WorldWideScience

Sample records for swiss institute nuclear research cyclotron

  1. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  2. 40. anniversary of cyclotron of Institute of Nuclear Physics, Tashkent

    International Nuclear Information System (INIS)

    Umerov, R.A.; Uzakov, J.M.; Gulamov, I.R.

    2004-01-01

    Full text: The Cyclotron U-150-II of Institute of Nuclear Physics was projected in middle of the last century for nuclear-physical researches in a scientific research institute of electro physical equipment in Leningrad. The Cyclotron can accelerate positive ions with beam energy of the protons 18 MeV, deuterons 20 MeV, alpha particles 40 MeV. Intensity of a beam a little some microampere. The building of a Cyclotron represents an impressive three-floor construction in volume of 2000 m 3 . The capital equipment, the high-frequency generator, sources of power supplies, vacuum pumps and other technological units are placed on the first and socle floors of a building. The second and third floors served for accommodation of scientific laboratories. A building of a Cyclotron has three experimental halls, where it was possible to carry out physical researches. They have divided from each other, and the main thing from the accelerator, concrete walls with the purpose of reduction of the big radiating background at the working accelerator, preventing realization of experiments. It provided also biological protection of the on duty personnel. The first some years of operation of the Cyclotron have revealed a line of lacks of this machine. For example, for change of energy of a beam of a Cyclotron it took 2-3 weeks. Also, for transition of acceleration of one particles to others it take same time. Time parameters of a beam were unstable. In 1968 reconstruction of the Cyclotron has been started that has allowed to bring in basic changes to parameters U-150-II. The time took on change of an operating mode of a Cyclotron was sharply reduced, and it was possible to reduce it till 10-20 hours, to improve the energy and time resolution of a beam many times over, to reduce angular straggling of particles in a beam. And, all this enormous amount of works was spent by forces of institute. In 70 th years the big development was received with works on radiating stability of materials

  3. Radiotherapy with pions for non-resectable soft tissue sarcomas at the Swiss Institute for Nuclear Research (SIN)

    International Nuclear Information System (INIS)

    Thum, P.; Greiner, R.; Blattmann, H.; Coray, A.; Zimmermann, A.

    1988-01-01

    The Swiss Institute for Nuclear Research SIN at Villigen is one of the three centres in the world (LAMPF, Los Alamos; TRIUMF, Vancouver) where pion therapy is possible. A dynamic, tumour conforming spot scan technique for the treatment of deep-seated tumours has been in use since November 1981. With this technique with a favorable integral dose distribution, curative irradiation also of advanced tumours in the retroperitoneum and pelvis is possible. Only at SIN, the treatment of non-resectable soft tissue sarcomas with pions is part of the clinical program. Between 1983 and 1985 totally nine patients were treated, 1/9 with three manifestations, 1/9 with palliative intent. In 20 fractions over five weeks (four fractions a week) total doses of 30 to 36 Gy (90% isodose) were applied. In a follow-up period of eleven to 43 months (median 18 months) only 1/10 tumour manifestations treated with ≥ 30 Gy failed locally. The two-year survival rate (Kaplan-Meier) is 56%. Metastases were the cause of death in 3/5 patients, 1/5 heart disease, 1/5 local tumour progression. Even though 9/11 tumours were located in the retroperitoneum or pelvis, no radiogenic morbidity of the bowel was found. These preliminary results stimulate the intensification of this clinical program. 1986 the same number of patients with non-resectable soft tissue sarcomas was treated as in the whole period 1982 to 1985 before. (orig.) [de

  4. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  5. Cyclotron laboratory in the Institute of Nuclear Studies of the Hungarian Academy of Sciences

    International Nuclear Information System (INIS)

    Gal'chuk, A.V.; Korolev, L.E.; Stepanov, A.V.

    1985-01-01

    The status of the development of cyclotron laboratory in the Institute for Nuclear Research of the Hungarian Academy of Sciences is discussed. The MGTS-20Eh isochronous cyclotron is to be mounted in the laboratory. Obtaining of accelerated proton beams is planned (energy of 5-18 MeV, internal beam current - 200 μA, external beam current - 50 μA), deuterons (3-10 MeV, 300 μA, 50 μA), H 3 +2 ions (7-27 MeV, 50 μA, 25 μA) and He 4 +2 (6-20 MeV, 50 μA, 25 μA). Fundamental researches in the field of atomic and nuclear physics applied investigations in the field of analysis of high purity materials, radiobiological investigations in the field of medicine and agriculture are to be performed in the laboratory. The cyclotron is to be used for production and application of short-lived radioisotopes and radiation testing machine parts

  6. Progress in research, April 1, 1992 - March 31, 1993, Texas A and M University Cyclotron Institute

    International Nuclear Information System (INIS)

    1993-07-01

    This Institute annual report for the period 1 April 1992--31 March 1993 covers a period which has seen the initial runs of three new spectrometers which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP), the Mass Achromat Recoil Mass Spectrometer (MARS), and the Multipole dipole Multipole (MDM) Particle Spectrometer. These devices are now available to pursue the studies of Gamow Teller states, reactions of astrophysical interest, and giant resonance studies for which they were constructed, as well as for other experiments. A beam analysis system which will deliver high resolution beams to the MDM spectrometer is currently under construction. With the completion of these spectrometer projects, the facility emphasis is now focused on the development of the full capabilities of the K500 cyclotron and on the research program. During the report period, the ECR-K500 cyclotron combination operated 5,849 hours. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons, the latter as a probe of the QCD phase transition. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. In atomic physics, new measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported

  7. Progress in research, April 1, 1992--March 31, 1993, Texas A and M University Cyclotron Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    This Institute annual report for the period 1 April 1992--31 March 1993 covers a period which has seen the initial runs of three new spectrometers which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP), the Mass Achromat Recoil Mass Spectrometer (MARS), and the Multipole dipole Multipole (MDM) Particle Spectrometer. These devices are now available to pursue the studies of Gamow Teller states, reactions of astrophysical interest, and giant resonance studies for which they were constructed, as well as for other experiments. A beam analysis system which will deliver high resolution beams to the MDM spectrometer is currently under construction. With the completion of these spectrometer projects, the facility emphasis is now focused on the development of the full capabilities of the K500 cyclotron and on the research program. During the report period, the ECR-K500 cyclotron combination operated 5,849 hours. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons, the latter as a probe of the QCD phase transition. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. In atomic physics, new measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported.

  8. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  9. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  10. Aeronautical education and research at the Swiss Institute of Technology in Zurich

    Science.gov (United States)

    Karner, L; Ackeret, J

    1931-01-01

    Progress in the scientific and practical fields of aviation has caused the Swiss Institute of Technology to organize lectures and practical training courses in all three branches of aeronautics and to found centers of scientific research, laboratories, etc., in order to supply the government and industries with scientifically and technically trained engineers.

  11. Reactor physics teaching and research in the Swiss nuclear engineering master

    International Nuclear Information System (INIS)

    Chawla, R.

    2012-01-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  12. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  13. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1991-08-01

    This report contains descriptions of research programs carried out by Institute staff, as well as progress on new instrumentation during the period, April 1, 1990, to March 31, 1991. The K500 cyclotron and ECR source provided beam for 4140 hours during the period. The beam was actually available for experiments 1927.50 hours and 1110.50 hours was devoted to developing new beams and exploring cyclotron performance. A wide range of beams from protons to Xe with energies from 2.4 MeV/u to 60 MeV/U have been used in experiments. The highest total energy beam accelerated was 35 MeV/u 63 Cu. The ECR source, made a tremendous improvement in accelerator performance and reliability. Substantial amounts of beam time were devoted to investigations of hot nuclei, electron-positron, giant resonances, atomic effects of high velocity ion beams, astrophysics related reactions and proton and alpha bremsstrahlung. Scientific accomplishments included determination of the heat capacity of nuclei through new insight into the level densities and establishing a lower limit for electron positron resonances a factor of ten better than previous measurements. The proton spectrometer, constructed for studies of the Gamow-Teller interaction is complete, and initial physics measurements will be made in the next few months. All of the BaF 2 crystals have been delivered and acceptance tests are underway. A K=315 MDM spectrometer has been obtained from Oxford University and is scheduled for installation in Spring 1992, after removal of the K=150 Enge split pole spectrometer. Institute groups continue participation in MEGA, instrumentation projects for RHIC, and few nucleon studies at LAMPF and KEK. Reports of these activities are included

  14. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  15. Nuclear Research Institute Rez view

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Vasa, I.; Zdarek, J.

    2004-01-01

    In this presentation author deals with the present state and perspectives of nuclear energy in the Czech Republic and in the Slovak Republic. It is concluded that lifetime extension and finalization of Mochovce NPP Units 3 and 4 is the cheapest solution for base load production of electricity and is in line with the European union energy challenges: - decrease of carbon dioxide emissions; dependence on energy sources from politically unstable regions; decrease import dependence on energy sources. Nuclear energy is one of important sources for long term sustainability in energy. GEN IV is successful with meet the new requirements after 2025. We should participate on this long term development effort

  16. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the μ → eγ decay rate and determination of the Michel parameter in normal μ decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z projectile -- Z target combinations. Studies of the (α,2α) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references

  17. Progress in research, April 1, 1991--March 31, 1992, Texas A and M University Cyclotron Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    Reports on research activities, facility operation, and facility development of the Texas A and M Cyclotron Institute for the period 1 April 1991--31 March 1992 are presented in this document. During the report period, the ECR-K500 Cyclotron Combination operated 4,377 hours. Of this time, 832 hours was used for beam development, 942 hours was used for tuning and optics, and the beam was available for experiments 2,603 hours. This time was used in a variety of studies including elastic and inelastic scattering, projectile break-up, the production and decay of giant resonances, fusion and fission dynamics, intermediate mass fragment emission, e{sup +}e{sup {minus}} production and molecular dissociation. In addition, studies of surfaces and metastable states in highly charged ions were carried out using the ECR source. Completion of two 19-element BaF{sub 2} arrays, of the focal plane detector for the proton spectrometer and installation of the HiLi multidetector have provided significant new experimental capabilities which have been further enhanced by major additions to the computer network. Progress on the Mass Achromat Recoil Spectrometer (MARS) is such that first operation of that device should occur this summer. Funding for installation of the MDM spectrometer was obtained at the beginning of this year. As this report is being completed, the Enge Split Pole Spectrometer is being disassembled and removed to make room for the MDM spectrometer. The split-pole will be shipped to CEBAF for use in experiments there. Installation of the MDM should be completed within the next year. Also expected in the next year is a 92 element plastic-CsI ball.

  18. The Swiss nuclear installations. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK`s supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration, in Switzerland, of final disposal facilities for radwaste and the interim radwaste storage facilities. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants` proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1994, is judged as good by HSK. (author) 11 figs., 13 tabs.

  19. The Swiss nuclear installations. Annual report 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration, in Switzerland, of final disposal facilities for radwaste and the interim radwaste storage facilities. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1994, is judged as good by HSK. (author) 11 figs., 13 tabs

  20. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  1. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1986-08-01

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  2. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  3. Progress in research April 1, 1993 - March 31, 1994, Texas A and M University Cyclotron Institute

    International Nuclear Information System (INIS)

    1994-07-01

    The period 1 April 1993--31 March 1994 has seen a number of significant developments of the research program as will be noted by the large increase in individual projects reviewed in this annual report. Among the highlights of the K500 experimental program in Sections 1, 2, and 4 are the investigations of excitation energy deposition and of fission dynamics employing both GDR and particle emission probes, measurements of isospin equilibration, studies of (d, 2 He) reactions with the proton spectrometer and of the β decay of 57 Cu with MARS, and the precise studies of ionic charge state distributions using x-ray measurements. Progress in theoretical studies of the nuclear spectral function and the decay of many body systems, on the properties of mesons in hot hadronic matter and on the determination of astrophysical S-factors from experimental studies of very peripheral reactions are presented in Section 3. The status of the LAMPF based MEGA experiment and of the CERN based NA66 experiment, both of which involve institute scientists, is also briefly presented in this report. The shift to a seven day a week operation coupled with installation of cryopanels and more careful temperature control of the cooling water system have resulted in significant improvements in the operational efficiency and beam capabilities. Operating statistics are presented in Section 5

  4. Mr Bikash Sinha, Director of SAHA & VECC and Prof. Rolf Heuer, Director general of CERN, sign a collaboration agreements between SAHA (Saha Institute of Nuclear Physics), VECC (Variable Energy Cyclotron Centre), India and CERN ISOLDE.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Mr Bikash Sinha, Director of SAHA & VECC and Prof. Rolf Heuer, Director general of CERN, sign a collaboration agreements between SAHA (Saha Institute of Nuclear Physics), VECC (Variable Energy Cyclotron Centre), India and CERN ISOLDE.

  5. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  6. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  7. Applied research with cyclotrons

    International Nuclear Information System (INIS)

    Apel, P.; Dmitriev, S.; Gulbekian, G.; Gikal, B.; Ivanov, O.; Reutov, V.; Skuratov, V.

    2005-01-01

    During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86 Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136 Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that

  8. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  9. Study of nuclear data and applied nuclear physics at the Dalat Institute for Nuclear Research (Vietnam)

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1995-10-01

    The Dala Institute for Nuclear Research (DINR) is the main nuclear research establishment of Vietnam National Atomic Energy Commission (VINATOM). The activity of DINR in neutron activation analysis (NAA), radioisotope production and radiation technology has begun since 1980s using nuclear reactor and Co-60 radiation source. The safe operation and efficient exploitation of the Dalat nuclear reactor have required researches on nuclear data and reactor physics. This report presents study of nuclear data and applied nuclear physics at the Dalat Institute for Nuclear Research using filtered neutron beams and the thermal column of the reactor. The information presented is based mainly on the results of the National Research Contracts 50A-01-01-03, KT-04-3.2.3 and KC-09-08 for the period 1985-1995. (author). 28 refs, 17 figs, 3 tabs

  10. Decontamination and decommissioning in the Nuclear Research Institute Rez plc

    Energy Technology Data Exchange (ETDEWEB)

    Kovarik, P.; Podlaha, J. [Nuclear Research Institute Rez plc, Rez (Czech Republic)

    2007-04-15

    The Nuclear Research Institute Rez (NRI) is a leading institution in the area of Decontamination and Decommissioning in the Czech Republic. The NRI has maintained a dominant position in the nuclear program of the former Czechoslovakia since it was established in 1955 as a state-owned research organization. In December 1992 the NRI has been transformed into a joint-stock company. The Institute's activity encompasses nuclear physics, radiochemistry, experiments at the research reactor and many other topics. At present, research activities are mainly targeted at assisting the nuclear safety regulating body, power plant operator and nuclear facilities contractors. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector. NRI operates 2 research nuclear reactors, hot cell facility, research laboratories, technology for radioactive waste management, radionuclide constructions for irradiation, and others. After 50 years of activities in the nuclear field, there are many environmental liabilities that shall be remedied. Such remedies are broken down to three areas: 1. Decommissioning of old obsolete facilities (e.g. decay tanks, liquid RAW storage tanks, old RAW treatment technology, special sewage system), 2. Processing of RAW resulting from operation and dismantling of nuclear facilities and 3. Elimination of spent fuel from research nuclear reactors. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Remediation of the environmental liabilities started in 2003 and should be finished in 2012. (orig.)

  11. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    2007-01-01

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  12. Radioactive waste management at the Paul Scherrer Institute, the largest Swiss national research centre

    OpenAIRE

    Beer Hans-Frieder

    2009-01-01

    This paper presents the current radioactive waste management practices at the Paul Scherrer Institute (PSI). The PSI contributes to waste related problems in two aspects, namely to the scientific basis of waste management and disposal, and to the practical treatment and storage of radioactive waste. In addition to the tasks of treating on-site generated waste, PSI manages the wastes from medicine, industry, and research throughout Switzerland on behalf of the government. Therefore the Dismant...

  13. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-15

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  14. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  15. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs

  16. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    2000-08-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  17. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs.

  18. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  19. 30 years of Central Institute for Nuclear Research at Rossendorf

    International Nuclear Information System (INIS)

    Scheler, W.; Flach, G.; Hennig, K.; Collatz, S.; Muenze, R.; Baldeweg, F.

    1986-10-01

    A celebration and a scientific colloquium dedicated the 30th anniversary of the foundation of the Central Institute for Nuclear Research (CINR) of the GDR Academy of Sciences were held on January, 23rd and 24th, '86 at Rossendorf. The speaches and lectures given by the president of the GDR Academy of Sciences and by scientists of the CINR dealt with problems of policy of science, history of the CINR, nuclear methods, microelectronics, nuclear energy research, development and production of radioisotopes and scientific instruments. (author)

  20. Addiction research centres and the nurturing of creativity: The Swiss Institute for the Prevention of Alcohol and Drug Problems. Past, present and future

    NARCIS (Netherlands)

    Kuntsche, E.N.; Maffli, E.; Kuntsche, S.; Delgrande Jordan, M.

    2009-01-01

    The aim of this paper is to offer an account of the history, the current status and the future of substance use research at the Swiss Institute for the Prevention of Alcohol and Drug Problems (SIPA). Although founded originally by the temperance movement in 1901, its policy has shifted over time

  1. Knowledge management initiatives at the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Bernido, C.C.; Conjares, A.E.L.; Halnin, C.G.; Anden, A.B.

    2006-01-01

    The Philippine Nuclear Research Institute (PNRI), with assistance from the IAEA, is in the process of setting up an integrated management system (IMS) for the whole Institute, following the guidelines published by the IAEA). The strategy for setting up a knowledge management system at the PNRI involves making knowledge management an integral part of the IMS, and the establishment of the PNRI intranet as a medium for discussions and sharing of knowledge. With its limited budget, the PNRI intranet was developed using open sources (Linux based). Also part of the knowledge management activities of the PNRI is its participation in regional networks which aim to preserve and share nuclear knowledge, such as the Asian Nuclear Safety Network (ANSN) and the Asian Network for Education in Nuclear Technology (ANENT), and its participation in National Government initiatives such as the Philippine eLib project and the ScINET-PHIL. (author)

  2. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.; Kallfelz, J.M.; Mathews, D. [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  3. Radioactive waste management at the Paul Scherrer Institute, the largest Swiss national research centre

    Directory of Open Access Journals (Sweden)

    Beer Hans-Frieder

    2009-01-01

    Full Text Available This paper presents the current radioactive waste management practices at the Paul Scherrer Institute (PSI. The PSI contributes to waste related problems in two aspects, namely to the scientific basis of waste management and disposal, and to the practical treatment and storage of radioactive waste. In addition to the tasks of treating on-site generated waste, PSI manages the wastes from medicine, industry, and research throughout Switzerland on behalf of the government. Therefore the Dismantling and Waste Management Section is a part of the Logistics Department at PSI. Proved and accepted methods have to be developed for the safe conditioning and storage of radioactive waste. Various waste treatment facilities exist at PSI. The conditioning facility is dedicated to sorting, compaction by a 120 t press, solidification with special cement, and embedding in concrete. Specialized facilities were constructed for waste from the decommissioning of research reactors. Activated aluminum and its alloys were melted in crucibles and embedded in concrete in a concrete container. After dismantling the structural material of the reactors, it was embedded in concrete in the same manner. For the conditioning of activated reactor graphite, a dedicated method was developed. Graphite was crushed to replace sand in the grout, for embedding radioactive waste in concrete containers. For accelerator waste, a walk-in hot cell equipped with an electrically driven manipulator is available where the highly activated large components (targets, beam dump can be cut into pieces and embedded in concrete in containers. To guarantee the fulfillment of the demands of the regulators, the Dismantling and Waste Management Section applies an accredited quality management system for the safe collection, conditioning, and storage of radioactive waste.

  4. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, whose activities are based on the principles of openness for participation to all interested states and of their equal, mutually beneficial collaboration.

  5. Electromagnetism applications in nuclear engineering: cyclotron

    International Nuclear Information System (INIS)

    Nobrega Bastos; Dalla Riva, Maria Teresa Cristina da.

    1995-08-01

    Particle accelerators, with special emphasis on cyclotrons, are presented. Other electromagnetic devices and their importance in technology and research are also shown. An experimental arrangement for positrons source productions using a cyclotron aiming at non-destructive testing for radiations damage studies is presented. 46 refs., 23 figs., 2 tabs

  6. Acid-digestion plant for plutonium-contaminated waste at the Swiss Federal Institute for Reactor Research

    International Nuclear Information System (INIS)

    Guentensperger, M.A.

    1981-01-01

    At the Swiss Federal Institute for Reactor Research (EIR), plutonium-contaminated material (PCM) is accumulated in the ''hot-laboratory''. Acid digestion has been chosen for conditioning the combustible PCM at EIR. The acid-digestion process is based on the carbonization and oxidative decomposition of the PCM by means of concentrated sulphuric and nitric acids at temperatures around 250 0 C. The design study for the acid-digestion plant (ADA) for EIR has almost been completed, and the detailed design has begun. The shredded waste will be fed batchwise on to the surface of hot sulphuric acid in the digester tray where carbonization occurs. The oxidation of the carbonized particles to gaseous products occurs in the heater vessel where nitric acid is added to accelerate the reaction. The inorganic residues of the digested PCM accumulate in the heater vessel as suspended particles. Periodically the acid is drained and the solid residue is separated. The gaseous effluents pass through a battery of oxidation/absorption columns where SO 2 and NOsub(x) are oxidized to sulphuric and nitric acids, respectively. These acids are almost entirely absorbed in the washing solution which is fed continuously to the acid-rectification system. The separated and reconcentrated acids are reused. For safety reasons the ADA will be semi-automatic; the principal alarms are transmitted to a control centre. Automatic shut-down is achieved by cutting off the heater current and adding cold sulphuric acid. (author)

  7. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    Full text: The Institute of Nuclear Physics in Almaty is the only Kazakhstan institution with a significant activity at the national level in the field of physics of accelerators, their application and associated technology. Three accelerators of different type are being used in the Institute: high power electron beam accelerator, isochronous cyclotron and heavy ion electrostatic tandem. Electron beam accelerator ELV-4 - This high power machine is only electron beam irradiation facility of industrial scale in the Republic. It was produced by Budker Institute of Nuclear Physics, Novosibirsk, Russia and installed in Almaty in 1991 for development of radiation technology in Kazakhstan. The accelerator generates electron beams of following parameters: Energy range (MeV) 1.0-1.5; Max. beam power (kW) 40; Max. beam current (mA) 40. The machine is equipped with beam scanning system, extraction device with output window 980x75 mm 2 and chain conveyer for irradiated material supply. Tn the time being the accelerator is regularly used for radiation cross-linking technology and for sterilization. Cross-linking technology is the base of high quality roof material production for building industry. Raw ethylene-propylene rubber mixture is rolled as strip of 50 m length, 1 m width, 1 mm thickness and then irradiated by dose of about 120 kGy. The final product is waterproof flexible material, very stable in hard atmospheric conditions and non sensitive to sun UV radiation. Sterilization of medical materials and items is not traditional application of such low energy installations but due to uniqueness of this accelerator in Kazakhstan and high actuality of the task for the Republic this technology was developed in INP. Hermetically packed items (medical cotton , bandages, syringes, surgical gloves, small plastic bottles) with thickness less than penetration range of 1.5 MeV electrons are put at the conveyer as mono-layer and irradiated by sterilizing dose of 25 kGy. Isochronous

  8. Cost accounting in the Swiss Federal Institute for Reactor Research (EIR) Ch-5303 Wuerenlingen

    International Nuclear Information System (INIS)

    Meier, P.A.

    1979-01-01

    The paper gives an overview about the organization and the research program of the EIR-Research Center. The cost accounting system is discussed in detail, budget control and project management are described. (A.N.)

  9. Nuclear physics with superconducting cyclotron at Kolkata: Scopes ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... At the same time, the nuclear physics programme and related experimental facility development activities are taking shape. A general review of the nuclear physics research opportunities with the superconducting cyclotron and the present status of the development of different detector arrays and other ...

  10. System of institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Podlaha, J.; Burian, P.

    2005-01-01

    The Nuclear Research Institute Rez plc (NRI) is a leading institution in the area of nuclear Research and Development in the Czech Republic. The NRI has had a dominant position in the nuclear programme since it was established in 1955 as a state-owned research organization and it has developed to its current status. In December 1992 the NRI has been transformed into a joint-stock company. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at the research reactor and many other topics. Main issues addressed in the NRI in the past decades were concentrated on research, development and services provided to the nuclear power plants operating WWER reactors, development of chemical technologies for fuel cycle and irradiation services to research and development in the industrial sector, agriculture, food processing and medicine. At present the research activities are mainly targeted to assist the State Office for Nuclear Safety -the nuclear safety regulating body, power plant operator and nuclear facilities contractors. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector, providing a wide range of services to industry , medicine and the preparation of radiopharmaceuticals. NRI operates two research nuclear reactors and another facilities such as a hot cell facility , research laboratories, technology for radioactive waste (RAW) management, 60 Co irradiators, an electron accelerator, etc. In this paper the Centre of RAW management, system of RAW management, facilities for RAW management as well as decontamination and decommissioning activities of the NRI are presented. The NRI provides complex services in the area of RAW management and has gained many experience and full qualification not only in this area but also in the area of decontamination and decommissioning and spent fuel management. The NRI guarantees safe RAW and spent fuel management. (authors)

  11. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  12. Electron cyclotron resonance ion source. Pt 2. New possibilities in the heavy ion research in Hungary

    International Nuclear Information System (INIS)

    Biri, S.; Vamosi, J.

    1994-01-01

    An Electron Cyclotron Resonance (ECR) type ion source (ECRIS) has been installed at the Nuclear Research Institute (ATOMKI), Debrecen, Hungary, for its use in heavy ion physics research. An introduction on ECRIS operational principles and ECRIS parameters is presented, followed by an international overview on existing ECRIS facilities and their applications (including atomic physics, nuclear physics and applied science research). In the second part the history, proliteration and applications of ECRIS in the world, and in ATOMKI are presented. (R.P.)

  13. Decommissioning of nuclear facilities in the Nuclear Research Institute Rez plc

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J. [Nuclear Research Institute Rez plc (Czech Republic)

    2008-07-01

    The Czech Republic is a country with a developed utilization of nuclear energy. There are two nuclear power plants and three nuclear research reactors in operation. The nuclear program in the Czech Republic has been supported since the beginning of its development by the domestic scientific-research base. The Nuclear Research Institute Rez (NRI) is a leading institution in all areas of nuclear R and D in the Czech Republic. NRI has had a dominant position in the nuclear programme since it was established in 1955 as a state-owned research organization and it has developed to its current status. In December 1992, NRI has been transformed into a joint-stock company. The Institute's activity encompasses nuclear physics, chemistry, nuclear power, experiments at the research reactor and many other topics. Main issues addressed in NRI in the past decades were concentrated on research, development and services provided to the nuclear power plants operating VVER reactors, development of chemical technologies for fuel cycle and irradiation services to research and development in the industrial sector, agriculture, food processing and medicine. Remediation of old environmental liabilities in NRI is the only active decommissioning project in the Czech Republic. (author)

  14. Nuclear Research and Development Institutes in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2009-06-01

    The science and technology (S and T) sector is faced today with complex and diverse challenges. National science budgets are under pressure, and many countries are changing how research and development (R and D) is funded, reducing direct subsidies and introducing competition for both governmental and alternative sources of revenue. On the other hand, the transition toward knowledge-based economies is creating new opportunities in the S and T sector as governments look to it to foster economic growth through innovation. A number of countries in Central and Eastern Europe have recently joined the European Union (EU) which has defined the Lisbon Strategy to create a 'knowledge triangle' of research, education and innovation to underpin the European economic and social model, and economic growth. This strategy seeks to increase investment in science and technology across the EU to a target of 3% of GDP by 2010, with two-thirds of funds coming from the private sector. By comparison, funding for R and D in most Central and Eastern European countries is only around 1% GDP, of which about 90% is provided by the governments. R and D has become more international, reflecting a more interdependent and globalized world. R and D progress is not only of interest to individual countries but also tries to respond to the needs of a broader society. Governments still maintain national networks, but increasingly emphasize international cooperation, both to avoid duplication of expensive infrastructure, and because scientific excellence requires an exchange of ideas and cooperation that crosses borders. These challenges and opportunities directly impact the research and development institutes (RDIs), including the nuclear RDIs. It is important for the nuclear RDIs to take account of these trends in the broader S and T sector in their vision and strategy. Several nuclear RDIs have become very successful, but others are struggling to adapt. The challenges have been particularly severe

  15. Decommissioning of nuclear facilities at the Nuclear Research Institute Rez plc

    Directory of Open Access Journals (Sweden)

    Podlaha Josef

    2010-01-01

    Full Text Available The Nuclear Research Institute Rez has been a leading institution in all areas of nuclear R&D in the Czech Republic since it was established in 1955. After more than 50 years of activities in the field, there are some environmental liabilities that need to be remedied. The remediation of old environmental liabilities concerning the Nuclear Research Institute is the only ongoing decommissioning project in the Czech Republic. The nature of these environmental liabilities is very specific and requires special remediation procedures. The process begun in 2003 and is expected to be finished by 2014.

  16. Nuclear physics research program at the 30 MeV Karaj cyclotron

    CERN Document Server

    Noshad, H; Lamehi-Rachti, M; Talebi-Taher, A R; Aslani, G; Maboudi-Moghaddam, S; Rahighi, J; Kakuee, O R; Heydari, N

    2002-01-01

    A versatile reaction chamber and its accessories as well as a multiparameter data acquisition system were designed, assembled, and installed in the R and D hall at NRCAM to allow nuclear measurements. The sup 2 sup 0 sup 9 Bi(p,f) and sup 1 sup 9 sup 7 Au(p,f) reaction experiments at E sub p =30 MeV were performed. The good agreement between our experimental results as compared with previously published data are presented here to show the reliability of our apparatus. In the case of the bismuth reaction, the fission cross section obtained by using pair spectrometry as well as its associated error have been measured for the first time.

  17. Paul Scherrer Institut annual report 1996. Annex IV: PSI nuclear energy and safety research

    International Nuclear Information System (INIS)

    Birchley, J.; Roesel, R.; Wellner, A.

    1997-01-01

    The department 'Nuclear Energy and Safety Research' (F4) at PSI carries the responsibility of performing the essential nuclear energy research in Switzerland. This research is part of the remit of PSI and follows government directive; about one-fifth of the Institute's Federal budget is allocated to this task. Currently about 190 persons are working in this field. Approximately 45% of the salary and investment costs (5.5 million CHF in the budget period 1996/97) are externally funded. This funding is provided primarily by the Swiss Utilities, the NAGRA and the safety authority HSK. The activities in nuclear research concentrate on three main domains: safety and safety related problems of operating plants, safety features of future reactor and fuel cycle concepts and waste management; another 4% of staff are addressing broader aspects of energy. At the end of 1996, a policy evaluation with the laboratory heads took place in order to redefine the direction of F4 activities. (author) figs., tabs., refs

  18. Annual report of Nuclear Science Research Institute, JFY 2012

    International Nuclear Information System (INIS)

    2014-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office, Fukushima Project Team and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management. This annual report of JFY 2012 summarizes the activities of NSRI, the activities of the R and D Directorates and Human Resources Development at NSRI site, and is expected to be referred and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to “Middle-term Plan” successfully and effectively. (author)

  19. Cyrce, a cyclotron for research and teaching in Alsace

    International Nuclear Information System (INIS)

    Brasse, David; Marchand, Patrice; Ouadi, Ali; Pellicioli, Michel

    2014-01-01

    Nuclear imaging, often considered as a speciality, arose from the combined efforts of physics, chemistry, biology and medicine. This functional imaging modality is based on technical and scientific developments and benefits from the high sensitivity of detection of radio-isotopes. Cyrce, a cyclotron set up in Strasbourg, merges into the French national network of cyclotrons dedicated to clinical and preclinical research but also designed for teaching and pharmaceutical collaborations. (authors)

  20. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Bastos, M.A.V.

    1987-01-01

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.) [pt

  1. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  2. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  3. Medical isotope production experience at the V.G. Khlopin Radium Institute cyclotron

    International Nuclear Information System (INIS)

    Solin, L.M.

    2000-01-01

    Radium Institute cyclotron MGC-20 is used since 1990. There are four cyclotrons of such type in Russia and four abroad: in Finland, in Hungary, in North Korea and in Egypt. The Radium institute cyclotron was used in different fields, such as radioisotope production, nuclear physics, physics and engineering. For ten years some improvements of the Radium Institute cyclotron operation have been made. Those are: creation of the automatic control system based on IBM PC, development of a new power supply for the ion source, creation of the deflector electronic protection from discharges, change of the main elements of the cyclotron with high induced radioactivity. Moreover we investigated the possibility of the negative ions acceleration at the MGC-20 cyclotron without ion source exchange. The maximum value of the proton beam current reached was about 30 μA for 10 MeV H - beam energy. To extract the proton beam from the cyclotron after the stripping foil we made an additional output beam line. It was used for determination of the horizontal and vertical emittance. A special device was constructed and used for measurements of emittance. The latter amounted 30 π mm mrad for horizontal direction and 16 π mm mrad for vertical direction

  4. The Institute for Nuclear Research and Nuclear Energy - present state and future prospects

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy is the biggest one within Bulgarian Academy of Sciences and it is a leading complex center for research and application of the nuclear physics in Bulgaria. The year 2003 was the first for the functioning of the new organization structure of INRNE consisting of 26 laboratories and 4 scientific experimental bases joined according their thematic in 7 scientific directions governed by the correspondent Expert Councils and Specialised Seminars. The scientific staff of the Institute has been worked on about 104 problems during the 2003 mainly on our traditional scientific areas, in particular, in the field of: theory of the elementary particles, field theory, atomic nuclei and quantum phenomena; experimental physics of the elementary particles, nuclear reactions, structure of atomic nuclei, cosmic rays and gamma-astrophysics at ultra high energies; neutron interactions and cross sections, physics of the fission; reactor physics, nuclear energy and nuclear safety and security ect. Now the results are already present and, as can been seen, almost half of the developments are connected with the problems of scientific support of the national nuclear energy production, radioactive waste, monitoring and management of the environment. With few exceptions, all these tasks are financially supported by national, foreign and international organizations. The fundamental end applied research results for 2003 have been accepted for publication or published in more than 300 articles in journals and proceeding of many international conferences. Large amount of these results has been obtained in close collaboration with international and foreign research centers, universities and institutions. Essential progress was obtained by the modernization of the scientific experimental bases of INRNE. The technical design project for the reconstruction of the old research reactor IRT 2000 in the new IRT 200 was successfully finished. The

  5. Safeguards at the Central Institute for Nuclear Research at Rossendorf/GDR

    International Nuclear Information System (INIS)

    Helming, M.; Rehak, W.; Schillert, B.

    1989-01-01

    Experience in the implementation of domestic and international safeguards at the Central Institute for Nuclear Research at Rossendorf is reported covering the following topics: overview of the main nuclear installations belonging to the Institute; structure of its material balance areas; responsibilities for the different aspects of accounting for and control of nuclear material at facility level; the various types of nuclear materials handled and their flow, accessibility and strategic significance; the assessment of IAEA safeguards effectiveness. 2 tabs., 2 figs. (author)

  6. Progress report on research of nuclear data and applied nuclear physics at nuclear research institute Viet Nam. For the period January 1 - December 31 1996

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1997-03-01

    This report contains information on activities of nuclear data and applied physics at the Nuclear Research Institute, Dalat, Vietnam for the period January 1st-December 31st 1996. The specific topics covered are the following: Development of filtered neutron beams. Investigation of average characteristics of nuclei in the unresolved enrgy region, Nuclear structure, Nuclear data for applications, Neutron beam utilization for applications, Nuclear analytical techniques and sedimentology

  7. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  8. Ordinance of the Federal Department of the Interior on radiation protection in nuclear research institutes

    International Nuclear Information System (INIS)

    1969-09-01

    This Ordinance was made in implementation of Section 116 of the Ordinance of 19 April 1963 on radiation protection. It applies to institutes undertaking nuclear research which are equipped with apparatus emitting ionizing radiation, excluding nuclear installations. It defines the radiation protection measures to be applied in such institutes. (NEA) [fr

  9. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  10. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0037] WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment Uncertainties: Public Meeting AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Notice of public meeting...

  11. Addiction research centres and the nurturing of creativity: The Swiss Institute for the Prevention of Alcohol and Drug Problems. Past, present and future.

    Science.gov (United States)

    Kuntsche, Emmanuel; Maffli, Etienne; Kuntsche, Sandra; Delgrande Jordan, Marina

    2009-05-01

    The aim of this paper is to offer an account of the history, the current status and the future of substance use research at the Swiss Institute for the Prevention of Alcohol and Drug Problems (SIPA). Although founded originally by the temperance movement in 1901, its policy has shifted over time towards one which accepts an alcohol-consuming culture made up of self-determined but well-informed consumers, while still supporting those who choose to live an abstinent life. In the beginning, SIPA was involved primarily in collecting alcohol-related information and making it available to professionals and the general public. From the late 1960s SIPA began conducting its own research projects; by the mid-1970s it had set up its own in-house research department. In 2001, SIPA was appointed a World Health Organization (WHO) Collaborating Centre for Substance Abuse, Research, Prevention and Documentation. As a private non-governmental organization, most of its funding comes from external research commissions. SIPA participates in a variety of international projects [e.g. Gender Alcohol and Culture: An International Study (GenACIS), European School Survey Project on Alcohol and Drugs (ESPAD) and Health Behaviour in School-aged Children (HBSC)] and contributes to numerous national research projects dealing with substance use. It has also forged close links with more than 50 other research institutions in Switzerland and world-wide. Thanks to its work over the last 30 years, SIPA has become a chief port of call for alcohol use research in Switzerland. In the future, SIPA will continue to monitor substance use, while stepping up its prevention research activities and ensuring that it is able to react more promptly to emerging phenomena.

  12. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    Laboratories:Bogoliubov Laboratory Theoretical Physics Laboratory of High Energies Laboratory of Particle Physics Laboratory of Nuclear Problems Flerov Laboratory of Nuclear Reactions Frank Laboratory of Neutron Physics Laboratory of Computing Techniques and Automation

  13. Annual report-2011. Institute for Nuclear Research National Academy of Sciences of Ukraine

    International Nuclear Information System (INIS)

    Iivanyuk, F.O.

    2012-01-01

    Annual report contains information on the fundamental, scientific and applied investigations carried out in the Institute for Nuclear Research of the National Academy of Sciences of Ukraine in the year 2010. The report contains abstracts of research works in the fields of nuclear physics, atomic energy, radiation physics and radiation material science, physics of plasma, radiation ecology and biology.

  14. Lenin nuclear reactor research institute in the tenth five-year plan

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Kulov, E.V.

    1980-01-01

    Main tasks and research results of Lenin Nuclear Reactor Reseach Institute in the 10-th Five-Year Plan are considered. Main research achievements are noted in nuclear power, radiation material testing, accumulation of transuranium elements and investigation of their physicochemical properties at VK-50, BOR-60, SM-2, RBT-6 and MIR reactor plants and in material testing laboratories

  15. Annual Technical Report - Nuclear Engineering Institute/ Dept. of Physics (IEN/DEFI) 1988

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Osso Junior, J.A.

    1988-01-01

    The researches carried out by physics department of Nuclear Engineering Institute(IEN)/Brazilian CNEN are presented. The researches in nuclear physics, isotope production and irradiation damages using CV-28 cyclotron which accelerates protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively are described. (M.C.K.)

  16. Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within First Phase

    International Nuclear Information System (INIS)

    Nguyen Xuan Hai; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Tuan; Tuong Thi Thu Huong

    2016-01-01

    This report presents results of a research project “Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within first phase”. In the frameworks of the project, a guiding document on 27 Ortec’s experiments was translated into Vietnamese. Several equipment are used in the experiments such as neutron howitzer, gamma counter, multi-channel analyzer and alpha-gamma coincidence spectroscopy were designed and fabricated. These products contributed to improving the ability of research and training of Training and Education Center, Nuclear Research Institute (NRI). (author)

  17. Facility and application of nuclear and supplementary analytical techniques at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh; Ho Manh Dung; Nguyen Thanh Binh

    2006-01-01

    The main applications of the nuclear and supplementary analytical techniques (N and SATs) in the Dalat Nuclear Research Institute (DNRI) and the facilities for the techniques are presented. The NATs in DNRI include the neutron activation analysis (NAA) with instrumental, radiochemical and prompt gamma methods (INAA, RNAA, PGNAA), the X-ray fluorescence analysis (XRFA) and the low-level counting and spectrometry. The sample irradiation sites for NAA, the automatic and manual pneumatic transfer systems, were installed at channels 7-1 and 13-2 and rotary rack on the Dalat research reactor. An ORTEC automatic sample changer (model ASC2) for γ-ray counting was equipped. A computer software for NAA based on the k 0 -standardization method for calculation of elemental concentration was developed. The low-level counting and spectrometry techniques have been setup. The devices required for sampling, sample preparation and data processing have also been equipped. The applications of N and SATs for determination of elemental composition, particularly important in providing data so-called trace elements, radionuclides and multi-element have been enlarged for objects of geology, archaeology, bio-agriculture, health-nutrition and environment. The implementation a quality system for N and SATs has been planned and initiated. (author)

  18. The evolution of the role of the Philippine Nuclear Research Institute in the national nuclear and radiation safety regime

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.

    2007-01-01

    The Philippine Nuclear Research Institute (PNRI), formerly the Philippine Atomic Energy Commission (PAEC) was created by law in 1958 with a dual mandate namely, to promote the peaceful applications of nuclear energy, and to regulate the safe utilization of nuclear energy. Through its almost 50 years of existence, the PNRI has assumed different roles and functions. As the premier national nuclear research institution the PNRI initiates R and D work in various applications, establishes nuclear and radiation facilities, and undertakes human resource development not only for its staff but also for the prospective users of nuclear energy. At the same time, the PNRI exercises regulatory control over radioactive materials in the country including the regulatory control over the construction of the first Philippine nuclear power plant in the late 1970's and early 1980's. Presently, the PNRI still exercises the dual mandate of promoting and regulating the peaceful and safe use of radioactive materials. In these evolving roles of the Institute, both management and the staff are committed to excellence in nuclear science and to nuclear safety. Initiatives are underway to create a separate nuclear regulatory body from the developmental agency to enable the country to conform with international safety standards and to prepare for the future re-introduction of nuclear power in the Philippine energy mix. A strong regulatory agency and an equally strong technical and scientific support organization are necessary for a successful and safe nuclear energy program. (author)

  19. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  20. Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support.

    Science.gov (United States)

    Stockinger, Heinz; Altenhoff, Adrian M; Arnold, Konstantin; Bairoch, Amos; Bastian, Frederic; Bergmann, Sven; Bougueleret, Lydie; Bucher, Philipp; Delorenzi, Mauro; Lane, Lydie; Le Mercier, Philippe; Lisacek, Frédérique; Michielin, Olivier; Palagi, Patricia M; Rougemont, Jacques; Schwede, Torsten; von Mering, Christian; van Nimwegen, Erik; Walther, Daniel; Xenarios, Ioannis; Zavolan, Mihaela; Zdobnov, Evgeny M; Zoete, Vincent; Appel, Ron D

    2014-07-01

    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Cyclotron based nuclear science: Progress report, April 1, 1986-March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report contains descriptions of research programs at the Institute, progress on construction of the K500 cyclotron, and descriptions of new experimental devices being built to take advantage of new beams that will be available. Several milestones were reached in construction of the new cyclotron during the period. In early summer, 1986, the magnet was completed with all trim coils and shimming iron in place. During July and August, the final field maps were made, which will be used for calculations of run parameters. In the spring, one rf amplifier was completed and tested over the full frequency and power range. Also in the spring, the computer control system successfully operated positioning controls and trim coil power supplies. Final assembly of the rf system including the dees, resonators and other 2 rf amplifiers is now underway. Initial attempts at getting beam are expected in September. The design of the ECR source was completed in the fall. A beam line configuration has been designed for the K500 cyclotron which will result initially in 3 lines, with a fourth to be added in 1988. With the eminent completion of the K500, there has been considerable instrumentation development. A 4π neutron calorimeter is under construction for heavy ion reaction studies, construction is beginning on a proton spectrometer for studies of Gamow-Teller matrix elements with the (d, 2 He) reaction, and several detector systems are being developed. During the year, the 88 inch cyclotron operated 4845 hours for research and beam development. Research programs in nuclear science scheduled 57% of the time. Atomic physics programs used 19% of the time, and a program in trace analysis scheduled 6%. An industrial testing laboratory used 18 hours. The remainder of the time was used for beam development, primarily for increasing the energy and/or intensity of heavy ion beams

  2. Biotechnology and Nuclear Agricultural Research Institute (BNARI) - Annual Report January-December 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission (GAEC) exists carry out research and development activities on safe applications of biotechnology and nuclear science and transfer these technologies to end-users for increased agricultural production, health, industrial and economic development for poverty alleviation in Ghana. The 2015 Annual Report covers the organisational structure; various research activities and abstracts of publications. Also listed are training courses and seminars organised during the reporting year.

  3. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    Indian Academy of Sciences (India)

    Abstract. Experimental studies of nuclear excitations have been an important subject from the ear- liest days when the institute was established. The construction of 4 MeV proton cyclotron was mainly aimed to achieve this goal. Early experiments in nuclear spectroscopy were done with radioactive nuclei with the help of ...

  4. Brief review of topmost scientific results obtained in 2015 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Sabaeva, E.V.; Krupko, E.I.

    2016-01-01

    This brief review presents the topmost scientific results obtained in 2015 at the Joint Institute for Nuclear Research in such fields as theoretical and experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information about the publications by JINR staff members, awards given to JINR scientists, and activities carried out at the JINR University Centre in 2015. [ru

  5. Brief review of topmost scientific results obtained in 2016 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Kravchenko, E.I.; Sabaeva, E.V.

    2017-01-01

    This brief review presents the topmost scientific results obtained in 2016 at the Joint Institute for Nuclear Research in such fields as theoretical and experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information about the publications by JINR staff members and activities carried out at the JINR University Centre in 2016. [ru

  6. Use of cyclotrons in medical research: Past, present, future

    Science.gov (United States)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  7. Preservation of nuclear talented experts in Japan by cooperation of industries, research institutes and universities

    International Nuclear Information System (INIS)

    Mori, H.; Miura, K.

    2004-01-01

    Japan has enjoyed decades-long successful development of nuclear power generation and has a nuclear generating capacity of about 46,000,000 kilowatts at present. Construction of a commercial reprocessing plant in Rokkasho is nearing completion. The continuation of Japan's nuclear technology and experience, however, and the challenge of securing technically trained human resources for the future, present serious problems. Recognizing this, the nuclear industry, universities and research institutes have joined in new cooperative efforts to find network-oriented solutions. (author)

  8. Trends of the nuclear research at the Joint Institute of Nuclear Research, Dubna

    International Nuclear Information System (INIS)

    Fenyes, Tibor

    1986-01-01

    The running and planned projects of JINR, Dubna are overviewed. The research topics, main instruments, planned new instruments and projects of the six laboratories of JINR are described in detail based on the plans of the period 1986-1990. The planned new experiments using the new instruments, and the expected physical results are surveyed. (D.Gy.)

  9. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 3 report, Institutional challenges: Volume IV

    International Nuclear Information System (INIS)

    1986-10-01

    The Institutional Challenges Subpanel of the Energy Research Advisory Board's Civilian Nuclear Power Panel was charged with the task of addressing the institutional issues that affect the future of nuclear power in the United States. Barriers created by non-technical issues are generally considered to be primary obstacles to revitalizing the nuclear fission option as part of a robust supply for future electrical generation. The Subpanel examined the following categories of institutional issues: (1) Administration Policy and Leadership, (2) Licensing Reform, (3) Standardized Designs, (4) Shared Financial Risk, (5) State and Economic Regulation, (6) Waste Disposal, and (7) Public Perception. The Subpanel concluded that the Administration and Congress have the opportunity and responsibility to provide leadership in resolving these difficulties. The main report provides information on the background and current situation for each institutional issue and concludes with the set of recommendations for action

  10. Materials of the Annual Scientific Conference at the Institute for Nuclear Research. (Collected reports)

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Ostashko, V.V.

    1995-01-01

    The proceeding contain contributed papers submitted to the annual Scientific conference of the Institute for Nuclear Research, Ukraine (kiev, January 1996). The proceedings include reports have been presented on the following sections: Nuclear physics, Solid State physics, Plasma physics, Radio ecology, Reactor safety, Radiation and reactor materials Study. The book is a direct reproduction of the print-ready manuscripts presented by the authors. No corrections have been made in the texts

  11. Materials of the Annual Scientific Conference of the Institute for Nuclear Research, NAS of Ukraine

    International Nuclear Information System (INIS)

    Terenets'kij, K.O.; Vasil'jev, Yu.O.

    1995-01-01

    The proceeding contain contributed papers submitted to the annual Scientific conference of the Institute for Nuclear Research of National Academy of Sciences, Ukraine (kiev, january 1995). The proceedings include reports have been presented on the following sections: nuclear physics, solid state physics, Plasma physics, Radio ecology and Atomic Energy Problems. The book is a direct reproduction of the print-ready manuscripts presented by the authors. No corrections have been made in the texts

  12. Radiotoxicology analysis in Nuclear and Energetic Research Institute (IPEN-CNEN/SP)

    International Nuclear Information System (INIS)

    Duarte, C.L.; Gaburo, J.C.; Bellintani, S.A.

    1987-01-01

    The radiotoxicology laboratory of Nuclear and Energetic Research Institute (IPEN) has the objective of control the internal contamination of workers that handle radioactive materials, in industrial and medical sectors. This control is made through radiochemical analysis of excreta. Nowadays in this laboratory are realized occupational controls on individual, exposure to uranium, tritium, iodine, fluorine, lead compounds, for workers of IPEN and for external institutions, when solicited. (C.G.C.) [pt

  13. Biotechnology and Nuclear Agricultural Research Institute Annual Report January - December 2012

    International Nuclear Information System (INIS)

    2013-01-01

    The annual report highlights the activities of the Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission for the year 2012 grouped under the following headings: Overview of programmes and activities; list of publications, conferences, training courses and workshops attended by staff and future projections. (A. B.)

  14. Biotechnology and Nuclear Agriculture Research Institute (BNARI) : Annual Report January - December 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The report is a summary of research projects undertaken by various centres of the Biotechnology and Nuclear Agriculture Institute (BNARI) of the Ghana Atomic Energy Commission from January to December 2014. Also included are the lists of published journal articles and technical reports issued by Staff.

  15. Champion comparison of prestigious nuclear research institutes by thirty-year research papers written in nuclear advanced countries

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2010-08-01

    A champion of research paper at JAERI and those of foreign prestigious nuclear research institutes (5 from the U.S., 3 from the France and 2 from the Germany) was studied taking the timeframe as long as 30 years (1978-2007) Tools for this bibliometric study were INIS, ECD, WOS and SCOPUS. The former two were general database collected all papers related to nuclear, while the latter two were specified database collected research papers submitted to journals for natural, social sciences and human learning. (1) INIS for the world-wide general tool focused on nuclear judged that JAERI (32,859 papers) was the champion and ORNL (32,395 papers) was the second position. (2) ECD for the US-oriented energy database judged that the ranking was of the order of ORNL(36,608 papers), ANL(26,530) and SNL(24,687). (3) The trend observed in the WOS for the US-oriented database roughly coincided with that of ECD, where ORNL(34,331 papers) was the champion, where JAERI was the 7th position. (4) SCOPUS, basically originated from the Europe judged that that ORNL (32,728 papers) was the champion, where JAERI (16,860) was the 7th position. (5) Different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS and SCOPUS when looking at trends between 5-year periods. It implies that results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors. (6) Use of INIS has predominance in Japan, and use of ECD has predominance in the U.S. Users from developed and developing countries assigned as the Member State of IAEA would be better served using INIS and ECD as the intellectual data source. As the recent trend, WOS and SCOPUS are used as the evaluation tools. (author)

  16. International Nuclear Safety Experts Conclude IAEA Peer Review of Swiss Regulatory Framework

    International Nuclear Information System (INIS)

    2011-01-01

    equipment and safety procedures and adopting current technology to maximize nuclear safety; ENSI demonstrates openness and transparency by posting significant documents on its website, including reports on safety research, applicable lessons from foreign nuclear power plants, and safety assessments for all Swiss nuclear power plants; and ENSI's comprehensive and user friendly management system enables the regulator to work effectively and efficiently to oversee Swiss nuclear safety. The IRRS team also made recommendations to improve the Swiss regulatory system, including the following: As ENSI was established as an independent regulatory body in 2009 as part of a revised government framework, the Swiss government should actively monitor how this new framework is working and make improvements as needed; ENSI needs the authority to set conditions for licensing nuclear activities and to issue regulatory requirements; and The Swiss regulatory framework should continue evolving its graded approach to safety, and further develop its inspection efforts in all areas, especially in waste, decommissioning and transport. In a preliminary report, the IAEA has conveyed the team's main conclusions to ENSI, and a final report will be submitted to the authority in about three months. ENSI has told the team that it will make the report public. The IAEA encourages nations to invite a follow-up IRRS mission about two years after the full mission has been completed. About IRRS Missions IRRS missions are designed to strengthen and enhance the effectiveness of the national nuclear regulatory infrastructure of States, while recognizing the ultimate responsibility of each State to ensure safety in this area. This is done through consideration of both regulatory, technical and policy issues, with comparisons against IAEA safety standards and, where appropriate, good practices elsewhere. More information about IRRS missions is available on the IAEA Website. Quick Facts: 2 PWRs at Beznau; 1 PWR at

  17. Testing a CANDU-fueling machine at the Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Cojocaru, Virgil

    2006-01-01

    In 2003, as a national and European premiere, the Fueling Machine Head no. 4 (F/M) for the Nuclear Power Plant Cernavoda Unit 2 (NPP) was successfully tested at the Institute for Nuclear Research Pitesti (INR). In 2005, the second Fueling Machine (no. 5) has tested for the Nuclear Power Plant Cernavoda Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate the CANDU technology in Romania. To perform the tests of these machines at INR Pitesti, a special testing rig has built being available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing activity. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any CANDU Reactor owner

  18. Brief review of topmost scientific results obtained in 2014 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Bulatova, V.V.; Sabaeva, E.V.

    2015-01-01

    This brief review presents the topmost scientific results obtained in 2014 at the Joint Institute for Nuclear Research in such fields as theoretical and experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information about the publications by JINR staff members, patents for inventions, awards given to JINR scientists, and activities carried out at the JINR University Centre in 2014. [ru

  19. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    Science.gov (United States)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  20. Two CANDU fueling machines tested at the Institute For Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    Doca, Cezar; Cojocaru, Virgil

    2005-01-01

    In 2003, as a national and European premiere, at the Institute for Nuclear Research Pitesti (INR), the Fueling Machine Head no.4 (F/M) for the Nuclear Power Plant Cernavoda - Unit 2 was successfully tested. In 2005, a second Fueling Machine (no.5) was tested for the Nuclear Power Plant Cernavoda - Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate in Romania the CANDU technology. To perform the tests of these machines at INR Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing operation. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any other CANDU Reactor owner. This experience will support the next steps concerning F/M commissioning in the NPP Cernavoda - Unit 2 and also give the confidence to the end-users that the Institute's team can provide technical assistance during the operation. Also, the obtained results demonstrate that the overall refurbishment of the F/M control system in Unit 1 and Unit 2 will be possible. The paper presents: - a short description of the F/M head;- a short description of the F/M test rig; - the computer control system; - the F/M testing activities; -results and expectations. (authors)

  1. Two CANDU fueling machines tested at the Institute For Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    Doca, C.; Cojocaru, V.

    2005-01-01

    Full text: In 2003, as a national and European premiere, at the Institute for Nuclear Research Pitesti (INR), the Fueling Machine Head no.4 (F/M) for the Nuclear Power Plant Cernavoda - Unit 2 was successfully tested. In 2005, a second Fueling Machine (no.5) was tested for the Nuclear Power Plant Cernavoda - Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate in Romania the CANDU technology. To perform the tests of these machines at INR Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing operation. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any other CANDU Reactor owner. This experience will support the next steps concerning F/M commissioning in the NPP Cernavoda - Unit 2 and also give the confidence to the end-users that the Institute's team can provide technical assistance during the operation. Also, the obtained results demonstrate that the overall refurbishment of the F/M control system in Unit 1 and Unit 2 will be possible. The paper presents: - a short description of the F/M head;- a short description of the F/M test rig; - the computer control system; - the F/M testing activities; -results and expectations. (authors)

  2. Survey of Swiss nuclear's cost study 2016

    International Nuclear Information System (INIS)

    Alt, Stefan; Ustohalova, Veronika

    2017-01-01

    The report discusses the Swiss nuclear cost study 2016 concerning the following issues: evaluation of the aspects of the cost study: cost structure, cost classification and risk provision, additional payment liability, option of lifetime extension for Swiss nuclear power plants; specific indications on the report ''cost study 2016 (KS16) - estimation of the decommissioning cost of Swiss nuclear power plants'': decommissioning costs in Germany, France and the USA, indexing the Swiss cost estimation for decommissioning cost, impact factors on the decommissioning costs; specific indications on the report ''cost study 2016 (KS16) - estimation of the disposal cost - interim storage, transport, containers and reprocessing''; specific indications on the report ''cost studies (KS16) - estimation of disposal costs - geological deep disposal'': time scale and costs incurred, political/social risks, retrievability, comparison with other mining costs.

  3. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    with spent fuel assemblies and vitrified residue packages as well as six casks with decommissioned waste from the experimental nuclear power plant at Lucens. Some 20% of the capacity of the HLW store was in use and about 24% of the ILW store. During the year, ZWILAG conducted two campaigns to incinerate and melt radioactive waste. ENSI is also responsible for the surveillance of the nuclear facilities at PSI: the research reactor PROTEUS, the hot laboratory, the collection point for radioactive waste from medicine, industry and research and the Federal Interim Storage Facility. During 2012, there were no further operational activities or radiation experiments at the PROTEUS research reactor. Two reportable events were recorded at the Paul Scherrer Institute (PSI), but no one at the research reactors at EPFL or the University of Basel. Last year, the amount of radioactive material released into the environment via waste water and exhaust air from the facilities under review was considerably less than the limits specified in the operating licenses. Analyses showed that the maximum doses were less than 1 % of the annual exposure to natural radiation. During 2012, spent fuel assemblies from Swiss nuclear power plants were reprocessed. The AREVA recycling facility in La Hague returned a consignment of high level waste. According to the Sectoral Plan for the deep geological repository, NAGRA proposed several different sites for surface facilities. ENSI provided information on the safety criteria for the selection process and on safety and geology, particularly in view of the Opalinus Clay Project. The geological research into the Opalinus clay continued during 2012. Every five years, the licensees of nuclear power plants are required by law to re-calculate the decommissioning and waste management costs. During 2012, ENSI evaluated the technical principles used in the 2011 cost study conducted by the licensees of nuclear power plants. ENSI is involved in its own projects and

  4. Cyclotron based nuclear science: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This report discusses experiment run on the K500 cyclotron and 88 in cyclotron at Texas AandM University. The main topics of these experiments are: Heavy ion reactions; Nuclear structure and fundamental interactions; Atomic and material science; Nuclear theory; and Superconducting cyclotron and instrumentation

  5. Report on research and development results in 1990 by the Institute for Nuclear Physics

    International Nuclear Information System (INIS)

    1991-03-01

    Part I and III of the Institute of Nuclear Physics mainly work in different fields of nuclear and elementary particle physics, with problems bordering astrophysics being in the foreground. A joint research project of the two sections consists in studying cosmic radiation in the energy range above 10 14 eV by means of large-scale detector systems on the earth's surface. The composition of primary radiation, the existence of point sources of high-energy radiation, and their position in space are questions of priority interest. (orig./HP) [de

  6. Participation of the research institutes in the safety aspects of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Sanchez G, J.

    1991-01-01

    The main activities undertaken by two research institutes of Mexico, the Instituto de Investigaciones Electricas and the Instituto Nacional de Investigaciones Nucleares, related to the safety of the Laguna Verde Nuclear Power Plant, are described. Among these activities, the development of a system for data acquisition and analysis during pre-operational tests, the design and construction of a full-scope simulator, the in-core fuel management and the establishment of an equipment qualification laboratory, stand out. It is considered that there exists a large potential for further participation. (author)

  7. Swiss nuclear industry in a mood of awakening - conference report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The 'nuclea' meeting of the Swiss Nuclear Forum with the focus on 'The Future of Nuclear Power in the Energy Mix' was held on the premises of the Swiss Leibstadt nuclear power station in late October. The electricity gap is a reality; the underlying facts are known by now, but this does not make them any less threatening and worrying. This is one of the key findings of the meeting. Experience over the past 3 decades has confirmed the close link between the gross domestic product and electricity consumption. Separating economic growth from the electricity requirement had remained wishful thinking. Consequently, the replacement and expansion of existing generating capacities had to take into account that nuclear power, among other things, met the stringent requirements with respect to climate protection and continuity of supply. There was agreement at 'nuclea' about nuclear power remaining an indispensable component in the energy mix for Swiss electricity supply. (orig.)

  8. The RA nuclear research reactor at VINCA Institute as an engineering and scientific challenge

    International Nuclear Information System (INIS)

    Mesarovic, M.

    1997-01-01

    The RA nuclear research at the Vinca Institute of Nuclear Sciences is the largest nuclear research facility in Yugoslavia and belongs to that generation of research reactors which have had an important contribution to nuclear technology development. As these older reactors were generally not built to specific nuclear standards, new safety systems had to be installed at the RA reactor for a renewal of its operating licence in 1984 and it was shut down, after 25 years of operation. Although all the required and several additional systems were built for the restart of the RA reactor, a disruption of foreign delivery of new control equipment caused its conversion to a 'dormant' facility, and it is still out of operation. Therefore, the future status of the RA reactor presents an engineering and scientific challenge to the engineers and scientists from Yugoslavia and other countries that may be interested to participate. To attract their attention on the subject, principal features of the RA reactor and its present status are described in detail, based on a recent engineering economic and safety evaluation. A comparative review of the world research reactors is also presented.(author)

  9. Networking of institutions in India to promote research and education in nuclear science and engineering

    International Nuclear Information System (INIS)

    Puri, R.R.

    2007-01-01

    Full text: The Programme of Nuclear Energy and its Applications (NEA) is knowledge intensive requiring engineers and scientists having special education and training for its implementation. The paucity of manpower in managing this programme is partly due to limitations of the university system in catering to the needs of the nuclear industry. Those limitations arise due to several reasons, like, regulatory requirements which make it difficult to set up nuclear facilities in university environment, capital intensive nature of nuclear set-ups, paucity of teaching staff having hands-on experience and limited employment opportunities making nuclear option unattractive for talented youngsters. The Department of Atomic Energy of India (DAE) established in 1954 for shaping and managing the Indian NEA programme realized those limitations and opted for an in-house education and training programme leading to assured employment for young Engineering Graduates and Science Post Graduates. Called the Bhabha Atomic Research Centre (BARC) Training School Programme, it is in place since 1957. The Indian NEA programme is thus fortunate to be supported by a visionary human resource development (HRD) programme in nuclear science and technology practically right since its inception. The success of HRD programme of DAE lies in its broader outlook based on the premise that technology development and basic research go hand-in-hand. This outlook is reflected also in the way DAE has been managing the implementation of its programme in that on one hand it has set up centres for technological Research and Development and, on the other, it is providing Grant-in-Aid to several Institutes for carrying basic research. Moreover, DAE has not lost sight of the fact that success of its initiatives lies as much in the vibrant university system as in its own training and educational efforts. It has, therefore, created avenues for extra-mural funding for supporting research activities in universities in

  10. Research and development on activation analysis at the Thailand Institute of Nuclear Technology

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.; Dharmavanij, W.; Busamongkol, A.; Pareepart, R.; Wimolwattanapun, W.; Chantarachot, W.

    2008-01-01

    Research and development in activation analysis at the Thailand Institute of Nuclear Technology has been carried out over 40 years. The main activation source is from the TRIGA type research reactor TRR1/M1. Average in-core flux is around 10 13 n x cm -2 x s -1 . Experience on the analysis of various kind of samples range from environmental field especially air particulate, ores, rocks and soil for natural resources exploration as well as industrial applications. Elemental composition in silk thread, silk cocoon and silk products from the royal silk project are one of the research work done incorporation with the Queen Sirikit Institute of Sericulture. Food items are also another topic of interest to our research team. (author)

  11. Nuclear safety experiences of the research reactors at Boris Kidric Institute

    International Nuclear Information System (INIS)

    Pesic, M.; Cupac, S.; Stefanovic, D.

    1988-01-01

    Although the nuclear power was introduced recently in Yugoslavia with NPP KRSKO (connected to the grid in 1982.), nearly thirty years of wide experiences in nuclear safety is acquired at Boris Kidric Institute during operation of research reactors RA and RB. Reactor RB is an unshielded, zero power reactor, constructed in 1958, in as an actually bare critical natural uranium - heavy water system [1]. It was the first nuclear reactor designed in Yugoslavia and based on the national plan of development of nuclear energy [1,2,3,14]. Reactor RA is a 6.5 Mw heavy water research reactor designed in 1956, in USSR. Construction of the Yugoslav RA reactor started in 1957, and the reactor began operation in 1959, as one of the research reactors with better characteristics in the world at that time [4,5,6,14]. The main improvements in general and particularly nuclear safety both of the reactors in the past 30 years are given in this paper. These progressions are results of long experience acquired in reactor operation, maintenance, testing, development and application of newer safety criteria. The newer safety criteria have demanded improvements in the technical characteristics and in the administrative regulation domains both of the reactors

  12. Construction of sustainability indicators for Nuclear Area Innovation and Research Institutes in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone Fonseca

    2017-01-01

    The dissertation consists of a construction of appropriate sustainability indicators for nuclear area innovation and research institutes in Brazil. In order to do so, the results of the construction process, as well as, the perception of the population that resides in the area surrounding this type of institute are presented and discussed. As reference for this case study, the Nuclear Technology Development Center (CDTN) was chosen. It is located in Pampulha, more specifically, on the campus of the Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. One of the methodological processes present in this research is the Delphi method, because it is the most used in the construction of indicators. Its application in this work allowed obtaining the of specialist group opinions collected through a questionnaire. Initially, sixty-nine sustainability indicators were considered. They were distributed among the environmental, economic, socio cultural and institutional dimensions, some of which were obtained through lists of indicators pointed by literature review. Other indicators were built through discussions with groups from the nuclear, environmental, economic and socio cultural areas. Among the set of indicators investigated, twenty-six were selected as being the most relevant. A questionnaire was then applied to one hundred and twenty individuals living in the vicinity of the CDTN. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed, as well as, indicators of the same dimensions were varied. However, the opinion of the population and the opinion of the experts had similar results. Finally, this study is the first proposal for the nuclear sector to construct this kind of indicator that takes into account the evaluation of experts and the opinion of the community that resides around these institutions. (author)

  13. Knowledge loss risk assessment in Institute for Nuclear Research Pitesti, Romania

    International Nuclear Information System (INIS)

    Apostol, Minodora; Constantin, Marin; Balaceanu, Victoria

    2009-01-01

    This paper presents a method developed in Institute for Nuclear Research Pitesti for knowledge loss risk assessment in nuclear sector, in order to obtain a risk map at departmental and organizational level, by analyzing each position/people. The method starts from the classical method for knowledge loss risk assessment but takes into account the INR characteristics, the particularities of Romanian nuclear market and the difficulties of the classical method to estimate correctly the risk at the job level. A short description of the classical method of knowledge loss risk assessment, the improved method by introducing five new parameters for risk factor of vacant job are presented, how this last method has been applied in some departments from INR Pitesti and the preliminary risk matrix for knowledge loss at organization level is discussed. (authors)

  14. Joint Institute for Nuclear Research as an example of socialist integration in science

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.

    1979-01-01

    History of establishing, main directions of works and some results of investigations which have been carried out in the Joint Institute of Nuclear Research according to the program of the JINR member-states are stated as well as directions of the JINR co-operation with other countries are given. In detail, main works are stated in the field of high energy physics, theoretical nuclear physics, investigation of interactions of elementary particles, nuclear spectroscopy of nuclides. Examples are given of joint researches which have been conducted by scientists from the JINR together with scientists from other scientific research centers of the JINR member-states and other countries. Content is stated of works in the field of synthesis of ultraheavy elements and development of methods of study as their chemical properties. Composition of the JINR computer center is given as well as the list of problems which are solved at this center. Some results are given of works conducted in the JINR in the field of development of equipment for nuclear-physical researches and improvement of accelerators. Some results are presented of the JINR activity and plans for future [ru

  15. Remediation of old environmental liabilities in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Svoboda, Karel; Podlaha, Josef

    2011-01-01

    The Nuclear Research Institute Rez plc (NRI) after 55 years of activities in the nuclear field produced some environmental liabilities that shall be remedied. There are three areas of remediation: (1) decommissioning of old obsolete facilities (e.g. decay tanks, RAW treatment technology, special sewage system), (2) processing of RAW from operation and dismantling of nuclear facilities, and (3) elimination of spent fuel from research nuclear reactors operated by the NRI. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Remediation of the environmental liabilities started in 2003 and will be finished in 2014. The character of the environmental liabilities is very specific and requires special remediation procedures. Special technologies are being developed with assistance of external subcontractors. The NRI has gained many experiences in the field of RAW management and decommissioning of nuclear facilities and will use its facilities, experienced staff and all relevant data needed for the successful realization of the remediation. The most significant items of environmental liabilities are described in the paper together with information about the history, the current state, the progress, and the future activities in the field of remediation of environmental liabilities in the NRI. (author)

  16. KfA Institute of Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Gruemmer, F.; Kilian, K.; Schult, O.; Seyfarth, H.; Speth, J.; Turek, P.

    1988-04-01

    This annual report contains extended abstracts about the work performed at the named institute together with a list of publications and speeches. The work concerns nuclear reactions, nuclear spectroscopy, intermediate-energy physics, nuclear structure, developments of the isochronous cyclotron and the ISIS ion source, construction of spectrometers, detectors, and targets, computer development, counting electronics, and radiation protection. (HSI)

  17. Main research results in the field of nuclear power engineering of the Nuclear Reactors and Thermal Physics Institute in 2014

    International Nuclear Information System (INIS)

    Trufanov, A.A.; Orlov, Yu.I.; Sorokin, A.P.; Chernonog, V.L.

    2015-01-01

    The main results of scientific and technological activities for last years of the Nuclear Reactors and Thermal Physics Institute FSUE SSC RF - IPPE in solving problems of nuclear power engineering are presented. The work have been carried out on the following problems: justification of research and development solutions and safety of NPPs with fast reactors of new generation with sodium (BN-1200, MBIR) and lead (BREST-OD-300) coolants, justification of safety of operating and advanced NPPs with WWER reactor facilities (WWER-1000, AEhS 2006, WWER-TOI), development and benchmarking of computational codes, research and development support of Beloyarsk-3 (BN-600) and Bilibino (BN-800) NPPs operation, decommissioning of AM and BR-10 research reactors, pilot scientific studies (WWER-SKD, ITER), international scientific and technical cooperation. Problems for further investigations are charted [ru

  18. Review on Overseas Contracts of a Nuclear Research Institute in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Lee, Eui Jin

    2010-01-01

    Since its establishment, Korea Atomic Energy Research Institute (KAERI) has made various contracts in research, design, engineering and consultation with a lot of foreign counterparts all over the world, including international organizations. As one of the global nuclear energy research leaders, KAERI can make a large scale contract because it has already procured a turnkey EPC (Engineering, Procurement, Construction) contract for a research and training reactor in the spring of 2010 by forming a consortium with a construction and engineering company. A contract in nuclear business industries is to be made under the limited control of regulatory authorities because the contractors must ensure nuclear safety and follow the international nuclear non-proliferation guidelines to secure the peaceful use of nuclear energy at an international level. The export and import of strategic technologies, products or materials (including nuclear materials) must be directly controlled by the authorities in accordance with the applicable law. In 2009, KAERI organized a new team to manage the overseas contracts and to make the limited control reflected in the contract documentation. In large scale project contracts, more attention shall be given to the contracts to prevent claims and also to the consideration of the regulatory requirements. In this context, the nature of the past KAERI contracts was reviewed. The conditions of several recent KAERI contracts were also individually reviewed based on the FIDIC (Federation Internationale des Ingenieurs-Conseils) model service agreement, which is generally accepted by service contractors. Ways to increase the quality of future contracts and to improve the standard model agreement which is used to prepare the draft contract were also considered

  19. Cyclotrons for clinical and biomedical research with PET

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use

  20. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella Duran

    1999-10-01

    This study attempted to determine the factors that influenced the impact of the PNRI training program in nuclear science and technology. The population of the study consisted of all graduate trainees who successfully completed the training courses conducted at the PNRI Training Center for the period 1989 to 1994. A stratified random sampling of 600 or 50% of the population were chosen from the 4 sectors of the population namely industry/service, medicine, education and research sector. Of the 600 samples only 395 or 66% of the samples responded to the mailed questionnaires. The following hypotheses were tested: 1) trainee - organization- related factors and overall satisfaction of the participants on the training program determine the impact of training; 2) there are significant differences among the perceptions of the participants on impact. Frequency counts and percentages were used to determine the number of trainees by sector and the description of the sample. T-test was used to measure whether or not the relationship between the ''Before'' and ''After'' training scores of the trainees is significant and whether the perceptions of the trainee respondents by sector on impact differed significantly. Multiple regression was used to determine whether the independent variables are significantly associated with the measures of program impact. The t-test was used to measure the significance of regression coefficient. (Author)

  1. Scientific and technological activity in the National Institute of Nuclear Research; Actividad cientifica y tecnologica en el Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Escobar A, L.; Monroy G, F.; Morales R, P.; Romero H, S. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    The present book was published on the occasion of the 50 years of the existence of the Institute, from its creation in 1956 like National Commission of Nuclear Energy to 1979 that arises like National Institute of Nuclear Research. The objective of this publication is the one to leave a writing testimony of all the activities that are realized in the National Institute of Nuclear Research and an accessible language within the diverse subjects boarded. Referring subjects to the activities of nuclear physics, radiochemistry, research and development of materials, dosimetry, plasma physics, production of radiopharmaceuticals, tissue sterilization by radiation, food irradiation and other included. (Author)

  2. Educational Research Centre of the Joint Institute for Nuclear Research and students training on the 'Medical Physics' speciality

    International Nuclear Information System (INIS)

    Ivanova, S.P.; )

    2005-01-01

    The Educational Research Centre (ERC) of the Joint Institute for Nuclear Research is the place of joint activity of the JINR, Moscow State University (MSU) and Moscow Engineering Physical Institute (MEFI) on students training by a broadened circle of specialities with introduction of new educational forms. Active application of medical accelerator beams of the JINR Laboratory of Nuclear Beams becomes a reason for implementation of a new training chair in the MEFI on the JINR base - the Physical methods in applied studies in the medicine chair. For the 'medical physics' trend development in 2003 the workshop on discussion both curricula and teaching methodic by the speciality was held. One the Educational Research Centre main activities is both organization and conducting an international scientific schools and training courses. The International student School 'Nuclear-Physical Methods and Accelerators is the most popular and traditional. The principal aim of these schools and courses is familiarization of students and postgraduates with last achievement and and contemporary problems of applied medical physics. The school audience is a students and postgraduates of ERC, MSU, MEFI, and an institutes of Poland, Hungary, Slovakia, France, Czech and Bulgaria

  3. Institute for Nuclear Theory

    International Nuclear Information System (INIS)

    Haxton, W.; Bertsch, G.; Henley, E.M.

    1993-01-01

    This report briefly discussion the following programs of the Institute for Nuclear Theory: fundamental interactions in nuclei; strangeness in hadrons and nuclei; microscopic nuclear structure theory; nuclear physics in atoms and molecules; phenomenology and lattice QCD; and large amplitude collective motion

  4. Annual report of the Institute for Nuclear Study, University of Tokyo, 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report reviews the research activities and technical developments carried out at the Institute for Nuclear Study during the period from January to December, 1979. The Institute was established in 1955 to promote research activities in Japan in the field of nuclear and particle physics. At present, four research divisions are active: Low Energy Physics, High Energy Physics, Theoretical Physics, and the Study Group of High Energy, Heavy Ion Project (NUMATRON Project). The research facilities at INS are open to all researchers throughout Japan, and the research programs are reviewed and controlled by the inter-university committee. At the Low Energy Physics Division, the active studies on nuclear structures and nuclear reactions have been continued, using the INS-SF cyclotron, and radiation physics experiments were carried out with the INS-FM cyclotron. The cyclotrons, the instrumentation for experiments, nuclear physics, radiation physics and other applications, and symposia are reported. At the High Energy Physics Division, the photo-production experiments with the 1.3-GeV electron synchrotron were made. The synchrotron, the instrumentation, the experiments and symposium are reported. The Theoretical Physics Division, besides its own activities on nuclear physics and particle physics, sponsored various workshops. The Study Group made the preparatory works for the NUMATRON Project. (Kako, I.)

  5. Electromagnetism applications in nuclear engineering: cyclotron; Aplicacoes do eletromagnetismo na engenharia nuclear; ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega Bastos; Dalla Riva, Maria Teresa Cristina da

    1995-08-01

    Particle accelerators, with special emphasis on cyclotrons, are presented. Other electromagnetic devices and their importance in technology and research are also shown. An experimental arrangement for positrons source productions using a cyclotron aiming at non-destructive testing for radiations damage studies is presented. 46 refs., 23 figs., 2 tabs.

  6. Progress report on research and development in 1991, Institute of Nuclear Physics, KfK

    International Nuclear Information System (INIS)

    1992-03-01

    Progress report on research and development in 1991 Institute of Nuclear Physics. Within the framework of the KASCADE project to study air showers of cosmic radiation, a comprehensive detector field (array) and the central calorimeter have been developed and built. One of the working groups deals with neutrino physics at the spallation neutron source ISIS of the Rutherford Appleton Laboratory in England. By means of the detector system KARMEN I, measurements are made in relation with neutrino oscillation, neutrino-core scattering, and neutrino-electron scattering. Nuclear physics activities mainly deal with experiments on nuclear astrophysics. To that effect, cross sections of neutron capture processes are measured in order to clarify the process of element transformation in stars. Other experiments use laser-spectroscopic methods to determine nuclear radii and moments of short-lived radioactive atoms. For the project 'Reprocessing and Waste Treatment' measuring instruments have been developed by which the isotopic composition and concentration of fissionable materials can be determined very precisely and quickly. (orig./DG) [de

  7. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Switzerland

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Nuclear fuels; Radioactive substances and equipment generating ionising radiation); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Environmental protection; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Council; Federal Assembly; Federal Department of the Environment, Transport, Energy and Communications - DETEC; Federal Office of Energy - SFOE; Swiss Federal Nuclear Safety Inspectorate - IFSN; Federal Department of Home Affairs - FDHA; Federal Office of Public Health - FOPH; State Secretariat for Education and Research - SER; Other authorities); 2. Advisory bodies (Swiss Federal Nuclear Safety Commission - KNS; Federal Commission for Radiological Protection and Monitoring of the Radioactivity in the Environment; Federal Emergency Organisation on Radioactivity); 3. Public and semi-public agencies (Paul-Scherrer Institute - PSI; Fund for the decommissioning of nuclear installations and for the waste disposal; National Co-operative for the

  8. Channel of Axial Injection of DC-60 Cyclotron

    CERN Document Server

    Gikal, B N; Bogomolov, S L; Borisenko, A N; Borisov, O N; Gulbekyan, G G; Ivanenko, I A; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Khabarov, M V; Lysukhin, S N; Melnikov, V N; Paschenko, S V; Tikhomirov, A V

    2006-01-01

    The design study and realization of the axial injection beam line of DC-60 cyclotron constructed at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research are given. The channel allows one to transport and to inject into the cyclotron ions with mass-to-charge ratio $A/Z$ being within interval A/Z=6-12 and kinetic energy up to 17 $Z/A$ keV/m.u.

  9. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  10. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  11. Champion data comparison in nuclear research institutes in Europe, the U. S., and Japan

    International Nuclear Information System (INIS)

    Kazuaki Yanagisawa; Cutler, D.E.

    2011-01-01

    Bibliometric analysis was carried out for champion data comparisons among prestigious nuclear research institutes (PNRI) existed in Japan, the U. S., France, and Germany. The analysis was relied on database INIS (IAEA), ECD (DOE), WOS (Thomson), and SCOPUS (Elsevier). INIS is advanced, key ex-post evaluating tool for determining general research paper-based champion. Over the 30-year time span of research paper publication, the world champion among 11 PNRI is JAERI confirmed by INIS but ORNL confirmed by ECD, WOS, and SCOPUS, the latter two collected journal submitted research paper. Five years ago JAERI is the 3rd ranked institutes following ORNL and ANL. INIS database results revealed that CEA/Grenoble is the French domestic champion regarding research paper publication. Five years ago it was CEA/Saclay. Results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors because different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS, and SCOPUS when looking at trends especially between 5-year periods. (author)

  12. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    International Nuclear Information System (INIS)

    Kohman, T.P.

    1976-01-01

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time

  13. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  14. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  15. Marie Curie: the Curie Institute in Senegal to Nuclear Physics

    Science.gov (United States)

    Gueye, Paul

    Sub-Saharan Africa is not a place where one will look first when radioactivity or nuclear physics is mentioned. Conducting forefront research at the international stage at US national facilities such as the Thomas Jefferson National Accelerator Facility in Virginia or the National Superconducting Cyclotron Facility/Facility for Rare Isotope Beams in Michigan does not point to Historically Black Colleges either. The two are actually intrinsically connected as my personal journey from my early exposure to radiation at the Curie Institute at the LeDantec Hospital in Senegal lead me to Hampton University. The former, through one of my uncles, catapulted me into a nuclear physics PhD while the latter houses the only nuclear physics program at an HBCU to date that has established itself as one of the premier programs in the nation. This talk will review the impact of Marie Curie in my life as a nuclear physicist.

  16. Restoration of the former site of the institute for nuclear physics research in Amsterdam

    International Nuclear Information System (INIS)

    Louwrier, Pieter W.F.; Bakker, C.N.M.; Peperkamp, J.A.M.

    2000-01-01

    In 1946 the Institute for Nuclear Physics Research (IKO) started operations on the site of an old gas factory made available by the City of Amsterdam. In 1997 IKO became part of the National Institute for Nuclear Physics and High-Energy Physics (NIKHEF). In 1996 NIKHEF left the laboratory site after 50 years of occupation. The City of Amsterdam, being the owner of the area, decided that in view of the plants for development of the area, the buildings should be demolished and the area made suitable for public use. The site was used as a nuclear research laboratory since 1946, housing a synchrocyclotron from 1947 to 1977 and a linear electron accelerator from 1968 to 1977. Several nuclear chemistry laboratories were in operation from 1946 to 1984. During the 50-year period the original buildings were modified and enlarged, and new buildings were added. Before the responsibility for the area could be transferred to the City and the operating licence could be adjusted to the new situation the Dutch authorities required that a site restoration project be executed. The site restoration project was planned in stages, each of which was supervised and evaluated by the Dutch Ministry of Housing, Spatial Planning and the Environment, and the Ministry of Social Affairs and Employment. Special interest groups such as Greenpeace, LAKA Foundation (a non-profit organisation acting as a consultant for the neighbouring population), the City of Amsterdam and the local City-Boards were following the process closely. The project encompassed the following stages: Set-up of a plan for the clearance of the building structures, including the criteria for release, in consultation with the ministries involved. Radiation protection was an integral part of the plan. Investigation of possible radioactive contamination of the evacuated buildings. Six undocumented contaminations and one documented contamination were identified. Supervised removal of contaminated building structures by a

  17. Available post-irradiation examination techniques at Romanian institute for nuclear research

    International Nuclear Information System (INIS)

    Parvan, Marcel; Sorescu, Antonius; Mincu, Marin; Uta, Octavian; Dobrin, Relu

    2005-01-01

    The Romanian Institute for Nuclear Research (INR) has a set of nuclear facilities consisting of TRIGA 14 MW(th) materials testing reactor and LEPI (Romanian acronym for post-irradiation examination laboratory) which enable to investigate the behaviour of the nuclear fuel and materials under various irradiation conditions. The available techniques of post-irradiation examination (PIE) and purposes of PIE for CANDU reactor fuel are as follows. 1) Visual inspection and photography by periscope: To examine the surface condition such as deposits, corrosion etc. 2) Eddy current testing: To verify the cladding integrity. 3) Profilometry and length measurement performed both before and after irradiation: To measure the parameters which highlight the dimensional changes i.e. diameter, length, diametral and axial sheath deformation, circumferential sheath ridging height, bow and ovality. 4) Gamma scanning and Tomography: To determine the burnup, axial and radial fission products activity distribution and to check for flux peaking and loading homogeneity. 5) Puncture test: To measure the pressure, volume and composition of fission gas and the inner free volume. 6) Optical microscopy: To highlight the structural changes and hydriding, to examine the condition of the fuel-sheath interface and to measure the oxide thickness and Vickers microhardness. 7) Mass spectrometry: To measure the burnup. 8) Tensile testing: To check the mechanical properties. So far, non-destructive and destructive post-irradiation examinations have been performed on a significant number of CANDU fuel rods (about 100) manufactured by INR and irradiated to different power histories in the INR 14 MW(th) TRIGA reactor. These examinations have been performed as part of the Romanian research programme for the manufacturing, development and safety of the CANDU fuel. The paper describes the PIE techniques and some results. (Author)

  18. Remediation of the old environmental liabilities in the Nuclear Research Institute Rez. Situation at the end of 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kovarik, Petr; Svoboda, Karel; Podlaha, Josef [Nuclear Research Institute Rez (Czech Republic)

    2010-10-15

    The Nuclear Research Institute Rez (NRI) has been a leading institution in the area of R and D (Research and Development) in the Czech Republic. The NRI has had a dominant position in the nuclear programme of the former Czechoslovakia since it was established in 1955. In December 1992 the NRI has been transformed into a joint-stock company. The Institute's activity encompasses nuclear physics, radiochemistry, experiments at the research reactor and many other topics. Main issues addressed in the NRI in the past decades were concentrated on research, development and services provided to the VVER reactors, development of chemical technologies for fuel cycle and irradiation services. Currently, the research activities are mainly targeted to assist the State Office for Nuclear Safety. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector, providing a wide range of services to industry, medicine and the preparation of radiopharmaceuticals. NRI operates 2 research nuclear reactors, hot cell facility, research laboratories, and technology for radioactive waste management, radionuclide irradiators, an electron accelerator and others. After 50 years of activities in the nuclear field, there have been many environmental liabilities that are being remedied in the NRI. There are 3 areas of these remediation activities: - decommissioning of old obsolete facilities, - processing of RAW resulting from operation and dismantling of nuclear facilities, and - elimination of spent fuel from research nuclear reactors. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Remediation of the environmental liabilities started in 2003 and should be finished in 2014. (orig.)

  19. The tissue bank at the national nuclear research institute in Mexico.

    Science.gov (United States)

    Esther Martínez-Pardo, María; Lourdes Reyes-Frías, Ma

    2003-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ, The National Nuclear Research Institute) received during 1997-1998 strong support of the International Atomic Energy Agency (IAEA), to establish the first and only one tissue bank (BTR ININ tissue bank) in Mexico that uses ionising radiation as sterilising agent. In that time, the BTR staff was trained in different tissue banks in several countries. Basic equipment for tissue processing donated by the IAEA was received in 1998. In July, 1999 the Mexican Health Secretariat gave the Sanitary License No. 1062000001 to the BTR to operate as an official organ and tissue bank. In August, 2001 the ININ and the Hospital Materno Infantil (HMI-ISSEMYM) signed an agreement to collaborate in amnion processing. The hospital is responsible for donor selection, serology tests, tissue procurement and washing, since this hospital is the BTR amnion supplier. The tissues are collected by ININ weekly with complete documentation. The BTR is responsible for processing: cleaning, air drying, packaging, labelling, microbiological control and sterilisation by gamma irradiation. The sterilised tissue is kept under quarantine for 6 months to obtain the results of the donor second serology test. From March to June, 2002 the BTR has processed 347.86 units (50 cm(2) each), is say, 17,393 cm(2). In addition, the pig skin xenograft process has been implemented and a protocol for clinical applications of it is running at the Hospital Central Sur de Alta Especialidad (PEMEX). Also the ININ tissue bank present status and perspectives are described.

  20. Planning ten years ahead a multidisciplinary nuclear research technology institute: the case of IPEN

    International Nuclear Information System (INIS)

    Sousa, Willy Hoppe de

    2011-01-01

    Planning is always a problem in government organizations whose mission involves the development of R and D activities. The current issue of the Institute of Energy and Nuclear Research (IPEN), one of the institutes comprising the National Nuclear Energy Commission (CNEN), is to plan the reconciling the long-term ramifications of a large project whose funding is primarily derived from the budget Union with the R and D agenda of IPEN which is largely driven and funded by science and technology funding agencies. This paper aims at reporting the results of one of the stages of the work developed by IPEN to deal with this problem. In mid-2010, top management of IPEN approved the implementation of a participatory planning effort with the following guidelines: (1) focus on two of the three finalist functions of IPEN - Research and Development (R and D) and Products and Services (P and S), (2) results orientation with a time horizon of 10 years, (3) incorporation of the unfolding of a large project in this planning effort (this project has its own planning) and (4) the source of information of the planning process would be the teams involved in the research lines and projects (LPP's) and the lines of production activities (LAP's) - the lowest grouping level in the current planning framework of IPEN. The planning process developed was based on an adaptation of a technique known as technology roadmapping. The data were collected through a web questionnaire. At the end of the data collection in mid- December 2010 89 LPP's and LAP 28's responses were recorded. For the purposes of this article the following groups of information related to R and D finalist function are presented: Where are we now?: (1) Profile of the current team; (2) Motivation of research and (3) Sources used for identification R and D goals. How can we get there?: (4) Profile of research partners, and (5) Profile of the necessary changes. Where do we want to go?: (6) Classification of results by areas and (7

  1. A history of the collaboration between the European Organisation for Nuclear Research (CERN) and the Joint Institute for Nuclear Research (JINR), and with Soviet research institutes in the USSR 1955-1970

    International Nuclear Information System (INIS)

    Lock, W.O.

    1975-01-01

    The report describes in some detail the origins and development up to 1970 of the collaboration which now exists between the European Organization for Nuclear Research (CERN) and its counterpart the Joint Institute for Nuclear Research (JINR) at Dubna, USSR and also with the Institute for High Energy Physics, Serpukhov, USSR. Part 1 deals with the relations between JINR and CERN, their beginnings and the subsequent development of exchange of scientists, joint Summer Schools, and the organization of Seminars to discuss perspectives in high energy physics. Part 2 describes first the steps which led up to the signing of an Agreement between CERN and the State Committee of the USSR for the Utilization of Atomic Energy, governing collaboration between CERN and the Institute for High Energy Physics at Serpukhov. A brief account is then given of the subsequent installation of equipment built at CERN for the Institute's 76-Gev proton accelerator and the carrying out of joint physics experiments by teams from Western Europe and from the Soviet Union. Part 3 summarizes the origins of collaborative agreements which have been made by CERN with a few other leading Institutes in the Soviet Union. A number of Annexes reproduce some of the relevant documents and letters. (author)

  2. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2008 ueber die nukleare Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations.

  3. Trends in cyclotrons for radionuclide production

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Lambrecht, R.M.

    1999-01-01

    The IAEA recently concluded a worldwide survey of the cyclotrons used for radionuclide production. Most of the institutions responded to the questionnaire. The responses identified technical, utilisation and administrative information for 206 cyclotrons. Compiled data includes the characteristics, performance and popularity of each of the different commercial cyclotrons. Over 20 cyclotrons are scheduled for installation in 1998. The expansion in the number of cyclotron installations during the last decade was driven by the advent of advances in medical imaging instrumentation (namely, positron emission tomography (PET), and more recently by 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons; and recent governmental decisions that permit reimbursement for cyclotron radiopharmaceutical studies by the government or insurance companies. The priorities for the production of clinical, commercial and research radionuclides were identified. The emphasis is on radionuclides used for medical diagnosis with SPET (e.g. 123 I, 201 Tl) and PET (e.g. 11 C, 13 N, 15 O, 18 F) radiopharmaceuticals, and for individualized patient radiation treatment planning (e.g. 64 Cu, 86 Y, 124 I) with PET. There is an emerging trend to advance the cyclotron as an alternative method to nuclear reactors for the production of neutron-rich radionuclides (e.g. 64 Cu, 103 Pd, 186 Re) needed for therapeutic applications. (authors)

  4. Health status of radiation workers in an institute of nuclear research

    International Nuclear Information System (INIS)

    Popescu, F.; Paunescu, G.; Stroe, F.; Andrei, N.

    2000-01-01

    The aim of this study was the identification of the changes in health condition of workers from an institute of nuclear research. Thirty-five workers (25 male and 10 female) radiation exposed to low doses of ionizing radiation were admitted in the Radiopathology Centre Bucharest, after a selection performed during the annual check-up. The workers have had different professions: nuclear fuel processor, engineer laboratory technician, electrician, instrument technician. The time of exposure to ionizing radiation was between 6 to 25 years. Medical specialists in occupational health, dermatology, ophthalmology, O.R.L., endocrinology, haematology, neurology and psychology investigated them. The following lab tests were performed: haematological examination, biochemical examination, immunology tests, alergology skin tests, functional lung tests and cardiogram. No special problems concerning the exposure to ionizing radiation were found, but the following diseases were detected in some extent: neurasthenia, high blood pressure, ischemic heart disease, digestive system disorders, endocrinology disorders and anaemia. High blood pressure, ischemic heart disease and digestive system disorders were related with stress or job strain. Anaemia occurred in connection with gynaecological disorders. Some thyroid dysfunction appeared because of low dietary iodine content in the Sub-Carpathian region. The focus of the psychological exam was the identification of the effect of different factors (exogenous, endogenous or multidimensional) over a person, that could influence the psychological potential. The psychological exam reveals the following disturbances: asthenia, tiredness, chronic fatigue, psycho-emotional impairment, lapses of attention, anxiety. These disturbances may be in relation both with job strain (especially a substantial stress factor for nuclear fuel processor and engineer laboratory technician) and the syndrome of workplace. (author)

  5. Health status of radiation workers in an institute of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, F.; Paunescu, G.; Stroe, F. [Inst. of Public Health, Bucharest (Romania); Andrei, N.

    2000-05-01

    The aim of this study was the identification of the changes in health condition of workers from an institute of nuclear research. Thirty-five workers (25 male and 10 female) radiation exposed to low doses of ionizing radiation were admitted in the Radiopathology Centre Bucharest, after a selection performed during the annual check-up. The workers have had different professions: nuclear fuel processor, engineer laboratory technician, electrician, instrument technician. The time of exposure to ionizing radiation was between 6 to 25 years. Medical specialists in occupational health, dermatology, ophthalmology, O.R.L., endocrinology, haematology, neurology and psychology investigated them. The following lab tests were performed: haematological examination, biochemical examination, immunology tests, alergology skin tests, functional lung tests and cardiogram. No special problems concerning the exposure to ionizing radiation were found, but the following diseases were detected in some extent: neurasthenia, high blood pressure, ischemic heart disease, digestive system disorders, endocrinology disorders and anaemia. High blood pressure, ischemic heart disease and digestive system disorders were related with stress or job strain. Anaemia occurred in connection with gynaecological disorders. Some thyroid dysfunction appeared because of low dietary iodine content in the Sub-Carpathian region. The focus of the psychological exam was the identification of the effect of different factors (exogenous, endogenous or multidimensional) over a person, that could influence the psychological potential. The psychological exam reveals the following disturbances: asthenia, tiredness, chronic fatigue, psycho-emotional impairment, lapses of attention, anxiety. These disturbances may be in relation both with job strain (especially a substantial stress factor for nuclear fuel processor and engineer laboratory technician) and the syndrome of workplace. (author)

  6. Web server of the Centre for Photonuclear Experiments Data of the Scientific Research Institute for Nuclear Physics, Moscow State University: Hypertext version of the nuclear physics database

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    2001-01-01

    The nuclear databases which have been developed at the Centre for Photonuclear Experiments Data of the D.V. Skobel'tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, and put on the Centre's web server, are presented. The possibilities for working with these databases on the Internet are described. (author)

  7. Summary of operating experience in Swiss nuclear power plants 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs.

  8. Annual report of the Institute for Nuclear Study, University of Tokyo, 1978

    International Nuclear Information System (INIS)

    1979-01-01

    This annual report covers the research activities and the technical developments of the Institute for Nuclear Study in the period from January, 1978, to December, 1978. At present, it has four research divisions: Low Energy Physics, High Energy Physics, Theoretical Physics and Nuclear Matter Study. The research facilities of the INS are open to all researchers throughout Japan, and the research programs are planned and carried out under the inter-university committee system. As to the activities of the Low Energy Physics Division, the INS-FM cyclotron and the INS-SF cyclotron are used, and reports are made on the cyclotrons, the instrumentation for experiments, nuclear physics, radiation physics and other applications, and symposium. In the High Energy Physics Division, the 1.3 GeV electron synchrotron began the operation on January 15 with accelerated beam of up to 100 mA. The instrumentation and the measurement of recoil proton polarization and recoil neutron polarization in γ + p reactions are reported. As for the Theoretical Physics Division, the research activities concerning nuclear physics and particle physics, symposia and workshops are reported. In the Nuclear Matter Study Division, the study group for the NUMATRON Project focused its effort on the construction of the TARN. The activities in the Chemistry Laboratory and the Synchrotron Radiation Laboratory, and other general matters are also reported. (Kako, I.)

  9. 1989 annual report of the Rossendorf Central Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Fromm, W.; Kaun, K.H.; Moeller, K.; Naehring, F.; Schulz, H.; Winter, G.; Heidel, I.; Breiter, S.

    1990-01-01

    The research and development results are classified by research lines. Each section starts with an introduction summing up the developments of the particular field of work, followed by progress reports on specific projects, contributions on partial results not published so far, and summaries of 1989 publications. Research priorities are, among others, the fields of nuclear spectroscopy; ion-beam solid state physics; positron emission tomography; nuclear trace technology; neutron doping, and accelerator development. (DG) [de

  10. Biomass - Overview of Swiss Research Programme 2003

    International Nuclear Information System (INIS)

    Binggeli, D.; Guggisberg, B.

    2003-01-01

    This overview for the Swiss Federal Office of Energy (SFOE) discusses the results obtained in 2003 in various research projects worked on in Switzerland on the subject of biomass. In the biomass combustion area, subjects discussed include system optimisation for automatic firing, combustion particles, low-particle pellet furnaces, design and optimisation of wood-fired storage ovens, efficiency of filtering techniques and methane generation from wood. Also, an accredited testing centre for wood furnaces is mentioned and measurements made on an installation are presented. As far as the fermentation of biogenic wastes is concerned, biogas production from dairy-product wastes is described. Other projects discussed include a study on eco-balances of energy products, certification and marketing of biogas, evaluation of membranes, a measurement campaign for solar sludge-drying, the operation of a percolator installation for the treatment of bio-wastes, the effects of compost on the environment and the fermentation of coffee wastes. Also, statistics on biogas production in 2002 is looked at. Finally, a preliminary study on biofuels is presented

  11. Management of communication area in a nuclear research and development institute

    International Nuclear Information System (INIS)

    Soares, Wellington Antonio

    2005-01-01

    Nuclear energy to the general public is always associated to the production of nuclear weapons or to nuclear and radiological accidents. Public communication actions done by the National Commission of Nuclear Energy (CNEN) have been contributing to make known the social and peaceful applications of nuclear energy, reaching different kinds of public. Interaction programs with society and in particular with students have also been carried out by the Nuclear Technology Development Center (CDTN/CNEN). Measuring public communication results can help to show that financial resource in this area should be considered as investment and not as expenses. One needs therefore a well-established managing system. Fundamentals of the National Quality Award Criteria for Excellence - PNQ are being applied in the area in charge of business and public communication at CDTN. Systematic registration of results started in 2000 and a gradual increase in the number of means of communication for the internal public has occurred in the last five years. The Center has now a bimonthly newspaper edition. Communication indicators have shown an increasing number of students received in the Center or provided with lectures in schools. Results of satisfaction inquiry from these students show good results. The implemented management system has allowed informing the nature and quantity of people reached by the information on nuclear applications and the improvement in the institutional image. (author)

  12. Report on research and development results in 1990 by the Institute for Nuclear Waste Management

    International Nuclear Information System (INIS)

    1991-03-01

    Report on research and development results in 1990 by the Institute for Nuclear Waste Management (INE). Priorities in 1990 were: Experiments on the behaviour of platinum metals during vitrification of high-level fission product solutions. Experiments at a technical plant and at a laboratory melter on the vitrification of simulated fission product solutions with a high content of platinum metals. Development of a closed treatment system for high and medium-level and alpha bearing wastes from reprocessing and mixed oxide fuel element fabrication. Solidification of the waste concentrate resulting from the above treatment, in an aluminium silicate matrix. Investigation into the actinide oxide/solidification matrix materials systems in contact with hydrochloric acid; determination of activity distribution between solid and liquid phases. Development of tests and models to register geochemical reactions between waste forms and saline solutions in the near vicinity of final repositories. Leaching experiments on spent LWR fuels in saline solutions. Investigations into the corrosion behaviour of material combinations for POLLUX containers designed for direct ultimate storage. Improvement of programmes to calculate the thermomechanical processes in the ultimate repository, and analyse the stress in drifts in the vicinity of the storage site. (orig./HP) [de

  13. Food irradiation studies at the Institute of Nuclear Energy Research, Taiwan, Rep. of China

    Science.gov (United States)

    Fu, Ying-Kai; Tsai, Chao-Ming; Wu, Wen-Shi; Chang, Ming-Shia; Chang, Yung-Nien; Shu, Shih-Lin

    The use of radiation to inhibit sprouting of potatoes, onions, gingers and garlic was studied at the Institute of Nuclear Energy Research. The sprout inhibition doses of potatoes, onions, gingers and garlic were found to be 10, 5, 2.5, 7.5 Krads, respectively. Changes in the content of moisture, ash, reducing sugars, total sugars, lipids, proteins, fiber etc. were monitored in various agricultural foodstuffs both with and without γ-irradiation at various doses. Fungicides did not prevent potatoes from decaying at 10 or 25°C with or without gamma radiation. Onions treated with any of fungicides has significantly more healthy tissues than controls at 10°C but not 25°C after 30 and 60 days storage, regardless of the presence or absence of gamma radiation. Insect pests have been causing great damage to stored rice in Taiwan. The four most harmful insects are: Sitophilus Zeamais Mostschulsky. Rhyzopertha dominica. Tribolitum custaneum Herbst and Sitotroga cerealella Oliver. Adults, eggs or larvae of these insect pests were irradiated by 60Co gamma rays. The results show that 40 Krads of gamma-irradiation could completely control these four species of pests in stored rice.

  14. Food irradiation studies at the Institute of Nuclear Energy Research, Taiwan, Rep. of China

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.K.; Tsai, C.M.; Wu, W.S.; Chang, M.S.; Chang, Y.N.; Shu, S.L. (Institute of Nuclear Energy Research, Taiwan, China)

    1981-01-01

    The use of radiation to inhibit sprouting of potatoes, onions, gingers and garlic was studied at the Institute of Nuclear Energy Research. The sprout inhibition doses were found to be, 10, 5, 2.5, 7.5 Krads, respectively. Changes in the content of moisture, ash, reducing sugars, total sugars, lipids, proteins, fiber etc. were monitored in various agricultural foodstuffs both with and without ..gamma..-irradiation at various doses. Fungicides did not prevent potatoes from decaying at 10 or 25/sup 0/C with or without gamma radiation. Onions treated with any fungicides have significantly more healthy tissues than controls at 10/sup 0/C but not 25/sup 0/C after 30 and 60 days storage, regardless of the presence or absence of gamma radiation. Insect pests have been causing great damage to stored rice in Taiwan. The four most harmful insects are: Sitophilus Zeamais Mostschulsky, Rhyzopertha dominica, Tribolitum custaneum Herbst and Sitotroga cerealella Oliver. Adults, eggs or larvae of these insect pests were irradiated by /sup 60/Co gamma rays. The results show that 40 Krads of gamma-irradiation could completely control these four species of pests in stored rice.

  15. Radiobiological investigations of the accelerators at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Krasavin, E.

    2006-01-01

    Full text: The Joint Institute for Nuclear Research (JINR) has the different accelerators of heavy charged particles for various energies. The radiobiological investigations at these machines have been commenced some tens years ago. The main task of scientific research at the Laboratory of Radiation Biology of JINR is connected with investigations of genetic effects of accelerated charged particles with wide spectrum of energies. Using accelerated heavy ions with low energy, the following directions of researches in radiobiology and radiation genetics were performed: study of RBE problem in connection with DNA repair processes; investigation of the molecular mechanisms of point and structural mutation induction in prokaryotic cells and the influence of the repair systems on the mutagenic processes after irradiation in a wide range of linear energy transfer (LET); study of the SOS-response of bacterial cells by using SOS-chromo test, SOS-lux test and by criteria of α-prophage induction in lysogenic bacteria after irradiation by heavy ions; study of the regularities of gene mutation inductions in yeast cells under action of ionizing radiation with different LET; investigations of the regularities of unstable and stable chromosomal aberrations (translocations) in human cells under action of ionizing radiation with wide LET range; study of mutagenic (HPRT gene) effects in mammalian cells in culture after heavy charged particle irradiation and chromosomal instability in HPRT-mutant clones after irradiation; study of the cytogenetic effects in mammalian cells irradiated by heavy ions in low doses. The radiobiological investigations with high energy are carried out at the Nuclotron - the new JINR accelerator. The programme involves the most vital tasks of modern radiobiology: study of the regularities and mechanisms of stable and unstable chromosome aberration induction in human cells; genetic control of check-point regulation in low eukaryotic cells; study of the

  16. JINR-DUBNA an International center of Nuclear Research

    Science.gov (United States)

    Gudima, K.; Baznat, M.

    2015-04-01

    A short History of the Joint Institute of the Nuclear Research in Dubna (Russian Federation) has been given. The Facilities : The Synchrophasotron, the Nuclotron-M, the IBR-2 Reactor,The Heavy Ions Isochronous cyclotrons U-400 and U-400M, Phasotron, The impuls resonance neutronic device IREN has been described. A short history of collaboration between JINR and scientists from Moldova has been given. The main new tendencies in Science management has been outlined.

  17. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2007 ueber die nukleare Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on.

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  19. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2012 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    with spent fuel assemblies and vitrified residue packages as well as six casks with decommissioned waste from the experimental nuclear power plant at Lucens. Some 20% of the capacity of the HLW store was in use and about 24% of the ILW store. During the year, ZWILAG conducted two campaigns to incinerate and melt radioactive waste. ENSI is also responsible for the surveillance of the nuclear facilities at PSI: the research reactor PROTEUS, the hot laboratory, the collection point for radioactive waste from medicine, industry and research and the Federal Interim Storage Facility. During 2012, there were no further operational activities or radiation experiments at the PROTEUS research reactor. Two reportable events were recorded at the Paul Scherrer Institute (PSI), but no one at the research reactors at EPFL or the University of Basel. Last year, the amount of radioactive material released into the environment via waste water and exhaust air from the facilities under review was considerably less than the limits specified in the operating licenses. Analyses showed that the maximum doses were less than 1 % of the annual exposure to natural radiation. During 2012, spent fuel assemblies from Swiss nuclear power plants were reprocessed. The AREVA recycling facility in La Hague returned a consignment of high level waste. According to the Sectoral Plan for the deep geological repository, NAGRA proposed several different sites for surface facilities. ENSI provided information on the safety criteria for the selection process and on safety and geology, particularly in view of the Opalinus Clay Project. The geological research into the Opalinus clay continued during 2012. Every five years, the licensees of nuclear power plants are required by law to re-calculate the decommissioning and waste management costs. During 2012, ENSI evaluated the technical principles used in the 2011 cost study conducted by the licensees of nuclear power plants. ENSI is involved in its own projects and

  20. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  1. Swiss Federal Energy Research Commission - Annual report 2008; Eidgenoessische Energieforschungskommission CORE. Jahresbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    Maus, K.

    2009-07-01

    This annual report presents a review of the activities carried out by the Swiss Federal Energy Research Commission CORE in the year 2008. Main points of interest were the definition of a new CORE vision, a review of all research programmes, co-operation and co-ordination with public and private institutes, active consultancy, recommendations for further education and training, improved international information exchange and good communication with business, politics and the general public. The definition of a concept for Swiss energy research for the period 2012 to 2016 is mentioned. The annual report also reports on an internal visit made to various laboratories of the Swiss Federal Institute of Technology in Lausanne and the Energy Center in Zurich. The focussing of CORE activities on particular themes is discussed

  2. Paul Scherrer Institut annual report 1995. Annex IV: PSI nuclear energy and safety

    Energy Technology Data Exchange (ETDEWEB)

    Birchley, J.; Roesel, R.; Doesburg, R. van [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-09-01

    Nuclear energy research in Switzerland is concentrated at PSI`s Department F4. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  3. Present status of contamination monitoring at the Dalat Nuclear Research Institute (DNRI)

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Van Nguyen [Dalat Nuclear Research Inst. (Viet Nam)

    1997-06-01

    The Dalat nuclear research reactor was renovated and upgraded from the previous TRIGA reactor. In Vietnam, it is a unique nuclear device having suitable neutron flux for the radioisotope production and neutron activation analysis. Soon after the reactor reached its initial criticality in November 1983, a programme has been formed to develop the application of nuclear techniques in various fields. In addition, the use of radioisotopes for diagnostic, therapeutic and other research purposes has been in progress. In order to support these activities, the radiation protection, especially the radiation contamination monitoring has been properly paid attention to. In DNRI, the Radiation Protection Department is responsible for controlling and supervising radiation and working safety for all activities. In this paper, the following items are described on radiation contamination monitoring: controlled area, surface contamination monitoring, and airborne concentration monitoring. (G.K.)

  4. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    Science.gov (United States)

    Mukherjee, P.

    2001-07-01

    Experimental studies of nuclear excitations have been an important subject from the earliest days when the institute was established. The construction of 4 MeV proton cyclotron was mainly aimed to achieve this goal. Early experiments in nuclear spectroscopy were done with radioactive nuclei with the help of beta and gamma ray spectrometers. Small NaI(Tl) detectors were used for gamma--gamma coincidence, angular correlation and life time measurements. The excited states nuclear magnetic moments were measured in perturbed gamma--gamma angular correlation experiments. A high transmission magnetic beta ray spectrometer was used to measure internal conversion coefficients and beta--gamma coincidence studies. A large number of significant contributions were made during 1950--59 using these facilities. Proton beam in the cyclotron was made available in the late 1950's and together with 14 MeV neutrons obtained from a C-W generator a large number of short-lived nuclei were investigated during 1960's and 1970's. The introduction of high resolution Ge gamma detectors and the improved electronics helped to extend the spectroscopic work which include on-line (p,p'g) and (p,n g) reaction studies. Nuclear spectroscopic studies entered a new phase in the 1980's with the availability of 40--80 MeV alpha beam from the variable energy cyclotron at VECC, Calcutta. A number of experimental groups were formed in the institute to study nuclear level schemes with (a,xn g) reactions. Initially only two unsuppressed Ge detectors were used for coincidence studies. Later in 1989 five Ge detectors with a large six segmented NaI(Tl) multiplicity-sum detector system were successfully used to select various channels in (a ,xn g) reactions. From 1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pelletron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more

  5. Summary of Operating Experience in Swiss Nuclear Power Plants 1999

    International Nuclear Information System (INIS)

    2000-05-01

    The five Swiss nuclear power units produced a net total of 23.6 TWh of electricity in 1999 - not as high as the all-time record (24.45 TWh in 1998), but nonetheless a solid operational performance. The nuclear share in overall electricity production was 35.3%, again lower than the previous year's 40%. In general, plant operation in 1999 was practically as undisturbed and as reliable as in 1998, reflecting the ongoing tradition of careful maintenance that contributes so much to keeping the plants in excellent condition. However, due to exceptional outage activities at Beznau 2 (steam generator replacement) and an unplanned shut-down at Goesgen to replace a hydrogen seal on the main generator, 1999 nuclear production could not match that of the previous year. Also, record hydro power production caused the nuclear share in total electricity production to drop. With the exception of Beznau 2, all refueling and maintenance outages were once again short. The Leibstadt outage lasted 26 days, Goesgen 33 days, Beznau 1 lasted 29 days, Beznau 2 89 days and Muehleberg 27 days. At Goesgen, MOX fuel was loaded for the third time in 1999. Of the 44 freshly-loaded fuel elements, 20 were MOX elements. Non-electrical energy supplies from the Beznau and Goesgen nuclear power plants functioned flawlessly. Beznau fed 143.6 GWh of heat energy into the Refuna district heating system, while Goesgen supplied 169 GWh of process heat to the neighboring Niedergoesgen cardboard factory. At the end of 1999 and the beginning of 2000 all Swiss nuclear units continued to operate flawlessly - notwithstanding the challenges posed by the 'Lothar' storm that hit Western Europe in late December and the so-called Y2K computer bug that threatened to hit shortly afterwards, during the 'millennial' change-over. (authors)

  6. Implementation of neutron diffraction technique at Nuclear Center of National Institute of Nuclear Research for study of materials

    International Nuclear Information System (INIS)

    Macias Betanzos, L.R.

    1993-01-01

    The Neutron Diffraction technique, it's a helpful tool for the study of materials. The purpose, was to verify that such technique works with the Neutron Diffractometer of National Institute of Nuclear Research. The scope, is to study crystalline materials by the Neutron Diffraction Method, that means it completion with Bragg's Law. There exist a lot of diffraction techniques that depend on the kind of study to do. In this case the study was to measure known samples to have a correlation between parameters such a extinction factor and dislocation density. Known copper deformed samples were measured to observe the extinction effect and it could be observed. We had to calibrate the Neutron Diffractometer, the detection system and to have an optimal movement control of diffractometer devices by mean of a microcomputer. Also, was necessary to control the Reactor TRIGA operation to minimize the neutron flux oscillation. It was not possible the quantification of dislocation density in the samples because the relation signal/background was about one and it gives high inaccuracy. To correct this problem, it's necessary to have a better shielding to minimize the contribution of the background. The conclusion is that the Neutron Diffractometer is in conditions to carry out investigation on the material field, today it can be lattice constants, crystalline phases and measurements of metallic textures. For such studies, it's necessary to have samples with 2 cm 3 or higher to increase the relation signal/background. At present, we have the process software to give the interpretation of the Neutron Diffraction process. (Author). 12 refs, 16 figs

  7. Accelerator physics and nuclear energy education in INRNE-BAS

    International Nuclear Information System (INIS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2015-01-01

    Presently Bulgaria has no research nuclear facility, neither a research reactor, nor an accelerator. With the new cyclotron laboratory in Sofia the Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Sciences will restart the experimental research program not only in the fi eld of nuclear physics, but also in many interdisciplinary fields related to nuclear physics. The cornerstone of the cyclotron laboratory is a cyclotron TR24, which provides a proton beam with a variable energy between 15 and 24 MeV and current of up to 0.4 mA. The TR24 accelerator allows for the production of a large variety of radioisotopes for medical applications and development of radiopharmaceuticals. The new cyclotron facility will be used for research in radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including especially nuclear energy. Keywords: Cyclotron, PET/CT, radiopharmacy

  8. ENET News March 2004 - Information on Swiss energy research; ENET News, Maerz 2004, Nr. 57 deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2004-07-01

    This edition of the Swiss Federal Office of Energy's (SFOE) magazine with information on Swiss energy research presents a large selection of articles on various energy-relevant topics. These include the Swiss research strategy for the period 2004 to 2007, a discussion on wind energy, saving electricity, stand-by losses of coffee machines and information on hydrogen and fuel-cells. Further articles cover road-traffic topics including zero-emission vehicles and clean engine technology. Also, research on better fuel use in nuclear plant and models for batch-processes in the processing industry are looked at. Further articles cover the use of photovoltaics, wood fuels and biomass. Results of a field-analysis of heat-pump installations and the storage of solar energy using zinc powder as well as building insulation are covered. Finally, the ETDE is honoured as being the largest collection of energy documents.

  9. ENET News July 2004 - Information on Swiss energy research; ENET News, Juli 2004, Nr. 58 deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2004-07-01

    This edition of the Swiss Federal Office of Energy's Magazine (SFOE) with information on Swiss energy research presents a large selection of articles on various energy-relevant topics. These include research strategies, a discussion on oil reserves, technology transfer and innovation, Swiss biomass activities, winning power from the drinking water mains and the use of ambient heat. Further articles cover the topics of energy-efficiency and lighting in buildings, the use of batteries in vehicles, the increasing decentralisation of power generation and the use of supra-conducting current-limiters. Also, research on improved fuel use in nuclear plant and models for batch-processes in the processing industry are looked at. Further articles cover the wood fuels, photovoltaics and wind-energy areas as well as heat storage using geothermal techniques.

  10. ENET News November 2004 - Information on Swiss energy research; ENET News, November 2004, Nr. 59 deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2004-07-01

    This last edition of the Swiss Federal Office of Energy (SFOE)'s magazine with information on Swiss energy research presents a large selection of articles on various energy-relevant topics. These include a review of energy research in Switzerland in general and the work of the Swiss Federal Energy Research Commission CORE in particular and a look at the basis for energy-economical perspectives in Switzerland. Further articles take a look at activities in the solar-chemical area, biomass and small-hydro projects, wind and geothermal energy as well as solar heating, photovoltaics and the use of ambient heat. Energy-efficiency in the buildings and traffic areas and combustion and combined heat and power are further topics covered. Nuclear energy and process engineering, fuel cells and activities in the international sector are examined. The publication is completed with a list of recent publications in the energy area.

  11. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  12. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie [SUBATECH, Universite de Nantes, Ecole des Mines de Nantes, CNRS/IN2P3, La Chantrerie, 4, rue A. Kastler, BP 20722, Nantes (France); Ferrer, Ludovic [Universite de Nantes, Departement de Recherche en Cancerologie, Inserm, Nantes (France); Rene Gauducheau Cancer Center, Nantes (France); Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois [Universite de Nantes, Departement de Recherche en Cancerologie, Inserm, Nantes (France)

    2008-07-15

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ({sup 67}Cu, {sup 47}Sc) or alpha ({sup 211}At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ({sup 64}Cu, {sup 124}I, {sup 44}Sc), or that can be generator-produced ({sup 82}Rb, {sup 68}Ga) or providing the opportunity of a new imaging modality ({sup 44}Sc) are considered to have a great interest at short term whereas {sup 86}Y, {sup 52}Fe, {sup 55}Co, {sup 76}Br or {sup 89}Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.)

  13. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine.

    Science.gov (United States)

    Haddad, Ferid; Ferrer, Ludovic; Guertin, Arnaud; Carlier, Thomas; Michel, Nathalie; Barbet, Jacques; Chatal, Jean-François

    2008-07-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ((67)Cu, (47)Sc) or alpha ((211)At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ((64)Cu, (124)I, (44)Sc), or that can be generator-produced ((82)Rb, (68)Ga) or providing the opportunity of a new imaging modality ((44)Sc) are considered to have a great interest at short term whereas (86)Y, (52)Fe, (55)Co, (76)Br or (89)Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs.

  14. XV and XVI SERC Main Schools in Theoretical High Energy Physics held at the Saha Institute of Nuclear Physics and Harish-Chandra Research Institute

    CERN Document Server

    2005-01-01

    Current research in High Energy Physics focuses on a number of enigmatic issues that go beyond the very successful Standard Model of particle physics. Among these are the problem of neutrino mass, the (as yet) unobserved Higgs particle, the quark-gluon plasma, quantum aspects of gravity, and the so--called hierarchy problem. Satisfactory resolution of these important questions will take much research effort in both theory and experiment. The Science & Engineering Research Council, Department of Science & Technology has sponsored a series of SERC Schools in Theoretical High Energy Physics over the past several years, to provide instruction and training to graduate students working for research degrees. This book is an outcome of the schools held at the Saha Institute of Nuclear Physics, Kolkata in 2000, and at the Harish-Chandra Research Institute, Allahabad in 2001. Based on lectures by active researchers in the field---Rajiv Gavai, Debashis Ghoshal, Dileep Jatkar, Anjan Joshipura, Biswarup Mukhopadhy...

  15. Medical cyclotrons

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1976-01-01

    Cyclotrons as tools for therapy and for the production of radionuclides for use in nuclear medicine have been extensively reviewed in the literature. The current world status with respect to cyclotrons used primarily for research, development and application in nuclear medicine is reviewed here in the context of geographical distribution and type of use, presently available commercial types, machine characteristics and trends. Aspects of design requirements from a user perspective such as machine, beam and target characteristics are covered. Some special problems concerning many factors which can lead to effective production of the desired radionuclide or product are considered in light of machine characteristics. Consideration is also given to future directions for accelerators in nuclear medicine

  16. nuclea'10. Third industry meeting of the Swiss nuclear forum. Framework conditions for the renaissance of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Swiss government and the Swiss power industry agree: Switzerland will have to renew its nuclear power plant park in a foreseeable time frame so as to prevent a threatenting gap in electricity supply. At the same time, the present lowest-CO 2 electricity mix in any industrialized country ensured by hydroelectric power and nuclear power must be safeguarded. The power industry is meeting these challenges by actively planning the replacement of existing nuclear power plants and the construction of new ones. Three framework applications for permits have been filed, and the first tenders connected to the new construction projects have been invited. This raises the question not only whether Switzerland is willing to embark on this project of a century, but also whether the country is able to do so. What are the factors helping nuclear power to achieve a breakthrough in Switzerland and its neighboring countries, provided there is public acceptance? Besides providing the necessary technical and economic resources it is the need for political and economic acceptance of nuclear power which constitutes an ongoing task for nuclear industry. nuclea is considered the meeting point of the nuclear industry in Switzerland. nuclea'10, held on November 11, 2010, served for exchanges of information between the nuclear industry and other stakeholders in nuclear power. More than 200 participants from public authorities, politics, the power industry, research and development, and vendors and service providers attended the informative and always interesting event accompanied by an industrial exhibition. (orig.)

  17. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  18. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  19. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  20. Institute of Energy and Climate Research IEK-6 : nuclear waste management & reactor safety report 2009/2010 ; material science for nuclear waste management

    OpenAIRE

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (Editors)

    2011-01-01

    This is the first issue of a new series of bi-annual reports intended to provide an overview of research activities for the safe management of nuclear waste in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety devision in Jülich. The report gives a thematic overview of the research in 2009 and 2010 by short papers of five to eight pages. Some papers are discussing the work within different projects with intensive overlap, such as ...

  1. Cost effectiveness at Beznau and other Swiss nuclear stations

    International Nuclear Information System (INIS)

    Wenger, H.E.

    1996-01-01

    Switzerland, with 7 million inhabitants, has the sixth highest per-capita electricity consumption in the world. At present, 40% of electric power is nuclear. The four Swiss nuclear plants have an average capacity factor well above 80%. Total cost per kw.h ranges from 5.4 US-cents for Beznau to 7.1 for Leibstadt. Staffing levels are lower than in other countries, due to the stable and highly skilled work force. The maintenance practice has been one of preventive maintenance. Both steam generators in Beznau-1 were replaced in 1993, and Beznau-2 is scheduled for 2000. Some maintenance is done by contractors. There is practically no technical support from headquarters. Retrofitting mandated by the regulatory authority is a matter of concern, because of its effect on production costs. Possible deregulation of the market for electricity in Europe powers the drive to become more efficient. 3 tabs

  2. Preservation of nuclear talented experts in Japan by co-operation of industries, research institutes and universities

    International Nuclear Information System (INIS)

    Mori, H.

    2004-01-01

    about 70% of them want to go into nuclear careers, only 1/3 of them can find jobs. For these reasons, despite the importance of nuclear energy and needs of capable students, fewer students go to the nuclear engineering field due to reduced job opportunities. This in turn has led to the lowered popularity of the nuclear engineering departments in universities. Industrials have concerns about preservation of their own nuclear expertise under a circumstance of reduced On-the-Job-Training (OJT) opportunities due to fewer plant installation projects. The JAIF analysis report compiles following proposals: 1) To diminish the quantitative and qualitative imbalance between supply and demands of capable human resources; 2) To develop new technical fields for the application of nuclear technologies so that researchers and engineers of next generations be attracted; and 3) To build up a new network system for nuclear human resources development by education and training through cooperation of universities, research organizations and industries. The new proposed system in the JAIF report, the Nuclear Educational System network (NESnet), has two main pillars: (i) to share the information on the nuclear human resource development between industries and research organizations; and (ii) to strengthen the graduate school systems jointly operated by universities and research organizations, by sharing expertise resources. The first pillar of constructing the information database about human resource development is underway between the industries and research organizations. Plans of joint operations of graduate courses are also being specified in nuclear engineering by various research organizations and universities. The Japan Nuclear Cycle Development Institute (JNC) and the Japan Atomic Energy Research Institute (JAERI) will be integrated into one new nuclear research-and-development organization by 2005. Human resources development for future is prescribed as one of the new organization

  3. The Swiss contribution to American nuclear technology and industry

    International Nuclear Information System (INIS)

    Lueling, H.C.

    1981-01-01

    After a brief review of the industrial position in Switzerland (40 years of industrial peace, extensive development of nuclear energy to an installed capacity of 2000MW, supplying 33% of the national energy requirement) the article considers the following institutions that contribute substantially to the nuclear situation: the Federal Institute for Reactor Research (EIR), Brown Boveri and Cie AG, Gebrueder Sulzer AG, Georg Fischer AG. It lists the spheres of cooperation between the EIR and organisations in the USA. The industrial contributions include: Large welded turbo-generator rotors (up to 1300MW, 2640mm dia.) from BBC; single-tube forced-circulation steam generators, site welded pressure vessels (152mm wall thickness), spherical containment vessels envelopes (52mm dia.) from Gebr. Sulzer; very large (227 000HP, 5.4m dia.) Pelton wheels of cavitation-resistant stainless steel, high-pressure pumps for nuclear plants from G. Fischer. In conclusion it discusses the prospects for the high-temperature helium reactor in combination with the closed-circuit gas turbine. (C.J.O.G.)

  4. IAEA support to the sustainability of nuclear research institutions through networking and coalitions

    International Nuclear Information System (INIS)

    Videnovic, I.R.; Goldman, I.N.; Bradley, E.E.; Ridikas, D.; Adelfang, P.; Acuna, O.E.; )

    2009-01-01

    Full text: The research reactor community has had a long and successful history of both productive and safe operations, with important contributions to scientific and technical research, production of isotopes for medical and industrial purposes, and important support to nuclear power programmes. However, most of the research reactors operating in the European region are now over 30 years old, although many of them have been refurbished to meet today's technological standards and safety requirements. Many research reactors are underutilized and faced with critical issues regarding their sustainability and important decisions concerning their future operation. These include challenges associated with the ageing of staff, reactor components, materials and spent fuel. Another significant challenge is securing adequate financial support - through public subsidies or income generation - to offset operational costs and the level of political and/or public support. Additional attention should be focused on the serious erosion at the level of government support, management commitment and available resources for the infrastructure necessary for effective research reactor operations. Such challenges are also occurring in the context of increased concerns over global non-proliferation and nuclear material safety and security, as a result of which research reactor operators are increasingly compelled to substantially improve their physical security arrangements and to convert their reactors to low enriched uranium (LEU) fuel. In addition, some of the products of research reactors, such as medical radioisotopes, are increasingly subject to transport security restrictions, delays and added costs, making it even more difficult for research reactors to develop potential revenue sources. These factors create a complex environment for research reactors and one in which underutilized and therefore usually poorly funded facilities invoke different concerns. In this context, greatly

  5. Comparative analysis of publications on nuclear field in the world, Ukraine and in the institute for nuclear research of the national academy of sciences of Ukraine

    CERN Document Server

    Trofimenko, A P; Lipska, A Y

    2003-01-01

    Comparative analysis of publications in the world, in Ukraine and in the Institute for Nuclear Research of NAS of Ukraine (INR) in nuclear physics and other directions of INR research was performed. Conclusions about the intensity of research, contribution of Ukraine in this research and the INR role in it are presented. It is shown that 30 % of Ukrainian publications in nuclear physics, and about 8 % of them in other fields belong to the INR. Part of Ukrainian authors who publish their works in Ukraine and abroad, as well as the part of foreign authors publishing in Ukraine is shown. Distribution of the INR publications among 16 countries is indicated. Ths mentioned information can be used for profound study of research in Ukraine and INR.

  6. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    International Nuclear Information System (INIS)

    Streit, Marco; Bichsel, Thomas; Fassbender, Andre; Horvath, Matthias

    2008-01-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely there will

  7. Sustainability indicators for innovation and research institutes of nuclear area in Brazil; Indicadores de sustentabilidade para institutos de pesquisa e inovacao da area nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S.F.; Barreto, A.A.; Rodrigues, P.C.H.; Feliciano, V.M.D., E-mail: sfa@cdtn.br, E-mail: aab@cdtn.br, E-mail: pchr@cdtn.br, E-mail: vmfj@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-11-01

    Indicators are relevant tools for measuring sustainability process. In this study, the relevance of sustainability indicators appropriate for research and innovation institutes in Brazil is discussed. As reference for case study, nuclear research and innovation institutes were chosen. Sixty-nine sustainability indicators were considered. Some of these indicators were obtained from lists in the literature review, distributed between the dimensions environmental, economic, social, cultural and institutional. The other indicators were developed through discussions between professionals from nuclear, environmental, economic, social and cultural areas. Among the investigated indicators, 32 were selected as being the most relevant. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed. (author)

  8. Nuclear instrument and measurement researches at the Measurement Automation Department of KFKI (Central Research Institute for Physics, Budapest (Hungary))

    International Nuclear Information System (INIS)

    Pellionisz, P.; Peter, A.; Varhalmi, L.; Zsido, J.

    1982-01-01

    Two main fields of electronic instrument and measurement research: development of nuclear instrument modules and material testing are discussed. From the modules developed applying also an Intelligent Crate Controller microcomputer, reactor instrumentation and control devices, systems for radiation protection etc. can be assembled. In acoustic emission technique, a new field for the on-line surveillance and monitoring of nuclear power plants a new movable defect-localization laboratory with a 32-channel acoustic detector system has been developed. (Sz.J.)

  9. On the radiation safety studies of space nuclear sources at the Scientific-Research Institute of Thermal Processes

    Energy Technology Data Exchange (ETDEWEB)

    Koroteev, A.S.; Gafarov, A.A.; Bakhtin, B.I.; Kosov, A.V. (The Scientific-Research Institute of Thermal Processes, 8, Onezhskaya, Moscow, 125438 (SU))

    1991-01-01

    The main directions and some results of the theoretical and experimental studies, carried out at the Scientific-Research Institute of Thermal Processes on the radiation safety (RS) problem of the space nuclear power sources (SNPS), are stated. The experimental base for SNPS aerodynamic heating and breakup research is described. Some results of studies on the development of RS system for SNPS of Cosmos-954''-type satellites and SNPS Topaz'' are represented. The main directions and results of research on the RS problem of radioisotope SNPS is showen. Some aspects of SNPS possible collisions with space debris in near-earth orbits is examined.

  10. Results of research and development work 1981 of the Institute of Nuclear Engineering

    International Nuclear Information System (INIS)

    1982-03-01

    Besides the works for the demonstration plant in Brazil, separation nozzle methods for commercial plants are tried that allow an economical way of enriching uranium in plants of medium capacity. An injection method has been developed by means of which space-charge problems while producing intensive hydrogen rays for fusion experiments and fusion reactors allow to be disarmed. The interaction of He3-, He-4- and H 2 -cluster rays with nuclear- and electron rays has been investigated as part of the basic research. (DG) [de

  11. Radioactive waste treatment strategy in Poland - A contribution of research performed at Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, Grazyna

    2009-01-01

    Full text: Radioactive waste in Poland arises from research reactors and from various applications of radioisotopes in industry, medicine and science. The waste from all of country is collected, processed and prepared for disposal in Radioactive Waste Management Plant (RWMP) - state-owned public utility, located in Swierk, near Warsaw. RWMP is responsible for collecting, processing, transporting, storage and disposal of solidified waste in National Radioactive Waste Repository at Rozan. The system of radioactive waste management facilities includes radioactive waste management farm (comprising several storage tanks of different volumes), radioactive waste treatment station (with the evaporator, chemical treatment station, reverse osmosis plant, bailing equipment and cementing plant), temporary waste storage facility (for conditioned waste before shipment to the repository, smoke detectors, waste for decay), decontamination building (for decontamination of small equipment, smoke detectors dismantling area, laundry) and radioactive waste repository at Rozan. First step of liquid low-level radioactive waste processing is reduction of the volume of radioactive species. Various methods for concentration of radioactive matter are studied and developed at Institute of Nuclear Chemistry and Technology. Reverse Osmosis process was implemented at Radioactive Waste Management Plant. The other methods like ultrafiltration, membrane distillation, adsorption and different integrated processes are studied within the scope of national and international projects. Development of Polish Nuclear Power Program will imply necessary activities concerning the future strategy of radioactive waste treatment and elaboration of programs for research on new methods and processes that will be feasible to treat liquid wastes coming from nuclear power station operation and related activities. Polish nuclear institutions will constitute the scientific back-up of the first nuclear power plant that

  12. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  13. Research activity of institute of physical chemistry of Russian Academy of sciences in the field of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pikaev, A.K. [Institute of Physical Chemistry of Russian Academy of Sciences, Moscow (Russian Federation)

    2000-07-01

    The report is a brief review of the most important directions in research activity of the Institute of Physical Chemistry of RAS (Moscow) in the field of nuclear fuel cycle. The main attention is paid to researches and developments on liquid radioactive waste management including the removal of wastes to deep geological formations and the immobilization of the wastes. In particular, the data from the study on the properties of new, basaltic-like matrices for the immobilization are presented. The results of research on gas evolution from the systems modeling liquid high-level radioactive wastes are considered. The separation of some radionuclides from irradiated nuclear and the production of radiation sources by various methods are discussed. (author)

  14. Swiss contributions to advanced fuel cycles research and development

    International Nuclear Information System (INIS)

    Ledergerber, G.; Stanculescu, A.

    1997-01-01

    Based on its interdisciplinary know-how and facilities, PSI intends, through the AFC project, to maintain its support to the Swiss utilities on issues linked to safety and performance of advanced options for plutonium recycle. It will thus continue to contribute to the international R+D efforts toward strengthening the sustainability arguments for nuclear power from the view-point of the back end of the fuel cycle. (author) 2 figs., 12 refs

  15. Nuclear and Energy Research Institute (1956-2000). A case study under the science, technology and brazilian culture history

    International Nuclear Information System (INIS)

    Gordon, Ana Maria Pinho Leite

    2003-01-01

    We analysed a period of the contemporary Brazilian history with the aim to discuss the inter-relationship between science, technology (S and T) and culture in a developing country, showing as a background for a case of study the history of the 'Instituto de Pesquisas Energeticas e Nucleares'. The history of Science and Technology, as a result of the human brain ability of innovate using the resources offered by nature, it is not only the description of successive findings carried out by talented men. It is a reflex of determined age of history as a consequence of accumulated knowledge connected also to human and cultural relationships, which together leads to the scientific and technological progress. In fact, the human brain and society march along together and can not be separated in this journey. In our study we recovered the initial steps of IPEN's outbreak; inserted its achievements in the context of the national policy for nuclear technology and evaluated how this policy was a reply of the governmental organizations to the worldwide situation. Finally, we spread the scientific ideas and technological findings of this institution, who has translate much of the life style and culture of our society. For this purposes, we analysed internal technical report series elaborated by several researchers and few testimonies. The Institution developed the fuel cycle technology, supplied radioisotopes for medical diagnosis and treatment purposes, generating economic resources for our country. The nuclear techniques are a relevant tool for researchers of this Institution applied for several purposes, including the assessment of the radioactivity levels in the environment, radioprotection, etc. Besides those applications, other techniques including the laser technology, the fuel cell, corrosion studies, etc, were implemented as a result of the improved capabilities and skills acquired during the almost 50 years of the Institute's existence. We make evident two strong

  16. International collaboration of the scientific-research institute of nuclear reactors in the field of nuclear power and technology

    International Nuclear Information System (INIS)

    Ivanov, V.B.

    1995-01-01

    Experience has shown that the safety of nuclear power plants depends mainly on the following factors: the quality of the designs and the degree of substantiation of the principles and regimes of operation which are incorporated in them; the quality of the equipment and the building and assembly work; the quality of equipment operation; and, the qualifications of the personnel and the quality of systems supporting them. This often ends the list of the basic factors for safety of nuclear technology. In our view, this is incorrect. Safe operation, and especially improvements, development of objects and technology of nuclear power depend strongly on the scientific foundations of this operation, and both the theoretical and experimental grounds on which the solutions to problems is based. Scientific substantiation of this kind requires a corresponding experimental base: research reactors for radiation tests of the materials and constructions; a system of protective chambers for post-reactor investigations of irradiated parts; infrastructure for shipment of radioactive structures, storage or burying of radioactive wastes, and so on

  17. PET - medical cyclotron facility and its application in clinical research

    International Nuclear Information System (INIS)

    Soni, P.S.

    2005-01-01

    Positron Emission Tomography (PET) is a minimally invasive method of nuclear medicine imaging that uses short-lived radiopharmaceuticals to detect and assess perfusion and metabolic activity in various organ systems. When compared to anatomical information that is provided by radiological techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and radiology, PET can provide information about functional and metabolism that is complementary to the structural information provided by these techniques. PET is a diagnostic method that creates high-resolution 2D and 3D tomographic images of the distribution of cyclotron produced positron-emitting radionuclides in the body; the radiolabeled compounds include substrates, ligands, drugs. antibodies, neurotransmitters and many other molecules that are tracers for specific biological processes. Thus the resulting PET images can be considered images of these biochemical or physiological processes

  18. Some results of NAA collaborative study in white rice performed at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Thien, T.Q.; Vu, C.D.; Doanh, H.V.; Sy, N.T.

    2014-01-01

    White rice is a main food for Asian people. In the framework of Forum for Nuclear Cooperation in Asia (FNCA), therefore, the eight Asian countries: China, Indonesia, Japan, Korea, Malaysia, the Philippines, Thailand and Vietnam selected white rice as a common target sample for a collaboration study since 2008. Accordingly, rice samples were purchased and prepared by following a protocol that had been proposed for this study. The groups of elements that were analyzed by using neutron activation analysis in the white rice samples were toxic elements and nutrient elements, including: Al, As, Br, Ca, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Rb and Zn. The analytical results were compared between the different countries and evaluated by using the Tolerable Intake Level of World Health Organization (WHO) and Recommended Dietary Allowance or Adequate Intake (AI) of the U.S. Institute of Medicine (IOM) guideline values. These data will be very useful in the monitoring of the levels of food contamination and in the evaluation of the nutritional status for people living in Vietnam and other Asian countries. (author)

  19. Annual report 1978. From the Research Institute of Physics, Stockholm

    International Nuclear Information System (INIS)

    Nilsson, A.

    1978-01-01

    This report covers the activities in 1978 at the Research Institute of Physics, Stockholm, Sweden. During this year the construction work on the caves for nuclear physics research in the new experimental hall has been completed. The cyclotron has been started up again after a shut-down of about 15 months. A new mini-computer system has been bought and installed at the institute which will be used for on-line data aquisition as well as for off-line computations and analysis. The experimental nuclear physics program has naturally been hampered by the shut-down of the cyclotron. During the main part of the year, experiments with participation of nuclear physicists from the institute have been carried out at laboratories in Uppsala, Aabo, Risoe, Darmstadt and Orsay. The collaboration with the CERN group studying exotic atoms has continued. The activities of the group working in the field of atomic physics at the 400kV accelerator show a clear trend towards the studies of reaction phenomena occuring in collisions of ions with solids and gases. The construction of the new high-power electron accelerator for research in time-resolved precision spectroscopy of atoms and molecules has been completed. The fusion-related experimental program of the surface physics group has continued with an emphasis on the work done in collaboration with the Institut fur Plasmaphysik, KFA, Julich. In order to be able to perform in situ sputtering and thin film migration studies, a new ultra-high-vacuum chamber is being connected simultaneously to the new 100V-10kV low-energy accelerator and the 2MV Van de Graaff accelerator. (E.R.)

  20. Assessment of radionuclidic impurities in cyclotron produced Tc-99m

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; van Lier, E. J.; Štursa, Jan; Ráliš, Jan; Zyuzin, A.

    2012-01-01

    Roč. 39, č. 12 (2012), s. 1286-1291 ISSN 0969-8051 Institutional research plan: CEZ:AV0Z10480505 Keywords : Technetium-99m * cyclotron * proton irradiation * radionuclidic impurities Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.517, year: 2012

  1. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010

    International Nuclear Information System (INIS)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J.

    2010-01-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  2. Progress report 2011-2013 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2014-01-01

    This progress report presents the results of the R&D center of IPEN in accordance with the main programs: Lasers Technology, Applications of Ionizing Radiations, Biotechnology, Renewable Energies, Radiopharmacy, Nuclear Science and Technology, Environmental Science and Technology, Nuclear Reactors and Fuel Cycle, Materials and Nanotechnology, Nuclear Safety, Education, Brazilian Multipurpose Reactor and Scientific and Technical Production

  3. Progress report 2008-2010 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2011-01-01

    This progress report presents the results of the R and D center of IPEN in the areas of: Lasers Technology; Renewable Energies; Nuclear Reactors and Fuel Cycle; Applications of Ionizing Radiations; Nuclear Science and Technology; Materials and Nanotechnology; Environmental Science and Technology; Radiopharmacy; Nuclear Safety; and Education. Also presents the Technical and Scientific Production od the center

  4. Swiss Federal Energy Research Concept 2008 - 2011; Konzept der Energieforschung des Bundes 2008 bis 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at.

  5. The Swiss ''CANUPIS'' study on childhood cancer in the vicinity of nuclear power stations

    International Nuclear Information System (INIS)

    Voelkle, Hansruedi

    2011-01-01

    A nationwide cohort study on leukaemia and any other childhood cancer in the vicinity of Swiss nuclear power stations (CANUPIS) was supported by the Krebsliga Schweiz and the Swiss Federal Office of Public Health. The results, covering the years 1985 to 2009 and including some 21 million person years, was published in July 2011. Three zones around nuclear installations were investigated: 0 to 5 km, 5 to 10 km and 10 to 15 km distance. The CANUPIS study found no evidence for a statistically significant increased cancer risk among 0 to 15 year old children living near Swiss nuclear power stations, compared to children living in other regions of the country. (orig.)

  6. Production of radioisotopes by cyclotron at the Instituto de Engenharia Nuclear - an evaluation of the present stage of development

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Britto, J.L.Q. de; Osso Junior, J.A.; Bastos, M.A.V.; Braghirolli, A.M.S.; Chamma, D.F.S.; Silva, A.G. da

    1984-01-01

    Since 1974 a variable energy isochronous cyclotron (CV-28) is operating at Instituto de Engenharia Nuclear in Rio de Janeiro, with the main purpose of producing radioisotopes for medical diagnosis. To accomplish this, besides the conventional chemical laboratories and related facilities, hot chemistry laboratories with their specific equipment and remote handling devices had to be designed and constructed at this Institute, and are still being developed, due to a lack of engineering companies working in this field. Other equipment, intrinsically related to cyclotrons like high power density target holders, collimators etc. were also conceived and constructed. Among the produced raioisotopes, high purity gallium-67 and indium-111 have been periodically sent to hospitals and some efforts are still being made in order to improve and simplify the chemical processing as well as the operational procedures. Some work has also been devoted to the development and improvement of methods for the production of iodine-123, bromine-77 and thallium-201. (Author) [pt

  7. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D.

    2016-01-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  8. The Swiss-Austrian Alliance for Mountain Research

    OpenAIRE

    Scheurer, Thomas; Björnsen, Astrid; Borsdorf, Axel; Braun, Valerie; Weingartner, Rolf

    2013-01-01

    Switzerland and Austria are committed to addressing sustainable mountain development in Europe through a joint effort. In June 2013, more than 140 researchers as well as representatives of the 2 countries' funding ministries participated in the “Mountain Days” event in Mittersill, Austria, thereby marking the official launch of the Swiss-Austrian Alliance. The resulting Mittersill Commitment Paper highlights 8 research areas and calls for international cooperation between mountain researchers...

  9. The role of the Swiss EIR Health Physics Division in the national and the Institute's radiological emergency organizations

    International Nuclear Information System (INIS)

    Nagel, E.; Brunner, H.

    1986-01-01

    Owing to the geographical concentration in Switzerland of the activities related to radioactivity (power plants, research, industry, transport) in a relatively small region between the Alps and the Rhine, it was a logical consequence to centralize the emergency organization for nuclear accidents in this area. Since 1984 the Swiss emergency organization has had an operational, well-equipped national emergency control centre. In the handling of radiation accidents the new organization can call on specialized laboratories and make use of experience and material from over the whole country. Of these facilities the Federal Institute for Reactor Research (EIR) is of major importance due to its activities and experience in research and radiation protection. Its Health Physics Division takes an active part in the emergency organization of the EIR itself. Both its well-equipped radioanalytical laboratory and trained personnel are at the disposal of the national emergency organization. Frequent training of the whole emergency organization and parts of it have improved preparedness. The evaluation of the exercises always reveals new problems to be solved in which rapid action and safe communications are of major importance. (author)

  10. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ)

    International Nuclear Information System (INIS)

    Valdovinos A, M.; Gonzalez M, P.R.

    2000-01-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  11. Calibration of chromosomal aberrations in the National Institute of Nuclear Research; Calibracion de aberraciones cromosomicas en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C.; Brena V, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2008-07-01

    In the laboratory of biological dosimetry of the National Institute of Nuclear Research one carried out a calibration of chromosomal aberrations. The result obtained by the different participants does not mark to significant differences between the readings of the cells and the considered one of dose for each one of the cases. The biological material for this intercomparison was prepared in the Republic of Argentina like part of the activities of the Project Regional OIEA-RLA/9/054 {sup S}trengthening of the National Systems for the Preparation and Answer in Radiological and Nuclear Emergencies{sup .} In this regional project participates seven countries of the area and in October of this year will be presented the results of each one of them. Part of the objectives of this project is the one to conform a network of mutual aid in case of radiological accidents for which the participants must unify criteria. (Author)

  12. Progress report 2005-2007 - Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2008-01-01

    This progress report presents the results of the R and D center of IPEN in accordance with the main programs: Radiopharmacy; Application of Ionizing Radiations; Nuclear Science and Technology; Nuclear Reactors and Fuel Cycle; Environmental Science and Technology; Renewable Energies; Materials and Nanotechnology; Biotechnology; Lasers Technology and Education

  13. Activity report 1991 from IPEN - Brazilian Institute of Energy and Nuclear Researches, CNEN/SP

    International Nuclear Information System (INIS)

    1991-01-01

    This report presents the main events achieved at IPEN in 1991: actions related to international cooperation, developed administrative activities as well as the matched results in the areas of Fuel Cycle, Nuclear Reactors, Application of Nuclear Techniques, Radiation Protection and Logistic Support

  14. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  15. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y.

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  16. Fuel-handling machine tests at the Institute for Nuclear Research - Pitesti. Computer and software research and engineering

    International Nuclear Information System (INIS)

    Doca, Cezar; Predescu, Darie; Maiorescu, Oliviu; Dobrescu, Sorin

    2003-01-01

    management and maintenance tools and procedures to make the data safely and consistently available to concurrent software processes at run time including data acquisition during the f/h machine calibration process and data presentation to human; - robust real time controller core sw based on OS9/68k OS and ISaGRAF target kernel with reliable inter-process synchronization and data management via OS9 data modules assuring safely cooperation mechanisms between different tasks were developed under different programming environments; - I/O management in the real-time data acquisition tasks and acquisition process test tools; - system and technological comprehensive loggers and flexible presentation tools; - run-time remote cross debugging tools (both for sw development and as an alternate for technological process monitoring or simulation); - technological operator oriented HMI with local or remote access for online and offline tasks; - integrated user and group policies management tools and procedures using both native OS9 and application mechanisms; - error handling management for safe technological control and for application sw maintenance; - technological job definition and execution management tools. The result is a highly flexible and maintainable working system that is now the core controlling the test and calibration process of f/h machine stand. The complex system computer-software was successfully used in the first tests of the f/h machine at the Institute for Nuclear Research - Pitesti

  17. Annual report of the Institute for Nuclear Study, University of Tokyo, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    In this annual report, the works carried out at the INS during the calendar year 1984 are described. The INS is the research institute for interuniversity use, and the research facilities are open to all qualified scientists in Japan. The major facilities are a FM cyclotron of 55 MeV for protons, a SF cyclotron of up to 45 MeV for protons, an electron synchrotron of 1.3 GeV and the TARN of 8.56 MeV/nucleon. The SF cyclotron was successfully operated with emphasis on heavy ion research program, and the nuclear physics program became an important part in the utilization of the electron synchrotron. The research and development of accelerator technology was continued, and the stochastic cooling of low energy (7 MeV) proton beam was successfully achieved by using the TARN. The INS team was busy for constructing its shared parts of the TOPAZ detector of KEK. The INS-LBL collaboration at Bevalac was extended to this year. Two international symposia were organized in addition to symposia, workshops and schools. The reorganization of research divisions was planned. The activities of respective divisions are reported. (Kako, I.)

  18. Kalam's Swiss visit to help India's nuclear scientists

    CERN Multimedia

    2005-01-01

    President A.P.J. Abdul Kalam arrived here wednesday on a visit that will see the inking of a document giving India access to the latest in nuclear technology; one of his first engagements would be at the European Organisation for Nuclear Research, considered one of the most advanced hysics labs in the world (1/2 page)

  19. The smooth cyclotron line in her x-1 as seen with nuclear spectroscopic telescope array

    DEFF Research Database (Denmark)

    Fuerst, Felix; Grefenstette, Brian W.; Staubert, Ruediger

    2013-01-01

    Her X-1, one of the brightest and best studied X-ray binaries, shows a cyclotron resonant scattering feature (CRSF) near 37 keV. This makes it an ideal target for detailed study with the Nuclear Spectroscopic Telescope Array (NuSTAR), taking advantage of its excellent hard X-ray spectral resolution...

  20. Strategic management at IPEN - Institute of Nuclear and Energetic Research, S P, Brazil

    International Nuclear Information System (INIS)

    Rodrigues, Claudio; Zouain, Desiree M.

    2000-01-01

    This panel presents an overview on the strategic management of the IPEN, S P, Brazil, with emphasis on the history, the main installations, the nature of the activities and training activities of the institute

  1. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)

  2. KFA Institute of Nuclear Physics. Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (HSI)

  3. Studies on future decommissioning of the Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Achermann, H.; Gunten, A. von; Heep, W.; Kaiser, P.; Maxeiner, H.; Paul, R.; Utzinger, E.

    2001-01-01

    The financing of future decommissioning of the Swiss nuclear power plants and the permanent, safe disposal of the wastes arising therefrom is secured by payments into a legally established decommissioning fund. In order to update the required level of payments into the fund, which have been ongoing since 1984, 20 years after the first study the costs of decommissioning have been re-calculated from scratch using complete decommissioning studies for each plant. Following the specification of boundary conditions which take into account the specific situation in Switzerland, decommissioning concepts are drawn up for the individual plants. The measures outlined in these concepts are integrated into a cost structuring plan and the decommissioning costs are then calculated using standard models (e.g. STILLKO). The radiological inventory, which is re-calculated for each plant, has a significant influence on costs. Furthermore, the disposal costs which can be allocated to decommissioning waste have to be determined; these are based on a concept in which only two types of containers are considered for disposal. The studies have resulted in decommissioning costs which, with a range between 200 and 390 million Euro, are comparable with costs in other countries. (orig.)

  4. Activity report on research and development work 1980 of the institute for Nuclear Process Technology

    International Nuclear Information System (INIS)

    1981-02-01

    Within the framework of guaranteeing supplies of nuclear fuel for the generation of nuclear energy, the KfK developed the separation nozzle method for the enrichment of U-235. It is based on partial separation of this uranium isotope by a deflected jet from a mixture of UF 6 /hydrogen. This method is now being applied on a technical scale for the first time in Brazil within the framework of an agreement concluded between the Federal Republic of Germany and Brazil and approved by the International Atomic Energy Agency. (orig./EF) [de

  5. Progress report on research and development in 1993, Institute of Nuclear Physics, KfK

    International Nuclear Information System (INIS)

    1994-03-01

    Within the framework of the KASCADE project to study air showers of cosmic radiation, a comprehensive detector field (array) and the central calorimeter have been developed and built. One of the working groups deals with neutrino physics at the spallation neutronsource ISIS of the Rutherford Appleton Laboratory in England. By means of the detector system KARMEN I, measurements are made in relation with neutrino oscillation, neutrino-core scattering and neutrino-electron scattering. Nuclear physics activities mainly deal with experiments on nuclear astrophysics. To that effect cross sections of neutron capture processes are measured in order to clarify the process of element transformation in stars. (orig.) [de

  6. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    International Nuclear Information System (INIS)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-01-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs

  7. Identification of organization values according to the perception of the employees of the Energetic and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    Pupak, Marcia Orrico; Roman, Edson; Perrota, Jose Augusto; Feher, Ana Claudia M.; Magalhaes, Adriana B.V.B.; Massi, Maria Julia Gili; Rogero, Jose Roberto; Maximiano, Antonio Cesar Amaru

    2002-01-01

    The purpose of this research was to identify the organizational values, according to the perception of employees of the Energetic and Nuclear Research Institute - IPEN. The instrument used in this research was the 'Organization Values Questionnaire'. This survey contains a list with 38 values, each followed by a parenthetical explanation that clarifies its meaning. Respondents rated each value on a 6-point scale from, less important (0) to very important (6), in response to the question: How important is each values for the organizational life? This evaluation should be done in two levels of perception: REAL plan, and IDEAL plan. The population investigated was constituent by 1000 employees. The total of 553, i.e. 55.3%, questionnaires were turned back. As result, it was identified on REAL plan, values related to coefficient as EFFICIENCY, EFFICACY and MANAGEMENT. On IDEAL plan, they were related to EMPLOYEE VALORIZATION and INOVATION coefficient. As consequence, the institutional commitment is to form working groups, inside the Strategic Planning Revision, in order to elaborate the Core Values, based on the values identified on this research. (author)

  8. Survey of Swiss nuclear's cost study 2016; Pruefung der Kostenstudie 2016 von swissnuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Stefan; Ustohalova, Veronika [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Freiburg im Breisgau (Germany)

    2017-04-26

    The report discusses the Swiss nuclear cost study 2016 concerning the following issues: evaluation of the aspects of the cost study: cost structure, cost classification and risk provision, additional payment liability, option of lifetime extension for Swiss nuclear power plants; specific indications on the report ''cost study 2016 (KS16) - estimation of the decommissioning cost of Swiss nuclear power plants'': decommissioning costs in Germany, France and the USA, indexing the Swiss cost estimation for decommissioning cost, impact factors on the decommissioning costs; specific indications on the report ''cost study 2016 (KS16) - estimation of the disposal cost - interim storage, transport, containers and reprocessing''; specific indications on the report ''cost studies (KS16) - estimation of disposal costs - geological deep disposal'': time scale and costs incurred, political/social risks, retrievability, comparison with other mining costs.

  9. Swiss energy research concept for the period 2004-2007; Konzept der Energieforschung des Bundes 2004-2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) made by the Swiss National Energy Research Commission CORE lists and discusses energy research topics that are to be looked during the period 2004 to 2007. The report discusses the fundamentals, visions and short and long-term targets for Swiss energy research and presents strategies for reaching them. Research areas dealt with include the efficient use of energy, renewable sources of energy, nuclear energy and the energy-economics basics necessary for the implementation of sustainable energy policy. Also, implementation aspects such as pilot and demonstration installations are discussed. The current state of research is noted and strategic targets and the ways and means of reaching them are examined. Main areas of research for the period are listed and financing issues are discussed.

  10. Study of social responsibility of the Nuclear and Energy Research Institute of Sao Paulo (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Mutarelli, Rita de Cassia

    2014-01-01

    Over the years, the socio-environmental concept has grown through programs, conferences and several activities that have been held in Brazil and worldwide. Sustainability and social responsibility are now an integral part of everyday life of organizations The Instituto de Pesquisas Energeticas e Nucleares (IPEN), which is the focus of this research, is committed to the improvement of Brazilian quality of life. Based on IPEN's mission, and due to the lack of tools for assessing socio-environmental actions, this research aims to propose an assessment tool for social responsibility, which may also be a methodological resource committed to the improvement of the Institute. Through indicators and dimensions, a methodology to assess social responsibility and identify both strengths and weaknesses was designed. The methodology was administered to IPEN, and the results demonstrated positive aspects regarding actions towards the internal publics and negative aspects towards the external publics that require improvement. The results obtained were satisfactory. Nevertheless, as the subject of this study is a broad theme, further studies are suggested. IPEN's board may use the results of this research as a tool to help them identify feasible socio-environmental actions to be implemented in the institute. (author)

  11. Study of socio environmental actions of Energy and Nuclear Research Institute of Sao Paulo (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Mutarelli, Rita de Cassia; Sabundjian, Gaiane; Menzel, Francine

    2013-01-01

    Over the years the evolution of environmental concept comes solidifying increasingly through programs, conferences and various activities taking place in Brazil and worldwide. As a result of this development, sustainability and social responsibility began to be seen as something present in day to day business and institutions. In particular, the Institute of Energy and Nuclear Research (IPEN), state authority associated with University of Sao Paulo (USP) and managed by the National Commission of Nuclear Energy (CNEN), subordinate the Ministry of Science and Technology, which is the focus of this work, has the mission the commitment to society as regards: improving the quality of life of the population, producing scientific knowledge, developing technologies, generating products and services and training human resources in nuclear and related. Based on the mission of IPEN and in the lack of assessment tools of social actions, this paper aims to propose an instrument for assessing social responsibility and serve as a methodological option, strongly committed to the pursuit of improvements of IPEN. Through indicators and dimensions, built up a methodology that seeks to assess social responsibility and identify strengths, to be encouraged and weaknesses, which can be studied and improved. This methodology was applied to IPEN and the results that are presented in this work identified positives regarding their actions to their domestic audience and points to be improved in relation to their external audience. As an initial evaluation, the results were satisfactory; however, this work will continue in order to suggest the implementation of social and environmental actions feasible to be applied in IPEN. (author)

  12. Annual report of Research Center for Nuclear Physics, Osaka University. 1994 (April 1, 1994 - March, 31, 1995)

    International Nuclear Information System (INIS)

    Itahashi, Takahisa; Futakuchi, Atsuko

    1995-01-01

    This report is a compilation of the research activities and operations of the Research Center For Nuclear Physics (RCNP), Osaka University, during the period of the academic year 1994, April 1994 to March 1995. RCNP is the national laboratory for nuclear physics in Japan. The AVF cyclotron with K = 0.14GeV and the ring cyclotron with K = 0.4GeV and E P = 0.4GeV are the major user facilities at RCNP. They have been extensively used for studying nuclear nucleon-meson systems. All facilities are open for users from universities and research institutes in Japan as well as those in foreign countries. The research activities at the RCNP cyclotron laboratory include studies of nuclear interactions and nuclear potentials, spin isospin excitations and decays nuclear reaction dynamics and others. Studies of solid state and atomic physics and medical applications were carried out also at the cyclotron laboratory. New external ion sources have been instaled for the injector cyclotron. New extensions of the RCNP research activities are under progress. One is the possible use of the 8 GeV electron storage ring built at the synchrotron radiation laboratory SPring-8. It is located 100 Km west of Osaka. It is expected to start its operation in 1997. The Compton back-scattering of laser photons from the 8 GeV electron beam provides 1-3.5 GeV γ-rays, which are very promising for studying nuclear quark and meson systems. Other is the non-accelerator physics for ultra-rare nuclear processes at the new under ground laboratory 'Ohto Cosmo Observatory'. It is located 100 km south of Osaka. Neutrino studies by investigating double beta decays, dark matter studies by investigating nuclear responses to them, and studies of other weak processes are planned to be studied there. (J.P.N.)

  13. A national medical cyclotron facility: report to the Minister of Health by the Medical Cyclotron Committee

    International Nuclear Information System (INIS)

    1985-01-01

    Research and training in nuclear medicine in Australia are both limited by the lack of a medical cyclotron facility. The Committee recommends the establishment of a national medical cyclotron to provide a supply of short-lived radioisotopes for research in relevant fields of medicine, and for diagnostic use in nuclear medicine

  14. Neutron field measurements at the 590 MeV ring cyclotron of the Paul Scherrer Institute

    CERN Document Server

    Grecescu, M; Boschung, M; Fiechtner, A; Gmuer, K; Laedermann, J P; Valley, J F; Wernli, C

    2002-01-01

    A complete characterization of the neutron field was performed at 3 representative areas around the 590 MeV Ring cyclotron of the Paul Scherrer Institute. The neutron spectra were measured with a Bonner spheres system, sup 2 sup 0 sup 9 Bi and sup 2 sup 3 sup 2 Th fission track detectors. Their shapes are very different according to the location; neutron energies up to about 200 MeV were recorded. The dosimetry was performed with various active instruments: 2202D, LB 6411, LINUS, nm 500, nm 500X, HANDI, REM 500. The comparison between the H*(10) values determined by different systems is presented and discussed.

  15. Medical Cyclotrons

    Science.gov (United States)

    Friesel, D. L.; Antaya, T. A.

    Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high energy particles, this article will chronicle the development of one type of accelerator — the cyclotron, and its medical applications. These medical and industrial applications eventually led to the commercial manufacture of both small and large cyclotrons and facilities specifically designed for applications other than scientific research.

  16. Decision of the Swiss Federal Council of 22 August 1979 (nuclear power station Leibstadt)

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    On the occasion of an appeal in administrative matters, launched by private persons domiciled in the Federal Republic of Germany against two part-construction permits for the Leibstadt nuclear power plant, the Swiss Bundesrat decided that these private persons do have the right to launch an appeal, in accordance with section 48 a of the Rules of administrative proceedings. The appeal may, however, only be based on infringement of rights protected by Swiss national law. (HP) [de

  17. A medical cyclotron, facilities and program at the King Faisal Specialist Hospital and Research Centre

    International Nuclear Information System (INIS)

    Barrall, R.C.; Feteih, N.; Merendino, K.A.

    1983-01-01

    A new Cancer Therapy Institute at the King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia became fully operational in November 1982. The new building incorporates extensive facilities for the production of medically useful radionuclides and additional cancer treatment capability including two neutron therapy machines and an electron linear accelerator. A model CS30 medical cyclotron with 7 beam lines was supplied by the Cyclotron Corporation, Berkeley, California. The hot laboratory facilities include five hot cells and a radioactive gas processing station to deliver short-lived radioactive gases to a station in the positron emission tomography (PET) camera room. Facilities for radiopharmaceutical processing, quality control and packaging of radioactive materials are provided. A PDP 11/70 computer controls a fully automated air monitoring system while other computers control permission to operate equipment and monitor status of shielding doors and radiation levels both inside and outside the shielded rooms. A high level gamma irradiation facility for medical sterilization and other uses, designed to hold up to 2 million Curies of cobalt-60 is also provided. The new facility will produce short lived radionuclides for hospitals and other institutions in the Kingdom and the nearby area while also providing an opportunity to investigate the effectiveness of high energy neutrons in cancer treatment

  18. [A Swiss medical-social institution and the Snoezelen concept].

    Science.gov (United States)

    Dubois-Terrail, Caroline; Kemken, Lucie Marigo; Makamwe, Nicole

    2016-01-01

    In collaboration with six student nurses from the Geneva Haute École de Santé, the Les Franchises medical-social institution in Geneva has launched an innovative project: the integration of the Snoezelen concept into its care programme, which will benefit residents with moderate or advanced dementia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Results of research and development works of the Institute for Nuclear Engineering in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    Report on the following works: a) enrichment of U-235 according to the nozzle enrichment process, b) physical advancement of that process, c) separative element testing and uranium hexafluoride technology for that process, d) development and testing of components for that process, e) plant development to this and f) basic research for the particle injection for fusion experiments and -reactors as well as g) investigations on molecular and cluster beams. Listing of the publications and reports performed in 1982. (PW) [de

  20. Green Vinca - Vinca Institute nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Current conditions related to the nuclear and radiation safety in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro are the result of the previous nuclear programs in the former Yugoslavia and strong economic crisis during the previous decade. These conditions have to be improved as soon as possible. The process of establishment and initialisation of the Vinca Institute Nuclear Decommissioning (VIND) Program, known also as the 'Green Vinca' Program supported by the Government of the Republic Serbia, is described in this paper. It is supposed to solve all problems related to the accumulated spent nuclear fuel, radioactive waste and decommissioning of RA research reactor. Particularly, materials associated to the RA reactor facility and radioactive wastes from the research, industrial, medical and other applications, generated in the previous period, which are stored in the Vinca Institute, are supposed to be proper repackaged and removed from the Vinca site to some other disposal site, to be decided yet. Beside that, a research and development program in the modern nuclear technologies is proposed with the aim to preserve experts, manpower and to establish a solid ground for new researchers in field of nuclear research and development. (author)

  1. Annual report for FY 2012 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-02-01

    This annual report describes the activities in the 2012 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection practices in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The radiological situations at the institutes in Tokai, Aomori and Naka have been affected by the Fukushima Dai-ichi nuclear power plant accident in March 2011. The research and development activities produced certain results in the fields of radiation protection technique. The radiation protection experts in the institutes actively participated in the projects after the Fukushima nuclear power plant accident. (author)

  2. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.M. [Russian Research Center, Moscow (Russian Federation)

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclear energy systems.

  3. Proceedings of the 2. SIPEN: Integration week from IPEN - Brazilian Institute for Energy and Nuclear Researches, CNEN/SP

    International Nuclear Information System (INIS)

    1994-01-01

    The technical-scientific activities of IPEN (Instituto de Pesquisas Energeticas e Nucleares), Brazilian CNEN, has been presented in these proceedings. It includes the following topics: management and logistics, infra-structure and support, application of nuclear techniques, fuel cycle, materials, reactor research, development of products and services, radiation protection and monitoring. Nuclear medicine and application of radiation in biological assays are studied. Environmental impacts and management of radioactive wastes are also presented

  4. Progress report 1985 of Institute for Radium Research and Nuclear Physics (IRK) of the Austrian Academy of Sciences

    International Nuclear Information System (INIS)

    Wild, E.; Dirniger, G.

    1986-01-01

    The work of the institute members is presented in short communications. 20 thereof, mainly in the fields medium-energy and nuclear physics, are of INIS interest and are treated separately. There is also a list of publications. (G.Q.)

  5. Plant life management (PLIM) in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Stejskal, Jan; Steudler, Daniel; Thoma, Kurt; Fuchs, Reinhard

    2002-01-01

    Full text: The Swiss Utility Working group for ageing Management (AM) presented their programme for the first time at the PLIM/PLEX 93. In the meantime the key guideline documents have been prepared and the most so called S teckbrief - files for Safety Class 1 (SC1) are issued. The 'Steckbrief' file is a summary of the component history and includes the results of the Reviews performed and measures taken or planned to counteract ageing mechanisms. The scope of these activities does not only serve the important aspect of reliable plant service but also facilitates component and plant life extension feasibility. The older plants have been operated now for up to 30 years, so PLEX will become a more important topic for Swiss NPP. It is very encouraging, that there is an official memorandum of the Swiss authority with the clear statement, that they could not identify any technical reason, why the older plants should not extend their design life of 40 years for at least 10 and the younger for 20 years. The result of this is that a well established Ageing Management Programme (AMP) provide a good basis for Plant Life Extension (PLEX), e.g. the Swiss AMP has to be seen as a PLIM. (author)

  6. Environmental concerns in regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN

    International Nuclear Information System (INIS)

    Santos, Glaucia R.T.; Durazzo, Michelangelo; Carvalho, Elita F.U.; Riella, Humberto G.

    2008-01-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the main programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel -CCN- is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt % 235 U), to supply its IEA-R1 research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts.This study aims to implant the Sustainability Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to CCN

  7. Cyclotrons: 1978

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.A. (comp.)

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron. (GHT)

  8. Cyclotrons: 1978

    International Nuclear Information System (INIS)

    Martin, J.A.

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron

  9. Contributions of the Nuclear Research Institute to the French-Czechoslovak seminar on the management of radioactive wastes held on 12-14 May, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    Paper were submitted on the use of calcination in liquid radioactive waste solidification; experience with the operation of mobile lines of the MESA type which are tested at nuclear power plants; the treatment of low level liquid wastes from special laundries. Other papers described experience with the operation of the facility for processing low and intermediate level wastes run by UJV (Nuclear Research Institute) since 1962, and the conditions for a radioactive waste burial site in Czechoslovakia. (E.S.). 3 tabs

  10. A new internal target system for production of 211At on the cyclotron U-120M

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Jiran, Rudolf; Ráliš, Jan; Štursa, Jan

    2005-01-01

    Roč. 63, - (2005), s. 49-53 ISSN 0969-8043 R&D Projects: GA AV ČR KJB4048302 Institutional research plan: CEZ:AV0Z10480505 Keywords : radionuclides production * 211At * cyclotron Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.757, year: 2005

  11. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Wang, T.W.

    2000-01-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  12. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Gone, J.K. [TRR-II Project Team, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Wang, T.W. [Division of Health Physics, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2000-05-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  13. Annual Report 2003. Research programme 'Electricity' of the Swiss Federal Office of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Brueniger, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the work done in 2003 in the various research areas covered by the Swiss Electricity Research programme. Work done in the programme's five main areas - electricity transport and storage, high-temperature superconductivity, energy and information technologies, drives and electric motors, and appliances is reviewed. In the electricity transport and storage area an agreement with the Swiss Association of Electricity Producers (VSE) on the transfer of findings was made and the focus of work was set on decentralised systems. Also, the use of compressed-air storage systems was looked at and the AC corrosion of pipelines was examined. Swiss participation in an IEA Implementing Agreement for a Co-operative Programme for Assessing the Impact of High-Temperature Superconductivity on the Electric Power Sector is mentioned, as is the market potential of superconductive current limiters. A total of 8 institutions and industries are involved in theoretical or practical research in the area of high-temperature superconductors. Information and communications technologies are reviewed, including work on energy-efficient EDP server management. Work in other areas summarised includes lighting and uninterruptible power-supplies and work on the energy consumption of process control units. In the electrical drives area, work is summarised in various areas ranging from an industry agreement on the energy-efficiency of motors through to the optimisation of compressed-air systems and energy-efficient gearless drives. Efficient hotel minibars, the energy-efficiency potential in the area of water dispensers and the energy-efficiency potential of hot beverage dispensers used in the area of staff catering and the standby consumption of household appliances are just a few of the topics dealt with. Co-operation with Swiss institutions and international organisations such as the IEA is reviewed. Implementation work in the

  14. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-01-01

    Progress is reported on biomedical studies using cyclotron-produced 18 F, 15 O, 11 C, 13 N, 52 Fe, 38 K, 206 Bi, 73 Se, 53 Co, and 43 K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; 38 K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments

  15. Radiometric analysis performed by the Environment Monitoring Service from IPEN (Institute of Energy and Nuclear Research), Brazil, between 1988 and 1991

    International Nuclear Information System (INIS)

    Venturini, L.; Nisti, M.B.; Pecequilo, B.R.S.

    1993-03-01

    This report presents the radiometric analyses made by the Environmental Monitoring Service from the Institute of Energy and Nuclear Research (IPEN), Brazil, in the period 1988-1991. The experimental procedures, the products analysed and their respective quantities are described. (F.E.). 11 refs, 3 tabs

  16. Implementing knowledge management at the Swiss Nuclear Safety Inspectorate (HSK)

    International Nuclear Information System (INIS)

    Schwarz, G.F.; Veyre, J.C.

    2007-01-01

    The Swiss Nuclear Safety Inspectorate (HSK) currently faces a generation change. In the years 2005 to 2007 up to 15 retirements of experienced experts are anticipated. Within only three years HSK will have to replace one third of its management and will at the same time loose valuable know-how. Experience has taught us that it becomes increasingly difficult to replace the leaving employees by qualified specialists. Consequently recruitment and training of new staff members becomes more time-consuming and expensive. HSK considers knowledge management to be a valuable tool in order to cope with this change. Therefore a concept has been developed, which evaluates the existing or planned elements of knowledge management considering the amount of work, the benefit and the feasibility and combining them to an efficient system. By doing so HSK encountered two specific problems: - Generally there is rather too much information than too little within an organization. However the information available is not in the required form. Much knowledge is stored unstructured in the offices of the experts and can therefore only be accessed with their aid. Since it is very expensive to compile and collate any unstructured information, it is absolutely important to identify the valuable knowledge of the organization. One must permanently assure that the necessary knowledge is present and that information no longer required is removed from the system. - Knowledge is not only explicit. A large portion of knowledge is tacit in the heads of the employees. It is very difficult to convert this tacit knowledge into an explicit form. It can therefore not be processed electronically not even with the best data base systems and search engines. In this context, technology is important but technology alone can not resolve every problem. Personnel development is just as important. Ways must be found to pass on tacit knowledge within the staff. With its management system HSK possesses a powerful

  17. Annual report 1991 on R and D work by the Institute for Materials and Solid State Research (IMF), Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1992-03-01

    The annual report summarises the activities of the IMF in the following subject areas: 1) Contributions to the PKF (fusion technology project (refewing to structural materials, superconducting magnets, blanket development); 2) PSU, project for the management of pollutants in the environment (treatment and recycling of hazardous waste); 3) solid state and materials research (high-temperature materials, ceramic materials as protective coatings, polymer materials, high-performance ceramics, high-TC superconducting materials; biomechanics, laser technology); 4) microtechnology (development and testing of compact or layered materials in microtechnology); 5) PSF project, nuclear safety, research (safety and materials aspects of fast breeder reactors, transient behaviour of fuel elements in fact breeder reactors, LWR-specific safety research, containment design concepts for the next generation of PWR-type reactors); 6) NE project, nuclear waste management (analysis of solid wastes from the dissolution of spent LWR fuels, materials testing in nitric acid). The primary reports and other publications of the Institute issued in 1991 are listed in an annex. (orig./MM) [de

  18. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  19. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief presentation on the state of energy demand in the United States and discussed the improving economics for new nuclear power plants. He discussed the consolidation of companies under deregulation and the ability of these larger companies to undertake large capital projects such as nuclear power plant construction. He discussed efforts under way to support a new generation of plants but noted that there needs to be greater certainty in the licensing process. He discussed infrastructure challenges in terms of people, hardware, and services to support new and current plants. He stated that there needs to be fair and equitable licensing fees and decommissioning funding assurance for innovative modular designs such as the PBMR. He concluded that NRC challenges will include resolving 10 CFR Part 52 implementation issues, establishing an efficient and predictable process for siting, COL permits and inspection, and an increasing regulatory workload

  20. Risk assessment of 30 MeV cyclotron facilities

    International Nuclear Information System (INIS)

    Jeong, Gyo Seong; Lee, Jin Woo; Kim, Chong Yeal

    2017-01-01

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI

  1. Risk assessment of 30 MeV cyclotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyo Seong; Lee, Jin Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Dept. of Radiation Science and Technology, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.

  2. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    Energy Technology Data Exchange (ETDEWEB)

    Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, CH-4601 Olten (Switzerland); Bichsel, Thomas [BKW FMB Energie AG, NPP Muehleberg, CH-3203 Muehleberg (Switzerland); Fassbender, Andre [NPP Goesgen-Daeniken AG, CH-4658 Daeniken (Switzerland); Horvath, Matthias [National Emergency Operations Centre, CH-8044 Zurich (Switzerland)

    2008-07-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely

  3. The Swiss approach to finding compromises in nuclear waste governance

    International Nuclear Information System (INIS)

    Kuppler, Sophie; Grunwald, Armin

    2015-01-01

    In Switzerland, a new site selection procedure is being implemented since 2008. This procedure, which is laid down in a 'sectoral plan', shows strong elements of public participation and transparency and can be considered a step away from the classical 'decide-announce-defend' approach in decision-making. This procedure tends towards a more governance-oriented approach based on ideas of 'civility' of decision-making. Despite this renewal, the Swiss case clearly shows that any kind of selection process has to be considered as a 'working compromise', which needs to be adapted when new challenges emerge.

  4. Computer networks for financial activity management, control and statistics of databases of economic administration at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Tyupikova, T.V.; Samoilov, V.N.

    2003-01-01

    Modern information technologies urge natural sciences to further development. But it comes together with evaluation of infrastructures, to spotlight favorable conditions for the development of science and financial base in order to prove and protect legally new research. Any scientific development entails accounting and legal protection. In the report, we consider a new direction in software, organization and control of common databases on the example of the electronic document handling, which functions in some departments of the Joint Institute for Nuclear Research

  5. Annual report for FY 2007 on the activities of radiation control in Nuclear Science Research Institute etc. April 1, 2007 - March 31, 2008

    International Nuclear Information System (INIS)

    2009-01-01

    This annual report describes the activities of Radiation Protection Sector in Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute and Operation Safety Administration Section in Aomori Research and Development Center. The report covers environmental monitoring around the facilities, radiation protection of workplace and workers, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection technologies, which were performed at the Radiation Protection Sector. There were no occupational or public exposures exceeding the prescribed dose limits. No effluent releases were recorded exceeding the prescribed limits on the amount and concentration of radioactivity for gaseous release and liquid waste. As for the research and development activities, studies were conducted continuously focusing mainly on the following themes: technological developments on operational radiation protection and establishment of calibration fields for various energy types of neutrons. (author)

  6. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief discussion on the benefits of establishing a new regulatory framework. He suggested that a new paradigm in regulatory thinking is needed and stated that the reactor oversight process (ROP) serves as the appropriate basis for starting these discussions. He suggested that the ROP cornerstones of safety be used as the starting point for developing a new set of General Design Criteria (10 CFR Part 50, Appendix A). It is suggested that new operating criteria, generic risk- informed and performance-based regulations be developed with associated design-specific and regulation-specific regulatory guides

  7. Implementation of the obligations of the Convention on Nuclear Safety. The first Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report is issued according to Article 5 of the International Convention on Nuclear Safety. It has been produced by the Swiss Federal Nuclear Safety Inspectorate. Before submission to the Federal Department of Environment, Transport, Energy and Communication, the report has been commented by the Federal Office of Energy (BFE/OFEN), the Swiss Federal Nuclear Safety Commission (KSA/CSA), and the Swiss nuclear power plants of Beznau, Leibstadt and Muehleberg. The Goesgen nuclear power plant has chosen not to comment on the report. The introduction to the report provides general information about Switzerland, a brief political history of nuclear power and an overview of the nuclear facilities in Switzerland. In the subsequent sections, numbered after the Articles 6 to 19 of the Convention on Nuclear Safety, key aspects are commented on in such a way as to give a clear indication on how the various duties imposed by the Convention are fulfilled in Switzerland.

  8. Implementation of the obligations of the Convention on Nuclear Safety. The first Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    1998-09-01

    This report is issued according to Article 5 of the International Convention on Nuclear Safety. It has been produced by the Swiss Federal Nuclear Safety Inspectorate. Before submission to the Federal Department of Environment, Transport, Energy and Communication, the report has been commented by the Federal Office of Energy (BFE/OFEN), the Swiss Federal Nuclear Safety Commission (KSA/CSA), and the Swiss nuclear power plants of Beznau, Leibstadt and Muehleberg. The Goesgen nuclear power plant has chosen not to comment on the report. The introduction to the report provides general information about Switzerland, a brief political history of nuclear power and an overview of the nuclear facilities in Switzerland. In the subsequent sections, numbered after the Articles 6 to 19 of the Convention on Nuclear Safety, key aspects are commented on in such a way as to give a clear indication on how the various duties imposed by the Convention are fulfilled in Switzerland

  9. Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

  10. Biomass - Overview of Swiss Research Programme 2003; Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This overview for the Swiss Federal Office of Energy (SFOE) discusses the results obtained in 2003 in various research projects worked on in Switzerland on the subject of biomass. In the biomass combustion area, subjects discussed include system optimisation for automatic firing, combustion particles, low-particle pellet furnaces, design and optimisation of wood-fired storage ovens, efficiency of filtering techniques and methane generation from wood. Also, an accredited testing centre for wood furnaces is mentioned and measurements made on an installation are presented. As far as the fermentation of biogenic wastes is concerned, biogas production from dairy-product wastes is described. Other projects discussed include a study on eco-balances of energy products, certification and marketing of biogas, evaluation of membranes, a measurement campaign for solar sludge-drying, the operation of a percolator installation for the treatment of bio-wastes, the effects of compost on the environment and the fermentation of coffee wastes. Also, statistics on biogas production in 2002 is looked at. Finally, a preliminary study on biofuels is presented.

  11. National Human Genome Research Institute

    Science.gov (United States)

    ... the Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... genomic literacy among physicians. Funded by the National Human Genome Research Institute (NHGRI), The Universal Genomics Instructor Handbook ...

  12. The Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Ruzicka, J.; Macasek, F.; Makaiova, I.; Saro, S.; Kristiak, J.; Fulup, M.

    2001-01-01

    The Cyclotron Center of the Slovak Republic was established at the beginning of August 1999 - within the Slovak-Office of Standards, Metrology and Testing (SOSMT), in Bratislava, Slovak Republic. It will have two cyclotrons - a large heavy and light cyclotron DC-72, which will be constructed by the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation, and a small commercial light ion cyclotron IBA 18/9. The heavy ion source of the electron resonance type (DECRS-2M) will be used for low and medium energy experiments in physics. The small electron accelerator is planned for different applications, including improving the properties of plastics, increasing the resistance of cables to fire and temperature, the sterilization of medical disposables in the CC SR. The main purpose of the Cyclotron Center of the Slovak Republic (CC SR) is to catch the present approach and trends in the area of improving of inhabitants life and health quality using the progressive technology, which is introduced by bringing into practice of the physical equipment - accelerators, producing beams of high energy particles. Experts of nuclear physics and of the related branches have no experimental basis in Slovakia, as after dissolution of the former the Czech and Slovak Federal Republic all bigger nuclear equipment were left in the Czech Republic. The Slovak Republic is one of the European countries where cancer and cardiovascular diseases have a rapidly increasing tendency (the rate of new oncological cases is approximately 20,000/year at the population of 5 million inhabitants) - early diagnostics of population is necessary to be updated urgently. The Slovak Republic use a great part of electricity (about 60 %) from its own nuclear power stations and thus it is in need of education of rising generations of experts from different nuclear fields. The Government of the Slovak republic on June 18, 1996 approved the strategic aim of building up the Cyclotron Laboratory at the

  13. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  14. Biomedical research and application utilizing cyclotron produced radionuclides. Progress report, January 1 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.

    1977-01-01

    Progress is reported on cyclotron production of short-lived positron-emitting radionuclides ( 18 F, 15 O, 11 C, 13 N, 52 Fe, 38 K, 206 Bi, 73 Se, and 48 Cr) for use in the preparation labelled compounds for metabolic research in patients and animals. The chemical preparation of radiopharmaceuticals labelled with cyclotron-produced radionuclides for pancreas and tumor scanning is discussed. The imaging capabilities of a total organ kinetic imaging monitor (TOKIM) gamma camera system operated in the positron coincidence mode were improved with the addition of computerized iterative correction procedures

  15. The cyclotron development activities at CIAE

    International Nuclear Information System (INIS)

    Zhang Tianjue; Li Zhenguo; An Shizhong; Yin Zhiguo; Yang Jianjun; Yang Fang

    2011-01-01

    The cyclotron has an obvious advantage in offering high average current and beam power. Cyclotron development for various applications, e.g. radioactive ion-beam (RIB) generation, clean nuclear energy systems, medical diagnostics and isotope production, were performed at China Institute of Atomic Energy (CIAE) for over 50 years. At the moment two cyclotrons are being built at CIAE, the 100 MeV, CYCIAE-100, and a 14 MeV, the CYCIAE-14. Meanwhile, we are designing and proposing to build a number of cyclotrons with different energies, among them are the CYCIAE-70, the CYCIAE-800, and the upgrading of CYCIAE-CRM, which is going to increase its beam current to mA level. The contribution will present an overall introduction to the cyclotron development activities conducted at CIAE, with different emphasis to each project in order to demonstrate the design and construction highlights.

  16. Biomedical research with cyclotron produced radionuclides: Progress report, February 1, 1988-September 30, 1988

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Bading, J.R.; Balis, M.E.; Benua, R.S.; Brennan, M.F.; Gelbard, A.S.

    1988-09-01

    This report covers the completion of research carried out in the second year of a 3 year grant. During this period the new gamma camera system, which was designed in the Biophysics Laboratory and whose fabrication was funded by the Institute, was completed and bought into operation. It has capability to monitor simultaneously 3 different radionuclide labels, and to do so rapidly. These features are essential to the metabolic studies being carried out collaboratively by Dr. James Bading and Dr. Brennan's surgical research team. Design and fabrication of this instrument was essential regardless of whether there was access to a PET unit or not. Another instrumental development is the replacement of the cyclotron magnet coils, the addition of harmonic tuning coils and other improvements. The metabolic study program with labeled amino acids in man and animals has progressed significantly as is summarized. The list of compounds prepared and labeled with positron-emitting nuclides in our laboratory, some originally prepared here, illustrates another vital and active contribution to metabolic research from this laboratory

  17. The role of common pool resource institutions in the implementation of Swiss natural resource management policy

    Directory of Open Access Journals (Sweden)

    Jean-David Gerber

    2008-07-01

    Full Text Available By analysing Swiss common pool resource (CPR institutions, this paper aims to contribute to the debate on comanagement while demonstrating how important it is to take into account the structuring role played by public policies in the regulation of natural resource use in western countries characterized by significant state intervention. The comparative analysis of three detailed case studies dealing with hunting, flood protection and landscape management policies leads to three main conclusions: (1 CPR institutions strengthen the coherence of resource regimes to the extent that they constitute social institutions which can facilitate the "mediation process," i.e. the transformation of the collective identity, self-perception and, therefore, behaviour of policy target groups in the direction defined by the stated policy objectives; (2 one of the main conditions for the perpetuation of CPR institutions is their capacity to organize their activities around a collective problem defined as such by a policy; (3 the integration of CPR institutions into the political-administrative arrangement contributes to the reinforcement of the functional and territorial coordination between payers, decision makers and beneficiaries in regional and local institutional regimes.

  18. Simulation of Thermal Responses of 125TeO2 Solid Target to Energetic Proton Bombardment from Cyclotron When Fabricating 124I Nuclear Medicine

    Science.gov (United States)

    Peir, Jinn-Jer; Liang, Jenq-Horng; Duh, Ting-Shieh

    With nuclear medicine receiving greater attention due to its unique characteristics in both diagnostics and therapeutics during recent decades, finding a highly controllable fabrication method becomes more urgent. The radioisotope 124I (T1/2=4.18d Eβ+=2.13MeV Iβ+=25%) has gained plentiful interests in the medical usages such as functioning imaging of cell proliferation in brain tumors using [124I]iododeoxyuridine (IUdR), imaging of immunoreactions in tumors using 124I-labelled monoclonal antibodies, the in-vivo imaging of 124I-labelled tyrosine derivatives, and the classical imaging of thyroid diseases with 124I, among others. Furthermore, it is because that thermal response of target during the fabrication process may affect the production of 124I to some extent and needs thorough investigations. Hence, the compact cyclotron located in the Institute of Nuclear Energy Research was employed in this study to generate 20MeV protons to irradiate TeO2 solid targets in which the radioisotopes 124I were produced through the 125Te(p, 2n)124I nuclear reaction. In addition, the widely-used ANSYS computer code was adopted to theoretically analyze thermal responses of TeO2 to irradiation cases with variations in ion beam current and its thermal conductivity. The results indicate that TeO2 temperature is strongly dependent on its thermal conductivity and ion beam current. In particular, TeO2 surface temperature is extremely sensitive to the air-gap size between TeO2 and target holder. Thus the target holder is suggested to be re-designed in order to prevent TeO2 from melting and a high efficiency production of radioisotopes 124I for nuclear medical diagnostics can be successfully achieved.

  19. Cyclotron production of Cu-61

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Ráliš, Jan; Seifert, Daniel

    2013-01-01

    Roč. 40, 2 Supplement (2013), S323-S323 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] R&D Projects: GA TA ČR TA02010797 Institutional support: RVO:61389005 Keywords : cyclotron U-120M * PET * Cu-61 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  20. The impact of ISO 9001:2008 quality management system implementation on organizational performance of the Nuclear Regulatory Division of Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Borras, Alan M.

    2012-02-01

    This report aims to determine the perception of Nuclear Regulatory Division staff of the Phiippine Nuclear Research Institute on the implementation of ISO 9001-2008 Quality Management System in terms of the eight quality management principles, its effect to their process performance and its impact to NRD organizational performance. Likewise, it aims to determine if there are direct relationshops between the ISO-QMS implementation, the process performance, and organizational performance in terms of customers' satisfaction. Two survey instruments were used for quantitative data collection from two groups of respondents, i.e., the NRD staff for their perception and as internal customers and the licenses (holder of valid radioactive material license) as the external customers. All items were measured on a 4-point Likert Scale ranging from 1 as Strongly Disagree/Strongly Dissatisfied to 4 Strongly Agree/Strongly Satisfied. The data were analyzed statistically by means of Microsoft Ofice Excel and Statistical Analysis Software (SAS). Linear regression was used to test the hypotheses. The results show that the perception of the NRD staff are agreeable with the implementation of the ISO 9001:2008 in their organization which indicated 'customer focused' and 'process approach' as the strength of the practices while 'leadership' and 'mutually beneficial supplier relationship' as the weakest. Data on NRD staff perceptions of ISO 9001:2008 also show that QMS implementation has improved the effectiveness and efficiency of their core business processes which impacted on the organizational performance. The external customers rated 'competence', 'courtesy' and 'credibility' as the three highest attributes of NRD service quality which denote their full trust and confidence to NRD as a nuclear regulatory body. Meanwhile, the same external customers rated 'tangibles', 'reliability' and 'access' as the lowest attributes. Furthermore, the results also show a significant and strong

  1. BEST medical radioisotope production cyclotrons

    Science.gov (United States)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  2. BEST medical radioisotope production cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R. [Best Cyclotron Systems Inc., 7-8765 Ash Street, Vancouver, British Columbia, V6P 6T3 (Canada); Gelbart, W. Z. [Advanced System Designs Inc., 5295 Bear Bay Road, Garden Bay, BC, V0N 1S1 (Canada)

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  3. Progress of the radioactive waste management at the Dalat Nuclear Research Institute and the role of an IAEA technical co-operation project in this process

    International Nuclear Information System (INIS)

    Nang, N.T.; Ngoc, O.V.; Nhu Thuy, T.T.; Nghi, D.V.; Thu, N.T.

    2002-01-01

    At present, the main radioactive waste generator in Vietnam is the Dalat Nuclear Research Institute (DNRI). For safe management of radioactive waste generated from this nuclear center, in 1982 Soviet specialists newly constructed one combined technology system for low level radioactive waste management. The existing system consists of two main parts, a Liquid Radioactive Waste Treatment Station and a Storage/Disposal Facility. The liquid treatment station can in principle meet the needs for this nuclear center but disposal technology and storage/disposal facilities are not good enough both with respect to safety and economy, especially the storage/disposal facility placed in Dalat, the tourist city. In order to help DNRI and Vietnam to solve the radioactive waste management problem, the IAEA Technical Co-operation (TC) project VIE/9/007 was implemented in Vietnam. The facilities and IAEA experts provided under this project gradually help to develop radioactive waste management at DNRI, Vietnam. This paper outlines progress under way in the management of the radioactive waste at the Nuclear Research Institute (NRI), Dalat, Vietnam, and the role of the IAEA Technical Co-operation (TC) project in this process. (author)

  4. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  5. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  6. Swiss Federal energy research - project list 2006/2007; Projektliste der Energieforschung des Bundes 2006/2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) lists and classifies the 1,025 energy-relevant research projects carried out in the years 2006 and 2007. Those projects are listed that were supported and/or financed with Swiss or European public funding. Details of the contributions made by private enterprises are noted and discussed. It is also noted that the Swiss Federal Office of Energy operates a data bank with a systematic collection of around 9,200 publications on research projects. Statistics on the classification of the projects are presented, as are details of funding for the years 1990 to 2007. The sources of financing and the distribution of the means over the various areas of research are looked at. The number of persons active in the research work is discussed. A comparison is made with the research programs of other countries. The list of projects is split into four categories - efficient use of energy, renewable energy resources, nuclear energy, energy economic basics as well as technology transfer and co-ordination. Finally a comprehensive list of all research projects for the years 2006 and 2007 is presented in tabular form. A list of those responsible for the various areas of research completes the report.

  7. ADVANCES IN NUCLEAR PHYSICS. International Symposium Dedicated to the 50th Anniversary of Institutional Physics Research in Romania. Abstracts of invited talks, oral contributions and posters

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Enulescu, A.; Stoica, S.

    1999-01-01

    This document contains the Abstracts of the invited talks, oral contributions and posters presented in the International Symposium Dedicated to the 50th Anniversary of Institutional Physics Research in Romania. Horia Hulubei was born in November 15, 1896 in Iassy and died in November 22, 1972. He graduated in 1926 and in 1927 went in Paris and worked with the Physical Chemistry Laboratory of Sorbonne and took his PhD in 1933 with Professor Jean Perrin in the field of X-ray spectroscopy, a domain in which he became one of the best specialists of the time. His papers treated a large area of subjects from the multiple Compton effects, predicted and experimentally discovered by him, Raman spectra, the X-ray spectra of gases obtained in collaboration with Yvette Cauchois, the identification of elements by X-ray spectroscopy, etc. Winner of two prises of Paris Academy of Sciences, he was elected Corresponding Member of this prestigious French institution. He was also a Directeur de Recherches at the French National Centre of Scientific Research (CNRS). In Romania, he founded in 1949 at Bucharest, the Institute of Atomic Physics, a realization of his dream to build a modern institution of Western type in his own country, tightly connected with the rest of scientific world by international cooperation. The lectures given at this symposium will be published by World Scientific Publishing Co. while the oral contributions and posters will be published in Romanian Journal of Physics. The abstracts of all these communications are dealing with current research conducted in the Horia Hulubei National Institute of Physics and Nuclear Engineering in the field of nuclear structure, elementary particle and fields, applications of isotopes and radiation, etc. A number of these communications have been presented by invited prominent scientists of abroad, many of them working in collaboration with the scientific staff of the Romanian institutes and universities

  8. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  9. Nuclear engineering in the National Polytechnic Institute

    International Nuclear Information System (INIS)

    Del Valle G, E.

    2008-12-01

    In the National Polytechnic Institute the bachelor degree in physics and mathematics, consists of 48 subjects in the common trunk. For the nuclear engineering option, from the fifth semester undergoing 9 specific areas within the Nuclear Engineering Department : introduction to nuclear engineering, power cycles thermodynamics, heat transfer, two courses of nuclear reactors theory, two of nuclear engineering, one course of laboratory and other of radiation protection. There is also a master in nuclear engineering aims train human resources in the area of power and research nuclear reactors to meet the needs of the nuclear industry in Mexico, as well as train highly qualified personnel in branches where are used equipment involving radiation and radioisotopes tale as Medicine, Agriculture and Industry. Among its compulsory subjects are: radiation interaction with the matter, measurements laboratory, reactor physics I and II, reactor engineering, reactor laboratory and thesis seminar. Optional, are: engineering of the radiation protection, computers in the nuclear engineering, nuclear systems dynamics, power plants safety, flow in two phases, reliability and risk analysis, nuclear power systems design, neutron transport theory. Many graduates of this degree have been and are involved in various phases of the nuclear project of Laguna Verde. The Nuclear Engineering Department has a subcritical nuclear reactor of light water and natural uranium and one isotopic source of Pu-Be neutrons of 5 Ci. It also has a multichannel analyzers, calibrated sources of alpha, beta and gamma radiation, a gamma spectrometer of high resolution and low background, a specialized library and one data processing center. In relation particularly to radiation protection, it is clear that there is a lack of specialists, as reflected in radiological control problems in areas such as medicine and industry. Given this situation, it is perceived to be required post-graduate studies at Master and Ph

  10. A simple and powerful XY-Type current monitor for 30 MeV IPEN/CNEN-SP cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Henrique; Matsuda, Hylton; Sumyia, Luiz Carlos do A.; Junqueira, Fernando de C.; Costa, Osvaldo L. da, E-mail: hbolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    A water-cooled XY-type current monitor was designed and built in the Cyclotrons Laboratory of the Nuclear and Energy Research Institute (IPEN). It is a very simple design and easily adaptable to the cyclotron beam lines. Tests were done demonstrating to be an instrument of great assistance in proton beam position along beam transport line and target port. Nowadays the XY-type current monitor has been widely used in {sup 18}F-FDG routine productions, employing irradiation system which were originally designed for productions on 18 MeV cyclotron accelerator only, however, applying the XY-type current monitor the target port may be exchanged between the 30 MeV and 18 MeV cyclotrons and the observed results are in perfect agreement with expected. (author)

  11. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  12. Steam explosions-induced containment failure studies for Swiss nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zuchuat, O.; Schmocker, U. [Swiss Federal Nuclear Safety Inspectorate, Villigen (Switzerland); Esmaili, H.; Khatib-Rahbar, M.

    1998-01-01

    The assessment of the consequences of both in-vessel and ex-vessel energetic fuel-coolant interaction for Beznau (a Westinghouse pressurized water reactor with a large, dry containment), Goesgen (a Siemens/KWU pressurized water reactor with a large, dry containment) and Leibstadt (a General Electric boiling water reactor-6 with a free standing steel, MARK-III containment) nuclear power plants is presented in this paper. The Conditional Containment Failure Probability of the steel containment of these Swiss nuclear power plants is determined based on different probabilistic approaches. (author)

  13. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  15. Reports on memorial lecture meetings on co-operative application finish of the SF cyclotron and its result reports

    International Nuclear Information System (INIS)

    2000-01-01

    The SF cyclotron at the Institute for Nuclear Study (INS) of University of Tokyo began its co-operative application in 1997 to continue its smooth operation during 21 years reaching March, 1997. Together with improvement of INS organization on April, 1997, it was transferred to the Center for Nuclear Study School of Science, University of Tokyo, INS continued a co-operative research for two years thereafter with Tanashi campus of the High Energy Accelerator Research Organization also established on April, 1997. This co-operative research was finished without accident at the end of March, 1999, to close history of co-operative application of cyclotron during 23 years. This report contains 15 memorial lecture and convivial meeting reports at the co-operative application finish of cyclotron and some results of co-operative applications and experiments, during 23 years. (G.K.)

  16. Swiss small hydro - Research programme 2004-2007; Forschungsprogramm 2004-2007

    Energy Technology Data Exchange (ETDEWEB)

    Buser, M.; Feibel, H.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) reports on work to be done during the period 2004 - 2007. The current situation in 2004 as far as small hydropower installations in Switzerland is concerned is examined and the effects obtained by the implementation of measures during the previous period are discussed. It is noted that many disused installations exist which can be reactivated with minimal effects on the environment. Technological and cost-relevant improvements are noted. The aims of the programme and associated strategies are commented on. Measures to be taken in the research and development area are proposed, as well as associated pilot and demonstration projects. Activities at the international level are discussed, as are funding issues. An appendix includes details on the structure of the programme and the various institutions involved. Finally, a scenario for activities up to the year 2050 is presented.

  17. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  19. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  20. Institutional Support : Ethiopian Development Research Institute ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Ethiopian Development Research Institute (EDRI) was established in 1999 and became operational in 2003 as a semi-autonomous organization accountable to the Office ... Socially equitable climate action is essential to strengthen the resilience of all people, without which we cannot achieve women's empowerment.

  1. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  2. Cooperation during the assembling and testing of prototypes of the Chemical Equipment Research Institute at the Bohunice II nuclear power plant

    International Nuclear Information System (INIS)

    Brzobohaty, J.

    1989-01-01

    Technico-legal documentation (Technical Specifications for Supply, Assembling, Operation and Maintenance and the Individual Program of Quality Assurance) is characterized for prototypes of equipment for the final processing of radioactive wastes at the Bohunice nuclear plant, manufactured by the Chemical Equipment Research Institute in Brno. The on-the-spot assembling of the prototypes is briefly described, and a program of pre-complex and complex performance tests is proposed. The Jabsco pump for a Voronezh-type model concentrate was tested; the parameters are compared with the manufacturer's data. (author). 2 figs., 9 refs

  3. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  4. Cyclotron Section - Overview

    International Nuclear Information System (INIS)

    Bakewicz, E.

    1999-01-01

    Full text: The main aim of our Department is to put into operation the AIC-144 cyclotron for medical purposes. In 1998 the following works were performed: 1. The new R.F. generator for AIC-144 cyclotron was put into operation. We carried out many tests in full range of frequency (from 10 MHz up to 27.5 MHz) and power (up to 120 kW). The remote control of generator from operation room was designed, made and checked. Many efforts were done to improve Q-factor of the resonator. The new electrical contacts between resonator and acceleration chamber were made; improving of the energetic fitting resonator-feeder was performed. The new moving system of the trimmers was made and put into operation. We carried out some experiments with a model of the resonator leading to improvement of the energetic parameters for 18-27 MHz. 2. To obtain best acceleration and extraction of protons (20-60 MeV) and deuterons (10-30 MeV) the series of measurements of the magnetic field were carried out. Then, the proper correction of the magnetic field structure was made. Inside the acceleration chamber the ferromagnetic correcting units were mounted. The fine structure of the field was corrected (decrease of the 1 st harmonic's amplitude in the center and in the extraction region). Then, as a result of the series of measurements and experiments in 1998 for the first time we obtained a proton beam with energy about 40 MeV (internal beam). The maximal energies of deuterons (30 MeV) and α-particles (60 MeV) were reached. For the first time we used inner beam of protons to obtain isotope 11 C after irradiation of the B 2 O 3 targets. 3. In cooperation with the Joint Institute for Nuclear Research in Dubna, calculations and computer simulation of the beam extraction system for protons, deuterons and α-particles were carried out. All needed materials and arrangement for building the extraction system were bought. The Technical documentation was prepared together with our Division of Mechanical

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  6. Deterministic and probabilistic approaches in the supervision of Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Theiss, K.; Schoen, G.; Schmocker, U.

    2002-01-01

    The report presents an overview of the planned approach to be taken by the Central Department for the Safety of Nuclear Facilities (HSK) in systematically integrating probabilistic safety analyses (PSA) into the supervision of Swiss nuclear power plants which, so far, has been largely deterministic in character. On the basis of a description of the present rank of PSA, the principles of risk-informed supervision as sought by HSK are outlined. In addition, practical applications of PSA are shown by a number of examples implemented along-side the development of the concept. HSK recognized the importance of PSA early on and required all Swiss nuclear power plants to conduct level-1 and level-2 PSA studies for full-power operation as early as in 1987. In early 1990, level-1 PSA was extended to cover also analyses of startup, shutdown, and outage modes of operation. PSA has become more important also as a consequence of the periodic safety reviews (PSR) carried out since 1995 within the framework of ongoing supervisory activities. It has become a permanent part in a holistic system evaluating the safety status of nuclear power plants. The next step planned by HSK is the introduction of risk-informed supervision in which probabilistic considerations will be employed side by side with deterministic approaches. (orig.) [de

  7. Recent development and progress of IBA cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kleeven, W., E-mail: Willem.Kleeven@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Abs, M., E-mail: Michel.Abs@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Delvaux, J.L., E-mail: Jean-Luc.Delvaux@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Forton, E., E-mail: Eric.Forton@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Jongen, Y., E-mail: Yves.Jongen@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Medeiros Romao, L., E-mail: Luis.MedeirosRomao@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nactergal, B., E-mail: Benoit.Nactergal@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nuttens, V., E-mail: Vincent.Nuttens@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Servais, T., E-mail: Thomas.Servais@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Vanderlinden, T., E-mail: Thierry.Vanderlinden@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Zaremba, S., E-mail: Simon.Zaremba@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium)

    2011-12-15

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for {sup 201}Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H{sup -}, D{sup -} and also {alpha}-particles. The {alpha}-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. {sup 211}At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy (K = 70) and allows research on new types of medical isotopes.

  8. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  9. Carbon-10: Example of cyclotron production of positron emitters as an open research field

    DEFF Research Database (Denmark)

    Alves, F.; Lima, J.J.P.; Nickles, R.J.

    2007-01-01

    This paper supports the thesis that significant improvement of PET output response to clinical questions can be achieved by innovation in radionuclide production. Moreover, that development can be performed with the resources available at a clinical centre. Carbon-10 production parameters studies...... are used as example. A technical methodology for measurement of excitation function of nuclear reactions yielding short-lived radionuclides, performed to measure cross section values of the B-10(p,n)C-10 reaction in a PET-devoted cyclotron, is presented. (c) 2006 Elsevier Ltd. All rights reserved....

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  11. Social Institutions and Nuclear Energy

    Science.gov (United States)

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  12. International Interdisciplinary Research Institute Project in Senegal

    Science.gov (United States)

    Gueye, Paul

    2010-02-01

    The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )

  13. Swiss energy research - oriented towards the future; Auf die Zukunft ausgerichtet

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J

    2007-07-01

    This article reports on the eighth Swiss Energy Research Conference held in March 2007 in Neuchatel, Switzerland. The Swiss Energy Research Concept for the period 2008 to 2011 and proposals for the reinstatement of the Pilot and Demonstration Programme are reported on. Associated topics such as the Swiss 2000-Watt Society vision, heat and energy in buildings, energy production from biomass and the fuel consumption of private vehicles are reviewed. The importance for industry of spin-offs generated within the framework of the Energy Research Concept is stressed. Intensive discussions in thematic workshops are briefly noted and the demanding tasks for those involved in the energy research scene are discussed. Sustainability is noted as being the basis for the work being done.

  14. Operation of the Karlsruhe Isochronous Cyclotron in 1975

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1976-06-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1975 is briefly surveyed. The main reasons for a very short period for maintenance, repair and installation, and several additional efforts to improve the reliability of the accelerator installation, are discussed. The status and the results of several technical developments for the cyclotron are described: 1) the axial injection system; 2) computer aided cyclotron operation; 3) ion source development; 4) capacitive current measurement at the external beam; 5) new correction coils for the cyclotron; 6) improvement of the neutron time-of-flight spectrometer. As there is an increasing interest in using this type of accelerator for research in fields other than nuclear physics, it was felt appropriate to present short surveys on investigations at our cyclotron in 1975 in the fields of: 1) solid state physics; 2) engineering; 3) materials research; 4) nuclear medicine; 5) nuclear chemistry. (orig.) [de

  15. The World Nuclear University Summer Institute

    International Nuclear Information System (INIS)

    Rivard, D.; McIntyre, M.

    2007-01-01

    The World Nuclear University (WNU) Summer Institute is a six weeks intensive training program aimed to develop a global leadership in the field of nuclear sciences and technologies. The topics covered include global setting, international regimes, technology innovation and nuclear industry operations. This event has been held annually since 2005. Mark McIntyre and Dominic Rivard attended this activity as a personal initiative. In this paper they will present the WNU and its Summer Institute, share their participation experience and discuss as well of some technical content covered during the Institute, highlighting the benefits this brought to their careers. (author)

  16. Creation of a dynamic database and analysis of LIDAR measurements in web format at the Laboratory of Environmental Laser Applications at the Nuclear and Energy Research Institute

    International Nuclear Information System (INIS)

    Pozzetti, Lucila Maria Viola

    2006-01-01

    The LIDAR system (Light Detection and Ranging) laser remote sensing at the Nuclear and Energy Research Institute - Laboratory of Environmental Laser Applications allows on line measurements of variations in the concentrations of atmospheric aerosols by sending a laser beam to the atmosphere and collecting the backscattered light. Such a system supplies a great number of physical parameters that must be managed in an agile form to the attainment of a real time analysis. Database implementation therefore becomes an important toll of communication and graphical visualization of measurements. A criterion for classification of this valuable information was adopted, establishing defined levels of storage from specific characteristics of the determined data types. The compilation and automation of these measurements will promote optimized integration between data, analysis and retrieval of the resulting properties and of the atmosphere, improving future research and data analysis. (author)

  17. Peralta Cancer Research Institute

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The investigators in the cell biology program at PCRI have pioneered in the development of techniques for culturing human epithelial cells. The cancer diagnosis program has been concerned with researching new techniques for early diagnosis of breast cancer in women. The cancer treatment program has been concerned with applying cell biology and biochemistry advances to improve cancer management

  18. Lecture notes of the technical training curriculum of the Institute of Nuclear Study, University of Tokyo, 1990

    International Nuclear Information System (INIS)

    1993-06-01

    This report is a transcript of lectures for the technical staff, held in the Institute of Nuclear Study, University of Tokyo, from November 1990 to April 1992. Following themes are included in this report. (1) Cyclotron technology, (2) measuring technology of the peripheral devices for cyclotron, (3) heavy ion cyclotron technology, (4) beam cooling technology, (5) proton linac technology, (6) heavy ion linac technology, (7) measuring technology of electron and its equipments, (8) the latest high energy large experimental device and its measurement (HERA, ZENS experiment), (9) superconducting kaon spectrometer (SKS) and large superconducting magnet, (10) present status of the precision technology for accelerators, (11) the computer as basic technology of elementary particle and nuclear experiments, (12) present status of radiation management and measurement technology, (13) handling and processing method of the hazardous materials, (14) analog technology of the equipments for accelerators, and the summary of NIRS-Heavy Ion Medical Accelerator in Chiba (HIMAC). (T.F.)

  19. Progress report on research and development work 1991 of the Institute of Genetics and Toxicology of Fissionable Materials, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    The present annual report describes the results of research work done by the Institute of Genetics and Toxicology of Fissionable Materials (IGT) in 1991. The following eight subjects were dealt with: genetic repair; genetic regulation; biological carcinogenesis; molecular genetics of eukaryontic genes; genetic mouse models for human illnesses; radiation toxicology of actinides; molecular and cellular environmental toxicology, and in vivo fractionation and speciation of actinides. (MG) [de

  20. Cyclotrons: From Science to Human Health

    Science.gov (United States)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  1. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  2. Conference report. Swiss nuclear forum. 2012 annual meeting. Disillusionment about nuclear opt-out; Tagungsbericht. Nuklearforum Schweiz. Jahresversammlung 2012. Ernuechterung ueber Atomausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Matthias [Nuklearforum Schweiz/Forum Nucleaire Suisse, Bern (Switzerland)

    2012-07-15

    One year after the hasty announcement by the Swiss Federal Council to opt out of the peaceful use of nuclear power, Swiss energy policy is still without any firm contours. Conflicts with climate policy and conflicting interests with the conservation of nature and landscape are becoming evident. At its 2012 Annual Meeting in Berne, Switzerland, the Swiss Nuclear Forum struck a first interim balance. Guests and speakers agreed in their scepticism about the energy turnaround. Urs Naef of economiesuisse drew attention to the economic consequences of the new energy policy and called for realistic scenarios. Psychologist Michael Siegrist proved that the perception of nuclear power was characterized by a surprisingly slight Fukushima effect, and Ralf Gueldner, President of DAtF, the Deutsches Atomforum e.V., reported about some first practical experience indicating the difficulties of the German nuclear opt-out. (orig.)

  3. National Space Biomedical Research Institute

    Science.gov (United States)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Hungary

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Atomic Energy Co-ordination Council; Hungarian Atomic Energy Authority - HAEA; Minister for Health; Minister for Local Government and Regional Development and Minister for Justice and Law Enforcement; Minister for Agriculture and Rural Development; Minister for Economy and Transport; Minister of Environment Protection and Water Management; Minister for Defence; Minister for Education; President of the Hungarian Mining and Geological Authority; Governmental Co-ordination Committee); 2. Advisory bodies (Scientific Board); 3. Public and semi-public agencies (Institute for Electric Power Research - VEIKI; Atomic Energy Research Institute - AEKI; Institute of Isotopes; Department of Physical Chemistry of the University of Pannon; Hungarian Power Companies Ltd - MVM Zrt.)

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    International Nuclear Information System (INIS)

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  6. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    International Nuclear Information System (INIS)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilić, R. D.

    2013-01-01

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10 3 to 10 4 times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts—in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  8. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  9. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010; Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la ciencia y la tecnologia en Mexico. Edicion conmemorativa 2010

    Energy Technology Data Exchange (ETDEWEB)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J. (ed.) [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  10. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  11. Swiss energy research in 2008; Energie-Forschung 2008 - Ueberblicksberichte der Programmleiter / Recherche energetique 2008 - Rapports de synthese des chefs de programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    This comprehensive document published by the Swiss Federal Office of Energy (SFOE) reports on Swiss energy research in the year 2008. The overview reports made by the programme leaders are presented. In the area of efficient energy use, programme reports are presented for the following areas: Energy in buildings, traffic, electricity technologies and their usage, networks, heat-pumps and combined heat and power, combustion technologies, power station 2020 and carbon capture and storage, fuel cells and hydrogen as well as process engineering. In the renewables sector, work in the following areas is reported on: Solar thermal energy and storage, photovoltaics, industrial use of solar energy, biomass and wood energy, hydropower, geothermal energy and wind energy. Research in the area of nuclear energy and nuclear safety is reported on, as is research in the areas of regulatory safety, fusion and nuclear wastes. Finally, a report on energy-economics research is presented. The report is completed with a list of projects and an appendix containing details on the Swiss Energy Research Commission CORE and a list of those responsible for the various research programmes.

  12. Civil nuclear activities in Switzerland: status, legal framework, researches and harmonization

    International Nuclear Information System (INIS)

    2010-01-01

    This report gives an overview of the present status of nuclear activities in Switzerland. It indicates and comments the shares of the different sources of production of electricity, the electricity consumption, and electricity imports. It describes the structure of the sector. It proposes a history of nuclear development (first reactors, accidents, abandoned projects), describes the present nuclear plant stock, and the fuel cycle management (supply, waste management and storage, reprocessing). It presents the IFSN (the Swiss nuclear safety authority), the nuclear industry organization, and the professional bodies. Then, it describes the legal framework. It discusses the issue of nuclear plant replacement, and that of waste storage in deep geological layers, and comments the posture of the political parties on these issues. It gives a rather detailed overview of researches in the nuclear field (general framework and institutions, research reactors, researches in security and radioprotection, in nuclear safety, in controlled thermonuclear fusion, in waste management). Finally, it describes the harmonization efforts in relationship with international organizations (safety authorities and nuclear industries)

  13. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  14. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  15. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    Indian Academy of Sciences (India)

    1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pel- letron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more sophisticated experiments. Front line nuclear spectroscopy ...

  16. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  17. Institutional plan -- Institute of Nuclear Power Operations, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The US nuclear electric utility industry established the Institute of Nuclear Power Operations (INPO) in 1979 to promote the highest levels of safety and reliability -- to promote excellence -- in the operation of its nuclear plants. After its formation, the Institute grew from a handful of on-loan personnel in late 1979 to an established work force of more than 400 permanent and on-loan personnel. INPO's early years were marked by growth and evolution of its programs and organization. The Institute now focuses primarily on the effectiveness and enhancement of established programs and activities. For INPO to carry out its role, it must have the support of its members and participants and a cooperative but independent relationship with the NRC. A basis for that support and cooperation is an understanding of INPO's role. This Institutional Plan is intended to provide that understanding by defining the Institute's role and its major programs. This plan considers the existing and projected needs of the industry and the overall environment in which INPO and its members and participants operate

  18. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  19. Strategic management at IPEN - Institute of Nuclear and Energetic Research, S P, Brazil; Gestao estrategia no IPEN - Instituto de Pesquisas Energeticas e Nucleares, SP

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Claudio; Zouain, Desiree M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    This panel presents an overview on the strategic management of the IPEN, S P, Brazil, with emphasis on the history, the main installations, the nature of the activities and training activities of the institute.

  20. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  1. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  2. Development of high power long-pulse RF transmitter for ICRF heating in fusion researches and cyclotron accelerator

    International Nuclear Information System (INIS)

    Kwak, J.G.; Wang, S.J.; Bae, Y.D.; Kim, S.H.; Hwang, C.K.; Moriyama, S.

    2011-01-01

    A high power long pulse transmitter whose frequency range is in the range of VHF(Very High Frequency) bands have been widely used for fusion researches and accelerator as well as broadcasting industry. KAERI (Korea Atomic Energy Research Institute) have been developing the transmitters for ICRF heating for KSTAR and the cyclotron accelerator since 1996. The toroidal magnetic field of KSTAR (Korea Superconducting Tokamak Advanced Research) is nominally 3 T so that 25-60 MHz transmitter is required to cover ICRF heating scenarios of the KSTAR. The first one is 2 MW transmitter operating up to 60 MHz and it succeeded in achieving 2 MW for 300 s in 2008 after several failures of tetrode tube at the final amplifier stage. Up to 300 kW RF power was successfully injected to KSTAR plasmas. The second one is the wideband 70 kW/CW transmitter used for the cyclotron accelerator and their frequency range is from 25 to 50 MHz. Its engineering design was finished. The third one is 1 MW/VHF transmitter which was loaned from JAEA. As the operating ICRF frequency of KSTAR is lower than VHF bands, its cavity structure will be modified for KSTAR and the operating frequency would be changed from 110 MHz to 60 MHz. In this presentation, the test results of JAEA transmitter at 120 MHz and lessons from the high power test of 2 MW transmitter will be introduced and the circuit analysis and engineering design work for the second and third amplifiers will be shown.

  3. G.N. Florov Laboratory of Nuclear Reactions, history and the present day

    International Nuclear Information System (INIS)

    Szmider, J.

    1996-01-01

    The scientific activity and review of results attained at Florov Nuclear Reactions Laboratory of the Joined Institute of Nuclear Research, Dubna, have been presented in historical order. Especially the heavy ion cyclotron use for synthesis of new super-heavy elements as well as investigations of their physical and chemical properties have been shown. 1 fig

  4. Robustness test of a system of MSGC+GEM detectors at the cyclotron facility of the Paul Scherrer institute

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M.; Albert, A.; Barvich, T.; Beaumont, W.; Beckers, T.; Bernier, K.; Bluem, P.; Bouhali, O.; Boulogne, I.; Bouvet, D.; Brom, J.M.; Charles, F.; Coffin, J.; Contardo, D.; Daubie, E.; Didierjean, F.; Erdmann, M.; De Lentdecker, G.; Devroede, O.; De Troy, J.; Ernenwein, J.P.; Fahrer, M.; Fluegge, G.; Fontaine, J.C.; Geist, W.; Goerlach, U.; Gottschalk, M.; Helleboid, J.M.; Huss, D.; Iacopi, F.; Kaercher, K.; Kuehn, F.; Juillot, P. E-mail: juillot@in2p3.fr; Lounis, A.; Maazouzi, C.; Macke, D.; Martin, C.; Mirabito, L.; Moreau, S.; Mueller, T.; Neuberger, D.; Nowack, A.; Perries, S.; Ripp-Baudot, I.; Roederer, F.; Schulte, R.; Shekhtman, L.; Simonis, H.J.; Struczinski, W.; Tatarinov, A.; Thuemmel, W.H.; Udo, F.; Doninck, W. van; Dyck, C. van; Vander Velde, C.; Vanlaer, P.; Lancker, L. van; Weiler, T.; Zander, A.; Zghiche, A.; Zhukov, V

    2001-10-01

    A system of detector modules consisting of a large size Gas Electron Multiplier (GEM), coupled to Micro Strip Gas Counters (MSGC), has been exposed to a pion beam at the Paul Scherrer Institute Cyclotron facility. As part of a CMS tracker milestone, the aim of this test was to investigate the robustness of such detectors when exposed to experimental conditions close to what is expected at the Large Hadron Collider (LHC) of CERN. Eighteen detector modules have been operated at voltage settings corresponding to 98% detection efficiency for Minimum Ionizing Particles during a period of 5 weeks. Sparking rates and strip losses have been monitored throughout the exposure. An operation margin of at least a factor of three with respect to the required gas gain has been demonstrated.

  5. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  6. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  7. Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Sehgal, Akansha

    2014-01-01

    This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J( 1 H 15 N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15 N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)

  8. Study on the possible consequences of a severe accident in a Swiss nuclear power plant on the drinking water supply

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Kueppers, Christian; Claus, Manuel

    2014-01-01

    The study on the possible consequences of a severe accident in a Swiss nuclear power plant on the drinking water supply covers the following issues: estimation of possible source terms and radioactive materials release rates, airborne water contamination, water contamination by direct pollution, consequences for the drinking water supply, emergency measures in case of a drinking water contamination, routine surveillance of surface and ground water and improvement possibilities in nuclear power plants.

  9. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    pp. 235–245. High energy nuclear collisions: Theory overview. R J FRIES. Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University,. 3366 TAMU, College Station TX 77845, USA. Physics Department, RIKEN/BNL Research Center, Brookhaven National Laboratory,. Upton NY 11973-5000, USA.

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Mexico

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Nuclear terrorism; II. Institutional Framework - The federal government: 1. Regulatory and supervisory authorities (Ministry of Energy; Ministry of Health; Ministry of Labour and Social Security; Ministry of the Environment and Natural Resources; Ministry of Communications and Transport); 2. Public and semi-public agencies: (National Nuclear Safety and Safeguards Commission; National Nuclear Research Institute)

  11. Advances of the Radio sterilized Tissue Bank of the National Institute of Nuclear Research; Avances del Banco de Tejidos Radioesterilizados del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. L.; Martinez P, M. E.; Luna Z, D.; Lavalley E, M. C., E-mail: lourdes.reyes@inin.gob.m [ININ, Gerencia de Aplicaciones Nucleares en la Salud, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In view of the necessity of finding alternative sources of biological tissues provision for surgical interventions, the Instituto Nacional de Investigaciones Nucleares (ININ) received the IAEA support from 1997 to 1998, for the establishment of a tissue bank, using the gamma radiation like sterilizing agent. The IAEA support consisted on basic equipment, the personnel's training by means of scientific visits and training in other banks, besides experts missions. As a result of this great support, the Radio sterilized Tissue Bank was established in the ININ, attributed to the Office of Nuclear Applications to the Health. The bank obtained its license in July 7, 1999, granted by the Health Secretary in Mexico. The advances that have been obtained from their creation to the date are presented, with respect to the activities that are carried out in this Tissue Bank. (Author)

  12. Reinstallation of the 'Hamburg proton microprobe' in the KFKI Research Institute for Particle and Nuclear Physics (KFKI RMKI), Budapest, Hungary

    International Nuclear Information System (INIS)

    Szoekefalvi-Nagy, Z.

    2003-01-01

    Full text: The 'Hamburg proton microprobe' was introduced to the international PIXE community at the 5th International Conference on PIXE and its Analytical Applications in 1989. The 'home made' device was connected to the 2 MV Van de Graaff accelerator at the University of Hamburg and beam diameter of 3 x 4 μm 2 on the specimen surface at a current of 2 nA was easily obtained. Later the beam spot diameter was further reduced down to ∼ 1 μm still with proton current of a few hundred pA. In the following twelve years the microprobe was extensively used for environmental analysis, these applications and the continuous innovative development of the microbeam were strongly connected with Dr. Manfred Niecke. By help of the new scientific contacts initiated by the EU supported KFKI Condensed Matter Research Center of Center of Excellence we were informed in July of 2001 that the whole accelerator laboratory would be finally closed at the end of August 2001. After intensive e-mail discussions and a one-day-visit in Hamburg an agreement of research cooperation was signed on the 10th of September 2001 between the Department of Experimental Physics of the University of Hamburg and the KFKI RMKI. According to the agreement the complete Hamburg proton microprobe was gifted to KFKI RMKI. In return, free access to the reinstalled microprobe was provided for Dr. Manfred Niecke in the frame of common research projects. In two weeks the microprobe was dismantled, packed and launched to KFKI RMKI. For lack of sufficient room in the usual target-hall, a special vibration-free supporting base extending into the adjoining hall of our heavy ion cascade accelerator had to be built. The support also has equalized the more than 1 m level difference between the two rooms. In March and September 2002 Dr. Niecke spent one month each in KFKI RMKI. Thanks to his very effective contribution and supervision, the instrument was successfully reinstalled and restarted during this rather short

  13. Cyclotron produced Tc-99m: testing compatibility with established kits

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Ráliš, Jan; Hradilek, Pavel; Hanč, Petr; van Lier, E. J.; Zyuzin, A.; Moša, M.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S424-S425 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : cyclotron U-120M * Tc-99m * 100Mo Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  14. Feasibility study of direct cyclotron production of 227-Th

    Czech Academy of Sciences Publication Activity Database

    Kozempel, J.; Vlk, M.; Mičolová, P.; Lebeda, Ondřej; Moša, M.; Morgenstern, A.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S191-S192 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : 227Th * alternative method of production 227Th * cyclotron U-120M Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  15. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  16. Swiss survey on hybrid imaging CTs doses in Nuclear Medicine and proposed national dose reference levels.

    Science.gov (United States)

    Lima, Thiago V M; Gnesin, Silvano; Ryckx, Nick; Strobel, Klaus; Stritt, Nicolas; Linder, Reto

    2018-02-17

    A multidisciplinary working group led by the Swiss Federal Office of Public Health was formed to plan and perform a nationwide survey of patient radiation exposure from computed tomography (CT) in hybrid devices across Nuclear Medicine departments. The survey included 16 departments (of which 5 were university hospitals) and the submitted responses included 10,673 entries for the 33 different protocols proposed (11 in PET and 22 in SPECT). The working group determined the selection and exclusion criteria applied to the analysis. This work presents the survey preparation and data analysis including the exclusion criteria used. The results are used to inform recommendations for National Diagnostic Reference Levels (DRL) for CT procedures in Nuclear Medicine in Switzerland. Of the 33 protocols initially proposed, 10 protocols for both PET and SPECT modalities were retained after exclusion criteria and thresholds were applied. The results obtained in terms of volume-weighted computed tomography dose index (CTDI vol ) and dose length product (DLP) have been put forward as recommendations for national Diagnostic Reference Levels for protocols in hybrid imaging devices in Nuclear Medicine in Switzerland and will be published by the Federal Office of Public Health. Copyright © 2018. Published by Elsevier GmbH.

  17. Paul Scherrer Institute Scientific Report 1998. Volume VII: Swiss Light Source

    International Nuclear Information System (INIS)

    Weyer, Heinz Josef; Bugmann, Marlen; Neuhaus, Sibylle

    1999-01-01

    The Swiss Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is being constructed at PSI and scheduled to be operational in 2001. A series of new features that were adopted for the design and operation of this machine, is described in this annual report for 1998

  18. Nuclear Science Division annual report for 1991

    International Nuclear Information System (INIS)

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations

  19. Nuclear Science Division annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  20. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  1. Environmental concerns regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G. R. T.; Durazzo, M.; Carvalho, E. F. U. [IPEN, CNEN-SP, P.O. Box 11049, CEP 05422-970, Sao Paulo (Brazil); Riella, H. G. [Universidade Federal de Santa Catarina, Departamento de Engenharia Quimica, Campus Universitario, Florianopolis, CEP 88040-900 (Brazil)]. e-mail: grsantos@ipen.br

    2008-07-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the maim programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel - CCN - is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt% {sup 2}35U), to supply its IEA-RI research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the Sustainable Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to

  2. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  3. The Paul Scherrer Institute, a multidisciplinary organization opened to the world

    International Nuclear Information System (INIS)

    Mayer, N.

    2008-01-01

    At the end of the second world war, the Swiss Federal Military department created a commission for the study of nuclear energy under the presidency of Paul Scherrer. This famous Swiss physicist was particularly interested in this new domain of physics and will be few years later one of the main actor of the creation of CERN, a European organization for nuclear research. Some financial problems and a nuclear accident in 1969 have blown away the dreams of a nuclear reactor entirely made in Switzerland. The Paul Scherrer Institute was born in this context in 1988 near Zurich. Twenty years later it employs about 1300 people with an operating budget of about 175 million euros financed at 85% by the Swiss confederation. This article presents the different domains of research of the institute, its infrastructures (X-ray, neutrons and muons probes), its technology transfer actions and the cooperations with France. (J.S.)

  4. TLD environmental monitoring at the Institute of Nuclear Engineering in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Taam, I.H. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Caixa Postal 68550, 21945-970 Rio de Janeiro, RJ (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Av. Salvador Allende s/n, Caixa Postal 37760, 22780-160 Rio de Janeiro, RJ (Brazil)], E-mail: lrosa@ird.gov.br; Crispim, V.R. [PEN/COPPE-DNC/POLI/CT/UFRJ, Caixa Postal 68509, 21941-972 Rio de Janeiro, RJ (Brazil)

    2008-09-15

    Since 2003 the Institute of Nuclear Engineering in Rio de Janeiro city, Brazil, operates a new cyclotron, RDS-111, to produce {sup 18}F-Fluorodeoxyglucose to be used in nuclear medicine. Additionally, the IEN radioactive waste repository has been enlarged during the past last years, receiving a considerable amount of radioactive materials. Therefore, it became necessary to evaluate a possible increase of the environmental gamma exposure rates at the institute site due to the operation of the new accelerator and the enlargement of the institute waste repository as well. LiF:Mg,Cu,P, TLD-100H, and TL detectors were employed for environmental kerma rate evaluation and the results were compared with previous results obtained before the RDS-111 operation initialisation and the enlargement of IEN waste repository. No significant contribution for the enhancement of environmental gamma kerma rates was detected.

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Austria

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime - General Outline: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II) - Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Federal Authorities - Bund (The Federal Chancellery; The Federal Minister for Women's Affairs and Consumer Protection; The Federal Minister of the Interior; The Federal Minister for Economic Affairs; The Federal Minister of Finance; The Federal Minister of Labour, Health and Social Affairs; The Federal Minister of Science and Transport; The Federal Minister of Justice; The Federal Minister for the Environment; The Federal Minister for Foreign Affairs) B. Regional Authorities - Laender; C. District Authorities - Bezirksverwaltungsbehorden; 2. Advisory Bodies (Forum for Nuclear Questions, Radiation Protection Commission - SSK); 3. Public and Semi-Public Agencies (The Seibersdorf Austrian Research Centre; The Graz Nuclear Institute; The Nuclear Institute of the Austrian Universities; The Institute of Risk Research, University of Vienna)

  6. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    1996-01-01

    This study is part of a series of analytical studies on nuclear legislation in OECD Member countries, prepared with the co-operation of the countries concerned. Each study has been organised on the basis of a standardised format for all countries, thus facilitating the comparison of information. The studies are intended to be updated periodically, taking into account modifications to the nuclear legislation in each country. This is the first update to the 1995 Edition. Unfortunately, due to the constraints of the OECD Publications Service, it covers only those legislative and institutional changes which, in our view, are of the greatest significance for our readers. Thus, you will find new chapters on Finland, Greece, Italy, Japan, Mexico, the Netherlands, Portugal and the United States. Changes to the nuclear legislation and institutions of the remaining countries will be incorporated into the next Update which is expected to be published at the end of 1997. (author)

  7. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  8. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    partners in the Nuclear Competence Association. As of January 2011, the Dresden-Rossendorf Helmholtz Center (HZDR), with its 2 Institutes of Safety Research and for Radiochemistry, is an integral part of the Nuclear Safety Research Program within the Energy Research Area. Both institutes work on topics of safety research for nuclear reactors and safety research for nuclear waste management. In this way, the 2 institutes represent very welcome added value as well as a supplement to the Nuclear Safety Research Program. (orig.)

  9. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  10. Credit allocation for research institutes

    Science.gov (United States)

    Wang, J.-P.; Guo, Q.; Yang, K.; Han, J.-T.; Liu, J.-G.

    2017-05-01

    It is a challenging work to assess research performance of multiple institutes. Considering that it is unfair to average the credit to the institutes which is in the different order from a paper, in this paper, we present a credit allocation method (CAM) with a weighted order coefficient for multiple institutes. The results for the APS dataset with 18987 institutes show that top-ranked institutes obtained by the CAM method correspond to well-known universities or research labs with high reputation in physics. Moreover, we evaluate the performance of the CAM method when citation links are added or rewired randomly quantified by the Kendall's Tau and Jaccard index. The experimental results indicate that the CAM method has better performance in robustness compared with the total number of citations (TC) method and Shen's method. Finally, we give the first 20 Chinese universities in physics obtained by the CAM method. However, this method is valid for any other branch of sciences, not just for physics. The proposed method also provides universities and policy makers an effective tool to quantify and balance the academic performance of university.

  11. Swiss Biomass Programme - Overview report on the 2007 research programme; Programm Biomasse: Ueberblicksbericht zum Forschungsprogramm 2007

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) presents an overview of the results obtained in 2007 within the framework of the Swiss Biomass research programme. The potential for biomass use in Switzerland is reviewed and the emphases of the national programme are discussed. The results obtained are noted for the following areas: process optimisation, including - amongst others - particle emissions and control aspects as well as combined wood-pellets and solar heating systems. Projects involving non-wood biomass are reported on, including biomass digesters and various biogas systems. Further reports deal with the analysis and optimisation of material flows, organic pollutants and methane losses. New conversion technologies are reported on. Further reports deal with basic strategies and concepts in the area of biomass usage. National and international co-operation is also discussed. A selection of innovative pilot and demonstration projects is also presented and research and development projects are listed.

  12. Inauguration of the international Institute of the nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    On June 27, 2011 was inaugurated in Saclay (France) the I2EN (international Institute of the nuclear energy) and the Jannus platform. The I2EN has to particularly centralize and relay, at the international scale, the French formations offer in the field of nuclear energy. On the other hand, the Jannus platform is an example of cooperation between research organisms and universities. (O.M.)

  13. Stakeholders and public involvement in river management: heterogeneous acceptance of participatory processes among Swiss institutions.

    Science.gov (United States)

    Buletti, Nora; Utz, Stephan; Ejderyan, Olivier; Graefe, Olivier; Lane, Stuart; Reynard, Emmanuel

    2014-05-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to better understand how participatory processes are incorporated into river management practice. Switzerland being a federal state, river management is a cantonal (regional) responsibility, under the supervision (and co-funding) of the State (a Confederation). The federal funding includes the opportunity to fund additional participatory activities to aid river management, not least because the federal authorities consider the involvement of wider stakeholders and the public in decision-making as a means of aiding the progression of projects. This is a particularly important goal in a Swiss setting where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project progression. River management in Switzerland now includes both flood protection and river restoration objectives, which has served to increase its controversy: river corridors contain competing interests with different objectives (e.g. ecological enhancement, protection of agricultural land, flood risk reduction). We were asked by the Confederation to evaluate participatory processes it sponsored and one element of this evaluation aimed to develop a typology of stakeholder participation. We conducted interviews with the 26 cantonal officers in charge of river management. These interviews were based upon thematically structured open ended questions, with the responses analyzed qualitatively. We have identified significant divergence in the implementation of participatory processes between the cantons. These appear to be related to two factors: (1) the canton's historical experience of river management; and (2) the methods used to select stakeholders for inclusion in the decisional process. Cantons that refer to guidelines or pre

  14. Phenomenon of Swiss banking

    Directory of Open Access Journals (Sweden)

    Milenković Ivan

    2015-01-01

    Full Text Available Swiss banking is a 'generic name' for a system based on private banking and banking secrecy. In the introductory chapter we highlight the difference between Swiss banking and banking in the Switzerland's system. In the second chapter we present a more detailed description of the institution of banking secrecy, while in the third chapter we present the exceptions to it. The fourth chapter elaborates on the present and the future of Swiss banking. It is argued whether in the present circumstances banking secrecy has become disruptive to the further development of both Swiss banking and banking in Switzerland and whether Swiss banking will come to an end in the future.

  15. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction (Licensing system; Offences, compliance and enforcement; Regulatory documents; Other relevant legislation); 2. Mining regime; 3. Nuclear substances and radiation devices; 4. Nuclear facilities; 5. Trade in nuclear materials and equipment (Exports, Other imports); 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Governor in council; Minister of natural resources; Other Ministerial authorities; Canadian Nuclear Safety Commission - CNSC); 2. Public and semi-public agencies (National Research Council - NRC; Natural Sciences and Engineering Research Council; Atomic Energy of Canada Ltd. - AECL)

  17. Nuclear structure studies at Saha Institute of Nuclear Physics using ...

    Indian Academy of Sciences (India)

    Abstract. In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass ...

  18. Nuclear structure studies at Saha Institute of Nuclear Physics using ...

    Indian Academy of Sciences (India)

    In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions.

  19. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  20. Advances on the Chilean Nuclear Energy Commission's Cyclotron Laboratory Program for the production of 18F and 18FDG

    International Nuclear Information System (INIS)

    Avila, M.J; Bustos, Rosario; Pinto, Luis; Ahumada, Luis

    2003-01-01

    The Chilean Nuclear Energy Commission (CCHEN) Cyclotron's Laboratory has begun to produce short-lived positron's emitter radionuclides need for positron emitter tomography (PET) and intended for clinical prognosis. Production trials took place back on February 2003 to calibrate the only existing camera PET in the country at the Hospital Militar. Subsequently, a complex stage of adjustment, corrections and optimizations on the camera itself, as well as, on the accelerator were performed with solely intention to introduce PET technique as clinical tool in the more efficient way as possible. The reported advances on production are linked to the increasing availability of high radionuclidic and radiochemical purity 18 FDG. Because of demand and nuclear medicine declared necessities on this radiopharmaceutical imposes Cyclotron Laboratory to make available 18 FDG as soon as possible, from the earliest production trials. This was accomplished simultaneously with preliminary beam optical and modular synthesis adjustments. During April the availability of 18 FDG for clinical imaging was acceptable to satisfy demand, whereas May actually initiates routinely production (au)

  1. 1988 activity report of the Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-06-01

    The 1988 activity report of the Nuclear Physics Institute (France) is presented. The report covers the scientific activities from the 1st October 1987 to the 30th September 1988 and the technical developments form the 1st October 1986 to the 30th September 1988. The main research fields include works on exotic nuclei, hot nuclei characteristics, physics of strangeness, nuclear structure studies by means of nuclear reactions, high spin states and radiochemistry. The project of an electron accelerator, delivering a 4 GeV beam (in a first step), is one of the Institute's priorities. The research works carried out in the Experimental Research and Theoretical Physics Divisions as well as technological projects are included [fr

  2. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  3. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia

    1999-01-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report

  4. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.

    1999-09-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.

  5. Annual report of Research Center for Nuclear Physics, Osaka University. April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    Matsuoka, Nobuyuki; Miura, Iwao; Takahisa, Keiji

    1994-01-01

    This volume of the RCNP annual report gives briefly research activities of the RCNP (Research Center for Nuclear Physics), Osaka University, in the academic year of 1993 (April 1993 - March 1994). RCNP is a national nuclear physics laboratory with the AVF cyclotron and the ring cyclotron. This annual report includes major research activities at RCNP as follows. 1) Low-energy nuclear physics by means of the K=140 MeV AVF cyclotron. Nuclear reactions and nuclear structures were studied. 2) Medium-energy nuclear physics by means of the 0.4 GeV ring cyclotron. The new ring cyclotron is in full operation, and several new progresses in the medium energy nuclear physics have been made. In particular, spin-isospin responses for discrete states, giant resonances and for quasi-free scattering processes have been studied by means of charge exchange reactions. 3) Heavy-ion physics with the secondary radio-active nuclear beams. It includes production of radioactive nuclei with large spin-polarization and studies of snow-balls. 4) Non-accelerator physics programs have started in collaboration with the Dept. Phys. group. Neutrino studies by means of double beta decays and dark matter searches by means of scintillators are under progress at the Kamioka underground laboratory. 5) Theoretical works on nuclear structures and nuclear reactions. The RCNP computers are widely used for theoretical studies all over Japan. 6) Developments of accelerators and detector systems. The new external ion-source and the new axial injection line are build in order to increase beam currents. (J.P.N.)

  6. Vinca institute nuclear decommissioning program - Establishment and initialisation

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Present conditions in The Vinca Institute of Nuclear Sciences related to the nuclear and radiation safety, as result of ambitious nuclear program in the former Yugoslavia and strong economic crisis during the previous decade, have to be improved as soon as possible. RA research reactor, which extended shutdown stage took almost 18 years, spent nuclear fuel from the RA operation in the water pools within the reactor building and inadequate storage facilities for the low and intermediate radioactive wastes at the Vinca site are the main safety problems that have to be solved. To solve the problems mentioned above, a new 'Vinca Nuclear Decommissioning (VIND) Program' is initiated in the Vinca Institute during 2002. The Program team is assembled from about 60 experts from the Institute and relevant organisations. The Program, known also as the G reen Vinca , will be supported, besides the government funding and expected donation from foreign institutions, by experts' help from the IAEA. The necessary equipment will be obtained through the technical assistance from the IAEA. Close co-operation of the team members with experts and relevant companies from nuclear developed countries is expected. (author)

  7. Connoisseurship as a Substitute for User Research? The Case of the Swiss Watch Industry

    Directory of Open Access Journals (Sweden)

    Matthew Sinclair

    2015-12-01

    Full Text Available Conventional wisdom holds that new product development is more successfully undertaken when design is user-led. An exception is the luxury goods sector, in which a common presentation of the brand is one where the customer should aspire to the vision of its designers. In such cases, the proprietor is often cast as a connoisseur, an expert in the brand’s history who is intuitively able to give vision and direction. Within the Swiss luxury watch industry, heritage and the illusion of exclusivity are vital strategies in the communication of products as luxury items. Connoisseurship plays a central role in this communication, establishing the boundaries of brands whose products might otherwise appear similar. In such cases, connoisseurship is presented to the customer as superior to user research, engendering products with a sophistication which customer insights cannot provide. Nonetheless, whilst conventional user research methods play little part in the design of Swiss watches, less formal methods are employed. These are shown to also have application in non-luxury sectors too. The utilization of strategies employed by the Swiss watch industry in future scenarios of new product development is also discussed.

  8. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  9. Institute for Nuclear Waste Disposal. Annual Report 2009

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2010-01-01

    On October 01, 2009, the Karlsruhe Institute of Technology (KIT) was founded by a merger of Forschungszentrum Karlsruhe and Universitaet Karlsruhe (TH). KIT bundles the missions of both precursory institutions: a university of the state of Baden- Wuerttemberg with teaching and research tasks and a large-scale research institution of the Helmholtz Association conducting program-oriented provident research on behalf of the Federal Republic of Germany. Within these missions, KIT is operating along the three strategic fields of action, research, teaching, and innovation. With about 8000 employees and an annual budget of about EUR 700 million, KIT is one of the largest research and teaching institutions worldwide. It has the potential to assume a top position worldwide in selected fields of research. The objective: KIT will become an institution of excellent research and scientific education, as well as a prominent location of academic life, life-long learning, comprehensive advanced training, unrestricted exchange of know-how and sustainable innovation culture. The largest organizational units of KIT are the KIT Centers. They focus on problems of fundamental importance to the existence and further development of our society or on key issues of basic science. KIT Centers are characterized by the uniqueness of their scientific approach, their strategic objective and mission and by a long-term perspective. The Institut fuer Nukleare Entsorgung, INE, (Institute for Nuclear Waste Disposal) belongs to the KIT Energy Center. The KIT Energy Center comprises some 40 institutes of the Universitaet Karlsruhe (TH) and 18 large institutes of the Forschungszentrum Karlsruhe with, at present, a total of approx. 1100 staff members. The participating institutes and research groups are the operating research units. An interdisciplinary KIT School of Energy establishes ideal framework conditions for teaching. For external partners from industry, the KIT Center develops solutions in

  10. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  11. Dose assessment following an overexposure of a worker at a Swiss nuclear power plant.

    Science.gov (United States)

    Bailat, Claude J; Laedermann, Jean-Pascal; Baechler, Sébastien; Desorgher, Laurent; Aroua, Abbas; Bochud, François O

    2017-12-01

    The aim of this work was to assess the doses received by a diver exposed to a radiation source during maintenance work in the fuel transfer pool at a Swiss nuclear power plant, and to define whether the statutory limit was breached or not. Onsite measurements were carried out and different scenarios were simulated using the MicroShield Software and the MCNPX Monte Carlo radiation transport code to estimate the activity of the irradiating object as well as the doses to the limbs and the effective dose delivered to the operator. The activity of the object was estimated to 1.8 TBq. From the various dose estimations, a conservative value of 7.5 Sv was proposed for the equivalent dose to the skin on the hands and an effective dose of 28 mSv. The use of different experimental and calculation methods allowed us to accurately estimate the activity of the object and the dose delivered to the diver, useful information for making a decision on the most appropriate scheme of follow up for the patient.

  12. Swiss regulatory use of databanks for nuclear power plant life management, surveillance and safety analyses

    International Nuclear Information System (INIS)

    Tipping, Ph.; Beutler, R.; Schoen, G.; Noeggerath, J.

    2002-01-01

    Full text: As operational time is accumulated, the overall safety and performance of nuclear power plants (NPPs) will tend to be characterised by those areas in which structures, systems and components (SSCs) have not performed as well, or as reliably, as expected. The reasons for non-availability of equipment in NPPs due to SSC material malfunction or unsatisfactory performance, leading to events or even accidents, are varied and they must be analysed in order to obtain the root causes. Once the root causes are identified, corresponding measures can be applied in order to improve reliability and therefore safety. The root cause information obtained, if brought into user-friendly databanks (DBs), can be used to follow NPP performance trends, to check whether a repair or replacement has been effective, to focus regulatory attention and NPP surveillance on known weak-spots and to serve as an advance indicator where potential problems may arise. Using the DBs, similar occurrences of failures or problems in other NPPs can be identified and generic issues recognised early on and preventative action taken. The following describes the Swiss Federal Nuclear Safety Inspectorate's (HSK) DB concepts for keeping track of NPP safety and lifetime management issues. Typical sources of data for the Inspectorate's DBs are, for example, the IAEA/NEA Incident Reporting System (IRS) reports, US-NRC Generic Letters, the Swiss NPP's own reports (monthly, annual and normal outage) and, more importantly, the document that these NPPs must issue to the Inspectorate whenever a reportable event takes place. Specifically, the reporting of events in the NPPs is laid down in the Inspectorate's Guideline (R-15 'Reporting Guideline Concerning The Operation of Nuclear Power Plants'). In this Guideline, reportable events are defined and the criteria for assessing the degree of importance or impact on nuclear safety are given. In this manner, a standard and consistent approach to data collection is

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Spain

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trading in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Safeguards and non-proliferation; Physical protection); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Industry, Tourism and Trade - MITYC; Ministry of the Interior - MIR; Ministry of Economy and the Exchequer - MEH; Ministry of the Environment and Rural and Marine Affairs - MARM); 2. Public and semi-public agencies (Nuclear Safety Council - CSN; Centre for Energy-related, Environmental and Technological Research - CIEMAT; National Energy Commission - CNE; 3. Public capital companies (Enusa Industrias Avanzadas, s.a. - ENUSA; Empresa Nacional de Residuos Radiactivos, s.a. - ENRESA)

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Netherlands

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Fissionable materials, ores, radioactive materials and equipment (Fissionable materials and ores; Radioactive materials and equipment); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection (Protection of workers; Protection of the public; Protection of individuals undergoing medical exposure); 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Housing, Spatial Planning and the Environment; Minister for Economic Affairs; Minister for Social Affairs and Employment; Minister for Health, Welfare and Sports; Minister for Finance; Minister for Foreign Affairs); 2. Advisory body - Health Council of the Netherlands; 3. Public and semi-public agencies (Nuclear Research and Consultancy Group - NRG; Central Organisation for Radioactive Waste - COVRA)

  15. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Sato, Y.

    2001-01-01

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  16. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  17. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  18. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Italy

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment (General provisions; Patents); 6. Radiation Protection (Protection of workers; Protection of the public; Protection of the environment); 7. Radioactive Waste Management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Interdepartmental Committee for Economic Planning; Nuclear Safety Agency; Prime Minister; Minister for Economic Development; Minister for Labour and Social Security; Minister for Health; Minister for the Environment; Minister for the Interior; Minister for Transport and Navigation; Minister for Foreign Trade (now incorporated in Ministry for Economic Development); Minister for Education; Treasury Minister; Minister for Universities and for Scientific and Technical Research; Minister for Foreign Affairs; State Advocate General); 2. Advisory bodies (Inter-ministerial Council for Consultation and Co-ordination; Coordinating Committee for Radiation Protection of Workers and the Public; Regional and Provincial Commissions for Public Health Protection

  20. Nuclear skills and education training in the UK through the Dalton nuclear institute

    International Nuclear Information System (INIS)

    Richard Clegg

    2006-01-01

    The UK demand for nuclear skills and research requirements is showing signs of a significant upturn. More capacity is being needed to support the UK's national programmes on clean-up and decommissioning, keeping the nuclear option open, and longer term advanced reactors technology. In response to this, The University of Manchester has launched the Dalton Nuclear Institute. The Institute is working with government and industry to strengthen and develop the UK's strategic nuclear skills base in the university sector. The Institute's scope covers the broad entirety of the UK's nuclear requirements spanning reactors, fuel cycles, decommissioning, disposal, social policy and regulation, and with connections into nuclear medicine and fusion. The rational behind the setting up of the Dalton Nuclear Institute including its research and education strategies are explained below, together with a description of the areas of current strength and the areas where major university investment is being targeted to uplift UK capacity and infrastructure. A big driver is also to forge links with other world leading centres internationally that will complement Manchester's in house capability. In the UK, the Dalton Nuclear Institute is working in partnership with Nexia Solutions and the NDA (Nuclear Decommissioning Authority) to match the Institute's plans with end-user industry and sector requirements. A key driver is to maximize the utilisation of the UK's specialist research facilities, notably the new Sellafield Technology Centre in West Cumbria. Discussions are underway with Nexia Solutions and the NDA to grant academic access for the Dalton Nuclear Institute and its collaborators to the Sellafield Technology Centre, to utilize it along the lines akin to a 'teaching hospital' model. The paper also explains the steps Dalton has taken by setting up and leading a consortium with ten other higher education providers in the UK, to launch a national programme for postgraduate

  1. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  2. Research and experience report 2010 - Developments in the technical and legal basis of nuclear oversight

    International Nuclear Information System (INIS)

    2011-04-01

    This comprehensive annual report presents a review of the activities carried out by the Swiss Federal Nuclear Safety Inspectorate (ENSI) in the year 2010. The inspectorate's fields of activity - fuels and materials, significant internal and external events and occurrences, human factors, system behaviour and accident sequences, radiological protection and waste disposal - are reviewed. Information on incidents in Swiss nuclear facilities are reviewed in the ENSI Surveillance Report. The Research and Experience Report also provides information on a selection of particularly instructive incidents in nuclear facilities outside Switzerland. Incidents are analysed with a view to identifying any potential relevance to Swiss nuclear facilities. International co-operation is mentioned and current changes and developments related to plant surveillance are noted. Organisational aspects are discussed and various guidelines and directives are presented and discussed

  3. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  4. Isochronous magnetic field shimming method for compact cyclotrons

    International Nuclear Information System (INIS)

    Wang Chuan; Yang Jianjun; Zhong Junqing; Zhang Tianjue

    2009-01-01

    A 100 MeV H-cyclotron, CYCIAE-100, is under construction at China Institute of Atomic Energy. To carry out the experimental verification of CYCIAE-100, a central region model (CRM) cyclotron was developed for the study on various technical aspects, including the main magnet, beam diagnostics, etc. An optimized multiple linear regression shimming method was investigated based on accurate mapping and bar shimming of the CRM cyclotron. By using the magnet mapping data of CRM cyclotron and the numerical simulation of the field by 3D FEM analysis, the optimized multiple linear regression shimming method was realized and verified. This method is a pre-research for the isochronous magnetic field shimming of CYCIAE-100. It can be applied in the isochronous magnetic field shimming of the compact cyclotron, which meets the requirement for beam dynamics analysis. (authors)

  5. [Operation of TAMU cyclotron]. Annual progress report, April 1, 1980-March 31, 1981

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1981-06-01

    Research reviewed includes nuclear reactions and scattering, nuclear interactions and structure, nuclear theory, and instrumentation and system development. Specific research being conducted concerns mass transfer, angular momentum effects, fusion, deep inelastic scattering, and projectile breakup in nuclear reactions; molecular resonances, giant resonances, parity violation, inner shell ionization phenomena, activation analysis, cyclotron operation, and detector systems. (DWL) 164 refs., 76 figs., 15 tabs

  6. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  7. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Turkey

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Prime Minister; Ministry of Energy and Natural Resources; Ministry of Health; Ministry of the Environment and Forestry); 2. Public and semi-public agencies (Turkish Atomic Energy Authority - TAEK; General Directorate for Mineral Research and Exploration - MTA; ETI Mine Works General Management; Turkish Electric Generation and Transmission Corporation - TEAS; Turkish Electricity Distribution Corporation - TEDAS)

  8. The first Summer Institute of the World Nuclear University - a personal record

    International Nuclear Information System (INIS)

    Denk, W.; Fischer, C.; Seidl, M.

    2005-01-01

    The first World Nuclear University Summer Institute was held at Idaho Falls, USA, between July 9 and August 20, 2005. The event was hosted by the Institute of Nuclear Science and Engineering of Idaho State University (ISU) and by the Idaho National Laboratory (INL), which has been planned to be the central nuclear technology research institution in the United States. The World Nuclear University (WNU) was founded in 2003 by the International Atomic Energy Agency (IAEA), the OECD Nuclear Energy Agency (OECD-NEA), the World Association of Nuclear Operators (WANO), and the World Nuclear Association (WNA) as a global association fo scientific and educational institutions in the nuclear field. The first WNU Summer Institute was designed at IAEA in Vienna in the course of the following year and planned by the WNU Coordinating Centre in London. The six weeks of lectures and presentations arranged by the World nuclear University in Idaho Falls are described in detail from the participants' perspective. (orig.)

  9. Annual Report 2011 : Institute for Nuclear Waste Disposal. (KIT Scientific Reports ; 7617)

    OpenAIRE

    Geckeis, H. [Hrsg.; Stumpf, T. [Hrsg.

    2012-01-01

    The R&D at the Institute for Nuclear Waste Disposal, INE, (Institut für Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  10. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - France

    International Nuclear Information System (INIS)

    2011-01-01

    . Nuclear Third Party Liability: 1 Scope (Geographical scope; Installations subject to the nuclear third party liability regime; Transport; Damage covered); 2 General principles of the nuclear third party regime (Legal channelling of liability to the operator; Strict liability; Liability limited in amount; Operator's insurance or financial security; Liability limited in time; Exclusive jurisdiction); 3 Amendments of the Paris and Brussels Conventions; II. Institutional Framework: 1. The Nuclear Safety Authority (President of the Republic: Council for Nuclear Policy, Council for Defence and National Security; Prime Minister: Inter-ministerial Committee for Nuclear or Radiological Emergencies, General Secretariat for Defence and National Security, Euratom Technical Committee, Administration of the CTE is handed to the Atomic Energy Commission, Atomic Energy Committee; Minister for Industry: Nuclear Engineering Terminology and Neology Commission; Minister responsible for Ecology and Energy: Directorate General for Energy and Climate, Directorate General for the Prevention of Risks, Department for Defence, Security and Economic Intelligence; Minister for Research; Minister for Health; Minister for Public Safety: Directorate for Public Safety, Central Office for the Prevention of Organised Crime; Minister for Defence: Council for Nuclear Defence, DSND (Minister responsible for Work, Minister for Foreign Affairs); 2. Specialised Committees or Boards (Advisory Commission on Major Nuclear Installations; Special Commission for Major Nuclear Installations classified as Secret; Higher Council for Nuclear Safety and Information; Higher Committee for the Transparency of Information on Nuclear Safety); 3. Public and semi-public agencies (The Atomic Energy and Alternative Energies Commission, Atomic Energy Committee, Management Board, Administrator-General, High Commissioner for Atomic Energy, Agence ITER-France - AIF, Agence France Nucleaire international - AFNI; Electricite de

  12. Paul Scherrer Institute Scientific Report 1999. Volume VII: Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine [eds.

    2000-07-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is being constructed at PSI and scheduled to be operational in 2001. The progress of the construction of pre-injector, booster and storage ring as well as some of the details of new features that were adopted for the design and operation of this machine, are described in this annual report for 1999. An overview of the concept and status of the four SLS beamlines and the related infrastructure is also given. The last chapter contains 11 contributions which report on scientific activities of SLS staff members at synchrotron radiation facilities all over the world.

  13. Paul Scherrer Institute Scientific Report 1999. Volume VII: Swiss Light Source

    International Nuclear Information System (INIS)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine

    2000-01-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is being constructed at PSI and scheduled to be operational in 2001. The progress of the construction of pre-injector, booster and storage ring as well as some of the details of new features that were adopted for the design and operation of this machine, are described in this annual report for 1999. An overview of the concept and status of the four SLS beamlines and the related infrastructure is also given. The last chapter contains 11 contributions which report on scientific activities of SLS staff members at synchrotron radiation facilities all over the world

  14. Joint Global Change Research Institute (JGCRI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Global Change Research Institute (JGCRI) is dedicated to understanding the problems of global climate change and their potential solutions. The Institute...

  15. Institute of Nuclear Power Operations (INPO)

    International Nuclear Information System (INIS)

    Pack, R.W.

    1980-01-01

    The electric utility industry established the Institute of Nuclear Power Operations, or INPO, the purpose of which is to ensure the highest quality of operations in nuclear power plants. INPO will be an industry self-help instrument focusing on human factors. From top management to the operator trainee, it will measure utility performance against benchmarks of excellence and help utilities reach those benchmarks throughout training and operating programs. INPO will see that the utilities ferret out lessons for all from the abnormal operating experiences of any. It will do everything possible to assist utilities in meeting its certification requirements, but will have the clout to see that those requirements are met. INPO is also managing the nationwide system of utility emergency response capability

  16. Shielding design and performance confirmation of cyclotron facilities

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kurata, Yasutaka; Kumamoto, Yoshikazu; Inada, Tetsuo; Hashizume, Tadashi

    1978-01-01

    Medical uses of cyclotrons have become active recently in the form of carcinoma therapy and utilization of short-lived radioisotopes. For the shielding design of medical purpose accelerators, already ''Guide-line for shielding calculation for medical purpose high energy accelerator laboratories'' and ''Guide-line for shielding calculation for fast neutron laboratories'' were published. However, the calculation method for cyclotrons is not clear. As for the fundamental concept, the shielding for neutrons generated by the interaction of accelerated particles and the materials used for accelerator construction should be considered as well as the type, energy and intensity of radiations. Also about the activation of air and cooling water, the reactions due to fast and thermal neutrons as well as charged particles should be considered. Then the amount of neutron generation, spectra of neutron energy, angular distribution of neutron, γ ray emitted with neutrons, attenuation of neutron beam and other specific items such as skyshine are described. The specific items include so-called ''groundshine'', 41 Ar generation due to (n-r) reaction, 13 N and 15 O due to fast neutrons and activation of cooling water. Next, the actual results of shielding calculation are described in the case of Institute of Physical and Chemical Research, Institute of Nuclear Study (University of Tokyo), Medical Science Research Laboratory of University of Tokyo and National Institute of Radiological Sciences. (Wakatsuki, Y.)

  17. Phenomenon of Swiss banking

    OpenAIRE

    Milenković Ivan; Milenković Dragana

    2015-01-01

    Swiss banking is a 'generic name' for a system based on private banking and banking secrecy. In the introductory chapter we highlight the difference between Swiss banking and banking in the Switzerland's system. In the second chapter we present a more detailed description of the institution of banking secrecy, while in the third chapter we present the exceptions to it. The fourth chapter elaborates on the present and the future of Swiss banking. It is argued whether in the present circumstanc...

  18. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  19. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  20. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  1. Institutional Support : Makerere Institute of Social Research (MISR ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Makerere Institute of Social Research (MISR), Uganda, is the former East African Institute of Social and Economic Research (EAISR), which was established in 1948. MISR - an integral part of Makerere University - relies on project or consultancy revenue for its research, capacity building and outreach activities. This grant ...

  2. Agreement between the Government of Australia and the Government of the Swiss Confederation Concerning the peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    1986-01-01

    This Agreement regulates the safeguards arrangements necessary for initiating cooperation between Swiss and Australian undertakings in the field of the peaceful uses of nuclear energy. The Agreement, which contains no obligations for supplies and purchases, covers all fields of peaceful nuclear cooperation and concerns transfers between both countries of nuclear and non-nuclear materials, as well as equipment and technology. Guarantees of the peaceful uses of the above-mentioned items are its main objects. They include, in particular, the commitment of both Parties to use the items transferred for exclusively peaceful, non-explosive purposes, to have uses verified by the IAEA, and to re-export such items to a third country only in compliance with specific conditions and to secure their safety (NEA) [fr

  3. The current state of the development of the supercomputer system in plasma science and nuclear fusion research in the case of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Azumi, Masafumi

    2004-01-01

    The progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science has been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working at the Naka and Tokai sites respectively, and particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models. (author)

  4. Institutional Repositories in Indian Universities and Research Institutes: A Study

    Science.gov (United States)

    Krishnamurthy, M.; Kemparaju, T. D.

    2011-01-01

    Purpose: The purpose of this paper is to report on a study of the institutional repositories (IRs) in use in Indian universities and research institutes. Design/methodology/approach: Repositories in various institutions in India were accessed and described in a standardised way. Findings: The 20 repositories studied covered collections of diverse…

  5. Nuclear research centres in the Islamic Republic of Iran

    International Nuclear Information System (INIS)

    Afarideh, H.

    2001-01-01

    The Islamic Republic of Iran has a number of research centres devoted to various facets of nuclear energy. A reactor and a cyclotron have been successful producing radioisotopes for use in medicine, industry and agriculture. The use of gamma radiation and electron beams for radiation sterilization and radiation processing is widely practised. One centre is specifically devoted to fusion research and another for laser development. The important role played by IAEA in promoting applications of radioisotopes and radiation in the Islamic Republic of Iran is highlighted. (author)

  6. Progress of nuclear safety research, 1987

    International Nuclear Information System (INIS)

    1987-09-01

    The Japan Atomic Energy Research Institute (JAERI) has been extensively conducting nuclear safety research under the national policy of promoting peaceful uses of atomic energy. In 1973, the Department of Nuclear Safety Research was organized to perform effectively the safety research for light water reactors. Later, the Nuclear Safety Research Center was established to coordinate under its supervision various research activities related to the environmental safety as well as the safety of nuclear power plants and various nuclear fuel cycle facilities. Since the TMI-2 accident, the reactor safety research at JAERI has been reoriented to understand better a broader range of reactor accidents including a severe accident. At the same time, environmental safety research has been expanded to cover a wider range of topics. The accident at Chernobyl has revealed again the importance of nuclear safety. Described here are the activities related to nuclear safety research conducted at JAERI over the past two years. Also included are the international cooperative research programs in which JAERI is vigorously participating. (author)

  7. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  8. Status of Chandigarh variable energy cyclotron and present experimental programmes

    International Nuclear Information System (INIS)

    Govil, I.M.

    2005-01-01

    The paper describes the status report of the Chandigarh variable energy cyclotron and some of the recent modifications which has improved the stability and performance of the machine considerably. The machine is now used for Proton Induced X-Ray Emission (PIXE) for trace element analysis along with nuclear irradiation for material science research and Nuclear Spectroscopy using (p, n γ) reaction. (author)

  9. Nuclear-waste problems are deemed less technological than institutional

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Nuclear waste management needs administrative re-organization to separate management, regulation, and research and development responsibilities. New stable, but adaptable, institutions need to be established to clarify criteria for containing and isolating nuclear waste and to ensure that criteria are met. Present structure, which puts much of the temporary responsibility on the private sector and permanent responsibility on ERDA, does not encourage efficiency. Government regulations and public pressure have provided some incentives, but military nuclear wastes have no independent regulation to protect the public, and the states have proved ineffective in regulating commercial operations. Recommendations for reorganization are: (1) to establish a national public corporation to manage high-level and transuranic wastes; (2) to consolidate regulatory authority under a comprehensive Nuclear Regulatory Commission; and (3) to establish a commission within the International Atomic Energy Agency for licensing and review of disposal operations

  10. Institutional failures and transaction costs of Bulgarian private research institutes

    OpenAIRE

    Nozharov, Shteryo

    2016-01-01

    The paper analyses the reasons for poor performance of private research institutes in Bulgaria. In this regard the Institutional Economics methods are used. A connection between smart growth policy goals and Bulgarian membership in EU is made. The gaps in the institutional environment are identified as well as measures for their elimination are proposed. The main accent of the study is put on the identification of transaction costs, arisen as a result of the failures of the institutional envi...

  11. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  12. Material Control and Accounting (MC and A) System Upgrades and Performance Testing at the Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)

    International Nuclear Information System (INIS)

    Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav; Yuferev, Vladimir; Singh, Surinder Paul; Kuzminski, Jozef; Hogan, Kevin; McKisson, Jacquelin

    2008-01-01

    The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material control and accounting (MC and A) system upgrades and the preliminary results from a pilot program on the MC and A system performance testing that was recently conducted at one technical area.

  13. Report by the AERES on the unit: Research Unit on Reactor Safety under the supervision of the establishments and bodies: Radioprotection and Nuclear Safety Institute

    International Nuclear Information System (INIS)

    2010-10-01

    This report is a kind of audit report on a research laboratory whose activity is organized according to the following themes: behaviour of nuclear fuel under accidental conditions, core fusion accidents, fire in confined environment, and civil engineering and structure behaviour. The authors discuss an assessment of the unit activities in terms of strengths and opportunities, aspects to be improved and recommendations, productions and publications. A more detailed assessment is presented in terms of scientific quality, influence and attractiveness (awards, recruitment capacity, capacity to obtain financing and to tender, participation to international programs), strategy and governance, and project. Each research theme is analyzed in the same way

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Germany

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Definitions; Licensing requirements); 4. Nuclear installations (Licensing regime; Protection of the environment against radiation effects; Emergency response; Surveillance of installations and activities); 5. Trade in nuclear materials and equipment; 6. Radiation protection (General; Principal elements of the Radiation Protection Ordinance; Additional radiation protection norms); 7. Radioactive waste management (Atomic Energy Act 2002; Radiation Protection Ordinance; International obligations); 8. Non-proliferation and physical protection (Non-proliferation regime; Physical protection regime); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities: Federal authorities (Federal Minister for the Environment, Nature Conservation and Nuclear Safety, Federal Minister for Education and Research, Federal Minister of Finance, Federal Minister of Transport, Building and Urban Affairs, Federal Minister for Economy and Technology, Federal Minister of Defence, Federal Office for Radiation Protection - BfS, Federal Office of Economics and Export Control); Authorities of the Laender; 2. Advisory bodies (Reactor Safety Commission - RSK; Radiation Protection Commission - SSK; Disposal Commission - ESK; Nuclear Technology

  15. Paul Scherrer Institute Scientific Report 2000. Volume VII: Swiss Light Source

    International Nuclear Information System (INIS)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine

    2001-01-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is presently being constructed at PSI. The year 2000 was crucial for maintaining the project milestones with the start of storage ring commissioning for beginning of 2001 and first light on the probe at the four beamlines of phase I for August 2001. The major goals of 2000 were the completion of accelerator installation, the commissioning of linac and booster and the beginning of beamline assembly. In the first half of the year in parallel to the installation, major fabrication procedures were going on, that had to be thoroughly followed up in order to guarantee their completion in time. The overview and detailed description of these developments is supplemented in this annual report by 8 contributions on scientific activities of SLS staff members at synchrotron radiation facilities all over the world. A list of scientific publications in 2000 is also provided

  16. Paul Scherrer Institute Scientific Report 2000. Volume VII: Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, Heinz Josef; Bugmann, Marlen; Schuetz, Christine [eds.

    2001-07-01

    The Swiss Synchrotron Light Source (SLS) is a medium energy range light source that also provides light with high brilliance in the regime of hard X-rays. It is presently being constructed at PSI. The year 2000 was crucial for maintaining the project milestones with the start of storage ring commissioning for beginning of 2001 and first light on the probe at the four beamlines of phase I for August 2001. The major goals of 2000 were the completion of accelerator installation, the commissioning of linac and booster and the beginning of beamline assembly. In the first half of the year in parallel to the installation, major fabrication procedures were going on, that had to be thoroughly followed up in order to guarantee their completion in time. The overview and detailed description of these developments is supplemented in this annual report by 8 contributions on scientific activities of SLS staff members at synchrotron radiation facilities all over the world. A list of scientific publications in 2000 is also provided.

  17. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  18. Institutional Support : Kenya Institute for Public Policy Research and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In 2006 the Government of Kenya passed an Act of Parliament making the Kenya Institute for Public Policy Research and Analysis (KIPPRA) the government's lead socioeconomic research institute. The Act exerts enormous demands on KIPPRA at a time when it is trying to recover from the senior staff turnover suffered in ...

  19. Biomass programme: Overview of the 2006 Swiss research programme; Programm Biomasse. Ueberblicksbericht zum Forschungsprogramm 2006

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE) reviews work done within the framework of the Swiss biomass research programme in 2006. The programme concentrates on the efficient conversion of biomass into heat, electrical power and motor fuels. Projects concerned with the optimisation of processes are reported on, including low-particle-emission systems, control systems for bivalent heating installations, use of demanding biomass fuels, combined pellets and solar heating systems and the elimination of ammonia emissions. In the material flow area, measurement campaigns, organic pollutants in compost, the effects of fermented wastes in agriculture and methane losses in biogas conditioning are reported on. New conversion technologies are reviewed, including hydro-thermal gasification, plant-oil fuelled combined heat and power units, flameless burners and catalytic direct liquefaction. In the area of basics, studies and concepts, eco-balances and life-cycle analyses are reported on; the production of synthetic natural gas and the influence of combustion particles are discussed and decentralised power generation from solid biomass is reported on. National and international co-operation is reviewed. The report is concluded with a review of eight pilot and demonstration projects, a review of work to be done in 2007 and a list of research and demonstration projects.

  20. Guidelines for an environmental code of ethics for research institutions

    International Nuclear Information System (INIS)

    Gardusi, Claudia; Aquino, Afonso Rodrigues de

    2009-01-01

    The purpose of this work is to reflect about actions that may contribute to the creation of mechanisms to protect the environment in the development of research projects at research institutions, specifically the Nuclear and Energy Research Institute - IPEN. A brief review of part of the ethical values applied to the process of scientific development during the old, medieval and modern periods is presented, showing the split of the nature ethical principles. It is also reported an overview of the creation of codes of ethics applied to research institutions. Moreover, criteria are presented to settle guidelines to protect the environment during the development of research projects. (author)

  1. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    International Nuclear Information System (INIS)

    Fiser, M.; Kopicka, K.; Hradilek, P.; Hanc, P.; Lebeda, O.; Panek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotron-made radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123 I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application. (author)

  2. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  3. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  4. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    The Harish-Chandra Research Institute (known as the Mehta Research Institute of Math- ematics and Mathematical Physics until October 2000) came into existence in 1975, with a donation of some land and Rs. 40 lakhs from the B S Mehta Trust in Calcutta. With the aim of converting it into a top-class research Institute in ...

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United Kingdom

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Department of Trade and Industry - DTI; Secretary of State for Environment, Food and Rural Affairs and the Secretary of State for Health; Secretary of State for Transport; Secretary of State for Education); 2. Advisory Bodies (Medical Research Council - MRC; Nuclear Safety Advisory Committee; Radioactive Waste Management Advisory Committee); 3. Public and Semi-Public Agencies (United Kingdom Atomic Energy Authority - UKAEA; Health and Safety Commission and Executive - HSC/HSE; National Radiological Protection Board - NRPB; Environment Agencies; British Nuclear Fuels plc. - BNFL; Amersham International plc.; The National Nuclear Corporation Ltd. - NNC; United Kingdom Nirex Ltd.; Magnox Electric plc.; British Energy Generation Ltd.; Scottish Electricity Generator Companies; British Energy Generation Ltd.; Regional Electricity Companies in England and Wales)

  6. Implementation of the obligations of the convention on nuclear safety. Fifth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Switzerland signed the Convention on Nuclear Safety (CNS). In accordance with Article 5 of CNS, Switzerland has submitted 4 country reports for Review Meetings of Contracting Parties. This 5{sup th} report by the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an update on compliance with CNS obligations. The report attempts to give appropriate consideration to issues that aroused particular interest at the 4{sup th} Review Meeting. It starts with general political information on Switzerland, a brief history of nuclear power and an overview of Swiss nuclear facilities. This is followed by a comprehensive overview of the status of nuclear safety in Switzerland (as of July 2010) which indicates how Switzerland complies with the key obligations of the Convention. ENSI updated a substantial proportion of its guidelines which are harmonised with the safety requirements of the Western European Nuclear Regulators Association (WENRA) based on IAEA Safety Standards. On 1{sup st} January 2009, ENSI became formally independent of the Swiss Federal Office of Energy. It is now a stand-alone organisation controlled by its own management board. Switzerland recently started a process to select a site for the disposal of radioactive waste in deep geological formations. The first generation of NPPs in Switzerland has been the subject of progressive back-fitting. The second generation of NPPs incorporated various safety and operating improvements in their initial design. All Swiss NPPs have undergone the safety review process required under the Convention and have incorporated the improvements identified in the respective safety review reports. The Swiss policy of continuous improvements to NPPs ensures a high level of safety. The legislation and regulatory framework for nuclear installations is well established. It provides the formal basis for the supervision and the continuous improvement of nuclear installations. The Nuclear Energy Act and its ordinance came into force

  7. Paul Scherrer Institut Scientific Report 2002. Volume IV: Nuclear Energy and Safety

    International Nuclear Information System (INIS)

    Smith, B.; Gschwend, B.

    2003-03-01

    Highlights in research and operation Projects established in previous years have yielded relevant and first-of-a-kind results, which have gained broad attention, both nationally and internationally, and which are presented in detail in this report. A few outstanding examples are cited below:Successful first measurements with highly active samples in LWR-PROTEUS Phase II (high burn-up fuel) have shown significant dependency of reactivity on burn-up, and increasing discrepancies between calculated and measured reactivity values with burn-up. As a consequence of these findings, the Swiss utilities wish to extend this phase. On-call calculations in the framework of the STARS project have been used to modify the feedwater system of the Leibstadt NPP. The modification has been subsequently confirmed during a turbine trip. An international consortium has been established for the ARTIST project (aerosol behaviour in the case of steam generator tube rupture). First tests showed higher aerosol retention than expected. The MEGAPIE project remains ongoing, and plans for post-irradiation examination (PIE) have now been established. Investigation of the leak which occurred in the LISOR loop in the Hot Lab has positively identified the cause of failure. PSI's contribution to the China Energy Technology Programme has been completed and documented. Among other results, the programme provided evidence for lower total costs (including externalities) by using 'clean coal' technologies. In parallel, and to assure continuation of the successful collaboration with the European research programmes, NES has participated in 27 'Expressions of Interest' for Integrated Projects and Networks of Excellence within the 6th EU Framework Programme. On the operational level, the year 2002 was marked by a series of significant events: The Federal Institutes of Technology, to which PSI belongs, have drawn up strategic plans for the years 2004-2007. The proposed PSI contributions have been accepted by

  8. Paul Scherrer Institut Scientific Report 2002. Volume IV: Nuclear Energy and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.; Gschwend, B. (eds.)

    2003-03-01

    Highlights in research and operation Projects established in previous years have yielded relevant and first-of-a-kind results, which have gained broad attention, both nationally and internationally, and which are presented in detail in this report. A few outstanding examples are cited below:Successful first measurements with highly active samples in LWR-PROTEUS Phase II (high burn-up fuel) have shown significant dependency of reactivity on burn-up, and increasing discrepancies between calculated and measured reactivity values with burn-up. As a consequence of these findings, the Swiss utilities wish to extend this phase. On-call calculations in the framework of the STARS project have been used to modify the feedwater system of the Leibstadt NPP. The modification has been subsequently confirmed during a turbine trip. An international consortium has been established for the ARTIST project (aerosol behaviour in the case of steam generator tube rupture). First tests showed higher aerosol retention than expected. The MEGAPIE project remains ongoing, and plans for post-irradiation examination (PIE) have now been established. Investigation of the leak which occurred in the LISOR loop in the Hot Lab has positively identified the cause of failure. PSI's contribution to the China Energy Technology Programme has been completed and documented. Among other results, the programme provided evidence for lower total costs (including externalities) by using 'clean coal' technologies. In parallel, and to assure continuation of the successful collaboration with the European research programmes, NES has participated in 27 'Expressions of Interest' for Integrated Projects and Networks of Excellence within the 6th EU Framework Programme. On the operational level, the year 2002 was marked by a series of significant events: The Federal Institutes of Technology, to which PSI belongs, have drawn up strategic plans for the years 2004-2007. The proposed PSI

  9. Swiss 'Electricity' Research Programme 2004-2007; Konzept des Forschungsprogramms 'Elektrizitaet' 2004 - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Brueniger, R.

    2004-07-01

    This report issued by the Swiss Federal Office of Energy (SFOE) provides details on Swiss research in the electricity area that is foreseen for the period 2004-2007. The report discusses the current state of electricity research and the strategic goals for the period and presents the organisations involved and their previous work. The general main areas of interest addressed by the programme are noted, such as the storage and transport of electricity as well as its use in communication technologies, motors, domestic appliances and industrial applications. Figures are presented on the programme's finances and the concept of 'trend-watching' groups is briefly addressed.

  10. National Institute of Nursing Research

    Science.gov (United States)

    ... Management Resources Precision Medicine at NINR Research Highlights Data Science and Nursing Research Spotlight on End-of-Life ... Management Resources Precision Medicine at NINR Research Highlights Data Science and Nursing Research Spotlight on End-of-Life ...

  11. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    Nuclear Competence Association. The Forschungszentrum Juelich GmbH, HZDR Helmholtz-Zentrum Dresden-Rossendorf and the KIT Karlsruhe Institute of Technology are involved in the Nuclear Safety Research Program within the Helmholtz Association. The work and results in 2012 are presented. (orig.)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Republic of Korea

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection) (Protection of workers; Protection of the public); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Education, Science and Technology, including the Nuclear Energy Bureau; Minister of Knowledge Economy); 2. Advisory bodies (Atomic Energy Commission; Atomic Energy Safety Commission); 3. Public and semi-public agencies (Korean Atomic Energy Research Institute - KAERI; Korean Institute for Nuclear Safety - KINS; Korean Electric Power Company - KEPCO; Korean Hydro and Nuclear Power - KHNP)

  13. Cyclotron production of 48V via natTi(d,x)48V nuclear reaction; a promising radionuclide

    Science.gov (United States)

    Usman, A. R.; Khandaker, M. U.; Haba, H.

    2017-06-01

    In this experimental work, we studied the excitation function of natTi(d,x)48V nuclear reactions from 24 MeV down to threshold energy. Natural titanium foils were arranged in the popular stacked-foil method and activated with deuteron beam generated from an AVF cyclotron at RIKEN, Wako, Japan. The emitted γ activities from the activated foils were measured using an offline γ-ray spectrometry. The present results were analyzed, compared with earlier published experimental data and also with the evaluated data of Talys code. Our new measured data agree with some of the earlier reported experimental data while a partial agreement is found with the evaluated theoretical data. In addition to the use of 48V as a beam intensity monitor, recent studies indicate its potentials as calibrating source in PET cameras and also as a (radioactive) label for medical applications. The results are also expected to further enrich the experimental database and also to play an important role in nuclear reactions model codes design.

  14. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    2005-01-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  15. Research Universities as Knowledge Networks: The Role of Institutional Research

    Science.gov (United States)

    Chirikov, Igor

    2013-01-01

    This article focuses on the elaboration of institutional research practice, which is an important element of any research university. The study addresses three questions. First, how did institutional research arise, and what is its raison d'etre in a research university? Second, how can institutional research contribute to the improvement of the…

  16. Cyclotron produced radiopharmaceuticals

    Czech Academy of Sciences Publication Activity Database

    Kopička, Karel; Fišer, Miroslav; Hradilek, Pavel; Hanč, Petr; Lebeda, Ondřej

    2003-01-01

    Roč. 53, č. 2 (2003), s. A763-A768 ISSN 0011-4626 R&D Projects: GA AV ČR KSK4055109 Keywords : cyclotron * radionuclides * radiopharmaceuticals Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.263, year: 2003

  17. ARRONAX, a high intensity cyclotron in Nantes

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, F.; Michel, N.; Guertin, A.; Martino, J. [Nantes Univ., SUBATECH, IN2P3-CNRS, Ecole des Mines de Nantes, 44 (France); Barbet, J.; Chatal, J.F. [Nantes Univ., Dept. de Recherche en Cancerologie, Inserm, U601, 44 (France)

    2008-07-01

    A cyclotron named ARRONAX is being built in Nantes (France). It is mainly devoted to radiochemistry and nuclear medicine research and will be operational during the last quarter of 2008. This machine will accelerate both protons and {alpha}-particles at high energy (up to 70 MeV) and high intensity (2 simultaneous proton beams with intensity up to 350 {mu}A). In nuclear medicine, these characteristics will allow the cyclotron to produce a large variety of radionuclides on a regular schedule and in sufficient amount to perform clinical trials. A priority list of 12 radioisotopes, which contains isotopes for therapeutic use as well as for PET imaging, has been established by an international scientific committee. In radiochemistry, a vertical pulsed {alpha}-beam will allow fundamental studies of radiolysis in aqueous media, which is of great interest for radiobiology and for nuclear waste management. (authors)

  18. Dubna Cyclotrons - Status and Plans

    Science.gov (United States)

    Gulbekyan, G. G.; Gikal, B. N.; Bogomolov, S. L.; Dmitriev, S. N.; Itkis, M. G.; Kalagin, V. V.; Oganessian, Yu. Ts.; Sokolov, V. A.

    2005-09-01

    In Laboratory of nuclear reactions there are 4 accelerators of heavy ions. Cyclotrons U - 400, U - 400M, U - 200 and DC-40 accelerate ions from P up to Bi with energy from 3 up to 100 MeV/nucleon with high intensity. The large program of scientific and applied researches is carried out on the beams of heavy ions. In Laboratory the project DRIBs allowing obtaining beams of the accelerated radioactive ions is being realized. The first experiments on 6 He and 8 He beams are carried out.

  19. Status report on nuclear data activity compilation (1999-2002)

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Takacs, S.; Szelecsenyi, F.

    2002-01-01

    This paper is the status report of the Cyclotron Department of the Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen. It describes the experimental works on the excitation functions relevant to the production of diagnostic and therapeutic radioisotopes, the data compilation and evaluation of charged particle cross sections and the methodology for measurements and application of nuclear data for practical purposes. (a.n.)

  20. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1985-01-01

    The Act for Japan Atomic Energy Research Institute has been promulgated anew. Contents are the following : general rules, officials, advisors and personnel, duties, financial affairs and accounts, supervision, miscellaneous rules, penal provisions, and additional rules. (In the additional rules, the merger into JAERI of Japan Nuclear Ship Research and Development Agency is treated.) Japan Atomic Energy Research Institute conducts research etc. for the development of atomic energy comprehensively and efficiently, thereby contributing to the promotion of atomic energy research, development and utilization, according to the Atomic Energy Fundamental Act. Duties are atomic energy basic and application research, reactor relation, training of the personnel, RIs relation, etc. (Mori, K.)

  1. Nuclear Physics Institute of the Czechoslovak Academy of Sciences 1955 to 1975

    International Nuclear Information System (INIS)

    The scientific problems studied at the Institute of Nuclear Physics are described and the most important results obtained in basic and applied research are presented. The document includes photographs of the instrumentation of the Institute of Nuclear Physics. (J.P.)

  2. Nuclear safety research master plan

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output

  3. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  4. International human cooperation in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Shiba, Koreyuki; Kaieda, Keisuke; Makuuchi, Keizo; Takada, Kazuo; Nomura, Masayuki

    1997-01-01

    Rearing of talented persons in the area of nuclear energy is one of the important works in Japan Atomic Energy Research Institute. In this report, the present situations and future schedules of international human cooperation in this area wsere summarized. First, the recent activities of International Nuclear Technology Center were outlined in respect of international human cooperation. A study and training course which was started in cooperation with JICA and IAEA from the middle of eighties and the international nuclear safety seminar aiming at advancing the nuclear safety level of the world are now being put into practice. In addition, a study and training for rearing talented persons was started from 1996 to improve the nuclear safety level of the neighbouring countries. The activities of the nuclear research interchange system by Science and Technology Agency established in 1985 and Bilateral Co-operation Agreement from 1984 were explained and also various difficulties in the international cooperation were pointed out. (M.N.)

  5. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  6. Development of Medical Cyclotron in KIRAMS

    International Nuclear Information System (INIS)

    Chai, Jong Seo; Jung, In Su; An, Dong Hyun

    2005-01-01

    This paper is presented on the development and status of medical cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) at present. We have developed medical cyclotron which is KIRAMS-13. And the improvement of KIRAMS-13 is presented. Furthermore, the design of new cyclotrons, such as KIRAMS-5 and KIRAMS-30 cyclotron, are presented, and R and D studies for future plan of heavy ion accelerator are discussed

  7. C235-V3 cyclotron for a proton therapy center to be installed in the hospital complex of radiation medicine (Dimitrovgrad)

    Science.gov (United States)

    Galkin, R. V.; Gurskii, S. V.; Jongen, Y.; Karamysheva, G. A.; Kazarinov, M. Yu.; Korovkin, S. A.; Kostromin, S. A.; Calderan, J.-M.; Cahay, P.; Mokrenko, S. P.; Morozov, N. A.; Nkongolo, H.; Ol'shevskii, A. G.; Paradis, Y.; Petrov, D. S.; Romanov, V. M.; Samsonov, E. V.; Syresin, E. M.; Shakun, A. N.; Shakun, N. G.; Shirkov, G. D.; Shirkov, S. G.

    2014-06-01

    Proton therapy is an effective method of treating oncologic diseases. In Russia, construction of several centers for proton and ion therapy is slated for the years to come. A proton therapy center in Dimitrovgrad will be the first. The Joint Institute for Nuclear Research (Russia) in collaboration with Ion Beam Application (IBA) (Belgium) has designed an C235-V3 medical proton cyclotron for this center. It outperforms previous versions of commercial IBA cyclotrons, which have already been installed in 11 oncologic hospital centers in different countries. Experimental and calculation data for the beam dynamics in the C235-V3 medical cyclotron are presented. Reasons for beam losses during acceleration are considered, the influence of the magnetic field radial component in the midplane of the accelerator and main resonances is studied, and a beam extraction system is designed. In 2011-2012 in Dubna, the cyclotron was mounted, its magnetic field was properly configured, acceleration conditions were optimized, and beam extraction tests were carried out after which it was supplied to Dimitrovgrad. In the C235-V3 cyclotron, an acceleration efficiency of 72% and an extraction efficiency of 62% have been achieved without diaphragming to form a vertical profile of the beam.

  8. EUROPE: Swiss role

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    On its continual round of CERN Member States, the European Committee for Future Accelerators (ECFA) met in Bern, Switzerland, in March. With CERN based in Geneva, and with a national research centre at the Paul Scherrer Institute (PSI), Villigen, Switzerland figures prominently in European particle physics. The Bern ECFA meeting provided a full picture of Swiss particle physics activities, project by project, and was prefaced by an overview by Claude Joseph of Lausanne. The number of experimental particle physicists in the country is about 200, with an academic staff of about 170. These are distributed among seven universities - Basel, Bern, Fribourg, Geneva, Lausanne, Neuchâtel and Zurich. In addition there are substantial research groups at ETH-Zurich and at PSI. Probably reflecting the proximity of CERN, the size of the national research community, when scaled to the population, is above the CERN Member State average. At CERN, there is a strong Swiss participation in research at the LEP electron-positron collider (concentrated on L3), with 44 physicists. There are also 33 physicists working at the LEAR low energy antiproton ring, in particular the Crystal Barrel and CP-LEAR studies. In addition there is interest in heavy ion research and in neutrino physics (NOMAD) as well as substantial participation in research and development work for experiments at the LHC. Away from CERN, there are 6 Swiss physicists working at the HERA electron-proton collider at DESY, Hamburg, with the national PSI programme involving about 40 physicists. (The PSI programme was covered at the Bern ECFA meeting by H.C. Walter.) Following the illustrious tradition of Fritz Zwicky, Switzerland also counts many astrophysicists. Theoretical physics, with a community of some 80 researchers, has a great tradition. Throughout the 20th century, leading Swiss research centres have been beacons of brilliance. Zurich, in particular, played a leading role, with Einstein, Schrödinger and Pauli among

  9. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  10. Using institutional theory in enterprise systems research

    DEFF Research Database (Denmark)

    Svejvig, Per

    2013-01-01

    This paper sets out to examine the use of institutional theory as a conceptually rich lens to study social issues of enterprise systems (ES) research. More precisely, the purpose is to categorize current ES research using institutional theory to develop a conceptual model that advances ES research...

  11. Contributions to radiochemical and nuclear materials research

    International Nuclear Information System (INIS)

    Matzke, H.

    1982-01-01

    Series of talks given during a seminar of the European Institute for Transuranium Elements in april 1981 in honor of R. LINDNER on the occasion of his 60th birth day. The topics include general aspects of research practice and science prognosis, retrospective essays about the discovery of nuclear fission by O. HAHN as well as surveys of actual research activities concerning a radiochemistry and the use of radioactivity in material science

  12. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated

  13. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    2007-07-01

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated. Emergency drills are

  14. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico; Evaluacion de la aptitud para el servicio de la piscina del reactor TRIGA Mark III del Instituto Nacional de Investigaciones Nucleares de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J. [Departamento de Sintesis y Caracterizacion de Materiales del ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  15. Low Vision Research at the Schepens Eye Research Institute

    National Research Council Canada - National Science Library

    D'Amore, Patricia

    2003-01-01

    This research proposal, Low Vision at the Schepens Eye Research Institute, is a collaborative effort on the part of four Investigators at the Institute whose goal is to advance the studies on low vision...

  16. The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute

    Science.gov (United States)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M.

    2015-12-01

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes 82Sr and 223,224Ra are also presented.

  17. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    Energy Technology Data Exchange (ETDEWEB)

    Panteleev, V. N., E-mail: vnp@pnpi.spb.ru; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M. [NRC “Kurchatov Institute” PNPI, 188300 Gatchina (Russian Federation)

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.

  18. Alternative institutional arrangements for nuclear power

    International Nuclear Information System (INIS)

    Bussard, D.

    1980-08-01

    This paper investigates how alternative organizations of nuclear power generation would effect the regulatory environment for nuclear power production, how it would effect financial constraints on new construction, and what governmental barriers to such reorganization exist

  19. Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator “LACARA”

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T C

    2008-11-11

    The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

  20. Swiss State Secretary visits CERN

    CERN Multimedia

    2008-01-01

    The new Swiss State Secretary for Education and Research recently visited CERN. Peter Jenni, the spokesperson for ATLAS, gave Mauro Dell’Ambrogio, the new Swiss State Secretary for Education and Research, a tour of ATLAS and the LHC tunnel.On 2 April, the newly appointed Swiss State Secretary for Education and Research, Mauro Dell’Ambrogio, was welcomed to CERN by Director-General Robert Aymar. On arrival the Swiss minister was given a guided tour of ATLAS and the adjoining LHC tunnel by Peter Jenni, the ATLAS spokesperson. Dr Dell’Ambrogio was then greeted by Swiss scientists and attended presentations by young post doc physicists about Swiss contributions to CMS and LHCb, in particular their work concerning hardware contribution and data analysis. There are 120 physicists from Swiss universities working on CERN’s experiments, and many more Swiss people working at CERN in other departments due to Switzerland’s special position as a host state. Also before ...

  1. Main directions of Research Institute of Experimental and Theoretic Physics

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.

    1997-01-01

    The characteristic of main directions of the Research Institute of Experimental and Theoretic Physics (RIETF) activity is given in the paper. It is noted, that Institute is headquarters organisation in 4 following scientific programs of Ministry of Science - Academy of Science of Republic of Kazakhstan: Physics and mechanics of gases, plasma and liquid; Theoretical physics; Nonlinear processes and structural self-organization of substance; Research works Comet. Since 1994 RIETF is one of executors on interstate scientific program ITER. There are following priorities in activity of the institute: - actual problems of relativity theory, gravitation and quantum mechanics; - research on combustion problems and heat-mass-transfer; - physics of gases, plasma and liquid; physics non-equilibrium processes in plasma an in plasma-similar media; - solid state physics and material testing problems; modification of materials properties; electrophysical, optical and structural researches of substance; - interactions of nuclear, electromagnet radiation and accelerated particles with substance; - theoretical and experimental nuclear physics and physics of cosmic rays

  2. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ); Dosimetria TL en el area del nuevo acelerador de iones Tandetron del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Valdovinos A, M.; Gonzalez M, P.R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  3. Physical protection of radioactive materials in a University Research Institute

    International Nuclear Information System (INIS)

    Boeck, H.

    1998-01-01

    Although nuclear research centers attached to universities usually do not keep large inventories of radioactive or special nuclear material, the mentioned material has still to be under strict surveillance and safeguards if applicable. One problem in such research centers is the large and frequent fluctuation of persons - mainly students, scientists or visiting guest scientists - using such materials for basic or applied research. In the present paper an overview of protective actions in such a research institute will be given and experience of more than 36 years will be presented. (author)

  4. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  5. Castration promotes welfare in group-housed male Swiss outbred mice maintained in educational institutions.

    Science.gov (United States)

    Vaughan, Lewis M; Dawson, Jane S; Porter, Paula R; Whittaker, Alexandra L

    2014-01-01

    Educational institutions maintain group-housed mice of both sexes for training veterinarians and technicians in husbandry, medication, and sampling procedures. Mice kept in all-male groups may experience poor welfare due to fighting. Castrated mice may be used to replace gonadally intact males for such training programs. In this prospective cohort study, 80 castrated and 80 control (intact) male mice were studied over 3 mo to monitor aggression frequency and injury levels. Behavioral observations were performed twice weekly by using an all-occurrences sampling method to quantify behavioral events and the number and severity of bite wounds. Under these housing conditions, group-housed male mice castrated postpubertally exhibited significantly less aggression than did intact male mice. Castration therefore improves welfare in group-housed male mice and thus provides a husbandry alternative to individually housing animals in nonstudy situations.

  6. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  7. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  8. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  9. Paul Scherrer Institute Scientific Report 1998. Volume IV: Nuclear Energy and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Birchley, Jon; Ringele, Ruth [eds.

    1999-09-01

    Nuclear energy related research in Switzerland is concentrated at PSI`s Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1998 amounted to about 195 py/a and 4.5 millions CHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EC Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. A list of scientific publications in 1998 is included. (author) figs., tabs., refs.

  10. Paul Scherrer Institute Scientific Report 1999. Volume IV: Nuclear Energy and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brian; Gschwend, Beatrice [eds.

    2000-07-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1999 amounted to about 185 py/a and 4.7 MCHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EU Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  11. Paul Scherrer Institute Scientific Report 1999. Volume IV: Nuclear Energy and Safety

    International Nuclear Information System (INIS)

    Smith, Brian; Gschwend, Beatrice

    2000-01-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1999 amounted to about 185 py/a and 4.7 MCHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EU Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  12. Paul Scherrer Institute Scientific Report 1998. Volume IV: Nuclear Energy and Safety

    International Nuclear Information System (INIS)

    Birchley, Jon; Ringele, Ruth

    1999-01-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1998 amounted to about 195 py/a and 4.5 millions CHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EC Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. A list of scientific publications in 1998 is included. (author)

  13. Waste management in the Institute for Nuclear Sciences 'Vinca' - Belgrade

    International Nuclear Information System (INIS)

    Raicevic, J.; Avramovic, I.; Plecas, I.; Mandic, M.; Goldammer, W.

    2004-01-01

    The Vinca Institute of Nuclear Sciences served for many years as the only Yugoslav (Serbia and Montenegro) nuclear institute. Therefore, it acted for many years as national storage facility for the radioactive waste from all institutional (medical, military, etc.) activities. The interim storage was situated within the Vinca Institute historically at several different places. The main fraction of the wastes is stored in two metallic hangars. In addition, underground stainless steel tanks in concrete shields have been constructed to accept all processed liquid waste from the research reactor RA. The current situation of the interim storage facilities is not satisfactory. However, the principle limitation for improvements of the waste management at the Vinca Institute lies in the fact that long-term solutions cannot be addressed at the moment. Plans for a final repository for radioactive waste do not exist yet in the Serbia and Montenegro. Consequently, waste management can only address an interim solution. In order to conduct all waste management activities in a safe manner, an overall strategy and study for improvement/rearrangement of radioactive waste storage facilities was developed which addresses all wastes and their management. The IAEA is providing assistance to these activities. This support includes a project which has been initiated by the IAEA to improve the waste management at the Vinca Institute. This paper describes the current status of the development of this overall strategy and study for improvement/rearrangement of radioactive waste storage facilities. The information available and the current status of the development of concepts for the processing and storage of the waste are summarised. (author)

  14. Nuclear regulation plans originated from the results of accidents or natural disasters and countermeasures adopted in Kinki University Atomic Energy Research Institute. The information in this paper hopes to ensure sensible and safe reactor management

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    2010-01-01

    As a result of investigating cause and effect of accidents or natural disasters, the authorities concerned would introduce new regulations. It is desirable that the person in authority should negotiate with the parties concerned on the regulation. After following accidents and natural disasters, three negotiations were made between the person in authority and the Kinki University Atomic Energy Research Institute. (1) The accident at Three Mile Island nuclear power plant in 1979. (2) The crash near a nuclear power plant in Ehime prefecture in 1988. (3) The Great Hanshin Earthquake in 1995. The documents of the negotiations are described. They discuss ways of building up better relationships between the authorities and the parties concerned. (author)

  15. 1984. Annual progress report of the Institut de Physique Nucleaire at Orsay

    International Nuclear Information System (INIS)

    1985-01-01

    The first part of this report presents the work of the year 1984 of research in the Division of experimental physics of the Institute of Nuclear Physics in Orsay, the activities are conducted in six axes: nuclear structure, high excitation energy nuclear states, heavy ion collision phenomena, intermediate energy nuclear physics, radiochemistry and perinuclear research. The second part presents the studies of the theoretical physics division of the Institute for Nuclear Physics in Orsay in 1984. The different research axes are the following: nuclear physics, intermediate energy nuclear physics, elementary particles. The third part presents a compilation of the work done by the technical groups of the laboratory. The different axes are: operation and development of accelerators, design studies on new superconducting cyclotron project equipment and instrumental projects, technical developments used for specific research [fr

  16. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  17. Annual report of Research Center for Nuclear Physics, Osaka University. 1997 (April 1, 1997-March 31, 1998)

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Sakai, Tsutomu; Hirata, Maiko

    1998-01-01

    Research Center for Nuclear Physics (RCNP) is the national center of nuclear physics in Japan, which is a laboratory complex of the cyclotron laboratory, the laser electron photon laboratory, and the Oto underground laboratory and aims at studies of nucleon meson nuclear physics and quark lepton nuclear physics. In the cyclotron laboratory, AVF/Ring cyclotron complex provides high quality beams of polarized protons and light ions in the medium energy region. Experimental studies have extensively been carried out on nucleon meson nuclear physics. The subjects studied include the nucleon mass and the nuclear interaction in nuclear medium, nuclear spin isospin motions and nuclear responses for neutrinos, pions and isobars interactions, medium energy nuclear reactions of light heavy ions, medical applications, and so on. The Oto Cosmo Observatory is the low background underground laboratory for lepton nuclear physics, and is used for applied science. The laser photon laboratory is used to study quark nuclear physics by means of the multi-GeV laser electron photon beam, and will be ready in the academic year of 1998 to be used for studying quark gluon structures and low-energy QCD. The accelerator researches and developments are being carried out for the new future plan of the multi-GeV electron proton collider. Theoretical works on nuclear particle physics have extensively been made by the RCNP theory groups and laser groups. Computer, network and DAQ systems, including the supercomputer system and the new generation network, have been developed. In this report, 25 reports of nuclear physics, 8 reports of lepton nuclear physics, 1 report of quark nuclear physics, and 2 reports of interdisciplinary physics are described in the experimental nuclear physics. And, 16 reports of quark nuclear physics, 9 reports of intermediate nuclear physics, 19 reports of nuclear physics, and 1 report of miscellaneous are described in the theoretical physics. (G.K.)

  18. Accelerator activities at the Variable Energy Cyclotron Centre, Kolkata

    International Nuclear Information System (INIS)

    Srivastava, D.K.

    2013-01-01

    The Variable Energy Cyclotron Centre (VECC) at Kolkata indigenously developed the first large accelerator in the country, the room temperature cyclotron K-130 during seventies which is still delivering ions beams to the users spread all over the country for research in nuclear science and applied physics. VECC, with its vast experience and expertise in accelerator technology, took up the challenging task of constructing the first superconducting cyclotron in the country the K500 superconducting cyclotron. It has also been commissioned with internal beam. The problems associated with getting the external beam are analysed in detail since last one year and some of them are fixed. Efforts are on to get external beam from the K500 cyclotron and it is expected that soon it will also deliver beams to the users. In order to study structure of unstable nuclei that are very neutron rich or proton rich, an ISOL based RIB facility is under-development at VECC. Several components of this facility have already been tested and installed. VECC is also working on to build a world class national accelerator facility called ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) at the new campus in Kolkata. This facility will serve a wide user community in nuclear and material sciences. VECC is also setting up a medical cyclotron to produce proton beam with energy up to 30 MeV and current up to 350 μA, to produce various isotopes for medical applications. This cyclotron will also be used for R and D in material science and to settle the various problems related with handling of high beam current on ADS related components. Apart from these main facilities VECC is also involved in the R and D activities related with accelerators such as studies on using cyclotrons to achieve high power proton beam, development and testing of superconducting cavities, development of superconducting magnets for FAIR project etc. (author)

  19. Cyclotron production of high-purity 123I for medical applications via the 127I(p,5n)123Xe → 123I nuclear reaction

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    The use of iodine-123 in nuclear medicine procedures is well documented in the scientific literature. Also, several methods for its production based on accelerator techniques have been described. Indirectly made 123 I via the 127 I(p,5n) 123 Xe → 123 I reaction produces 123 I of > 99.9% radionuclidic purity, with only 125 I ( 123 I production were developed at the University of California at Davis, where since 1974 the 76-in. isochronous cyclotron of the Crocker Nuclear Laboratory has been used for routine biweekly production of high-purity no-carrier-added 123 I

  20. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de