high current ratings, as well as low cost, Silicon Insulated Gate Bipolar Transistor (Si IGBT is widely used in high power applications. However, its switching frequency is generally low because of relatively large switching losses. Silicon carbide Metal-Oxide-Semiconductor Field-Effect Transistor (SiC MOSFET is much more superior due to their fast switching speed, which is determined by the internal parasitic capacitance instead of the stored charges, like the IGBT. By the combination of SiC MOSFET and Si IGBT, this paper presents a novel series hybrid switching method to achieve IGBT’s dynamic switching loss reduction by switching under Zero Voltage Hard Current (ZVHC turn-on and Zero Current Hard Voltage (ZCHV turn-off conditions. Both simulation and experimental results of IGBT are carried out, which shows that the soft switching of IGBT has been achieved both in turn-on and turn-off period. Thus 90% turn-on loss and 57% turn-off loss are reduced. Two different IGBTs’ test results are also provided to study the modulation parameter’s effect on the turn-off switching loss. Furthermore, with the consideration of voltage and current transient states, a new soft switching classification is proposed. At last, another improved modulation and Highly Efficient and Reliable Inverter Concept (HERIC inverter are given to validate the effectiveness of the device level hybrid soft switching method application.

  5. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  6. Numerical resolution of a bi-temperature MHD model with a general Ohm's law: Roe solver - Front-tracking - Nonlinear transport equations with discontinuous coefficients. Simulation of a Plasma Opening Switch

    International Nuclear Information System (INIS)

    Brassier, Stephane

    1998-01-01

    The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr

  7. Noise in Genetic Toggle Switch Models

    Directory of Open Access Journals (Sweden)

    Andrecut M.

    2006-06-01

    Full Text Available In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach for modeling the transcription and translation processes one can make the system to lock in one of the steady states for exponentially long times.

  8. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Directory of Open Access Journals (Sweden)

    Danson John

    2006-01-01

    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  9. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  10. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  11. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  12. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  13. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  14. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  15. A Broadband Ultrathin Nonlinear Switching Metamaterial

    Directory of Open Access Journals (Sweden)

    E. Zarnousheh Farahani

    2017-05-01

    Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.

  16. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  17. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  18. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  19. An integrated circuit switch

    Science.gov (United States)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  20. The Octopus switch

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    2000-01-01

    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a

  1. Untriggered water switching

    International Nuclear Information System (INIS)

    Van Devender, J.P.; Martin, T.H.

    Recent experiments indicate that synchronous untriggered multichannel switching in water will permit the development of relatively simple, ultra-low impedance, short pulse, relativistic electron beam (REB) accelerators. These experiments resulted in the delivery of a 1.5 MV, 0.75 MA, 15 ns pulse into a two-ohm line with a current risetime of 2 x 10 14 A/sec. The apparatus consisted of a 3 MV Marx generator and a series of three 112 cm wide strip water lines separated by two edge-plane water-gap switches. The Marx generator charged the first line in less than 400 ns. The first switch then formed five or more channels. The second line was charged in 60 ns and broke down with 10 to 25 channels at a mean field of 1.6 MV/cm. The closure time of each spark channel along both switches was measured with a streak camera and showed low jitter. The resulting fast pulse line construction is simpler and should provide considerable costs savings from previous designs. Multiples of these low impedance lines in parallel can be employed to obtain power levels in the 10 14 W range for REB fusion studies. (U.S.)

  2. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  3. Analyses of resource reservation schemes for optical burst switching networks

    Science.gov (United States)

    Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila

    2017-12-01

    With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.

  4. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  5. Switching Investigations on a SiC MOSFET in a TO-247 Package

    DEFF Research Database (Denmark)

    Anthon, Alexander; Hernandez Botella, Juan Carlos; Zhang, Zhe

    2014-01-01

    This paper deals with the switching behavior of a SiC MOSFET in a TO-247 package. Based on simulations, critical parasitic inductances in the circuit layout are analyzed and their effect on the switching losses highlighted. Especially the common source inductance, a critical parameter in a TO-247...... package, has a major influence on the switching energy. Crucial design guidelines for an improved double pulse test circuit are introduced which are used for practical investigations on the switching behavior. Switching energies of a SiC MOSFET in a TO-247 package is measured depending on varying gate...... resistance and loop inductances. With total switching energy of 340.24 μJ, the SiC MOSFET has more than six times lower switching losses than a regular Si IGBT. Implementing the SiC switches in a 3 kW T-Type inverter topology, efficiency improvements of 0.8 % are achieved and maximum efficiency of 97...

  6. Method to optimize optical switch topology for photonic network-on-chip

    Science.gov (United States)

    Zhou, Ting; Jia, Hao

    2018-04-01

    In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.

  7. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  8. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  9. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  10. Cryogenic switched MOSFET characterization

    Science.gov (United States)

    1981-01-01

    Both p channel and n channel enhancement mode MOSFETs can be readily switched on and off at temperatures as low as 2.8 K so that switch sampled readout of a VLWIR Ge:Ga focal plane is electronically possible. Noise levels as low as 100 rms electrons per sample (independent of sample rate) can be achieved using existing p channel MOSFETs, at overall rates up to 30,000 samples/second per multiplexed channel (e.g., 32 detectors at a rate of almost 1,000 frames/second). Run of the mill devices, including very low power dissipation n channel FETs would still permit noise levels of the order of 500 electrons/sample.

  11. Practical switching power supply design

    CERN Document Server

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  12. Selection Criteria in Regime Switching Conditional Volatility Models

    Directory of Open Access Journals (Sweden)

    Thomas Chuffart

    2015-05-01

    Full Text Available A large number of nonlinear conditional heteroskedastic models have been proposed in the literature. Model selection is crucial to any statistical data analysis. In this article, we investigate whether the most commonly used selection criteria lead to choice of the right specification in a regime switching framework. We focus on two types of models: the Logistic Smooth Transition GARCH and the Markov-Switching GARCH models. Simulation experiments reveal that information criteria and loss functions can lead to misspecification ; BIC sometimes indicates the wrong regime switching framework. Depending on the Data Generating Process used in the experiments, great care is needed when choosing a criterion.

  13. Composite Material Switches

    Science.gov (United States)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  14. MCT/MOSFET Switch

    Science.gov (United States)

    Rippel, Wally E.

    1990-01-01

    Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.

  15. Python Switch Statement

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The Python programming language does not have a built in switch/case control structure as found in many other high level programming languages. It is thought by some that this is a deficiency in the language, and the control structure should be added. This paper demonstrates that not only is the control structure not needed, but that the methods available in Python are more expressive than built in case statements in other high level languages.

  16. Buck Converter with Soft-Switching Cells for PV Panel Applications

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2016-03-01

    Full Text Available In power conversion of photovoltaic (PV energy, a hard-switching buck converter always generates some disadvantages. For example, serious electromagnetic interference (EMI, high switching losses, and stresses on an active switch (metal-oxide-semiconductor-field-effect-transistor, MOSFET, and high reverse-recovery losses of a freewheeling diode result in low conversion efficiency. To release these disadvantages, a buck converter with soft-switching cells for PV panel applications is proposed. To create zero-voltage-switching (ZVS features of the active switches, a simple active soft-switching cell with an inductor, a capacitor, and a MOSFET is incorporated into the proposed buck converter. Therefore, the switching losses and stresses of the active switches and EMI can be reduced significantly. To reduce reverse-recovery losses of a freewheeling diode, a simple passive soft-switching cell with a capacitor and two diodes is implemented. To verify the performance and the feasibility of the proposed buck converter with soft-switching cells for PV panel applications, a prototype soft-switching buck converter is built and implemented by using a maximum-power-point-tracking (MPPT method. Simulated and experimental results are presented from a 100 W soft-switching buck converter for PV panel applications.

  17. Design and advanced control of switched reluctance motor; Design og avanceret styring af switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Blaabjerg, F.; Jensen, F.; Kierkegaard, P.; Pedersen, J.K.; Rasmussen, P.O.; Simonsen, L.

    1999-03-01

    The aim of the project is to design, construct and optimise the control of Switched Reluctance Motors with and without permanent magnets. The expectation was an increased efficiency and a decreased material consumption. The project included originally three types of SR-motors, two with a nominal number of revolutions of 3.000 rpm and one motor with a nominal number of revolutions of 50.000 rpm. The project was changed to focus on one motor with a nominal number of revolutions of 6.000 rpm, one with a nominal number of revolutions of 50.000 rpm and one two-phased low-voltage motor with a nominal number of revolutions of 2.000 rpm. The motors had different outputs of 2,7 kW, 0,9 kW and 3 kW, respectively. For this purpose an advanced simulation programme for Switched Reluctance Motors is developed. The programme differs from other programmes by being able to simulate multi-disciplinary such as vibrations and acoustic noise. It is even possible to play the sound. In this connection completely new models are developed. It is also possible to simulate different grid connected converters. Input to the simulation programme is finite element calculations, geometry of the motor and calculations or data from an advanced characterisation system for Switched Reluctance Motors. New methods to control the current in Switched Reluctance Motors are developed, which particularly make quick dynamics possible in a digitally controlled current without use of special noise filters. The method will soon have industrial use. Other new methods have emerged, which secure that the system all the time works with the maximum efficiency irrespective of load. In some cases an efficiency improvement of 10 % is obtained compared to a classic control of the Switched Reluctance Motor. (EHS) EFP-94; EFP-95; EFP-98. 16 refs.

  18. Synchronization of switched system and application in communication

    International Nuclear Information System (INIS)

    Yu Wenwu; Cao Jinde; Yuan Kun

    2008-01-01

    In this Letter, synchronization of switched system is investigated based on Lyapunov method. A sufficient condition is derived to ensure the synchronization between two switched systems, and a new communication scheme is also proposed based on this. Furthermore, some secure analysis works, such as return map attack and moving average error attack, are also given to show the security of the proposed scheme. Finally, simulation examples are constructed to verify the theoretical analysis and its application for communication

  19. Analysis of aceismatic properties of switch boards

    International Nuclear Information System (INIS)

    Tabuchi, Yoji; Nishikawa, Atsushi

    1986-01-01

    Recently, in order to limit the disaster at the time of earthquakes to the minimum, the aseismatic properties of electric facilities have been regarded as important. By the development and spread of CAE simulation and experimental modal analysis, aseismatic analysis has become feasible also in design section. Taking an example of the switch boards of rigid construction, which have been used mainly for nuclear power plants, the analysis of the aseismatic properties is explained. In the switch boards of rigid construction, the probability of causing resonance behavior due to earthquakes is decreased by making the structure rigid, thus the aseismatic properties are heightened. In the switch boards of rigid construction, the primary natural frequency is heightened usually to above 20 Hz considering earthquake movement and the response of buildings (in the range from 0.5 to 10 Hz). Since the switch boards of rigid construction can be treated as a rigid body in the examination of structural strength, generally static analysis is carried out. The dimensions and weight tend to be large for increasing the rigidity. In most cases, standard equipment can be adopted if the fixing is made strong. The modal analysis of the natural vibration, static stress analysis and time history response analysis were carried out by finite element method. Also the vibration test on a large vibration table was made. The results are reported. (Kako, I.)

  20. Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory

    International Nuclear Information System (INIS)

    Huang Da; Wu Jun-Jie; Tang Yu-Hua

    2013-01-01

    With the progress of the semiconductor industry, the resistive random-access memory (RAM) has drawn increasing attention. The discovery of the memristor has brought much attention to this study. Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms. We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models. Finally, simulations are presented. We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms, which are applied to explain their resistive switchings

  1. The Topologies Research of a Soft Switching Bidirectional DC/DC Converter

    DEFF Research Database (Denmark)

    Zhang, Qi; Zhang, Yongping; Sun, Xiangdong

    2017-01-01

    A soft-switching solution implemented to the traditional bidirectional DC/DC converter is developed. The soft-switching cell, which composed of three auxiliary switches, one resonant capacitor and one resonant inductor, is equipped in the traditional bidirectional DC/DC converter to realize circuit...... circle. And the proposed topology of bidirectional soft-switching dc-dc converter(TASBC) performs ideal soft switching at boost operations. The characteristics of the proposed converter has been verified by MATLAB simulations and experimental results....

  2. MENGAPA PERUSAHAAN MELAKUKAN AUDITOR SWITCH?

    Directory of Open Access Journals (Sweden)

    Kadek Sumadi

    2011-01-01

    Full Text Available The existence of a large number of accounting firms allowsprovides companies choices whether to stay with current firm or switchto another accounting firm. Decision of Minister of FinanceNo.423/KMK.06/2002 states that a company must switch auditor afterfive years of consecutive assignment. This is mandatory. The questionrises when a company voluntarily switches its auditor. Why does thishappen?One of the reasons is that management does not satisfy withauditor opinion, except for unqualified opinion. New management teamwould directly or indirectly encourage auditor switch to align accountingand reporting policies. Moreover an expanding company expects positivereaction when it does auditor switch. Profitability is also one reason fora company to switch auditor, for example, when a company earns moreprofit it tends to hire more credible auditor. On the other hand, when thecompany faces a financial distress, it probably would switch auditor aswell.

  3. Research on IGBT solid state switch

    International Nuclear Information System (INIS)

    Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  4. Research on IGBT solid state switch

    CERN Document Server

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  5. Low-Crosstalk Composite Optical Crosspoint Switches

    Science.gov (United States)

    Pan, Jing-Jong; Liang, Frank

    1993-01-01

    Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.

  6. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  7. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  8. Recent developments in switching theory

    CERN Document Server

    Mukhopadhyay, Amar

    2013-01-01

    Electrical Science Series: Recent Developments in Switching Theory covers the progress in the study of the switching theory. The book discusses the simplified proof of Post's theorem on completeness of logic primitives; the role of feedback in combinational switching circuits; and the systematic procedure for the design of Lupanov decoding networks. The text also describes the classical results on counting theorems and their application to the classification of switching functions under different notions of equivalence, including linear and affine equivalences. The development of abstract har

  9. Software Switching for Data Acquisition

    CERN Multimedia

    CERN. Geneva; Malone, David

    2016-01-01

    In this talk we discuss the feasibility of replacing telecom-class routers with a topology of commodity servers acting as software switches in data acquisition. We extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism. We compare the performance under heavy many-to-one congestion to typical Ethernet switches and evaluate the scalability when building larger topologies, exploiting the integration with software-defined networking technologies. Please note that David Malone will speak on behalf of Grzegorz Jereczek.

  10. A soft switching with reduced voltage stress ZVT-PWM full-bridge converter

    Science.gov (United States)

    Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih

    2018-04-01

    This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.

  11. Switched diversity strategies for dual-hop relaying systems

    KAUST Repository

    Gaaloul, Fakhreddine

    2011-04-29

    This paper investigates the effect of different switched diversity configurations on the implementation complexity and achieved performance of dual-hop amplify-and-forward (AF) relaying networks. A low-complexity model of the relay station is adopted, wherein single-input single-output antenna configuration is employed. Each of the transmitter and the receiver however employs multiple antennas to improve the overall link performance. Single-phase and two-phase based receive switching strategies are investigated assuming optimum first hop signal-to-noise ratio (SNR). Moreover, the simple scheme in which the switched diversity is applied independently over the two hops is studied using tight upper bounds. Thorough performance comparisons and switching thresholds optimization for the aforementioned strategies are presented. Simulation results are also provided to validate the mathematical development and to verify the numerical computations.

  12. Soft switching PWM isolated boost converter for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, M.; Adib, E. [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of)

    2009-07-01

    This presentation introduced a newly developed soft switching, isolated boost type converter for fuel cell applications. With a simple PWM control circuit, the converter achieves zero voltage switching the main switch. Since the auxiliary circuit is soft switched, the converter can operate at high powers which make it suitable for fuel cell applications. In particular, the converter is suitable for the interface of fuel cell and inverters because of its high voltage gain and isolation between input and output sources. In addition, the input current of the converter (current drained from the fuel cell) is almost constant since it is a boost type converter. The converter was analyzed and the simulation results validate the theoretical analysis.

  13. An approach to evaluate switching overvoltages during power system restoration

    Directory of Open Access Journals (Sweden)

    Sadeghkhani Iman

    2012-01-01

    Full Text Available Transformer switching is one of the important stages during power system restoration. This switching can cause harmonic overvoltages that might damage some equipment and delay power system restoration. Core saturation on the energisation of a transformer with residual flux is a noticeable factor in harmonic overvoltages. This work uses artificial neural networks (ANN in order to estimate the temporary overvoltages (TOVs due to transformer energisation. In the proposed methodology, the Levenberg-Marquardt method is used to train the multilayer perceptron. The developed ANN is trained with the worst case of switching condition, and tested for typical cases. Simulated results for a partial 39-bus New England test system, show the proposed technique can accurately estimate the peak values and durations of switching overvoltages.

  14. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  15. Uncertainty quantification in capacitive RF MEMS switches

    Science.gov (United States)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  16. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  17. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  18. LCT protective dump-switch tests

    International Nuclear Information System (INIS)

    Parsons, W.M.

    1981-01-01

    Each of the six coils in the Large Coil Task (LCT) has a separate power supply, dump resistor, and switching circuit. Each switching circuit contains five switches, two of which are redundant. The three remaining switches perform separate duties in an emergency dump situation. These three switches were tested to determine their ability to meet the LCT conditions

  19. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  20. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC TRACTION NETWORK – LOCOMOTIVE” 1. SWITCH ON LOCOMOTIVE’S POWER CONVERTER IN “FREE PLAY” MODE; PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    T. M. Mishchenko

    2010-11-01

    Full Text Available In the article the electric circuit of substitution and mathematical model of the system of alternating current «traction substation − traction mains − electric locomotive DS 3» at switching its power transformer on in the idle mode are presented. Numerical determinations of parameters of traction substation, rails, contact network and transformer are executed; in so doing a special attention is paid to the estimation of dispersion inductance for the primary winding of transformer.

  1. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC TRACTION NETWORK – LOCOMOTIVE” 1. SWITCH ON LOCOMOTIVE’S POWER CONVERTER IN “FREE PLAY” MODE; PARAMETERS ESTIMATION

    OpenAIRE

    T. M. Mishchenko; A. I. Kiiko

    2010-01-01

    In the article the electric circuit of substitution and mathematical model of the system of alternating current «traction substation − traction mains − electric locomotive DS 3» at switching its power transformer on in the idle mode are presented. Numerical determinations of parameters of traction substation, rails, contact network and transformer are executed; in so doing a special attention is paid to the estimation of dispersion inductance for the primary winding of transformer.

  2. Second-chance signal transduction explains cooperative flagellar switching.

    Science.gov (United States)

    Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).

  3. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  4. Partial Finite-Time Synchronization of Switched Stochastic Chua's Circuits via Sliding-Mode Control

    Directory of Open Access Journals (Sweden)

    Zhang-Lin Wan

    2011-01-01

    Full Text Available This paper considers the problem of partial finite-time synchronization between switched stochastic Chua's circuits accompanied by a time-driven switching law. Based on the Ito formula and Lyapunov stability theory, a sliding-mode controller is developed to guarantee the synchronization of switched stochastic master-slave Chua's circuits and for the mean of error states to obtain the partial finite-time stability. Numerical simulations demonstrate the effectiveness of the proposed methods.

  5. Modeling novel back-pressure mechanisms for a 100 Gb/s switch

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2012-01-01

    In this work we evaluate the performance of novel back-pressure mechanisms in a Clos-based 100 Gb/s switch system via OPNET modeler simulations. The effectiveness of the mechanisms under different switch configurations, as well as under different traffic patterns, is presented. Our results indicate...... that the proposed back-pressure techniques can effectively reduce the requirements for buffer space in the different stages of the Clos switch....

  6. Investigation on Capacitor Switching Transient Limiter with a Three phase Variable Resistance

    DEFF Research Database (Denmark)

    Naderi, Seyed Behzad; Jafari, Mehdi; Zandnia, Amir

    2017-01-01

    In this paper, a capacitor switching transient limiter based on a three phase variable resistance is proposed. The proposed structure eliminates the capacitor switching transient current and over-voltage by introducing a variable resistance to the current path with its special switching pattern...... transients on capacitor after bypassing. Analytic Analyses for this structure in transient cases are presented in details and simulations are performed by MATLAB software to prove its effectiveness....

  7. Circuit switched optical networks

    DEFF Research Database (Denmark)

    Kloch, Allan

    2003-01-01

    Some of the most important components required for enabling optical networking are investigated through both experiments and modelling. These all-optical components are the wavelength converter, the regenerator and the space switch. When these devices become "off-the-shelf" products, optical cross......, it is expected that the optical solution will offer an economical benefit for hight bit rate networks. This thesis begins with a discussion of the expected impact on communications systems from the rapidly growing IP traffic, which is expected to become the dominant source for traffic. IP traffic has some...... characteristics, which are best supported by an optical network. The interest for such an optical network is exemplified by the formation of the ACTS OPEN project which aim was to investigate the feasibility of an optical network covering Europe. Part of the work presented in this thesis is carried out within...

  8. Photo-switching element

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Yuichi

    1987-10-31

    Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)

  9. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  10. Improved switch-resistor packaging

    Science.gov (United States)

    Redmerski, R. E.

    1980-01-01

    Packaging approach makes resistors more accessible and easily identified with specific switches. Failures are repaired more quickly because of improved accessibility. Typical board includes one resistor that acts as circuit breaker, and others are positioned so that their values can be easily measured when switch is operated. Approach saves weight by using less wire and saves valuable panel space.

  11. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  12. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  13. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  14. Non-fragile switched H∞ control for morphing aircraft with asynchronous switching

    Directory of Open Access Journals (Sweden)

    Haoyu CHENG

    2017-06-01

    Full Text Available This paper deals with the problem of non-fragile linear parameter-varying (LPV H∞ control for morphing aircraft with asynchronous switching. The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model. The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators, which satisfies Bernoulli distribution. The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon. The parameter-dependent Lyapunov functional method and mode-dependent average dwell time (MDADT method are combined to guarantee the stability and prescribed performance of the system. The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities (LMI. In order to achieve higher efficiency of the designing process, an algorithm is applied to divide the whole set into subsets automatically. Simulation results are provided to verify the effectiveness and superiority of the method in the paper.

  15. Switching Phenomena in a System with No Switches

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  16. Tracking Control for Switched Cascade Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dong

    2015-01-01

    Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.

  17. Low pull-in voltage electrostatic MEMS switch using liquid dielectric

    KAUST Repository

    Zidan, Mohammed A.; Kosel, Jü rgen; Salama, Khaled N.

    2014-01-01

    In this paper, we present an electrostatic MEMS switch with liquids as dielectric to reduce the actuation voltage. The concept is verified by simulating a lateral dual gate switch, where the required pull-in voltage is reduced by more than 8 times

  18. A novel RF MEMS switch with novel mechanical structure modeling

    International Nuclear Information System (INIS)

    Chan, K Y; Ramer, R

    2010-01-01

    A novel RF MEMS contact-type switch for RF and microwave applications is presented. The switch is designed with special mechanical structures for stiffness enhancement. A method of using dimple lines to reduce the stress sensitivity of a beam is shown with complete mathematical modeling and finite element mechanical simulation. A complete mathematical model is developed for the proposed switch. Limited fabrication resolution and non-uniformities in layer thickness and stress were taken into consideration for this design, concomitantly with the preservation of device miniaturization and functionalities. The novel mechanical modeling of the switch leads to the estimation of the actuation voltage and shows simplification from previously published analysis. The measured actuation voltage and RF performance of the novel RF MEMS switch are also reported. The switch actuated at 20 V achieved better than 22 dB return loss and less than 0.7 dB insertion loss in on state from dc–40 GHz; it provided better than 30 dB isolation in off state

  19. Magnonic interferometric switch for multi-valued logic circuits

    Science.gov (United States)

    Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri; Bhowmick, Tonmoy; Gutierrez, David; Chiang, Howard; Dudko, Galina; Filimonov, Yuri; Liu, Guanxiong; Jiang, Chenglong; Balandin, Alexander A.; Lake, Roger; Khitun, Alexander

    2017-01-01

    We investigated a possible use of the magnonic interferometric switches in multi-valued logic circuits. The switch is a three-terminal device consisting of two spin channels where input, control, and output signals are spin waves. Signal modulation is achieved via the interference between the source and gate spin waves. We report experimental data on a micrometer scale prototype based on the Y3Fe2(FeO4)3 structure. The output characteristics are measured at different angles of the bias magnetic field. The On/Off ratio of the prototype exceeds 13 dB at room temperature. Experimental data are complemented by the theoretical analysis and the results of micro magnetic simulations showing spin wave propagation in a micrometer size magnetic junction. We also present the results of numerical modeling illustrating the operation of a nanometer-size switch consisting of just 20 spins in the source-drain channel. The utilization of spin wave interference as a switching mechanism makes it possible to build nanometer-scale logic gates, and minimize energy per operation, which is limited only by the noise margin. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. We describe possible implementation of the three-value logic circuits based on the magnonic interferometric switches. The advantages and shortcomings inherent in interferometric switches are also discussed.

  20. DETERMINANT OF DOWNWARD AUDITOR SWITCHING

    Directory of Open Access Journals (Sweden)

    Totok Budisantoso

    2017-12-01

    Full Text Available Abstract: Determinant of Downward Auditor Switching. This study examines the factors that influence downward auditor switching in five ASEAN countries. Fixed effect logistic regression was used as analytical method. This study found that opinion shopping occurred in ASEAN, especially in distress companies. Companies with complex businesses will retain the Big Four auditors to reduce complexity and audit costs. Audit and public committees serve as guardians of auditor quality. On the other hand, shareholders failed to maintain audit quality. It indicates that there is entrenchment effect in auditor switching.

  1. Modeling Populations of Thermostatic Loads with Switching Rate Actuation

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana; Wisniewski, Rafal; Leth, John-Josef

    2015-01-01

    We model thermostatic devices using a stochastic hybrid description, and introduce an external actuation mechanism that creates random switch events in the discrete dynamics. We then conjecture the form of the Fokker-Planck equation and successfully verify it numerically using Monte Carlo...... simulations. The actuation mechanism and subsequent modeling result are relevant for power system operation....

  2. Switching control of linear systems for generating chaos

    International Nuclear Information System (INIS)

    Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

    2006-01-01

    In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

  3. Switching dynamics in InP photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2016-01-01

    In this paper, we presented switching dynamic investigations on an InP photonic-crystal (PhC) nanocavity structure using homodyne pump-probe measurements. The measurements were compared with simulations based on temporal nonlinear coupled mode theory and carrier rate equations for the dynamics of...

  4. Mismatch-shaping switching for two-capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, U.; Temes, G.C.

    1998-01-01

    A mismatch-shaping scheme is proposed for a two-capacitor digital-to-analogue converter (DAC). It uses a delta-sigma loop for finding the optimal switching sequence for each input word. Simulations indicate that the scheme can be used for the realisation of DACs with 16 bit linearity and SNR...

  5. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  6. Finite Volume Method for Pricing European Call Option with Regime-switching Volatility

    Science.gov (United States)

    Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM

    2018-03-01

    In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.

  7. Statistical study of overvoltages by maneuvering in switches in high voltage using EMTP-RV

    International Nuclear Information System (INIS)

    Dominguez Herrera, Diego Armando

    2013-01-01

    The transient overvoltages produced by maneuvering of switches are studied in a statistical way and through a variation the sequential closing times of switches in networks larger than 230 kV. This study is performed according to time delays and typical deviation ranges, using the tool EMTP- RV (ElectroMagnetic Trasient Program Restructured Version). A conceptual framework related with the electromagnetic transients by maneuver is developed in triphasic switches installed in nominal voltages higher than 230 kV. The methodology established for the execution of statistical studies of overvoltages by switch maneuver is reviewed and evaluated by simulating two fictitious cases in EMTP-RV [es

  8. Specific features of the switch-on gate current and different switch-on modes in silicon carbide thyristors

    International Nuclear Information System (INIS)

    Yurkov, S N; Mnatsakanov, T T; Levinshtein, M E; Cheng, L; Palmour, J W

    2014-01-01

    The specific features of the temperature and bias dependences of the switch-on gate current in SiC thyristors are examined analytically for two possible switching mechanisms. The so-called γ-mechanism, which is highly typical of the conventional Si thyristors, is characterized by very weak temperature and bias dependences. By contrast, the so-called α-mechanism, which is very characteristic of SiC thyristors, is highly sensitive to changes in temperature and bias. If the thyristor is switched on by the α-mechanism, the switch-on gate current density decreases very steeply with increasing temperature. As a result, the thyristor can lose its working capacity at elevated temperatures due to the instability against even very weak impacts. With decreasing the bias voltage U a , the gate switch-on current increases very steeply, which can make switching the thyristor on difficult. The unintentional shunting, which is apparently present in high-voltage SiC thyristors, causes the transition from the α- to the γ-mechanism at elevated temperatures and high biases. It can be supposed that introduction of a controllable technological shunting of the emitter–thin base junction allows stabilization of the temperature and bias parameters of SiC thyristors. The analytical results are confirmed by computer simulations performed in wide temperature and bias ranges for a 4H-SiC thyristor of the 18 kV class. (paper)

  9. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam

    2011-04-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  10. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam; Smith, Casey; Hussain, Muhammad Mustafa

    2011-01-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  11. label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs

    Directory of Open Access Journals (Sweden)

    Panagiotis Papastamoulis

    2016-02-01

    Full Text Available Label switching is a well-known and fundamental problem in Bayesian estimation of mixture or hidden Markov models. In case that the prior distribution of the model parameters is the same for all states, then both the likelihood and posterior distribution are invariant to permutations of the parameters. This property makes Markov chain Monte Carlo (MCMC samples simulated from the posterior distribution non-identifiable. In this paper, the label.switching package is introduced. It contains one probabilistic and seven deterministic relabeling algorithms in order to post-process a given MCMC sample, provided by the user. Each method returns a set of permutations that can be used to reorder the MCMC output. Then, any parametric function of interest can be inferred using the reordered MCMC sample. A set of user-defined permutations is also accepted, allowing the researcher to benchmark new relabeling methods against the available ones.

  12. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  13. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  14. Switching of chirality by light

    NARCIS (Netherlands)

    Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.

    1996-01-01

    Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction

  15. Aurora oil switch upgrade program

    International Nuclear Information System (INIS)

    Warren, T.

    1989-03-01

    This report describes the short pulse synchronization requirements, the original Aurora trigger scheme, and the PI/SNLA approach to improving the synchronization. It also describes the oil switching design study undertaken as the first phase of the program. A discussion of oil-switch closure analysis and the conceptual design motivated by this analysis are presented. This paper also describes the oil-switch trigger pulser tests required to validate the concept. This includes the design of the testing facility, a description of the test goals, and a discussion of the results. This paper finally describes oil-switch trigger pulser testing on one of the four Aurora Blumlein modules, which includes the hardware design and operation, the testing goals, hardware installation, and test results. 9 refs., 26 figs

  16. Solid state bistable power switch

    Science.gov (United States)

    Bartko, J.; Shulman, H.

    1970-01-01

    Tin and copper provide high current and switching time capabilities for high-current resettable fuses. They show the best performance for trip current and degree of reliability, and have low coefficients of thermal expansion.

  17. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing; Cha, Dong Kyu; Bosman, Michel; Raghavan, Nagarajan; Migas, Dmitri B.; Borisenko, Victor E.; Zhang, Xixiang; Li, Kun; Pey, Kin-Leong

    2013-01-01

    -chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission

  18. Electron collisions in gas switches

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1989-01-01

    Many technologies rely on the conduction/insulation properties of gaseous matter for their successful operation. Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa. Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: spark gap closing, self-sustained diffuse discharge closing, and externally-sustained diffuse discharge opening. 24 refs., 15 figs., 2 tabs

  19. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  20. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  1. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinde Cao

    2013-01-01

    Full Text Available This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  2. Constructing large scale SCI-based processing systems by switch elements

    International Nuclear Information System (INIS)

    Wu, B.; Kristiansen, E.; Skaali, B.; Bogaerts, A.; Divia, R.; Mueller, H.

    1993-05-01

    The goal of this paper is to study some of the design criteria for the switch elements to form the interconnection of large scale SCI-based processing systems. The approved IEEE standard 1596 makes it possible to couple up to 64K nodes together. In order to connect thousands of nodes to construct large scale SCI-based processing systems, one has to interconnect these nodes by switch elements to form different topologies. A summary of the requirements and key points of interconnection networks and switches is presented. Two models of the SCI switch elements are proposed. The authors investigate several examples of systems constructed for 4-switches with simulations and the results are analyzed. Some issues and enhancements are discussed to provide the ideas behind the switch design that can improve performance and reduce latency. 29 refs., 11 figs., 3 tabs

  3. Fast and efficient STT switching in MTJ using additional transient pulse current

    Science.gov (United States)

    Pathak, Sachin; Cha, Jongin; Jo, Kangwook; Yoon, Hongil; Hong, Jongill

    2017-06-01

    We propose a profile of write pulse current-density to switch magnetization in a perpendicular magnetic tunnel junction to reduce switching time and write energy as well. Our simulated results show that an overshoot transient pulse current-density (current spike) imposed to conventional rectangular-shaped pulse current-density (main pulse) significantly improves switching speed that yields the reduction in write energy accordingly. For example, we could dramatically reduce the switching time by 80% and thereby reduce the write energy over 9% in comparison to the switching without current spike. The current spike affects the spin dynamics of the free layer and reduces the switching time mainly due to spin torque induced. On the other hand, the large Oersted field induced causes changes in spin texture. We believe our proposed write scheme can make a breakthrough in magnetic random access memory technology seeking both high speed operation and low energy consumption.

  4. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  5. Chromatic interocular-switch rivalry.

    Science.gov (United States)

    Christiansen, Jens H; D'Antona, Anthony D; Shevell, Steven K

    2017-05-01

    Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.

  6. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-01-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions

  7. Simulation tools

    CERN Document Server

    Jenni, F

    2006-01-01

    In the last two decades, simulation tools made a significant contribution to the great progress in development of power electronics. Time to market was shortened and development costs were reduced drastically. Falling costs, as well as improved speed and precision, opened new fields of application. Today, continuous and switched circuits can be mixed. A comfortable number of powerful simulation tools is available. The users have to choose the best suitable for their application. Here a simple rule applies: The best available simulation tool is the tool the user is already used to (provided, it can solve the task). Abilities, speed, user friendliness and other features are continuously being improved—even though they are already powerful and comfortable. This paper aims at giving the reader an insight into the simulation of power electronics. Starting with a short description of the fundamentals of a simulation tool as well as properties of tools, several tools are presented. Starting with simplified models ...

  8. Switching Fuzzy Guaranteed Cost Control for Nonlinear Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Linqin Cai

    2014-01-01

    Full Text Available This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs with time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented. Simulation results show that the proposed method is effective to guarantee system’s global asymptotic stability and quality of service (QoS.

  9. Verifying different-modality properties for concepts produces switching costs.

    Science.gov (United States)

    Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2003-03-01

    According to perceptual symbol systems, sensorimotor simulations underlie the representation of concepts. It follows that sensorimotor phenomena should arise in conceptual processing. Previous studies have shown that switching from one modality to another during perceptual processing incurs a processing cost. If perceptual simulation underlies conceptual processing, then verifying the properties of concepts should exhibit a switching cost as well. For example, verifying a property in the auditory modality (e.g., BLENDER-loud) should be slower after verifying a property in a different modality (e.g., CRANBERRIES-tart) than after verifying a property in the same modality (e.g., LEAVES-rustling). Only words were presented to subjects, and there were no instructions to use imagery. Nevertheless, switching modalities incurred a cost, analogous to the cost of switching modalities in perception. A second experiment showed that this effect was not due to associative priming between properties in the same modality. These results support the hypothesis that perceptual simulation underlies conceptual processing.

  10. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...

  11. A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control

    Science.gov (United States)

    Gollan, Tamar H.; Goldrick, Matthew

    2018-01-01

    The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…

  12. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  13. Simple and efficient methods for the accurate evaluation of patterning effects in ultrafast photonic switches

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    Although patterning effects (PEs) are known to be a limiting factor of ultrafast photonic switches based on semiconductor optical amplifiers (SOAs), a simple approach for their evaluation in numerical simulations and experiments is missing. In this work, we experimentally investigate and verify...... as well as the operation bit rate. Furthermore, a simple and effective method for probing the maximum PEs is demonstrated, which may relieve the computational effort or the experimental difficulties associated with the use of long PRBSs for the simulation or characterization of SOA-based switches. Good...... agrement with conventional PRBS characterization is obtained. The method is suitable for quick and systematic estimation and optimization of the switching performance....

  14. Switching dynamics of TaOx-based threshold switching devices

    Science.gov (United States)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  15. Interrupter and hybrid-switch testing for fusion devices

    International Nuclear Information System (INIS)

    Parsons, W.M.; Warren, R.W.; Honig, E.M.; Lindsay, J.D.G.; Bellamo, P.; Cassel, R.L.

    1979-01-01

    This paper discusses recent and ongoing switch testing for fusion devices. The first part describes testing for the TFTR ohmic-heating circuit. In this set of tests, which simulated the stresses produced during a plasma initiation pulse, circuit breakers were required to interrupt a current of 24 kA with an associated recovery voltage of 25 kV. Two interrupter systems were tested for over 1000 operations each, and both appear to satisfy TFTR requirements. The second part discusses hybrid-switch development for superconducting coil protection. These switching systems must be capable of carrying large currents on a continuous basis as well as performing interruption duties. The third part presents preliminary results on an early-counterpulse technique applied to vacuum interrupters. Implementation of this technique has resulted in large increases in interruptible current as well as a marked reduction in contact erosion

  16. Optimization of photovoltaic energy production through an efficient switching matrix

    Directory of Open Access Journals (Sweden)

    Pietro Romano

    2013-09-01

    Full Text Available This work presents a preliminary study on the implementation of a new system for power output maximization of photovoltaic generators under non-homogeneous conditions. The study evaluates the performance of an efficient switching matrix and the relevant automatic reconfiguration control algorithms. The switching matrix is installed between the PV generator and the inverter, allowing a large number of possible module configurations. PV generator, switching matrix and the intelligent controller have been simulated in Simulink. The proposed reconfiguration system improved the energy extracted by the PV generator under non-uniform solar irradiation conditions. Short calculation times of the proposed control algorithms allow its use in real time applications even where a higher number of PV modules is required.

  17. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-12

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  18. Micromagnetic analysis of geometrically controlled current-driven magnetization switching

    Directory of Open Access Journals (Sweden)

    O. Alejos

    2017-05-01

    Full Text Available The magnetization dynamics induced by current pulses in a pair of two “S-shaped” ferromagnetic elements, each one consisting on two oppositely tilted tapered spikes at the ends of a straight section, is theoretically studied by means of micromagnetic simulations. Our results indicate that the magnetization reversal is triggered by thermal activation, which assists the current-induced domain nucleation and the propagation of domain walls. The detailed analysis of the magnetization dynamics reveals that the magnetization switching is only achieved when a single domain wall is nucleated in the correct corner of the element. In agreement with recent experimental studies, the switching is purely dictated by the shape, being independent of the current polarity. The statistical study points out that successful switching is only achieved within a narrow range of the current pulse amplitudes.

  19. Context Switching with Multiple Register Windows: A RISC Performance Study

    Science.gov (United States)

    Konsek, Marion B.; Reed, Daniel A.; Watcharawittayakul, Wittaya

    1987-01-01

    Although previous studies have shown that a large file of overlapping register windows can greatly reduce procedure call/return overhead, the effects of register windows in a multiprogramming environment are poorly understood. This paper investigates the performance of multiprogrammed, reduced instruction set computers (RISCs) as a function of window management strategy. Using an analytic model that reflects context switch and procedure call overheads, we analyze the performance of simple, linearly self-recursive programs. For more complex programs, we present the results of a simulation study. These studies show that a simple strategy that saves all windows prior to a context switch, but restores only a single window following a context switch, performs near optimally.

  20. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  1. Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies

    Science.gov (United States)

    Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S

    2012-01-01

    G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor

  2. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  3. Quadratic stabilisability of multi-agent systems under switching topologies

    Science.gov (United States)

    Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long

    2014-12-01

    This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.

  4. Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications

    Science.gov (United States)

    Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von

    2009-01-01

    We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.

  5. Plasma opening switch for long-pulse intense ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1992-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 600 ns, and open quickly to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Thus, otherwise by virtue of traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 4.75 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening goes by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed

  6. Plasma opening switch for long-pulse intense ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1993-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 400 ns, and open quicky to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Using traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 5.0 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening is achieved by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed

  7. Microcontroller based PWM controlled four switch three phase inverter fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Mohanty Kant Nalin

    2010-01-01

    Full Text Available This paper presents PIC microcontroller based PWM inverter controlled four switch three phase inverter (FSTPI fed Induction Motor drive. The advantage of this inverter that uses of 4 switches instead of conventional 6 switches is lesser switching losses, lower electromagnetic interference (EMI, less complexity of control algorithms and reduced interface circuits. Simulation and experimental work are carried out and results presented to demonstrate the feasibility of the proposed approach. Simulation is carried out using MATLAB SIMULINK and in the experimental work a prototype model is built to verify the simulation results. PIC microcontroller (PIC 16F877A is used to generate the PWM pulses for FSTPI to drive the 0.5 hp 3-phase Induction Motor.

  8. CMOS integrated switching power converters

    CERN Document Server

    Villar-Pique, Gerard

    2011-01-01

    This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and effi

  9. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  10. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  11. A level switch with a sound tube

    OpenAIRE

    赤池, 誠規

    2017-01-01

    Level switches are sensor with an electrical contact output at a specific liquid, powder or bulk level. Most of traditional level switches are not suitable for harsh environments. The level switch in this study connects a loudspeaker on top end of the sound tube. When liquid, powder or bulk closes bottom end of the sound tube, the level switch turns on. The level switch is suitable for harsh environments and easy to install. The aim of this study is to propose a level switch with a sound tube...

  12. Resistive switching in Pt/TiO{sub 2}/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Doo Seok

    2008-08-15

    Recently, the resistive switching behavior in TiO{sub 2} has drawn attention due to its application to resistive random access memory (RRAM) devices. TiO{sub 2} shows characteristic non-volatile resistive switching behavior, i.e. reversible switching between a high resistance state (HRS) and a low resistance state (LRS). Both unipolar resistive switching (URS) and bipolar resistive switching (BRS) are found to be observed in TiO{sub 2} depending on the compliance current for the electroforming. In this thesis the characteristic current-voltage (I-V) hysteresis in three different states of TiO{sub 2}, pristine, URS-activated, and BRS-activated states, was investigated and understood in terms of the migration of oxygen vacancies in TiO{sub 2}. The I-V hysteresis of pristine TiO{sub 2} was found to show volatile behavior. That is, the temporary variation of the resistance took place depending on the applied voltage. However, the I-V hysteresis of URS- and BRS-activated states showed non-volatile resistive switching behavior. Some evidences proving the evolution of oxygen gas during electroforming were obtained from time-of-flight secondary ion mass spectroscopy analysis and the variation of the morphology of switching cells induced by the electroforming. On the assumption that a large number of oxygen vacancies are introduced by the electroforming process, the I-V behavior in electroformed switching cells was simulated with varying the distribution of oxygen vacancies in electroformed TiO{sub x} (x simulated with taking into consideration oxygen formation/annihilation reactions at a Pt/TiO{sub x} interface. The oxygen-related reactions given as a function of the applied voltage affect the distribution of oxygen vacancies in TiO{sub x}, consequently, the Schottky barrier height at the cathode/TiO{sub x} interface is influenced by the oxygen vacancy distribution. Therefore, the BRS behavior including the

  13. Industry switching in developing countries

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Tarp, Finn

    2013-01-01

    Firm turnover (i.e., firm entry and exit) is a well-recognized source of sector-level productivity growth. In contrast, the role and importance of firms that switch activities from one sector to another is not well understood. Firm switchers are likely to be unique, differing from both newly esta...

  14. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  15. Design of convergent switched systems

    NARCIS (Netherlands)

    Berg, van den R.A.; Pogromsky, A.Y.; Leonov, G.A.; Rooda, J.E.; Pettersen, K.Y.; Gravdahl, J.T.; Nijmeijer, H.

    2006-01-01

    In this paper we deal with the problem of rendering hybrid/nonlinear systems into convergent closed-loop systems by means of a feedback law or switching rules. We illustrate our approach to this problem by means of two examples: the anti-windup design for a marginally stable system with input

  16. Incorrect predictions reduce switch costs.

    Science.gov (United States)

    Kleinsorge, Thomas; Scheil, Juliane

    2015-07-01

    In three experiments, we combined two sources of conflict within a modified task-switching procedure. The first source of conflict was the one inherent in any task switching situation, namely the conflict between a task set activated by the recent performance of another task and the task set needed to perform the actually relevant task. The second source of conflict was induced by requiring participants to guess aspects of the upcoming task (Exps. 1 & 2: task identity; Exp. 3: position of task precue). In case of an incorrect guess, a conflict accrues between the representation of the guessed task and the actually relevant task. In Experiments 1 and 2, incorrect guesses led to an overall increase of reaction times and error rates, but they reduced task switch costs compared to conditions in which participants predicted the correct task. In Experiment 3, incorrect guesses resulted in faster performance overall and to a selective decrease of reaction times in task switch trials when the cue-target interval was long. We interpret these findings in terms of an enhanced level of controlled processing induced by a combination of two sources of conflict converging upon the same target of cognitive control. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2012-01-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  18. Stability of Randomly Switched Diffusions

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Leth, John-Josef; Gholami, Mehdi

    2012-01-01

    This paper provides a sufficient criterion for ε-moment stability (boundedness) and ergodicity for a class of systems comprising a finite set of diffusions among which switching is governed by a continuous time Markov chain. Stability/instability properties for each separate subsystem are assumed...

  19. Industry Switching in Developing Countries

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Tarp, Finn

    Firm turnover (i.e. firm entry and exit) is a well-recognized source of sectorlevel productivity growth across developing and developed countries. In contrast, the role and importance of firms switching activities from one sector to another is little understood. Firm switchers are likely...

  20. Charge transport through molecular switches

    International Nuclear Information System (INIS)

    Jan van der Molen, Sense; Liljeroth, Peter

    2010-01-01

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  1. Charge transport through molecular switches

    Energy Technology Data Exchange (ETDEWEB)

    Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-07

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  2. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  3. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  4. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing

    2013-03-15

    Resistive switching materials are promising candidates for nonvolatile data storage and reconfiguration of electronic applications. Intensive studies have been carried out on sandwiched metal-insulator-metal structures to achieve high density on-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission electron microscopy is used to study in real-time the physical structure and analyze the chemical composition of the nanofilament dynamically during resistive switching. Electrical stressing using an external voltage was applied by a tungsten tip to the nanosized devices having hafnium oxide (HfO2) as the insulator layer. The formation and rupture of the nanofilaments result in up to three orders of magnitude change in the current flowing through the dielectric during the switching event. Oxygen vacancies and metal atoms from the anode constitute the chemistry of the nanofilament.

  5. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad

    2012-09-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  6. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  7. Computer Simulation of Phase Shifted Series Resonant DC to DC Converter

    Directory of Open Access Journals (Sweden)

    P. PARVATHY

    2016-01-01

    Full Text Available This paper deals with digital simulation of phase shifted series resonant DC to DC converter using Matlab Simulink. The Simulink models for open loop and closed loop systems are developed and they are used for simulation studies. This converter is capable of producing ripple free DC output. Switching losses and switching stresses are reduced by using soft switching. This converter has advantages like high power density and low switching losses. Theoretical predictions are well supported by the simulation results.

  8. Switch-connected HyperX network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2018-02-13

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  9. Study of switching behavior of exchange-coupled nanomagnets by transverse magnetization metrology

    Science.gov (United States)

    Dey, Himadri S.; Csaba, Gyorgy; Bernstein, Gary H.; Porod, Wolfgang

    2017-05-01

    We investigate the static switching modes of nanomagnets patterned from antiferromagnetically exchange-coupled magnetic multilayers, and compare them to nanomagnets having only dipole coupling between the ferromagnetic layers. Vibrating sample magnetometry experiments, supported by micromagnetic simulations, reveal two distinct switching mechanisms between the exchange-coupled and only dipole-coupled nanomagnets. The exchange-coupled nanomagnets exhibit gradual switching of the layers, dictated by the strong antiferromagnetic exchange coupling present between the layers. However, the layers of the only dipole-coupled nanomagnets show abrupt nucleation/growth type switching. A comprehensive understanding of the switching modes of such layered and patterned systems can add new insight into the reversal mechanisms of similar systems employed for spintronic and magneto-logic device applications.

  10. Switched generalized function projective synchronization of two identical/different hyperchaotic systems with uncertain parameters

    International Nuclear Information System (INIS)

    Li Hongmin; Li Chunlai

    2012-01-01

    In this paper, we investigate two switched synchronization schemes, namely partial and complete switched generalized function projective synchronization, by using the adaptive control method. Partial switched synchronization of chaotic systems means that the state variables of the drive system synchronize with partial different state variables of the response system, whereas complete switched synchronization of chaotic systems means that all the state variables of the drive system synchronize with complete different state variables of the response system. Because the switched synchronization scheme exists in many combinations, it is a promising type of synchronization as it provides greater security in secure communications. Based on the Lyapunov stability theory, the adaptive control laws and the parameter update laws are derived to make the states of two identical/different hyperchaotic systems asymptotically synchronized up to a desired scaling function. Finally, numerical simulations are performed to verify and illustrate the analytical results.

  11. Novel, Four-Switch, Z-Source Three-Phase Inverter

    DEFF Research Database (Denmark)

    Antal, Robert; Muntean, Nicolae; Boldea, Ion

    2010-01-01

    This paper presents a new z-source three phase inverter topology. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (one front-end diode, two inductors and two X connected capacitors). This new topology......, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. In contrast to standard four-switch three-phase inverter which operates at half dc input voltage the proposed four-switch z-source inverter, by self boosting, brings the output voltage at same (or higher......) value as in six switch standard three-phase inverter. The article presents the derivation of the equations describing the operation of the converter based on space vector analysis, validation through digital simulations in PSIM and preliminary experimental results on a laboratory setup with a dsPIC30F...

  12. A Novel Four-Step Commutation for Bidirectional Switch Cells of AC-AC Matrix Converter

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2012-01-01

    on or off of output current happens on the second and third steps. Here the second step is equal to the third one. This method is implemented with four steps by programming in VHDL language. First, the special flip-flop, 74AHC16373, is obtained by programming so as to make input sector signals, output...... sector ones and active switching time PWM ones synchronize. Second, the required switching states are flexibly realized in the form of the look-up table by programming in VHDL language for 36 switching combinations of input sectors with output ones. Third, the obtained switching states are judged whether...... they need commutation by delayers. Finally, the novel method proposed is implemented by switching sequencers. The simulation results have verified its feasibility....

  13. Software development for a switch-based data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Booth, A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Black, D.; Walsh, D. (Fermi National Accelerator Lab., Batavia, IL (United States))

    1991-12-01

    We report on the software aspects of the development of a switch-based data acquisition system at Fermilab. This paper describes how, with the goal of providing an integrated systems engineering'' environment, several powerful software tools were put in place to facilitate extensive exploration of all aspects of the design. These tools include a simulation package, graphics package and an Expert System shell which have been integrated to provide an environment which encourages the close interaction of hardware and software engineers. This paper includes a description of the simulation, user interface, embedded software, remote procedure calls, and diagnostic software which together have enabled us to provide real-time control and monitoring of a working prototype switch-based data acquisition (DAQ) system.

  14. Practical computer analysis of switch mode power supplies

    CERN Document Server

    Bennett, Johnny C

    2006-01-01

    When designing switch-mode power supplies (SMPSs), engineers need much more than simple "recipes" for analysis. Such plug-and-go instructions are not at all helpful for simulating larger and more complex circuits and systems. Offering more than merely a "cookbook," Practical Computer Analysis of Switch Mode Power Supplies provides a thorough understanding of the essential requirements for analyzing SMPS performance characteristics. It demonstrates the power of the circuit averaging technique when used with powerful computer circuit simulation programs. The book begins with SMPS fundamentals and the basics of circuit averaging models, reviewing most basic topologies and explaining all of their various modes of operation and control. The author then discusses the general analysis requirements of power supplies and how to develop the general types of SMPS models, demonstrating the use of SPICE for analysis. He examines the basic first-order analyses generally associated with SMPS performance along with more pra...

  15. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  16. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  17. Surfing Peer-to-Peer IPTV: Distributed Channel Switching

    Science.gov (United States)

    Kermarrec, A.-M.; Le Merrer, E.; Liu, Y.; Simon, G.

    It is now common for IPTV systems attracting millions of users to be based on a peer-to-peer (P2P) architecture. In such systems, each channel is typically associated with one P2P overlay network connecting the users. This significantly enhances the user experience by relieving the source from dealing with all connections. Yet, the joining process resulting in a peer to be integrated in channel overlay usually requires a significant amount of time. As a consequence, switching from one channel to another is far to be as fast as in IPTV solutions provided by telco operators. In this paper, we tackle the issue of efficient channel switching in P2P IPTV system. This is to the best of our knowledge the first study on this topic. First, we conducted and analyzed a set of measurements of one of the most popular P2P systems (PPlive). These measurements reveal that the set of contacts that a joining peer receives from the central server are of the utmost importance in the start-up process. On those neigbors, depends the speed to acquire the first video frames to play. We then formulate the switching problem, and propose a simple distributed algorithm, as an illustration of the concept, which aims at leveraging the presence of peers in the network to fasten the switch process. The principle is that each peer maintains as neighbors peers involved in other channels, providing peers with good contacts upon channel switching. Finally, simulations show that our approach leads to substantial improvements on the channel switching time. As our algorithmic solution does not have any prerequisite on the overlays, it appears to be an appealing add-on for existing P2P IPTV systems.

  18. Isolated converter with synchronized switching leg

    NARCIS (Netherlands)

    2003-01-01

    An amplification device is disclosed providing a way of integrating a switch mode power supply and a class D amplifier (switch mode amplifier). This results in the usage of basically one magnetic component (1), one major energy storage element (4) and switches (20, 30) that are controlled in such a

  19. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  20. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  1. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  2. 47 CFR 69.106 - Local switching.

    Science.gov (United States)

    2010-10-01

    ... foreign services that use local exchange switching facilities. (c) If end users of an interstate or... local exchange carriers shall establish rate elements for local switching as follows: (1) Price cap... use local exchange switching facilities for the provision of interstate or foreign services. The...

  3. Caffeine improves anticipatory processes in task switching

    NARCIS (Netherlands)

    Tieges, Zoe; Snel, Jan; Kok, Albert; Wijnen, Jasper G.; Lorist, Monicque M.; Ridderinkhof, K. Richard

    We studied the effects of moderate amounts of caffeine on task switching and task maintenance using mixed-task (AABB) blocks, in which participants alternated predictably between two tasks, and single-task (AAAA, BBBB) blocks. Switch costs refer to longer reaction times (RT) on task switch trials

  4. Bootstrapped Low-Voltage Analog Switches

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1999-01-01

    Novel low-voltage constant-impedance analog switch circuits are proposed. The switch element is a single MOSFET, and constant-impedance operation is obtained using simple circuits to adjust the gate and bulk voltages relative to the switched signal. Low-voltage (1-volt) operation is made feasible...

  5. Control and synchronisation in switched arrival systems

    NARCIS (Netherlands)

    Rem, B.; Armbruster, H.D.

    2003-01-01

    A chaotic model of a production flow called the switched arrival system is extended to include switching times and maintenance. The probability distribution of the chaotic return times is calculated. Scheduling maintenance, loss of production due to switching, and control of the chaotic dynamics is

  6. Switch Reluctance Motor Control Based on Fuzzy Logic System

    Directory of Open Access Journals (Sweden)

    S. V. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  7. Motor models and transient analysis for high-temperature, superconductor switch-based adjustable speed drive applications. Final report

    International Nuclear Information System (INIS)

    Bailey, J.M.

    1996-06-01

    New high-temperature superconductor (HTSC) technology may allow development of an energy-efficient power electronics switch for adjustable speed drive (ASD) applications involving variable-speed motors, superconducting magnetic energy storage systems, and other power conversion equipment. This project developed a motor simulation module for determining optimal applications of HTSC-based power switches in ASD systems

  8. Optimization of multi-branch switched diversity systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2009-01-01

    A performance optimization based on the optimal switching threshold(s) for a multi-branch switched diversity system is discussed in this paper. For the conventional multi-branch switched diversity system with a single switching threshold

  9. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    Science.gov (United States)

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  10. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  11. Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications

    International Nuclear Information System (INIS)

    Savage, Mark E.; Mendel, C.W.; Seidel, David B.

    1999-01-01

    Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown

  12. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which......The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...

  13. Optical packet switched design with relaxed maximum hardware parameters and high service-class granularity for flexible switch node dimensioning

    DEFF Research Database (Denmark)

    Nord, Martin

    2004-01-01

    This work proposes a quality of service differentiation algorithm, improving the service class granularity and isolation of our recently presented waveband plane based design. The design aims at overcoming potential hardware limitations and increasing the switch node dimensioning flexibility...... in core networks. Exploiting the wavelength dimension for contention resolution, using partially shared wavelength converter pools, avoids optical buffers and reduces wavelength converter count. These benefits are illustrated by numerical simulations, and are highlighted in a dimensioning study with three...

  14. Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters

    Science.gov (United States)

    Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui

    2018-05-01

    To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.

  15. Fabrication of a Micromachined Capacitive Switch Using the CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2015-11-01

    Full Text Available The study investigates the design and fabrication of a micromachined radio frequency (RF capacitive switch using the complementary metal oxide semiconductor-microelectromechanical system (CMOS-MEMS technology. The structure of the micromachined switch is composed of a membrane, eight springs, four inductors, and coplanar waveguide (CPW lines. In order to reduce the actuation voltage of the switch, the springs are designed as low stiffness. The finite element method (FEM software CoventorWare is used to simulate the actuation voltage and displacement of the switch. The micromachined switch needs a post-CMOS process to release the springs and membrane. A wet etching is employed to etch the sacrificial silicon dioxide layer, and to release the membrane and springs of the switch. Experiments show that the pull-in voltage of the switch is 12 V. The switch has an insertion loss of 0.8 dB at 36 GHz and an isolation of 19 dB at 36 GHz.

  16. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  17. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  18. Negation switching invariant signed graphs

    Directory of Open Access Journals (Sweden)

    Deepa Sinha

    2014-04-01

    Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.

  19. Switch for Good Community Program

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Tabitha [Balfour Beatty Military Housing Management LLC, Newtown Square, PA (United States); Amran, Martha [WattzOn, Inc., Mountain View, CA (United States)

    2013-11-19

    Switch4Good is an energy-savings program that helps residents reduce consumption from behavior changes; it was co-developed by Balfour Beatty Military Housing Management (BB) and WattzOn in Phase I of this grant. The program was offered at 11 Navy bases. Three customer engagement strategies were evaluated, and it was found that Digital Nudges (a combination of monthly consumption statements with frequent messaging via text or email) was most cost-effective. The program was delivered on-time and on-budget, and its success is based on the teamwork of local BB staff and the WattzOn team. The following graphic shows Switch4Good “by the numbers”, e.g. the scale of operations achieved during Phase I.

  20. Global Uniform Asymptotic Stability of a Class of Switched Linear Systems with an Infinite Number of Subsystems

    Directory of Open Access Journals (Sweden)

    L. F. Araghi

    2014-01-01

    Full Text Available Stability of switching systems with an infinite number of subsystems is important in some structure of systems, like fuzzy systems, neural networks, and so forth. Because of the relationship between stability of a set of matrices and switching systems, this paper first studies the stability of a set of matrices, then and the results are applied for stability of switching systems. Some new conditions for globally uniformly asymptotically stability (GUAS of discrete-time switched linear systems with an infinite number of subsystems are proposed. The paper considers some examples and simulation results.

  1. Operation and Modulation of H7 Current Source Inverter with Hybrid SiC and Si Semiconductor Switches

    DEFF Research Database (Denmark)

    Wang, Weiqi; Gao, Feng; Yang, Yongheng

    2018-01-01

    This paper proposes an H7 current source inverter (CSI) consisting of a single parallel-connected silicon carbide (SiC) switch and a traditional silicon (Si) H6 CSI. The proposed H7 CSI takes the advantages of the SiC switch to maintain high efficiency, while significantly increasing the switching...... as an all-SiC-switch converter in terms of high performance and high efficiency with reduced DC inductance. It provides a cost-effective solution to addressing the efficiency issue of conventional CSI systems. Simulations and experiments are performed to validate the effectiveness of the proposed H7 CSI...

  2. Abnormal resistance switching behaviours of NiO thin films: possible occurrence of both formation and rupturing of conducting channels

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chunli; Chae, S C; Chang, S H; Lee, S B; Noh, T W [ReCOE and FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, J S; Kahng, B [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, D-W [Division of Nano Sciences and Department of Physics, Ewha Womens University, Seoul 120-750 (Korea, Republic of); Jung, C U [Department of Physics, Hankuk University of Foreign Studies, Yongin, Gyeonggi-do 449-791 (Korea, Republic of); Seo, S; Ahn, S-E [Samsung Advanced Institute of Technology, Suwon 440-600 (Korea, Republic of)], E-mail: twnoh@snu.ac.kr

    2009-01-07

    We report a detailed study on the abnormal resistance switching behaviours observed in NiO thin films which show unipolar resistance switching phenomena. During the RESET process, in which the NiO film changed from a low resistance state to a high resistance state, we sometimes observed that the resistance became smaller than the initial value. We simulated the resistance switching by using a random circuit breaker network model. We found that local conducting channels could be formed as well as ruptured during the RESET process, which result in the occurrence of such abnormal switching behaviours.

  3. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  4. Secure videoconferencing equipment switching system and method

    Science.gov (United States)

    Hansen, Michael E [Livermore, CA

    2009-01-13

    A switching system and method are provided to facilitate use of videoconference facilities over a plurality of security levels. The system includes a switch coupled to a plurality of codecs and communication networks. Audio/Visual peripheral components are connected to the switch. The switch couples control and data signals between the Audio/Visual peripheral components and one but nor both of the plurality of codecs. The switch additionally couples communication networks of the appropriate security level to each of the codecs. In this manner, a videoconferencing facility is provided for use on both secure and non-secure networks.

  5. Modular space-vector pulse-width modulation for nine-switch converters

    DEFF Research Database (Denmark)

    Dehghan, Seyed Mohammad; Amiri, Arash; Mohamadian, Mustafa

    2013-01-01

    Recently, nine-switch inverter (NSI) has been presented as a dual-output inverter with constant frequency (CF) or different frequency (DF) operation modes. However, the CF mode is more interesting because of its lower switching device rating. This study proposes a new space-vector modulation (SVM......) method for the NSI that supports both the CF and DF modes, whereas conventional SVM of NSI can be used only in the DF mode. The proposed SVM can be easily implemented based on the conventional six-switch inverter SVM modules. The performance of the proposed SVM is verified by the simulation...

  6. Fixed switching frequency applied in single-phase boost AC to DC converter

    International Nuclear Information System (INIS)

    Chen, T.-C.; Ren, T.-J.; Ou, J.-C.

    2009-01-01

    The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.

  7. Two dimensional Hall MHD modeling of a plasma opening switch with density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Zabaidullin, O [Kurchatov Institute, Moscow (Russian Federation); Chuvatin, A; Etlicher, B [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The results of two-dimensional numerical modeling of the Plasma Opening Switch in the MHD framework with Hall effect are presented. An enhanced Hall diffusion coefficient was used in the simulations. Recent experiments justify the application of this approach. The result of the modeling also correlates better with the experiment than in the case of the classical diffusion coefficient. Numerically generated pictures propose a switching scenario in which the translation between the conduction and opening phases can be explained by an abrupt `switching on` and further domination of the Hall effect at the end of the conduction phase. (author). 3 figs., 6 refs.

  8. Switching strategies to optimize search

    International Nuclear Information System (INIS)

    Shlesinger, Michael F

    2016-01-01

    Search strategies are explored when the search time is fixed, success is probabilistic and the estimate for success can diminish with time if there is not a successful result. Under the time constraint the problem is to find the optimal time to switch a search strategy or search location. Several variables are taken into account, including cost, gain, rate of success if a target is present and the probability that a target is present. (paper: interdisciplinary statistical mechanics)

  9. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  10. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  11. Coating possibilities for magnetic switches

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.; Morgan, F.A.

    1990-01-01

    High average power magnetic pulse compression systems are now being considered for use in several applications such as the High Power Radiation Source (HiPoRS) project. Such systems will require high reliability magnetic switches (saturable inductors) that are very efficient and have long lifetimes. One of the weakest components in magnetic switches is their interlaminar insulation. Considerations related to dielectric breakdown, thermal management of compact designs, and economical approaches for achieving these needs must be addressed. Various dielectric insulation and coating materials have been applied to Metglas foil in an attempt to solve the complex technical and practical problems associated with large magnetic switch structures. This work reports various needs, studies, results, and proposals in selecting and evaluating continuous coating approaches for magnetic foil. Techniques such as electrophoretic polymer deposition and surface chemical oxidation are discussed. We also propose continuous photofabrication processes for applying dielectric ribs or spacers to the foil which permit circulation of dielectric liquids for cooling during repetitive operation. 10 refs., 8 figs., 11 tabs

  12. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  13. Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol

    Science.gov (United States)

    Wang, Juan; Sun, Qingying; Feng, Enmin

    2012-11-01

    A nonlinear autonomous switching system is proposed to describe the coupled fed-batch fermentation with the pH as the feedback parameter. We prove the non-Zeno behaviors of the switching system and some basic properties of its solution, including the existence, uniqueness, boundedness and regularity. Numerical simulation is also carried out, which reveals that the proposed system can describe the factual fermentation process properly.

  14. Analytical Performance Evaluation of Different Switch Solutions

    Directory of Open Access Journals (Sweden)

    Francisco Sans

    2013-01-01

    Full Text Available The virtualization of the network access layer has opened new doors in how we perceive networks. With this virtualization of the network, it is possible to transform a regular PC with several network interface cards into a switch. PC-based switches are becoming an alternative to off-the-shelf switches, since they are cheaper. For this reason, it is important to evaluate the performance of PC-based switches. In this paper, we present a performance evaluation of two PC-based switches, using Open vSwitch and LiSA, and compare their performance with an off-the-shelf Cisco switch. The RTT, throughput, and fairness for UDP are measured for both Ethernet and Fast Ethernet technologies. From this research, we can conclude that the Cisco switch presents the best performance, and both PC-based switches have similar performance. Between Open vSwitch and LiSA, Open vSwitch represents a better choice since it has more features and is currently actively developed.

  15. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  16. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija

    2017-01-01

    . Software controlled switching using an on-chip integrated fiber switch is demonstrated and enabling of additional network functionalities such as multicast and optical grooming is experimentally confirmed. Altogether this work demonstrates the potential of optical switching technologies...... for the purpose of deploying optical switching within the network. First, the Hi-Ring data center architecture is proposed. It is based on optical multidimensional switching nodes that provide switching in hierarchically layered space, wavelength and time domain. The performance of the Hi-Ring architecture...... is evaluated experimentally and successful switching of both high capacity wavelength connections and time-shared subwavelengthconnections is demonstrated. Error-free performance is also achieved when transmitting 7 Tbit/s using multicore fiber, confirming the ability to scale the network. Moreover...

  17. Energy storage, compression, and switching. Vol. 2

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.H.; Sahlin, H.

    1983-01-01

    This book is a compilation of papers presented at the Second International Conference on Energy Storage, Compression, and Switching, which was held in order to assemble active researchers with a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, high voltage and high current switches, free-electron lasers, and pellet implosion plasma focus. Topics covered include: Slow systems: 50-60 Hz machinery, homopolar generators, slow capacitors, inductors, and solid state switches; Intermediate systems: fast capacitor banks; superconducting storage and switching; gas, vacuum, and dielectric switching; nonlinear (magnetic) switching; imploding liners capacitors; explosive generators; and fuses; and Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics; switches; magnetic insulation; electron beams; and plasmas

  18. Study of selected phenotype switching strategies in time varying environment

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Denis, E-mail: horvath.denis@gmail.com [Centre of Interdisciplinary Biosciences, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia); Brutovsky, Branislav, E-mail: branislav.brutovsky@upjs.sk [Department of Biophysics, Institute of Physics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia)

    2016-03-22

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.

  19. Study of selected phenotype switching strategies in time varying environment

    International Nuclear Information System (INIS)

    Horvath, Denis; Brutovsky, Branislav

    2016-01-01

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.

  20. High Performance Gigabit Ethernet Switches for DAQ Systems

    CERN Document Server

    Barczyk, Artur

    2005-01-01

    Commercially available high performance Gigabit Ethernet (GbE) switches are optimized mostly for Internet and standard LAN application traffic. DAQ systems on the other hand usually make use of very specific traffic patterns, with e.g. deterministic arrival times. Industry's accepted loss-less limit of 99.999% may be still unacceptably high for DAQ purposes, as e.g. in the case of the LHCb readout system. In addition, even switches passing this criteria under random traffic can show significantly higher loss rates if subject to our traffic pattern, mainly due to buffer memory limitations. We have evaluated the performance of several switches, ranging from "pizza-box" devices with 24 or 48 ports up to chassis based core switches in a test-bed capable to emulate realistic traffic patterns as expected in the readout system of our experiment. The results obtained in our tests have been used to refine and parametrize our packet level simulation of the complete LHCb readout network. In this paper we report on the...

  1. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  2. Photonics in Switching. Organization of the 1993 Photonics Science Topical Meetings Held in Palm Springs, California on March 15 - 17, 1993. Technical Digest

    Science.gov (United States)

    1993-03-17

    placed on the number of inputs and outputs. For the TeO2 material used in this design, the TB is approximately 1000. Due to the over-resolved...Design of the acoustooptic crossbar switch Figure 2 shows a numerical simulation of the momentum space of an 8 by 8 switch in TeO2 . This switch...results Figure 4 shows switching results from a preliminary demonstration of a three by three switch in a beam-steered flint glass cell. The scope trace

  3. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Road, Bldg. 160, Austin, Texas 78758 (United States)

    2016-07-21

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  4. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    Science.gov (United States)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  5. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2016-01-01

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  6. Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching

    Science.gov (United States)

    Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun

    2018-06-01

    Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

  7. The allosteric switching mechanism in bacteriophage MS2

    Energy Technology Data Exchange (ETDEWEB)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  8. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.

  9. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit includes a light emitting diode which from time to time illuminates a photo-transistor, the photo-transistor serving when its output reaches a predetermined value to operate a trigger circuit. In order to allow for aging of the components, the current flow through the diode is increased when the output from the transistor falls below a known level. Conveniently, this is achieved by having a transistor in parallel with the diode, and turning the transistor off when the output from the phototransistor becomes too low. The circuit is designed to control the ignition system in an automobile engine.

  10. Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields

    DEFF Research Database (Denmark)

    Richards, H.L.; Rikvold, P.A.

    1996-01-01

    particularly promising as materials for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simulations to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching in two-dimensional, single-domain, kinetic Ising systems....... For systems in the weak-field ''stochastic region,'' where magnetization switching is on average effected by the nucleation and growth of a single droplet, the simulation results can be explained by a simple model in which the free energy is a function only of magnetization. In the intermediate......-field ''multidroplet region,'' a generalization of Avrami's law involving a magnetization-dependent effective magnetic field gives good agreement with the simulations. The effects of the demagnetizing field do not qualitatively change the droplet-theoretical picture of magnetization switching in highly anisotropic...

  11. Modeling and Mitigation for High Frequency Switching Transients Due to Energization in Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Yanli Xin

    2016-12-01

    Full Text Available This paper presents a comprehensive investigation on high frequency (HF switching transients due to energization of vacuum circuit breakers (VCBs in offshore wind farms (OWFs. This research not only concerns the modeling of main components in collector grids of an OWF for transient analysis (including VCBs, wind turbine transformers (WTTs, submarine cables, but also compares the effectiveness between several mainstream switching overvoltage (SOV protection methods and a new mitigation method called smart choke. In order to accurately reproduce such HF switching transients considering the current chopping, dielectric strength (DS recovery capability and HF quenching capability of VCBs, three models are developed, i.e., a user–defined VCB model, a HF transformer terminal model and a three-core (TC frequency dependent model of submarine cables, which are validated through simulations and compared with measurements. Based on the above models and a real OWF configuration, a simulation model is built and several typical switching transient cases are investigated to analyze the switching transient process and phenomena. Subsequently, according to the characteristics of overvoltages, appropriate parameters of SOV mitigation methods are determined to improve their effectiveness. Simulation results indicate that the user–defined VCB model can satisfactorily simulate prestrikes and the proposed component models display HF characteristics, which are consistent with onsite measurement behaviors. Moreover, the employed protection methods can suppress induced SOVs, which have a steep front, a high oscillation frequency and a high amplitude, among which the smart choke presents a preferable HF damping effect.

  12. Evolution of a Fluctuating Population in a Randomly Switching Environment.

    Science.gov (United States)

    Wienand, Karl; Frey, Erwin; Mobilia, Mauro

    2017-10-13

    Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.

  13. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  14. Axis-switching of a micro-jet

    Science.gov (United States)

    Cabaleiro, Juan Martin; Aider, Jean-Luc

    2014-03-01

    In this study, it is shown that free microjets can undergo complex transitions similar to large-scale free jets despite relatively low Reynolds numbers. Using an original experimental method allowing for the 3D reconstruction of the instantaneous spatial organization of the microjet, the axis-switching of a micro-jet is observed for the first time. This is the first experimental evidence of such complex phenomena for free micro-jets. Combining these experimental results with Direct Numerical Simulations it is shown that the mechanism responsible for the axis-switching is the deformation of a micro-vortex ring due to induction by the corner vortices, as it occurs in large scale non-circular jets.

  15. A nonlinear HP-type complementary resistive switch

    Directory of Open Access Journals (Sweden)

    Paul K. Radtke

    2016-05-01

    Full Text Available Resistive Switching (RS is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS. Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  16. A nonlinear HP-type complementary resistive switch

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  17. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  18. Fuselage panel noise attenuation by piezoelectric switching control

    International Nuclear Information System (INIS)

    Makihara, Kanjuro; Onoda, Junjiro; Minesugi, Kenji; Miyakawa, Takeya

    2010-01-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments

  19. Multiuser switched diversity scheduling systems with per-user threshold

    KAUST Repository

    Nam, Haewoon

    2010-05-01

    A multiuser switched diversity scheduling scheme with per-user feedback threshold is proposed and analyzed in this paper. The conventional multiuser switched diversity scheduling scheme uses a single feedback threshold for every user, where the threshold is a function of the average signal-to-noise ratios (SNRs) of the users as well as the number of users involved in the scheduling process. The proposed scheme, however, constructs a sequence of feedback thresholds instead of a single feedback threshold such that each user compares its channel quality with the corresponding feedback threshold in the sequence. Numerical and simulation results show that thanks to the flexibility of threshold selection, where a potentially different threshold can be used for each user, the proposed scheme provides a higher system capacity than that for the conventional scheme. © 2006 IEEE.

  20. Low Voltage Current Mode Switched-Current-Mirror Mixer

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2009-09-01

    Full Text Available A new CMOS active mixer topology can operate at 1 V supply voltage by use of SCM (switched currentmirror. Such current-mode mixer requires less voltage headroom with good linearization. Mixing is achieved with four improved current mirrors, which are alternatively activated. For ideal switching, the operation is equivalent to a conventional active mixer. This paper analyzes the performance of the SCM mixer, in comparison with the conventional mixer, demonstrating competitive performance at a lower supply voltage. Moreover, the new mixer’s die, without any passive components, is very small, and the conversion gain is easy to adjust. An experimental prototype was designed and simulated in standard chartered 0.18μm RF CMOS Process with Spectre in Cadence Design Systems. Experimental results show satisfactory mixer performance at 2.4 GHz.

  1. Know-How on design of switching regulator

    International Nuclear Information System (INIS)

    1985-08-01

    This book introduces switching regulator from base to application, which deals with fundamentals of switching regulator such as the reason of boom about switching regulator, understanding simple circuit without electric transformer and decision of circuit type with input voltage and output voltage, configuration and characteristic of switching regulator, a concrete design of switching regulator, pulse width control circuit and protection circuit, concrete circuit examples of switching power and the point of switching regulator.

  2. Stateless multicast switching in software defined networks

    OpenAIRE

    Reed, Martin J.; Al-Naday, Mays; Thomos, Nikolaos; Trossen, Dirk; Petropoulos, George; Spirou, Spiros

    2016-01-01

    Multicast data delivery can significantly reduce traffic in operators' networks, but has been limited in deployment due to concerns such as the scalability of state management. This paper shows how multicast can be implemented in contemporary software defined networking (SDN) switches, with less state than existing unicast switching strategies, by utilising a Bloom Filter (BF) based switching technique. Furthermore, the proposed mechanism uses only proactive rule insertion, and thus, is not l...

  3. AN ANALYTICAL STUDY OF SWITCHING TRACTION MOTORS

    Directory of Open Access Journals (Sweden)

    V. M. Bezruchenko

    2010-03-01

    Full Text Available The analytical study of switching of the tractive engines of electric locomotives is conducted. It is found that the obtained curves of change of current of the sections commuted correspond to the theory of average rectilinear switching. By means of the proposed method it is possible on the stage of design of tractive engines to forecast the quality of switching and to correct it timely.

  4. Monitoring Mellanox Infiniband SX6036 switches

    CERN Document Server

    Agapiou, Marinos

    2017-01-01

    The SX6036 switches addressed by my project, are part of a fully non-blocking fat-tree cluster consisting of 72 servers and 6 Mellanox SX6036 Infiniband switches. My project is about retrieving the appropriate metrics from the Infiniband switch cluster, ingesting the data to Collectd and after my data are being transfered to CERN Database, they are being visualized via Grafana Dashboards.

  5. A new switched power linac structure

    International Nuclear Information System (INIS)

    Villa, F.

    1989-03-01

    A new pulse power structure has been described that utilizes an easily accessible rectilinear switch. The new structure is more ''forgiving'' (as far as risetime is concerned) than the radial line transformer, and contains fewer switching structures/unit length. The combination of the new structure with the switch proposed seems to offer interesting possibilities for a future linear collider. 13 refs., 6 figs., 2 tabs

  6. Switching induced oscillations in the logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Makisha P.S. [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States); Peacock-Lopez, Enrique, E-mail: epeacock@williams.ed [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States)

    2010-02-08

    In ecological modeling, seasonality can be represented as a switching between different environmental conditions. This switching strategy can be related to the so-called Parrondian games, where the alternation of two losing games yield a winning game. Hence we can consider two dynamics that, by themselves, yield undesirable behaviors, but when alternated yield a desirable oscillatory behavior. In this case, we also consider a noisy switching strategy and find that the desirable oscillatory behavior prevails.

  7. Ultrafast pulse generation in photoconductive switches

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Dykaar, D. R.

    1996-01-01

    Carrier and field dynamics in photoconductive switches are investigated by electrooptic sampling and voltage-dependent reflectivity measurements. We show that the nonuniform field distribution due to the two-dimensional nature of coplanar photoconductive switches, in combination with the large di...... difference in the mobilities of holes and electrons, determine the pronounced polarity dependence. Our measurements indicate that the pulse generation mechanism is a rapid voltage breakdown across the photoconductive switch and not a local field breakdown...

  8. A magnetically switched kicker for proton extraction

    International Nuclear Information System (INIS)

    Dinkel, J.; Biggs, J.

    1989-03-01

    The application of magnetic current amplification and switching techniques to the generation of precise high current pulses for switching magnets is described. The square loop characteristic of Metglas tape wound cores at high excitation levels provides excellent switching characteristics for microsecond pulses. The rugged and passive nature of this type pulser makes it possible to locate the final stages of amplification at the load for maximum efficiency. 12 refs., 8 figs

  9. Atomic battery with beam switching

    International Nuclear Information System (INIS)

    Edling, E.A.; McKenna, R.P.; Peterick, E.Th. Jr.; Trexler, F.D.

    1984-01-01

    An electric power generating apparatus that is powered primarily by the emission of electrically charged particles from radio-active materials enclosed in an evacuated vessel of glass or the like. An arrangement of reflecting electrodes causes a beam of particles to switch back and forth at a high frequency between two collecting electrodes that are connected to a resonating tuned primary circuit consisting of an inductor with resonating capacitor. The reflecting electrodes are energized in the proper phase relationship to the collecting electrodes to insure sustained oscillation by means of a secondary winding coupled inductively to the primary winding and connected to the reflecting electrodes. Power may be drawn from the circuit at a stepped down voltage from a power take-off winding that is coupled to the primary winding. The disclosure also describes a collecting electrode arrangement consisting of multiple spatially separated electrodes which together serve to capture a maximum of the available particle energy. A self-starting arrangement for start of oscillations is described. A specially adapted version of the invention utilizes two complementary beams of oppositely charged particles which are switched alternatingly between the collecting electrodes

  10. Atomic crystals resistive switching memory

    International Nuclear Information System (INIS)

    Liu Chunsen; Zhang David Wei; Zhou Peng

    2017-01-01

    Facing the growing data storage and computing demands, a high accessing speed memory with low power and non-volatile character is urgently needed. Resistive access random memory with 4F 2 cell size, switching in sub-nanosecond, cycling endurances of over 10 12 cycles, and information retention exceeding 10 years, is considered as promising next-generation non-volatile memory. However, the energy per bit is still too high to compete against static random access memory and dynamic random access memory. The sneak leakage path and metal film sheet resistance issues hinder the further scaling down. The variation of resistance between different devices and even various cycles in the same device, hold resistive access random memory back from commercialization. The emerging of atomic crystals, possessing fine interface without dangling bonds in low dimension, can provide atomic level solutions for the obsessional issues. Moreover, the unique properties of atomic crystals also enable new type resistive switching memories, which provide a brand-new direction for the resistive access random memory. (topical reviews)

  11. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  12. Stochastic multistep polarization switching in ferroelectrics

    Science.gov (United States)

    Genenko, Y. A.; Khachaturyan, R.; Schultheiß, J.; Ossipov, A.; Daniels, J. E.; Koruza, J.

    2018-04-01

    Consecutive stochastic 90° polarization switching events, clearly resolved in recent experiments, are described by a nucleation and growth multistep model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible consecutive 90°- and parallel 180° switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb (Zr ,Ti ) O3 ceramic in a wide range of electric fields over a time domain of seven orders of magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices.

  13. The increased importance of sector switching

    DEFF Research Database (Denmark)

    Frederiksen, Anders; Hansen, Jesper Rosenberg

    2017-01-01

    Sector switching is an important phenomenon that casts light on public–private differences. Yet our knowledge about its prevalence and trends is limited. We study sector switching using unique Danish register-based employer–employee data covering more than 25 years. We find that sector switching...... constitutes 18.5% of all job-to-job mobility, and the trend is increasing both from public to private and from private to public. Sector switching is also generally increasing for middle managers, but for administrative professionals only the flows from private to public increase and for top managers only...... the flows from public to private increase....

  14. Wireless Nanoionic-Based Radio Frequency Switch

    Science.gov (United States)

    Nessel, James A. (Inventor); Miranda, Felix A (Inventor)

    2017-01-01

    A nanoionic switch connected to one or more rectenna modules is disclosed. The rectenna module is configured to receive a wireless signal and apply a first bias to change a state of the nanoionic switch from a first state to a second state. The rectenna module can receive a second wireless signal and apply a second bias to change the nanoionic switch from the second state back to the first state. The first bias is generally opposite of the first bias. The rectenna module accordingly permits operation of the nanoionic switch without onboard power.

  15. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  16. Simplified design of switching power supplies

    CERN Document Server

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  17. Software-Controlled Next Generation Optical Circuit Switching for HPC and Cloud Computing Datacenters

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2015-11-01

    Full Text Available In this paper, we consider the performance of optical circuit switching (OCS systems designed for data center networks by using network-level simulation. Recent proposals have used OCS in data center networks but the relatively slow switching times of OCS-MEMS switches (10–100 ms and the latencies of control planes in these approaches have limited their use to the largest data center networks with workloads that last several seconds. Herein, we extend the applicability and generality of these studies by considering dynamically changing short-lived circuits in software-controlled OCS switches, using the faster switching technologies that are now available. The modelled switch architecture features fast optical switches in a single hop topology with a centralized, software-defined optical control plane. We model different workloads with various traffic aggregation parameters to investigate the performance of such designs across usage patterns. Our results show that, with suitable choices for the OCS system parameters, delay performance comparable to that of electrical data center networks can be obtained.

  18. A three-level support method for smooth switching of the micro-grid operation model

    Science.gov (United States)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  19. The Strategy of Inverter Seamless Mode Switching in Master-Slave Independent Micro-grid

    Directory of Open Access Journals (Sweden)

    Jiang Hanhong

    2018-01-01

    Full Text Available In order to realize the uninterruptible power supply in the master-slave independent micro-grid system, the micro-grid inverter needs to realize the mode switching of the grid-connection/grid-disconnection. How to reduce the transient oscillation during switching, so as to effectively achieve seamless mode switching is a key issue to be solved. In this paper, a typical master-slave control independent micro-grid is used as an example, the strategy of mode switching is improved in two aspects. On the one hand, the state-following algorithm is adopted to improve the switching strategy of the outer loop. On the other hand, the current inner loop is taken by the H∞ robust controller to improve the robustness of the controller. Compared with the traditional PI control mode switching, this paper illustrates the feasibility of the proposed strategy through the simulation and experiment verification. The improvement strategy in this paper can effectively reduce the voltage and current oscillation during mode switching.

  20. 2×2 polymeric electro-optic MZI switch using multimode interference couplers

    Science.gov (United States)

    Li, H. P.; Liao, J. K.; Tang, X. G.; Lu, R. G.; Liu, Y. Z.

    2009-11-01

    We present the design of a 2×2 photonic switch operating at 1.55-μm wavelength using electro-optic (EO) polymer waveguides. A Mach-Zehnder interferometer (MZI) is used to implement the proposed switch in which two identical 2×2 multimode interference (MMI) couplers are connected by two identical parallel single mode waveguides (two MZI arms). These two single-mode waveguides with electrodes allow modulating the phase difference between the two MZI arms based on the EO effect. In the proposed switch, the EO polymer, IPC-E/polysulfone, is used for the core layer of optical waveguides. UV15 and NOA61 are employed for the lower and upper cladding layers, respectively. The singlemode waveguide structure and 2×2 MMI coupler have been designed and analyzed for the EO switch. Device performance has been simulated using the beam propagation method. It is found that the switch performance is most sensitive to the MMI width and less sensitive to the MMI length. Optimized structure has been obtained for the 2×2 polymeric EO switch, which has a crosstalk level better than -25 dB and insertion loss lower than -1.8 dB. This performance makes the switch a potential candidate for practical use in photonic systems.

  1. Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids

    Directory of Open Access Journals (Sweden)

    Kai Ma

    2017-07-01

    Full Text Available This work proposes three switched control strategies for aggregated heating, ventilation, and air conditioning (HVAC systems in commercial buildings to track the automatic generation control (AGC signal in smart grid. The existing control strategies include the direct load control strategy and the setpoint regulation strategy. The direct load control strategy cannot track the AGC signal when the state of charge (SOC of the aggregated thermostatically controlled loads (TCLs exceeds their regulation capacity, while the setpoint regulation strategy provides flexible regulation capacity, but causes larger tracking errors. To improve the tracking performance, we took the advantages of the two control modes and developed three switched control strategies. The control strategies switch between the direct load control mode and the setpoint regulation mode according to different switching indices. Specifically, we design a discrete-time controller and optimize the controller parameter for the setpoint regulation strategy using the Fibonacci optimization algorithm, enabling us to propose two switched control strategies across multiple time steps. Furthermore, we extend the switched control strategies by introducing a two-stage regulation in a single time step. Simulation results demonstrate that the proposed switched control strategies can reduce the tracking errors for frequency regulation.

  2. LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures

    Science.gov (United States)

    An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling

    2017-08-01

    This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.

  3. Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization

    International Nuclear Information System (INIS)

    Surawanitkun, C.; Kaewrawang, A.; Siritaratiwat, A.; Kruesubthaworn, A.; Sivaratana, R.; Jutong, N.; Mewes, C.K.A.; Mewes, T.

    2015-01-01

    For spin transfer torque (STT), the switching energy and thermal stability of magnetic tunnel junctions (MTJ) bits utilized in memory devices are important factors that have to be considered simultaneously. In this article, we examined the minimum energy for STT induced magnetization switching in MTJ devices for different in-plane angles of the magnetization in the free layer and the pinned layer with respect to the major axis of the elliptical cylinder of the cell. Simulations were performed by comparing the analytical solution with macrospin and full micromagnetic calculations. The results show good agreement of the switching energy calculated by using the three approaches for different initial angles of the magnetization of the free layer. Also, the low-energy location specifies the suitable value of both time and current in order to reduce the heat effect during the switching process. - Highlights: • Switching energy model was firstly examined with tiled magnetization in STT-RAM. • Simulation was performed by analytical solution, macrospin and micromagnetic models. • Low energy results from three models show agreement for tilt angle in free layer. • We also found an optimal tilt angle of the pinned layer. • Low-energy location specifies the suitable switching location to reduce heat effect

  4. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  5. Atmel Microcontroller Based Soft Switched PWM ZVS Full Bridge DC to DC Converter

    Directory of Open Access Journals (Sweden)

    DEEPAK KUMAR NAYAK

    2010-12-01

    Full Text Available This paper deals with the simulation and implementation of soft switched PWM ZVS full bridge DC to DC converter. The 48V DC is efficiently reduced to 12V DC using a DC to DC converter. This converter has advantages like reduced switching losses, stresses and EMI. Input DC is converted into high frequency AC and it is stepped down to 12V level. Later it is rectified using a full wave rectifier. Laboratory model of microcontroller based DC to DC converter is fabricated and tested. The experimental results are compared with the simulation results.

  6. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  7. Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching

    International Nuclear Information System (INIS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2013-01-01

    We respectively investigate breakup and switching of the Manakov-typed bound vector solitons (BVSs) induced by two types of stochastic perturbations: the homogenous and nonhomogenous. Symmetry-recovering is discovered for the asymmetrical homogenous case, while soliton switching is found to relate with the perturbation amplitude and soliton coherence. Simulations show that soliton switching in the circularly-polarized light system is much weaker than that in the Manakov and linearly-polarized systems. In addition, the homogenous perturbations can enhance the soliton switching in both of the Manakov and non-integrable (linearly- and circularly-polarized) systems. Our results might be helpful in interpreting dynamics of the BVSs with stochastic noises in nonlinear optics or with stochastic quantum fluctuations in Bose–Einstein condensates.

  8. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova

    2017-01-01

    layers of the network topology. The analysis is based on network-level simulations using a transport network planning tool applied to small-scale setups of the considered DCNs. The obtained results show that introducing all-optical switching within the DCN leads to reduced power consumption in all......In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  9. Design, Analysis, and Verification of Ka-Band Pattern Reconfigurable Patch Antenna Using RF MEMS Switches

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2016-08-01

    Full Text Available This paper proposes a radiating pattern reconfigurable antenna by employing RF Micro-electromechanical Systems (RF MEMS switches. The antenna has a low profile and small size of 4 mm × 5 mm × 0.4 mm, and mainly consists of one main patch, two assistant patches, and two RF MEMS switches. By changing the RF MEMS switches operating modes, the proposed antenna can switch among three radiating patterns (with main lobe directions of approximately −17.0°, 0° and +17.0° at 35 GHz. The far-field vector addition model is applied to analyse the pattern. Comparing the measured results with analytical and simulated results, good agreements are obtained.

  10. Sate-of-the-art IP switching router architecture using SFQ technology

    International Nuclear Information System (INIS)

    Miyaho, N.; Miyahara, K.; Yamazaki, A.

    2006-01-01

    Taking the recent trend of rapid IP traffic increasing and QoS in the Internet into account, we propose an innovative IP router architecture from the viewpoint of minimum switching delay, switching capacity, QoS assurance for the next generation Internet services. We examined the IP router performance using superconductivity device simulator (WinS) assuming the future-generation Nb junction process and confirmed more than 300 GHz clock operation. For the evaluation of a novel IP switch architecture, we effectively apply the SFQ circuits using Josephson junctions to an extremely restricted function block in the switching node and a conventional semiconductor technology is also applied for the rest parts of the other function blocks inside it

  11. A Novel Soft-Switching Synchronous Buck Converter for Portable Applications

    Directory of Open Access Journals (Sweden)

    Anup Kumar Panda

    2008-01-01

    Full Text Available This paper proposes a zero-voltage-transition (ZVT pulse-width-modulated (PWM synchronous buck converter, which is designed to operate at low voltage and high efficiency typically required for portable systems. A new passive auxiliary circuit that allows the main switch to operate with zero-voltage switching has been incorporated in the conventional PWM synchronous buck converter. The operation principles and a detailed steady-state analysis of the ZVT-PWM synchronous converter implemented with the auxiliary circuit are presented. Besides, the main switch and all of the semiconductor devices operate under soft-switching conditions. Thus, the auxiliary circuit provides a larger overall efficiency. The feasibility of the auxiliary circuit is confirmed by simulation and experimental results.

  12. Performance of highly connected photonic switching lossless metro-access optical networks

    Science.gov (United States)

    Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge

    2018-03-01

    The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.

  13. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  14. Power quality improvement in highly varying loads using thyristor-switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Poshtan, M. [Petroleum Inst., Abu Dhabi (United Arab Emirates). Dept. of Electrical Engineering; Mokhtari, H.; Esmaeili, A. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering

    2007-07-01

    Ordinary contactor-based-capacitor (CBC) banks may not be able to response quickly enough in highly varying electrical loads such as welding machines or arc furnace loads. Thyristor-switched capacitor (TSC) banks are therefore used to compensate for reactive power of highly varying loads. In this paper, the performance of a TSC was compared to CBC banks. The 2 systems, were also compared in terms of energy saving in transmission systems. Simulations carried out using PSCAD/EMTDC software showed that there was a considerable difference in the performance of the 2 systems. The shortcomings of existing CBC systems include slow response of mechanical switching systems; problem of switching more than one bank into the system; and, voltage/current transients during on-off switching. 3 refs., 6 tabs., 14 figs.

  15. Current-driven thermo-magnetic switching in magnetic tunnel junctions

    Science.gov (United States)

    Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.

    2017-12-01

    We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.

  16. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  17. Optimal control of switching time in switched stochastic systems with multi-switching times and different costs

    Science.gov (United States)

    Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian

    2017-08-01

    In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.

  18. Sequential Effects in Deduction: Cost of Inference Switch

    Science.gov (United States)

    Milan, Emilio G.; Moreno-Rios, Sergio; Espino, Orlando; Santamaria, Carlos; Gonzalez-Hernandez, Antonio

    2010-01-01

    The task-switch paradigm has helped psychologists gain insight into the processes involved in changing from one activity to another. The literature has yielded consistent results about switch cost reconfiguration (abrupt offset in regular task-switch vs. gradual reduction in random task-switch; endogenous and exogenous components of switch cost;…

  19. Dichotomous noise models of gene switches

    Energy Technology Data Exchange (ETDEWEB)

    Potoyan, Davit A., E-mail: potoyan@rice.edu; Wolynes, Peter G., E-mail: pwolynes@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-11-21

    Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.

  20. Conceptual design of multiple parallel switching controller

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Ozawa, K.

    1996-01-01

    This paper discusses the conceptual design and the development of a preliminary model of a multiple parallel switching (MPS) controller. The introduction of several advanced controllers has widened and improved the control capability of nonlinear dynamical systems. However, it is not possible to uniquely define a controller that always outperforms the others, and, in many situations, the controller providing the best control action depends on the operating conditions and on the intrinsic properties and behavior of the controlled dynamical system. The desire to combine the control action of several controllers with the purpose to continuously attain the best control action has motivated the development of the MPS controller. The MPS controller consists of a number of single controllers acting in parallel and of an artificial intelligence (AI) based selecting mechanism. The AI selecting mechanism analyzes the output of each controller and implements the one providing the best control performance. An inherent property of the MPS controller is the possibility to discard unreliable controllers while still being able to perform the control action. To demonstrate the feasibility and the capability of the MPS controller the simulation of the on-line operation control of a fast breeder reactor (FBR) evaporator is presented. (author)

  1. Tyrosine phosphorylation switching of a G protein.

    Science.gov (United States)

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Research on the Inductance/Capacitance Switch Model for an LCC-HVDC Converter in an AC/DC Hybrid Grid

    Directory of Open Access Journals (Sweden)

    Yangyang He

    2018-03-01

    Full Text Available In order to improve the simulation speed of the AC/DC hybrid grid, the inductance/capacitance (L/C switch model for line-commutated converter of high-voltage direct current (LCC-HVDC is presented in this study. The time domain modeling method is used to analyze the circuit of L/C switch model for the six-pulse system in LCC-HVDC in a switching period. A parameter setting method of L/C switch model is proposed considering the transient response, the steady state performance, switching losses and simulation error of the switch. The inductance/capacitance (L/C switch model for LCC-HVDC has the advantage of keeping the admittance matrix unchanged regardless of the change of switching state, which improves the simulation efficiency. Finally, the validity of the parameter setting method is verified. Compared with the test results of PSCAD/EMTDC, the accuracy of the proposed LCC-HVDC simulation model is proved. The model is suitable for real-time or offline simulation of AC/DC hybrid grid.

  3. Rotation Impact of Reed Switch

    International Nuclear Information System (INIS)

    Park, Yun Bum; Lee, Jae Seon; Kim, Jong Wook; Han, Eun Sil; Park, Hee June

    2016-01-01

    A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. A RPIS (Rod Position Indication System) is used as a position indicator of a control rod assembly for a CRDM of a nuclear reactor, SMART. A highly accurate RPIS for SMART is required because the reactivity of a nuclear core for a small modular reactor is more sensitive than the commercial ones. In this study, the effect of positioning direction of the reeds in a reed switch for the CRDM RPIS has been studied using the electromagnetic FE analysis. It is found that the positioning direction of the reeds slightly but not significantly affects the formation of attraction. Analysis results will be used as the basis on estimated accuracy of full RPIS system.

  4. Rotation Impact of Reed Switch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun Bum; Lee, Jae Seon; Kim, Jong Wook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Eun Sil [Taesung S and E, Seoul (Korea, Republic of); Park, Hee June [Woojin Inc., Hwaseong (Korea, Republic of)

    2016-10-15

    A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. A RPIS (Rod Position Indication System) is used as a position indicator of a control rod assembly for a CRDM of a nuclear reactor, SMART. A highly accurate RPIS for SMART is required because the reactivity of a nuclear core for a small modular reactor is more sensitive than the commercial ones. In this study, the effect of positioning direction of the reeds in a reed switch for the CRDM RPIS has been studied using the electromagnetic FE analysis. It is found that the positioning direction of the reeds slightly but not significantly affects the formation of attraction. Analysis results will be used as the basis on estimated accuracy of full RPIS system.

  5. Chiroptical Molecular Switches 1; Principles and Syntheses.

    NARCIS (Netherlands)

    Lange, Ben de; Jager, Wolter F.; Feringa, Bernard

    1992-01-01

    The concept and the synthesis of the basic molecules for a chiroptical molecular switch are described. This molecular switch is based on photochemical interconversion of two bistable forms of chiral sterically overcrowded olefins. A large variety of these alkenes with different properties have been

  6. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  7. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  8. Internal Backpressure for Terabit Switch Fabrics

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée; Rytlig, Andreas

    2012-01-01

    This paper proposes and analyzes the efficiency of novel backpressure schemes for Terabit switch fabrics. The proposed schemes aim at buffer optimization under uniform traffic distribution with Bernoulli packet arrival process. Results show that a reduction of the needed maximum buffer capacity w...... with up to 47% can be achieved with switch-internal backpressure mechanisms at the expense of a small control overhead....

  9. Microelectromechanical Switches for Phased Array Antennas

    Science.gov (United States)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Preliminary results are presented on the fabrication and testing of a MicroElectro-Mechanical (MEM) microstrip series switch. This switch is being developed for use in a K-band phased array antenna that NASA will use for communication links in its Earth orbiting satellites. Preliminary insertion loss and isolation measurements are presented.

  10. Photonic crystal Fano lasers and Fano switches

    DEFF Research Database (Denmark)

    Mørk, Jesper; Yu, Yi; Bekele, Dagmawi Alemayehu

    2017-01-01

    We show that Fano resonances can be realized in photonic crystal membrane structures by coupling line-defect waveguides and point-defect nanocavities. The Fano resonance can be exploited to realize optical switches with very small switching energy, as well as Fano lasers, that can generate short...

  11. Scalable optical switches for computing applications

    NARCIS (Netherlands)

    White, I.H.; Aw, E.T.; Williams, K.A.; Wang, Haibo; Wonfor, A.; Penty, R.V.

    2009-01-01

    A scalable photonic interconnection network architecture is proposed whereby a Clos network is populated with broadcast-and-select stages. This enables the efficient exploitation of an emerging class of photonic integrated switch fabric. A low distortion space switch technology based on recently

  12. Tutorial: Integrated-photonic switching structures

    Science.gov (United States)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  13. Proceedings of the switched power workshop

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1988-01-01

    These proceedings contain most of the presentations given at a workshop on the current state of research in techniques for switched power acceleration. The proceedings are divided, as was the workshop itself, into two parts. Part 1, contains the latest results from a number of groups active in switched power research. The major topic here is a method for switching externally supplied power onto a transmission line. Advocates for vacuum photodiode switching, solid state switching, gas switching, and synthetic pulse generation are all presented. Other important areas of research described in this section concern: external electrical and laser pulsing systems; the properties of the created electromagnetic pulse; structures used for transporting the electromagnetic pulse to the region where the electron beam is located; and possible applications. Part 2 of the proceedings considers the problem of designing a high brightness electron gun using switched power as the power source. This is an important first step in demonstrating the usefulness of switched power techniques for accelerator physics. In addition such a gun could have immediate practical importance for advanced acceleration studies since the brightness could exceed that of present sources by several orders of magnitude. I would like to take this opportunity to thank Kathleen Tuohy and Patricia Tuttle for their assistance in organizing and running the workshop. Their tireless efforts contribute greatly to a very productive meeting

  14. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching

    Science.gov (United States)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David

    2011-05-01

    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  15. Unity power factor switching regulator

    Science.gov (United States)

    Rippel, Wally E. (Inventor)

    1983-01-01

    A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.

  16. Switched-capacitor isolated LED driver

    Science.gov (United States)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  17. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  18. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  19. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    Science.gov (United States)

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  20. Modeling of static characteristics of switched reluctance motor

    International Nuclear Information System (INIS)

    Asgharmemon, A.; Hussain, I.; Daudpoto, J.

    2013-01-01

    To investigate the running characteristics of a switched reluctance motor, the static characteristics and related input data tables are required. The static characteristics comprise of flux linkage, co-energy and static torque characteristics. The co-energy and static torque are calculated once data of magnetization characteristics is available. The data of co-energy is required for the calculation of static torque characteristics. The simulation model includes the data of static characteristics for prediction of the instantaneous and steady state performance of the motor. In this research a computer based procedure of experiments is carried out for measurement of the magnetization characteristics. For every set of measurements, the removal of eddy current is carefully addressed. The experiments are carried out on an existing 8/6 pole rotary switched reluctance motor. Additionally, the instantaneous phase current, instantaneous torque and flux waveforms are produced by using linear, which is by default and spline data interpolation separately. The information obtained from theses simulation results will help in an improved simulation model for predicting the performance of the machine. (author)

  1. Contraceptive method switching in the United States.

    Science.gov (United States)

    Grady, William R; Billy, John O G; Klepinger, Daniel H

    2002-01-01

    Switching among contraceptive method types is the primary determinant of the prevalence of use of specific contraceptive methods, and it has direct implications for women's ability to avoid unintended pregnancies. Yet, method switching among U.S. women has received little attention from researchers. Data from the 1995 National Survey of Family Growth were used to construct multiple-decrement life tables to explore the gross switching rates of married and unmarried women. Within each group, discrete-time hazard models were estimated to determine how women's characteristics affect their switching behavior. Overall rates of method switching are high among both married and unmarried women (40% and 61%, respectively). Married women's two-year switching rates vary from 30% among women who use the implant, injectable, IUD or other reversible methods to 43% among nonusers, while unmarried women's rates vary from 33% among women who use the implant, injectable or IUD to 70% among nonusers. Multivariate analyses of method switching according to women's characteristics indicate that among married women, women without children are less likely than other women to adopt sterilization or a long-term reversible contraceptive (the implant, injectable or IUD). Older married women have a higher rate than their younger counterparts of switching to sterilization, but are also more likely to continue using no method. Among unmarried women, younger and more highly educated women have high rates of switching to the condom and to dual methods. Women's method switching decisions may be driven primarily by concerns related to level and duration of contraceptive effectiveness, health risks associated with contraceptive use and, among single women, sexually transmitted disease prevention.

  2. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.

    Science.gov (United States)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2015-01-01

    Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.

  3. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.

    Directory of Open Access Journals (Sweden)

    Jaeyoung Kwak

    Full Text Available Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.

  4. Design and Fabrication of 1 × 2 Nanophotonic Switch

    Directory of Open Access Journals (Sweden)

    Asaf Shahmoon

    2010-01-01

    Full Text Available We present the design and the fabrication of a novel 1×2 nanophotonic switch. The switch is a photonic T-junction in which a gold nano particle is being positioned in the junction using the tip of an atomic force microscope (AFM. The novelty of this 1×2 switch is related to its ability to control the direction of wave that propagates along a photonic structure. The selectivity of the direction is determined by a gold nanoparticle having dimension of a few tens of nanometer. This particle can be shifted. The shift of the gold nano particle can be achieved by applying voltage or by illuminating it with a light source. The shifts of the particle, inside the air gap, direct the input beam ones to the left output of the junction and once to its right output. Three types of simulations have been done in order to realize the photonic T-junction, and they are as follows: photonic crystal structures, waveguide made out of PMMA, and a silicon waveguide.

  5. Fast electron beam charge injection and switching in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Fitting, Hans-Joachim; Schreiber, Erik [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Touzin, Matthieu [Laboratoire de Structure et Proprietes de l' Etat Solide, UMR CNRS 8008, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2011-04-15

    Basic investigations of secondary electrons (SE) relaxation and attenuation are made by means of Monte Carlo simulations using ballistic electron scattering and interactions with optical and acoustic phonons as well as impact ionization of valence band electrons. Then the electron beam induced selfconsistent charge transport and secondary electron emission in insulators are described by means of an electron-hole flight-drift model (FDM). Ballistic secondary electrons and holes, their attenuation and drift, as well as their recombination, trapping, and field- and temperature-dependent Poole-Frenkel detrapping are included. Whereas the initial switching-on of the secondary electron emission proceeds over milli-seconds due to long-lasting selfconsistent charging, the switching-off process occurs much faster, even over femto-seconds. Thus a rapid electron beam switching becomes possible with formation of ultra-short electron beam pulses offering an application in stroboscopic electron microscopy and spectroscopy. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Development of the switching components for ZT-40

    International Nuclear Information System (INIS)

    Melton, J.G.; Dike, R.S.; Hanks, K.W.; Nunnally, W.C.

    1977-01-01

    Switching of the main capacitor banks for ZT-40 will be accomplished by spark gap switches. Initially, there will be 576 start switches and 288 crowbar switches. A development program is under way to develop three switches; (1) a versatile start switch, which can be used for both the I/sub z/ and the I/sub theta/ capacitor banks, with a wide operating voltage range, (2) a crowbar switch which is capable of crowbarring the circuit without the power crowbar bank, and (3) a power crowbar switch, which can handle 50 to 100 coulombs, so that a large number of crowbar switches will not be required when the power crowbar circuit is added. The problems with the start switches and the first crowbar switch have been solved, or alleviated. The development of a power crowbar switch has just begun

  7. Three new DC-to-DC Single-Switch Converters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2017-06-01

    Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.

  8. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  9. New multilevel inverter with reduction of switches and gate driver

    Energy Technology Data Exchange (ETDEWEB)

    Banaei, M.R., E-mail: m.banaei@azaruniv.ed [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Salary, E. [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of)

    2011-02-15

    This paper presents a novel topology for symmetrical cascade multilevel converter. The proposed circuit consists of series connected sub multilevel converters units and it can generate DC voltage levels similar to other topologies. The proposed topology results in reduction of switches number, losses, installation area and converter cost. This converter has been used in a Dynamic Voltage Restorer (DVR). Simulation results carried out by MATLAB/SIMULINK show the voltage injection capability of converter and the efficiency of its controller in compensating voltage sag and swell.

  10. Control of Bouncing in MEMS Switches Using Double Electrodes

    KAUST Repository

    Abdul Rahim, Farhan

    2016-08-09

    This paper presents a novel way of controlling the bouncing phenomenon commonly present in the Radio Frequency Microelectromechanical Systems (RF MEMS) switches using a double-electrode configuration. The paper discusses modeling bouncing using both lumped parameter and beam models. The simulations of bouncing and its control are discussed. Comparison between the new proposed method and other available control techniques is also made. The Galerkin method is applied on the beam model accounting for the nonlinear electrostatic force, squeeze film damping, and surface contact effect. The results indicate that it is possible to reduce bouncing and hence beam degradation, by the use of double electrodes.

  11. A novel excitation assistance switched reluctance wind power generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Park, Kiwoo; Chen, Zhe

    2014-01-01

    The high inductance of a general switched reluctance generator (SRG) may prevent the excitation of the magnetic field from being quickly established enough, which may further limit the output power of the SRG. A novel excitation assistance SRG (EASRG) for wind power generation is proposed...... in this paper to solve the above problem. C-shape stator cores are employed in a modular design concept for quick maintenance or replacement, and a ring-shape excitation assistant coil is sandwiched in the space between the modular stator cores. The magnetization and torque characteristics are simulated by 3-D...

  12. Atom-loss-induced quantum optical bi-stability switch

    International Nuclear Information System (INIS)

    Wu Bao-Jun; Cui Fu-Cheng

    2012-01-01

    We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose—Einstein condensate and an optical cavity with the two sides coupled dispersively. By adopting discrete-mode approximation for the condensate, taking atom loss as a necessary part of the model to analyze the evolution of the system, while using trial and error method to find out steady states of the system as a reference, numerical simulation demonstrates that with a constant pump, atom loss will trigger a quantum optical bi-stability switch, which predicts a new interesting phenomenon for experiments to verify

  13. Diagnosis and Tolerant Strategy of an Open-Switch Fault for T-type Three-Level Inverter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, Kyo Beum; Blaabjerg, Frede

    2014-01-01

    This paper proposes a new diagnosis method of an open-switch fault and fault-tolerant control strategy for T-type three-level inverter systems. The location of faulty switch can be identified by the average of normalized phase current and the change of the neutral-point voltage. The proposed fault......-tolerant strategy is explained by dividing into two cases: the faulty condition of half-bridge switches and the neutral-point switches. The performance of the T-type inverter system improves considerably by the proposed fault tolerant algorithm when a switch fails. The roposed method does not require additional...... components and complex calculations. Simulation and experimental results verify the feasibility of the proposed fault diagnosis and fault-tolerant control strategy....

  14. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    Science.gov (United States)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  15. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  16. Call for Papers: Photonics in Switching

    Science.gov (United States)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching Guest Editors: Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks. Scope of Submission The scope of the papers includes, but is not limited to, the following topics: WDM node architectures Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion Routing protocols WDM switching and routing Quality of service Performance measurement and evaluation Next-generation optical networks: architecture, signaling, and control Traffic measurement and field trials Optical burst and packet switching OBS/OPS node architectures Burst/Packet scheduling and routing algorithms Contention resolution/avoidance strategies Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.) Burst assembly and ingress traffic shaping Hybrid OBS/TDM or OBS/wavelength routing Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online

  17. Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts.

    Science.gov (United States)

    Barbiero, Marie; Rousseau, Célia; Papaxanthis, Charalambos; White, Olivier

    2017-01-01

    Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However, radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching of the grasping force or grip force to the destabilizing load force. One possible bias in these protocols is the predictability of the forthcoming dynamics. Here we test whether the successful switching and adaptation processes observed in immersive environments are a consequence of the fact that participants can predict the perturbation schedule. We used a short arm human centrifuge to decouple the effects of space and time on the dynamics of an object manipulation task by adding an unnatural explicit position-dependent force. We created different dynamical contexts by asking 20 participants to move the object at three different paces. These contextual sessions were interleaved such that we could simulate concurrent learning. We assessed adaptation by measuring how grip force was adjusted to this unnatural load force. We found that the motor system can switch between new unusual dynamical contexts, as reported by surprisingly well-adjusted grip forces, and that this capacity is not a mere consequence of the ability to predict the time course of the upcoming dynamics. We posit that a coherent flow of multimodal sensory information born in a homogeneous milieu allows switching between dynamical contexts.

  18. Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts

    Directory of Open Access Journals (Sweden)

    Marie Barbiero

    2017-05-01

    Full Text Available Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However, radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching of the grasping force or grip force to the destabilizing load force. One possible bias in these protocols is the predictability of the forthcoming dynamics. Here we test whether the successful switching and adaptation processes observed in immersive environments are a consequence of the fact that participants can predict the perturbation schedule. We used a short arm human centrifuge to decouple the effects of space and time on the dynamics of an object manipulation task by adding an unnatural explicit position-dependent force. We created different dynamical contexts by asking 20 participants to move the object at three different paces. These contextual sessions were interleaved such that we could simulate concurrent learning. We assessed adaptation by measuring how grip force was adjusted to this unnatural load force. We found that the motor system can switch between new unusual dynamical contexts, as reported by surprisingly well-adjusted grip forces, and that this capacity is not a mere consequence of the ability to predict the time course of the upcoming dynamics. We posit that a coherent flow of multimodal sensory information born in a homogeneous milieu allows switching between dynamical contexts.

  19. Strategy switching in the stabilization of unstable dynamics.

    Directory of Open Access Journals (Sweden)

    Jacopo Zenzeri

    Full Text Available In order to understand mechanisms of strategy switching in the stabilization of unstable dynamics, this work investigates how human subjects learn to become skilled users of an underactuated bimanual tool in an unstable environment. The tool, which consists of a mass and two hand-held non-linear springs, is affected by a saddle-like force-field. The non-linearity of the springs allows the users to determine size and orientation of the tool stiffness ellipse, by using different patterns of bimanual coordination: minimal stiffness occurs when the two spring terminals are aligned and stiffness size grows by stretching them apart. Tool parameters were set such that minimal stiffness is insufficient to provide stable equilibrium whereas asymptotic stability can be achieved with sufficient stretching, although at the expense of greater effort. As a consequence, tool users have two possible strategies for stabilizing the mass in different regions of the workspace: 1 high stiffness feedforward strategy, aiming at asymptotic stability and 2 low stiffness positional feedback strategy aiming at bounded stability. The tool was simulated by a bimanual haptic robot with direct torque control of the motors. In a previous study we analyzed the behavior of naïve users and we found that they spontaneously clustered into two groups of approximately equal size. In this study we trained subjects to become expert users of both strategies in a discrete reaching task. Then we tested generalization capabilities and mechanism of strategy-switching by means of stabilization tasks which consist of tracking moving targets in the workspace. The uniqueness of the experimental setup is that it addresses the general problem of strategy-switching in an unstable environment, suggesting that complex behaviors cannot be explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms.

  20. Passively-switched energy harvester for increased operational range

    International Nuclear Information System (INIS)

    Liu, Tian; Livermore, Carol; Pierre, Ryan St

    2014-01-01

    This paper presents modeling and experimental validation of a new type of vibrational energy harvester that passively switches between two dynamical modes of operation to expand the range of driving frequencies and accelerations over which the harvester effectively extracts power. In both modes, a driving beam with a low resonant frequency couples into ambient vibrations and transfers their energy to a generating beam that has a higher resonant frequency. The generating beam converts the mechanical power into electrical power. In coupled-motion mode, the driving beam bounces off the generating beam. In plucked mode, the driving beam deflects the generating beam until the driving beam passes from above the generating beam to below it or vice versa. Analytical system models are implemented numerically in the time domain for driving frequencies of 3 Hz to 27 Hz and accelerations from 0.1 g to 2.6 g, and both system dynamics and output power are predicted. A corresponding switched-dynamics harvester is tested experimentally, and its voltage, power, and dynamics are recorded. In both models and experiments, coupled-motion harvesting is observed at lower accelerations, whereas plucked harvesting and/or mixed mode harvesting are observed at higher accelerations. As expected, plucked harvesting outputs greater power than coupled-motion harvesting in both simulations and experiments. The predicted (1.8 mW) and measured (1.56 mW) maximum average power levels are similar under measured conditions at 0.5 g. When the system switches to dynamics that are characteristic of higher frequencies, the difference between predicted and measured power levels is more pronounced due to non-ideal mechanical interaction between the beams’ tips. Despite the beams’ non-ideal interactions, switched-dynamics operation increases the harvester’s operating range. (paper)

  1. Resistance switching memory in perovskite oxides

    International Nuclear Information System (INIS)

    Yan, Z.B.; Liu, J.-M.

    2015-01-01

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given

  2. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  3. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  4. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  5. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  6. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  7. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    Science.gov (United States)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  8. DESAIN DAN IMPLEMENTSI SOFT SWITCHING BOOST KONVERTER DENGAN SIMPLE AUXILLARY RESONANT SWITCH (SARC

    Directory of Open Access Journals (Sweden)

    Dimas Bagus Saputra

    2017-01-01

    Full Text Available Boost konverter merupakan penaik tegangan DC ke tegangan DC yang mempunyai tegangan output yang lebih tinggi dibanding inputnya. Penggunaan boost konverter diera modern semakin meningkat dan dibuat dengan dimensi yang lebih kecil, berat yang lebih ringan dan efisiensi yang lebih tinggi dibanding dengan boost konverter generasi terdahulu. Tetapi rugi-rugi periodik saat on/off meningkat. Untuk meraih kriteria tersebut, teknik hard switching boost konverter berevolusi menjadi teknik soft switching dengan menambah rangkaian simple auxiliary resonant circuit (SARC. Karena penambahan rangkaian SARC tersebut konverter bekerja pada kondisi zero-voltage switching switch (ZVS dan zero current switch (ZCS, sehingga saklar semikonduktor tidak bekerja secara hard switching lagi. Pada penelitian ini akan di desain dan diimplementaskan soft switching boost konverter dengan SARC. Kelebihan dari soft switching boost konverter dengan SARC adalah mempunyai efisiensi yang lebih tinggi dibanding dengan boost konverter konventional. Dari hasil implementasi menunjukkan konverter yang diajukan telah meraih zero voltage switch (ZVS. Sehingga boost konverter zero voltage switch (ZVS bisa diaplikasikan pada sistem power suplay yang membutuhkan efisiensi energi yang tinggi terutama pada daya yang tinggi.

  9. Comparison of switching control algorithms effective in restricting the switching in the neighborhood of the origin

    International Nuclear Information System (INIS)

    Joung, JinWook; Chung, Lan; Smyth, Andrew W

    2010-01-01

    The active interaction control (AIC) system consisting of a primary structure, an auxiliary structure and an interaction element was proposed to protect the primary structure against earthquakes and winds. The objective of the AIC system in reducing the responses of the primary structure is fulfilled by activating or deactivating the switching between the engagement and the disengagement of the primary and auxiliary structures through the interaction element. The status of the interaction element is controlled by switching control algorithms. The previously developed switching control algorithms require an excessive amount of switching, which is inefficient. In this paper, the excessive amount of switching is restricted by imposing an appropriately designed switching boundary region, where switching is prohibited, on pre-designed engagement–disengagement conditions. Two different approaches are used in designing the newly proposed AID-off and AID-off 2 algorithms. The AID-off 2 algorithm is designed to affect deactivated switching regions explicitly, unlike the AID-off algorithm, which follows the same procedure of designing the engagement–disengagement conditions of the previously developed algorithms, by using the current status of the AIC system. Both algorithms are shown to be effective in reducing the amount of switching times triggered from the previously developed AID algorithm under an appropriately selected control sampling period for different earthquakes, but the AID-off 2 algorithm outperforms the AID-off algorithm in reducing the number of switching times

  10. Switching power supplies with multiple isolated output and unitary power factor with an only switch; Fonte chaveada com multiplas saidas isoladas e fator de potencia unitario com um unico interruptor

    Energy Technology Data Exchange (ETDEWEB)

    Canesin, Carlos Alberto

    1990-09-01

    The analysis and implementation of switching power supplies with multiple output, through the use of the D C/D C Single Ended Primary Inductance Converter - SEPIC is presented. The structure has a single switch mode processing stage, improved input power factor, with the use of the variable current hysteresis control, or, constant on time control. The analysis of the D C/D C SEPIC, output characteristics and computer simulation is presented. A switching power supply practical design and experimental results are presented to demonstrate the validity of the theoretical analysis. (author)

  11. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    Science.gov (United States)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  12. General Switch-and-Stay Combing for Space Diversity over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Yawgeng A. Chau

    2012-01-01

    Full Text Available Three multibranch switch-and-stay combining (MSSC schemes are analyzed for Rayleigh fading channels, where different decision statistics for antenna switching (i.e., switch statistic are used. Let a and r denote the fading factor and the received baseband signal of a diversity branch, respectively. In contrast to the traditional MSSC that uses the faded signal-to-noise ratio (SNR of diversity branches as the corresponding switch statistic, to enhance the receiver performance, |r|, |ar|, and a new linear combination of a and |r| are used as switch statistics of the three MSSC schemes, respectively. For performance evaluation, the bit error rate (BER of BPSK is derived for the three MSSC schemes over both independent-and-identical distributed (i.i.d. and independent-and-nonidentical distributed (i.n.d. Rayleigh fading channels. To pursue optimal performance, the locally optimal switch threshold (ST of each MSSC scheme is obtained for general i.n.d. fading channels. In addition, the locally optimal ST becomes the globally optimal ST for i.i.d. channels. Numerical results based on the analysis and simulations are presented. In contrast to the MSSC over i.i.d. fading channels, we will show that the performance of MSSC schemes can be improved by increasing the number of branches, if i.n.d. channels are considered.

  13. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    Science.gov (United States)

    Takesue, H.

    2018-02-01

    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  14. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch

    Science.gov (United States)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong

    2018-01-01

    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  15. Exponential Stability of Switched Positive Homogeneous Systems

    Directory of Open Access Journals (Sweden)

    Dadong Tian

    2017-01-01

    Full Text Available This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.

  16. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  17. Consumer poaching, brand switching, and price transparency

    DEFF Research Database (Denmark)

    Schultz, Christian

    2014-01-01

    This paper addresses price transparency on the consumer side in markets with behavioral price discrimination which feature welfare reducing brand switching. When long-term contracts are not available, an increase in transparency intensifies competition, lowers prices and profits, reduces brand...... switching and benefits consumers and welfare. With long-term contracts, an increase in transparency reduces the use of long-term contracts, leading to more brand switching and a welfare loss. Otherwise, the results are the same as without long-term contracts....

  18. Optimization of an intracavity Q-switched solid-state second order Raman laser

    Science.gov (United States)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  19. Design of an all-optical switch and arbitrary proportion of energy output beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Qing-Hua, E-mail: lqhua@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Zhang, Xuan; Chen, Shu-Wen; Hu, Ping; Yu, Tian-Bao [Department of Physics, Nanchang University, Nanchang 330031 (China); Huang, Yong-Zhen [The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, CAS, Beijing 100083 (China)

    2013-11-15

    Based on the Kerr effect of photonic crystal, we design a simple structure of all-optical switch, which can be controlled by the pump intensity. At the same time, the structure can also realize the free control of energy output. It has low insertion loss and crosstalk. Numerical simulation results embody its high efficiency.

  20. Modeling Random Telegraph Noise Under Switched Bias Conditions Using Cyclostationary RTS Noise

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Vandamme, L.K.J.; Nauta, Bram

    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF

  1. Experimental Validation of Topology Optimization for RF MEMS Capacitive Switch Design

    DEFF Research Database (Denmark)

    Philippine, Mandy Axelle; Zareie, Hosein; Sigmund, Ole

    2013-01-01

    In this paper, we present 30 distinct RF MEMS capacitive switch designs that are the product of topology optimizations that control key mechanical properties such as stiffness, response to intrinsic stress gradients, and temperature sensitivity. The designs were evaluated with high-accuracy simul...

  2. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  3. Finite temperature simulation studies of spin-flop magnetic random access memory devices

    International Nuclear Information System (INIS)

    Chui, S.T.; Chang, C.-R.

    2006-01-01

    Spin-flop structures are currently being developed for magnetic random access memory devices. We report simulation studies of this system. We found the switching involves an intermediate edge-pinned domain state, similar to that observed in the single layer case. This switching scenario is quite different from that based on the coherent rotation picture. A significant temperature dependence of the switching field is observed. Our result suggests that the interplane coupling and thus the switching field has to be above a finite threshold for the spin-flop switching to be better than conventional switching methods

  4. Studies of switching structures in ferroelectric liquid crystal devices

    International Nuclear Information System (INIS)

    Pabla, D.S.

    1998-01-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  5. Studies of switching structures in ferroelectric liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Pabla, D.S

    1998-07-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  6. Greenhouse gas emission reduction by means of fuel switching in electricity generation: Addressing the potentials

    International Nuclear Information System (INIS)

    Delarue, Erik; D'haeseleer, William

    2008-01-01

    Many countries committed themselves in the Kyoto protocol to reduce greenhouse gas (GHG) emissions. Some of these targeted emission reductions could result from a switch from coal-fired to gas-fired electricity generation. The focus in this work lies on Western Europe, with the presence of the European Union Emission Trading Scheme (EU ETS). For the switching to occur, several conditions have to be fulfilled. First, an economical incentive must be present, i.e. a sufficiently high European Union Allowance (EUA) price together with a sufficiently low natural gas price. Second, the physical potential for switching must exist, i.e. at a given load, there must remain enough power plants not running to make switching possible. This paper investigates what possibilities exist for switching coal-fired plants for gas-fired plants, dependent on the load level (the latter condition above). A fixed allowance cost and a variable natural gas price are assumed. The method to address GHG emission reduction potentials is first illustrated in a methodological case. Next, the GHG emission reduction potentials are addressed for several Western European countries together with a relative positioning of their electricity generation. GHG emission reduction potentials are also compared with simulation results. GHG emission reduction potentials tend to be significant. The Netherlands have a very widespread switching zone, so GHG emission reduction is practically independent of electricity generation. Other counties, like Germany, Spain and Italy could reduce GHG emissions significantly by switching. With an allowance cost following the switch level of a 50% efficient gas-fired plant and a 40% efficient coal-fired plant in the summer season (like in 2005), the global GHG emission reduction (in the electricity generating sector) for the eight modeled zones could amount to 19%

  7. Controllability of multi-agent systems with periodically switching topologies and switching leaders

    Science.gov (United States)

    Tian, Lingling; Zhao, Bin; Wang, Long

    2018-05-01

    This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.

  8. Instability in time-delayed switched systems induced by fast and random switching

    Science.gov (United States)

    Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong

    2017-07-01

    In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.

  9. Linear switched reluctance motor control with PIC18F452 microcontroller

    OpenAIRE

    DURSUN, Mahir; KOÇ, Fatmagül

    2014-01-01

    This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...

  10. Multi-planed unified switching topologies

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    2017-07-04

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

  11. Nano- and micro-electromechanical switch dynamics

    International Nuclear Information System (INIS)

    Pulskamp, Jeffrey S; Proie, Robert M; Polcawich, Ronald G

    2013-01-01

    This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes. (paper)

  12. Proton-Controlled Organic Microlaser Switch.

    Science.gov (United States)

    Gao, Zhenhua; Zhang, Wei; Yan, Yongli; Yi, Jun; Dong, Haiyun; Wang, Kang; Yao, Jiannian; Zhao, Yong Sheng

    2018-05-25

    Microscale laser switches have been playing irreplaceable roles in the development of photonic devices with high integration levels. However, it remains a challenge to switch the lasing wavelengths across a wide range due to relatively fixed energy bands in traditional semiconductors. Here, we report a strategy to switch the lasing wavelengths among multiple states based on a proton-controlled intramolecular charge-transfer (ICT) process in organic dye-doped flexible microsphere resonant cavities. The protonic acids can effectively bind onto the ICT molecules, which thus enhance the ICT strength of the dyes and lead to a red-shifted gain behavior. On this basis, the gain region was effectively modulated by using acids with different proton-donating ability, and as a result, laser switching among multiple wavelengths was achieved. The results will provide guidance for the rational design of miniaturized lasers with performances based on the characteristic of organic optoelectronic materials.

  13. A nanoplasmonic switch based on molecular machines

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental

  14. Topological photonic orbital-angular-momentum switch

    Science.gov (United States)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  15. Bistable fluidic valve is electrically switched

    Science.gov (United States)

    Fiet, O.; Salvinski, R. J.

    1970-01-01

    Bistable control valve is selectively switched by direct application of an electrical field to divert fluid from one output channel to another. Valve is inexpensive, has no moving parts, and operates on fluids which are relatively poor electrical conductors.

  16. Modeling switching behaviour of direct selling customers

    Directory of Open Access Journals (Sweden)

    P Msweli-Mbanga

    2004-04-01

    Full Text Available The direct selling industry suffers a high turnover rate of salespeople, resulting in high costs of training new salespeople. Further costs are incurred when broken relationships with customers cause them to switch from one product supplier to another. This study identifies twelve factors that drive the switching behaviour of direct sales customers and examines the extent to which these factors influence switching. Exploratory factor analysis was used to assess the validity of these factors. The factors were represented in a model that posits that an interpersonal relationship between a direct sales person and a customer moderates the relationship between switching behaviour and loyalty. Structural equation modeling was used to test the proposed model. The author then discusses the empirical findings and their managerial implications, providing further avenues for research.

  17. Active plasmonics in WDM traffic switching applications

    DEFF Research Database (Denmark)

    Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.

    2012-01-01

    -enabling characteristics of active plasmonic circuits with an ultra-low power 3 response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted........ The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce...... active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4310 Gb/s low-power and fast switching operation. The demonstration of the WDM...

  18. Theoretical model for plasma opening switch

    International Nuclear Information System (INIS)

    Baker, L.

    1980-07-01

    The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d 0 )/sup 1/2/P 0 2 P/sub e//sup -5/2/ where m is the foil mass per unit area, d 0 the channel thickness and P 0 the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective

  19. Blood and Books: Performing Code Switching

    Directory of Open Access Journals (Sweden)

    Jeff Friedman

    2008-05-01

    Full Text Available Code switching is a linguistic term that identifies ways individuals use communication modes and registers to negotiate difference in social relations. This essay suggests that arts-based inquiry, in the form of choreography and performance, provides a suitable and efficacious location within which both verbal and nonverbal channels of code switching can be investigated. Blood and Books, a case study of dance choreography within the context of post-colonial Maori performance in Aotearoa/New Zealand, is described and analyzed for its performance of code switching. The essay is framed by a discussion of how arts-based research within tertiary higher education requires careful negotiation in the form of code switching, as performed by the author's reflexive use of vernacular and formal registers in the essay. URN: urn:nbn:de:0114-fqs0802462

  20. Permanent magnet motor drives with switched stator windings

    Energy Technology Data Exchange (ETDEWEB)

    Nipp, E.

    1999-06-01

    interruptions when changing the configuration. The durations of these zero torque periods and their avoidance have been examined thoroughly in this thesis by means of simulations and experiments on a specially designed and built 5OkW test machine. It was found that semiconductor winding switches should be used to avoid noticeable jerks. A novel method is suggested on how to perform winding re-configurations so that torque interruptions are avoided. The principle is based on temporary operation of the machine with its windings in asymmetric configurations which is analyzed analytically and validated by experiments. It is proven that successive winding switching is an appropriate means to entirely omit torque interruptions. Finally, the application of PM motors with switched stator windings in a subway propulsion drive is briefly considered. Different aspects of their feasibility are taken into consideration and the great potential of such drives is pointed out.

  1. Fast switching wideband rectifying circuit for future RF energy harvesting

    Science.gov (United States)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  2. Error rate degradation due to switch crosstalk in large modular switched optical networks

    DEFF Research Database (Denmark)

    Saxtoft, Christian; Chidgey, P.

    1993-01-01

    A theoretical model of an optical network incorporating wavelength selective elements, amplifiers, couplers and switches is presented. The model is used to evaluate a large modular switch optical network that provides the capability of adapting easily to changes in network traffic requirements. T....... The network dimensions are shown to be limited by the optical crosstalk in the switch matrices and by the polarization dependent loss in the optical components...

  3. Optical Multidimensional Switching for Data Center Networks

    OpenAIRE

    Kamchevska, Valerija; Galili, Michael; Oxenløwe, Leif Katsuo; Berger, Michael Stübert

    2017-01-01

    Optical switches are known for the ability to provide high bandwidth connectivity at a relatively low power consumption and low latency. Several recent demonstrations on optical data center architectures confirm the potential for introducing all-optical switching within the data center, thus avoiding power hungry optical-electrical-optical conversions at each node. This Ph.D. thesis focuses precisely on the application of optical technologies in data center networks where optics is not only u...

  4. High voltage disconnect switch position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, S W

    1983-08-01

    Unreliable position indication on high-voltage (HV) disconnect switches can result in equipment damage worth many times the cost of a disconnect switch. The benefits and limitations of a number of possible methods of reliably monitoring HV disconnect switches are assessed. Several methods of powering active devices at HV are noted. It is concluded that the most reliable way of monitoring switch position at reasonable cost would use a passive hermetically-sealed blade-position sensor located at HV, with a fibre-optic link between HV and ground. Separate sensors would be used for open and closed position indication. For maximum reliability the fibre-optic link would continue into the relay building. A passive magnetically actuated fibre-optic sensor has been built which demonstrates the feasibility of the concept. The sensor monitors blade position relative to the jaws in three dimensions with high resolution. A design for an improved passive magneto-optic sensor has significantly lower optical losses, allowing a single fibre-optic loop and 3 sensors to monitor closure of all phases of a disconnect switch. A similar loop would monitor switch opening. The improved sensor has a solid copper housing to provide greater immunity to fault currents, and to protect it from the environment and from physical damage. Two methods of providing a protected path for fibre-optics passing from HV to ground are proposed, one using a hollow porcelain switch-support insulator and the other using an additional small-diameter polymer insulator with optical fibres imbedded in its fibreglass core. A number of improvements are recommended which can be made to existing switches to increase their reliability. 16 refs., 13 figs., 1 tab.

  5. Assessing the Consequences of a Channel Switch

    OpenAIRE

    Xinlei (Jack) Chen; George John; Om Narasimhan

    2008-01-01

    Switching marketing channels is an expensive and sticky decision. While a number of theories suggest efficiency and strategic differences between channels, there is virtually no work on combining these ideas into an empirically workable methodology to assess the impact of a channel switch. In this study, we undertake to close this gap with an empirical study of the sports drink market, featuring competing producers and heterogeneous channels. We estimate demand and cost parameters for a numbe...

  6. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  7. Lasers for switched-power linacs

    International Nuclear Information System (INIS)

    Bigio, I.J.

    1988-01-01

    Laser-switched power surges for particle accelerators, just as with direct laser-driven accelerator schemes, place unique demands on the specifications of the invoked laser systems. We review the laser requirements for switched power sources of the types described in other chapters of this volume. The relative advantages and disadvantages of selected lasers are listed, and the appropriateness and scalability of existing technology is discussed. 4 refs., 2 figs., 2 tabs

  8. The Robustness of Stochastic Switching Networks

    OpenAIRE

    Loh, Po-Ling; Zhou, Hongchao; Bruck, Jehoshua

    2009-01-01

    Many natural systems, including chemical and biological systems, can be modeled using stochastic switching circuits. These circuits consist of stochastic switches, called pswitches, which operate with a fixed probability of being open or closed. We study the effect caused by introducing an error of size ∈ to each pswitch in a stochastic circuit. We analyze two constructions – simple series-parallel and general series-parallel circuits – and prove that simple series-parallel circuits are robus...

  9. A microcomputer for a packet switched network

    International Nuclear Information System (INIS)

    Seller, P.; Bairstow, R.; Barlow, J.; Waters, M.

    1982-12-01

    The Bubble Chamber Research Group of the Rutherford and Appleton Laboratory has a large film analysis facility. This comprises 16 digitising tables used for the measurement of bubble chamber film. Each of these tables has an associated microcomputer. These microcomputers are linked by a star structured packet switched local area network (LAN) to a VAX 11/780. The LAN, and in particular a microcomputer of novel architecture designed to act as the central switch of the network, is described. (author)

  10. EYE CONTROLLED SWITCHING USING CIRCULAR HOUGH TRANSFORM

    OpenAIRE

    Sagar Lakhmani

    2014-01-01

    The paper presents hands free interface between electrical appliances or devices. This technology is intended to replace conventional switching devices for the use of disabled. It is a new way to interact with the electrical or electronic devices that we use in our daily life. The paper illustrates how the movement of eye cornea and blinking can be used for switching the devices. The basic Circle Detection algorithm is used to determine the position of eye. Eye blinking is used...

  11. Diffusion pipes at PNP switching transistors

    International Nuclear Information System (INIS)

    Sachelarie, D.; Postolache, C.; Gaiseanu, F.

    1976-01-01

    The appearance of the ''diffusion pipes'' greatly affects the fabrication of the PNP high-frequency/very-fast-switching transistors. A brief review of the principal problems connected to the presence of these ''pipes'' is made. A research program is presented which permitted the fabrication of the PNP switching transistors at ICCE-Bucharest, with transition frequency fsub(T) = 1.2 GHz and storage time tsub(s) = 4.5 ns. (author)

  12. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  13. Current switching ratio optimization using dual pocket doping engineering

    Science.gov (United States)

    Dash, Sidhartha; Sahoo, Girija Shankar; Mishra, Guru Prasad

    2018-01-01

    This paper presents a smart idea to maximize current switching ratio of cylindrical gate tunnel FET (CGT) by growing pocket layers in both source and channel region. The pocket layers positioned in the source and channel of the device provides significant improvement in ON-state and OFF-state current respectively. The dual pocket doped cylindrical gate TFET (DP-CGT) exhibits much superior performance in term of drain current, transconductance and current ratio as compared to conventional CGT, channel pocket doped CGT (CP-CGT) and source pocket doped CGT (SP-CGT). Further, the current ratio has been optimized w.r.t. width and instantaneous position both the pocket layers. The much improved current ratio and low power consumption makes the proposed device suitable for low-power and high speed application. The simulation work of DP-CGT is done using 3D Sentaurus TCAD device simulator from Synopsys.

  14. Finite element analysis and performance study of switched reluctance generator

    Science.gov (United States)

    Zhang, Qianhan; Guo, Yingjun; Xu, Qi; Yu, Xiaoying; Guo, Yajie

    2017-03-01

    Analyses a three-phase 12/8 switched reluctance generator (SRG) which is based on its structure and performance principle. The initial size data were calculated by MathCAD, and the simulation model was set up in the ANSOFT software environment with the maximum efficiency and the maximum output power as the main reference parameters. The outer diameter of the stator and the inner diameter of the rotor were parameterized. The static magnetic field distribution, magnetic flux, magnetic energy, torque, inductance characteristics, back electromotive force and phase current waveform of SRG is obtained by analyzing the static magnetic field and the steady state motion of two-dimensional transient magnetic field in ANSOFT environment. Finally, the experimental data of the prototype are compared with the simulation results, which provide a reliable basis for the design and research of SRG wind turbine system.

  15. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    International Nuclear Information System (INIS)

    Barangi, Mahmood; Erementchouk, Mikhail; Mazumder, Pinaki

    2016-01-01

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the

  16. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Barangi, Mahmood, E-mail: barangi@umich.edu; Erementchouk, Mikhail; Mazumder, Pinaki [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2121 (United States)

    2016-08-21

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the

  17. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  18. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  19. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  20. Regular and platform switching: bone stress analysis varying implant type.

    Science.gov (United States)

    Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes

    2012-04-01

    This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon